Name and section: _

1. Calculate q_{rev} , ΔU , and ΔS for the reversible cooling of one mole of an ideal gas at constant volume V_1 from (P_1, V_1, T_1) to (P_2, V_1, T_2) followed by a reversible expansion at constant pressure P_2 from (P_2, V_1, T_2) to (P_2, V_2, T_1) (the final state for all the processes are shown in fig. 1). Compare your result for ΔS with that of path A.

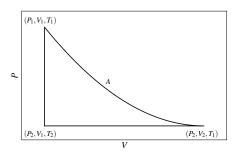


Figure 1: Pressure vs. volume for three processes

Solution: Considering the isochoric process as process 1 and the isobaric process as process 2:

$$\Delta U_1 = C_V (T_2 - T_1)$$

$$\Delta U_2 = C_V (T_1 - T_2)$$

$$w_1 = -\int_1^2 p \, dV = 0$$

$$w_2 = -p_2 (V_2 - V_1)$$

$$q_1 = \Delta U_1 = C_V (T_2 - T_1)$$

$$q_2 = \Delta U_2 - w_2 = C_V (T_1 - T_2) + p_2 (V_2 - V_1)$$

$$= \frac{C_V}{R} p_2 (V_2 - V_1) + p_2 (V_2 - V_1)$$

$$= p_2 (V_2 - V_1) \left(\frac{C_V}{R} + 1\right)$$

$$dS_1 = \frac{C_V}{T} dT$$

$$\Delta S_1 = \int_{T_1}^{T_2} \frac{C_V}{T} dT$$

$$= C_V \ln \frac{T_2}{T_1}$$

$$dS_2 = \frac{C_V}{T} dT + \frac{p}{T} dV$$

$$= \frac{C_V}{T} dT + \frac{R}{V} dV$$

$$\Delta S_2 = \int_{T_2}^{T_1} \frac{C_V}{T} dT + \int_{V_1}^{V_2} \frac{R}{V} dV$$

$$= C_V \ln\left(\frac{T_1}{T_2}\right) + R \ln\left(\frac{V_2}{V_1}\right)$$

- 2. (1) A circulating refrigerant such as Freon enters a compressor as a vapor. The vapor is compressed at constant entropy and exits the compressor. (2) The vapor travels through the condenser which first cools and then condenses the vapor into a liquid by removing additional heat at constant pressure and temperature. (3) The liquid refrigerant goes through the expansion valve (also called a throttle valve) where its pressure abruptly decreases, causing flash evaporation adiabatically. That results in a mixture of liquid and vapor at a lower temperature and pressure. (4) At constant pressure, cold liquid-vapor mixture then travels through the evaporator coil or tubes and is completely vaporized by cooling warm air (from the space being refrigerated) blown by a fan across the evaporator coil or tubes. (1) The resulting refrigerant vapor returns to the compressor inlet and is reversibly compressed to complete the thermodynamic cycle.
 - (a) Draw this cycle on a temperature-entropy diagram.

(b) What variables can you define for each part of this cycle?

Table 1: Fundamental and derived constants

Name	Symbol	Value	Units
Atomic Mass Unit	u	1.66054×10^{-27}	kg
Avogadro's Number	N_A	6.02214×10^{23}	mol^{-1}
Mass of an Electron	m_e	9.10938×10^{-31}	$_{ m kg}$
Mass of a Neutron	m_n	1.67493×10^{-27}	$_{ m kg}$
Mass of a Proton	m_p	1.67262×10^{-27}	$_{ m kg}$
Faraday's Constant	\overline{F}	9.64853×10^4	C/mol
Gas Constant	R	8.31446	J/(K mol)
		0.08206	Latm/(Kmol)
		62.36358	$L \operatorname{Torr}/(K \operatorname{mol})$
Boltzmann's Constant	k_B	1.38065×10^{-23}	$\mathrm{J/K}$
Planck's Constant	h	6.62607×10^{-34}	$\mathrm{J}\mathrm{s}$
Speed of Light	c	2.99792×10^{8}	$\mathrm{m/s}$
Earth's Gravitational Constant	g	9.80665	$\mathrm{m/s^2}$
Bohr Radius	a_0	5.29177×10^{-11}	m
Rydberg Constant	R_{∞}	1.09737×10^7	m^{-1}
Hartree Energy	E_h	4.35974×10^{-18}	J

Table 2: Formulas

$\ln 2 = 0.693$	$c_V = \frac{3}{2}R$	$\Delta S_{\rm sys} = nc_P \ln \left(\frac{T_2}{T_1}\right)$
$\ln 3 = 1.099$	$\Delta U = nc_V \Delta T$	$\Delta S_{ m sys} = n c_V \ln \left(rac{T_2}{T_1} ight)$
$\ln 5 = 1.609$	$\Delta H = nc_P \Delta T$	$\int_0^\infty e^{-\alpha x} dx = \frac{1}{\alpha}$
$\ln N! \approx N \ln N - N$	$w = -\int_{V_1}^{V_2} P_{\text{ext}}(V) \mathrm{d}V$	30
$\Delta U = q + w$	$w = -nRT \ln \left(\frac{V_2}{V_1}\right)$	$\int_0^\infty e^{-\alpha x^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{\alpha}}$
H = U + PV	$w = -P_{\rm ext} \Delta V$	$\int_0^\infty x e^{-\alpha x^2} \mathrm{d}x = \frac{1}{2\alpha}$
$q = mc_s \Delta T$	$\Delta S_{\rm sys} = \int_1^2 \frac{\mathrm{d}q_{\rm rev}}{T}$	$\int_0^\infty x^2 e^{-\alpha x^2} dx = \frac{1}{4} \sqrt{\frac{\pi}{\alpha^3}}$
$q_{\mathrm{calorimeter}} = C_{\mathrm{calorimeter}} \Delta T$	$\Delta S_{ m sys} = rac{q_{ m rev}}{T}$	$N!pprox \left(rac{N}{\mathrm{e}} ight)^N$
$c_P = c_V + R$	$\Delta S_{\rm sys} = nR \ln \left(\frac{V_2}{V_1} \right)$	× 1
$c_P = \frac{5}{2}R$	$\Delta S_{ m surr} = rac{q_{ m surr}}{T_{ m surr}}$	$f(x) = \sum_{i=0}^{\infty} \frac{1}{i!} \left. \frac{d^i f(x)}{dx^i} \right _{x=a} (x-a)^i$