Discussion 10

Name and section: $_$

$$U(S, V, N) = TS - pV + \mu N$$

$$S(U, V, N) = \frac{U}{T} + \frac{p}{T}V - \frac{\mu}{T}N$$

$$F(V, T, N) = U - TS$$

$$G(p, T, N) = U + pV - TS$$

$$H(S, p, N) = U + pV$$

 $\begin{array}{c|cccc} T & G & -p \\ \hline F & H \\ \hline V & U & -S \\ \hline \end{array}$ Good Physicists Have Studied Under Very Fine Teachers

V	F	Т
U		G
-S	Η	-p

Valid Facts and Theoretical Understanding Generate Solutions to Hard Problems

- 1. Maxwell Relations
 - (a) Derive the Maxwell relations from U, F, G, and H.

(b) How are these Maxwell relations related to the squares above?

A general partition function Z for a Boltzmann distribution with discrete energy states is

$$Z = \sum_{i} e^{-\beta E}$$

where $\beta = (k_B T)^{-1}$, E_i is the energy of microstate *i*, and the sum is over all possible microstates.

- 2. Consider a gas of N carbon monoxide (CO) molecules above a metallic surface. Treat each CO molecule as an independent, distinguishable two level system. Assume each CO molecule can exist in one of two energy states: free in the gas $(E_1 = 0)$ and bound to the surface $(E_2 = -\epsilon)$. Further assume there is a multiplicity of gas states $\gamma_{\rm g}$ and multiplicity of bound states $\gamma_{\rm b}$ available to each molecule, and that $\gamma_{\rm g} > \gamma_{\rm b} \gg N$.
 - (a) What is the partition function q(T) for a single CO molecule in terms of ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$?

(b) What is the partition function Q(T) for N molecules of CO in terms of N, ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$? Be sure to account for the indistinguishability of the CO molecules.

(c) What is the average energy, $U = \langle E \rangle$ for N molecules of CO in terms of N, ϵ , $\gamma_{\rm g}$, $\gamma_{\rm b}$, and $k_B T$?

(d) What is the constant volume heat capacity, $C_V = \left(\frac{\partial U}{\partial T}\right)_V$ for N molecules of CO in terms of N, ϵ , γ_g , γ_b , and $k_B T$.

(e) Plot the energy U(T) and constant volume heat capacity $C_V(T)$ as a function of temperature. Clearly indicate the high and low (T = 0) temperature limits.

3. Calculating changes in entropy

Assume the following where needed: T = 300 K and $C_V = \frac{5}{2}Nk_B$ for a diatomic ideal gas.

(a) One mole of O_2 gas fills a room of $500 \,\mathrm{m}^3$. What is the entropy change ΔS for squeezing the gas into $1 \,\mathrm{cm}^3$ in the corner of the room?

(b) One mole of O₂ gas is in a room of $500 \,\mathrm{m^3}$. What is the entropy change ΔS for heating the room from $T = 270 \,\mathrm{K}$ to $330 \,\mathrm{K}$?

(c) The free energy of a conformational motion of a loop in a protein is $\Delta G = 2 \text{ kcal/mol}$. The enthalpy change is $\Delta H = 0.5 \text{ kcal/mol}$. Compute ΔS .