
Discussion 2

Name and section:

1. In class we discussed how a large number of coin flips will make the distribution much more strongly
peaked than a smaller number of coin flips. Is the same true for the sums of dice rolls?

(a) How many ways can you roll a sum of 13 with three dice? Let’s call this N(3, 13). Likely the easiest
way to do this is to recognize that N(3, 13) is the coefficient of x13 in the expansion of

(x + x2 + x3 + x4 + x5 + x6)3. (1)

Programs such as Mathematica (available for free to BU students) and websites such as Wolfram
Alpha can be very useful for this type of thing.

(x + x2 + x3+x4 + x5 + x6)3 =

x18 + 3x17 + 6x16 + 10x15 + 15x14 + 21x13 + 25x12 + 27x11

+ 27x10 + 25x9 + 21x8 + 15x7 + 10x6 + 6x5 + 3x4 + x3

So N(3, 13) = 21.

(b) Now that we’ve shown how to find N(d, s), back to the original question. What is the ratio
N(8, 28)/N(8, 18)? Note, the sums 28 and 18 are the most likely and halfway between the minimum
and the most likely, respectively.

N(8, 28) = 135954 and N(8, 18) = 16808 so N(8, 28)/N(8, 18) = 67977
8404 = 8.08865
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(c) What is the ratio N(16, 56)/N(16, 36)? Note again that these are the most likely and halfway to
the most likely.

N(16, 56) = 163112472594 and N(16, 36) = 2065764520. Then N(16, 56)/N(16, 36) = 81556236297
1032882260 =

78.9599. That’s nearly an order of magnitude more!
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http://www.bu.edu/tech/services/cccs/desktop/distribution/mathsci/mathematica/student/
http://www.wolframalpha.com/
http://www.wolframalpha.com/


Discussion 2

2. Consider two identical regions of space initially separated by a removable wall. Suppose the left region
is represented by M lattice sites and the right region is represented by an additional M sites. Initially,
with the separating wall in place, the left region contains N particles, while the right region contains no
particles.

(a) Write down an expression for the total number of configurations, Wi, for this initial system.

The total system Wi will be equal to the product of Wl and Wr for the left and right sides respec-
tively: Wi = Wl ×Wr. Trivially, because it is just empty, Wr = 1.

The left side is a greater than that though (assuming N < M). However, this is just figuring out
how to arrange N particles in the M sites or similarly how to get N heads on M flips of a coin. As
we’ve discussed, this is just Wl =

(
M
N

)
= M !

N !(M−N)! .

Therefore, Wi = M !
N !(M−N)! .

(b) If the entropy, S, of the system is related to W by S = kB lnW , where kB is the Boltzmann
constant, using Stirling’s approximation (lnx! = x lnx − x), calculate the entropy Si of the initial
state described above.

Si = kB lnWi

= kB ln

(
M !

N !(M −N)!

)
= kB

(
lnM ! − lnN ! − ln(M −N)!

)
= kB

(
M lnM −M −N lnN + N − (M −N) ln(M −N) + M −N

)
= kB

(
M
(
lnM − ln(M −N)

)
−N

(
lnN − ln(M −N)

))
= kB

(
M ln

M

M −N
−N ln

N

M −N

)
= kB

(
−M ln

(
1 − N

M

)
+ N ln

(
M

N
− 1

))
(2)

Note, there are many ways this could be simplified, but I think this is one of the cleanest looking.

(c) Now the wall is removed and the system equilibrates to its final state where its entropy is Sf .
Calculate Sf .

Here, we can note that the only thing that changes in Sf from Si is the size of the box which is
now 2M . Therefore,

Sf = kB

(
−2M ln

(
1 − N

2M

)
+ N ln

(
2M

N
− 1

))
(3)

(d) Compute the change in entropy ∆S. Simplify ∆S by assuming the ideal gas limit M � N so that
1 −N/M ≈ 1.

∆S = Sf − Si so using eqs. (2) and (3) and using the approximation M � N ,

∆S = kB

(
−2M ln (1) + N ln

(
2M

N

))
− kB

(
−M ln (1) + N ln

(
M

N

))
= kBN ln 2

Interestingly, ∆S does not depend on the system size (as long as M � N), but it is linearly
dependent on the number of particles and logarithmically dependent on the change in volume.
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Discussion 2

3. Suppose that you have 2V black particles and 2V white particles in 4V lattice sites. There are 2V lattice
sites on the left and 2V lattice sites on the right, separated by a permeable wall. The total volume is
fixed. Show that perfect de-mixing (all white on one side, all black on the other) becomes increasingly
improbable as V increases. (Hint: refer to Example 2.3 in the book.)

(a) If it helps, start by thinking about the cases you can easily draw all the possibilities (V = 1 and
V = 2, for example). Which is more likely to be unmixed?

For V = 1, there is no unmixed state, so the probability of being unmixed is 1. For V = 2, there
are two states that are unmixed, but four that are mixed: probability of unmixed is 2

3 . At least for
these two examples, the larger system has a larger probability of being unmixed.

(b) Now think about the general case of V sites. Show (mathematically) how they are unlikely to demix
assuming no interparticle interactions.

Looking at multiplicity, there are only two ways for the system to be unmixed: all black on the left
and white on the right or the opposite. However, there are

(
2V
V

)
− 2 ways for the particles to be

arranged mixed. So as we saw above, as long as V ≥ 1, being mixed is much more likely:

p(mixed) =

(
2V
V

)
− 2(

2V
V

)
= 1 − 2(

2V
V

)
Even for fairly small values of V (i.e., not even needing to get to macroscopic-size systems), the
probability of completely unmixing randomly becomes extremely small as can be see below:
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(c) Starting to think about enthalpic versus entropic contributions to the driving forces, which driving
force makes demixing unlikely? How might the other force contribute to demixing?

Everything described above is due to entropic contributions: there is more “randomness” to being
mixed whereas an unmixed state is very ordered.

For an enthalpic contribution to unmixing, there would need to be some sort of interparticle in-
teractions. For example, if white particles “preferred” being next to white particles, that would
contribute an enthalpic force towards unmixing that could possibly overcome the entropic energy
of being mixed.
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4. Find the value n = n∗ that causes the function

W (n) =
N !

n!(N − n)!
pn(1 − p)N−n (4)

to be a maximum, for constants p and N . Use Stirling’s approximation, x! ≈ (x/e)x . Note that it is
easier to find the value of n that maximizes lnW than the value that maximizes W . Will the value of
n∗ will be the same?

See solution to problem set 1, posted soon.

n∗ will be the same for W (n) and lnW (n).
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