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ABSTRACT

We have developed a new method for determining the radial volume dust density profiles of dark clouds.
We have applied this method to co-added IRAS data of 12 small molecular clouds (Bok globules). Raw 60
and 100 um images were used to generate median filtered backgrounds to be subtracted from the original
images. From the resulting differenced images, dust temperature and dust optical depth maps were generated
using a single-temperature blackbody model and a dust emissivity proportional to A~ !. These clouds were
resolved at the longest IRAS wavelengths and exhibit both regular shapes and structural simplicity. To extract
radial dust volume density power laws of the form n(r) oc 7, a collection of dust optical depth contour levels
was fitted with ellipses, and the slope of the run of log (column density) versus log (impact parameter) was
determined. Modeling enabled determining a relation between the column density power law and the volume
density power law for finite-sized clouds. The volume indices y were found to be in the range 1 to 5/2, in
agreement with previous studies of the gas density. Our rather soft dust indices do not support the hypothesis
of grain settlement into the cores of these clouds. However, given the spread in observed indices, the magni-
tude of a necessary correction for clouds of finite size, and the uncertainties in using a single-temperature
blackbody model for IRAS data, determination of the dynamical state of these clouds from IRAS data via this

method is not currently reliable.

Subject headings: infrared: sources — interstellar: grains — nebulae: structure

1. INTRODUCTION

Stars in our galaxy generally seem to form as the result of a
process of collapse and fragmentation in giant molecular
clouds. These clouds, however, are complex, exhibiting clumpi-
ness, turbulence, and multiple episodes of star formation. Thus,
they are not the best objects in which to study the early stages
of star formation, or in which to probe the physical conditions
existing in clouds before star formation takes place. Small
molecular clouds (dark clouds) are generally simpler and better
suited to this purpose. Bok globules, the smallest dark clouds,
are nearby, fairly isolated, and usually display simple or
regular shapes. By hypothesizing that these globules were in a
state of gravitational collapse, Bok & Reilly (1947) were the
first to suggest that these globules might play a role in star
formation. Until recently, there has been little evidence for
gravitational collapse; indeed the current understanding is that
Bok globules exhibit virialized structures (Leung 1985 and
references therein). However, from an analysis of short-
wavelength IRAS co-added survey data we have found a high
degree of correlation between Bok globules and young stellar
objects (Yun & Clemens 1990).

Because their structures are relatively simple, the small
globules are convenient for studying the formation of an indi-
vidual star, as well as for probing the physical properties
present in molecular clouds and cores prior to the onset of star
formation. Among these properties, the gas and dust density
profiles are important to the basic structure of a molecular
cloud. The radial density profile in a cloud determines observa-
tional effects such as limb brightening (Lee & Rogers 1987;
Leung & O’Brien 1989) or the spectral index of optically thin
emission from a centrally heated cloud (Emerson 1988). When
the radial dependence of the dust density is expressed in
power-law form [e.g., n(r) oc r 7], the power-law exponent y is
a useful measure of the degree of dust condensation in these

clouds. This characterization allows a direct comparison with
similar gas density laws (Snell 1981; Fulkerson & Clark 1984;
Arquilla & Goldsmith 1985; Frerking, Langer, & Wilson
1987), as well as with determinations of dust density laws in
Bok globules (Tomita, Saito, & Ohtani 1979; Cernicharo,
Bachiller, & Duvert 1985). Also, determination of radial
density profiles is of interest as a dynamical probe: the density
of an infinite isothermal gas sphere has a radial dependence of
r~2 if it is in hydrostatic equilibrium (Chandrasekhar 1957),
and of r~ %2 if it is in free-fall collapse (Shu 1977). Convenient-
ly, a finite, pressure-bounded cloud also retains these density
gradients (Arquilla & Goldsmith 1985).

Previous methods of deriving the density structure in dark
clouds have adopted simplifying assumptions to obtain the
dust density laws n(r). They typically assumed spherical sym-
metric clouds of infinite extent. However, most real clouds do
not exhibit circular column density contours as implied by the
spherical symmetry assumption, and finite extents impose a
correction to the derived value of the power-law exponent y.
Here we develop a method that uses ellipses to approximate
the cloud column density contours and introduces the neces-
sary correction for the effect of finite cloud radii.

In this paper we describe the study of a set of 12 small
molecular clouds selected from the list of clouds cataloged by
Clemens & Barvainis (1988, hereafter CB). The global proper-
ties of the 248 CB clouds were studied using large-area IRAS
photometry and 2CO survey techniques by Clemens, Yun, &
Heyer (1991, hereafter CYH). In § 2 we present a description of
the IRAS data used in this study and the process used to
generate dust temperature and dust optical depth images, and
discuss the selection of the set of 12 clouds fully probed here. In
§ 3 the method of analysis is presented. It involves ellipse fitting
to contours of dust column density and linear fitting to the
radial run of column density to obtain column density power
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laws. We then describe our method of deriving volume density
indices y from the observed column density power laws. In § 4
we discuss and compare the results found in this work with
those of other authors. In § 5 we present a summary of this
investigation. The Appendix contains a detailed description of
the method of ellipse fitting used in this work.

2. DATA

The CB catalog of small molecular clouds contains 248 opti-
cally selected small dark clouds (optical size <10'). IRAS co-
added images of 1° x 1° fields containing these clouds were
obtained in each of the four IRAS bands for the CYH study.
For the present study we used the 60 and 100 um images only.
Preprocessing of the images consisted of median-filtered back-
ground removal. The 100 um images (1’ pixels) were magnified
to match the 60 um images (0.5 pixels). Each image was then
median-filtered using a large 17'5 kernel and smoothed with a
Gaussian of 2!5 width (standard deviation) to build a back-
ground image containing the very extended (much larger than
each cloud) emission. This background image was then sub-
tracted from the original image. This difference image was then
slightly smoothed with a Gaussian of 035 width. In this way, a
fairly clean and background-subtracted image of the cloud
emission was obtained for each of the 248 CB clouds.

2.1. Generation of Dust Temperature and
Dust Optical Depth Images

The 60 and 100 um cleaned images were combined to create
images of the dust temperature (Tg0/100) and dust optical depth
at 100 um (t,4,) using a single-temperature blackbody model
for these two bands. Emission at 12 and 25 ym from the clouds
was not considered in this study. In fact, as noted in CYH,
because of the different dust grain components, the globule
IRAS average spectrum cannot be represented by any single-
temperature blackbody (even modified by normal wavelength-
dependent emissivity terms). For a single dust temperature T
along each line of sight, the intensity of the optically thin
thermal emission from a cloud can be written as

I, = B(Tk,, M

or by considering the wavelengths of 60 and 100 um and taking
their ratio,

1(60)  B(T, 60) t,(60) @

1,(100) BT, 100) 7,(100)

Equation (2) can be solved for T by adopting a dust emis-
sivity law 7, oc A7, A A7 ! dependence is generally assumed for
wavelengths in the near- and mid-infrared while a A~ 2 relation-
ship has been shown to hold for wavelengths in the millimeter
and submillimeter region (e.g., Draine & Lee 1984; Chini,
Krugel, & Kreysa 1986). We have tested the effect of different
dust emissivity laws (8 = 1, 2) and found no significant differ-
ences in -the dust density power-law exponents y (see also
CYH). A different dust emissivity law produces different tem-
peratures at each point of the cloud, but the inferred radial
density gradient is nearly unchanged. Hence, in this study we
have assumed g = 1.

Once equation (2) has been solved for T, equation (1) can be
used to obtain the optical depth t. Note that we have assumed
that the same population of grains contributes to the 60 um
and the 100 um emission (a rather poor assumption; cf. Heyer
et al. 1989). However, because of the way IRAS fluxes were

reconstructed and the width of the IRAS filters, equation (2)
must be replaced by

_K,, A,;!B, (T)
" K, 4,/B,(T)’
where K, is the color correction factor (IRAS Explanatory
Supplement 1988), given by

Kvo(T) = Klo(T)

_ 448 R, exp (1.44 x 10*/4, T) — 1 " I—zidl
o e 5% exp (1.44 x 10%/AT) = 1 A ’
p( )

I 1
- 3
L, ©)

4
where R, is the filter-detector response and 4 is in microns.
Since equation (3) cannot be solved explicitly for T, this
equation was instead used to compute a lookup table, which
for each value of log (I59/1¢0) gives a value for Tgg/100 (CYH).
This lookup table was used in conjunction with the fluxes
found at each pixel in the 60 and 100 xum images to generate the
dust-temperature images. Within the set of clouds studied, the
temperatures observed were in the range 2042 K. Similarly,
the 100 gm emission images and the temperature images were
used to generate the dust optical depth images (z4,), using
equation (1).

2.2. Selection of Clouds for Radial Density Analysis

Dust temperature and dust optical images were generated
for each of the 248 CB clouds as described above. By examin-
ing the dust optical depth images, it became clear that a large
number of the CB clouds were unsuitable for a study of radial
density laws. The large size of the IRAS detectors meant that
clouds of small size (<4’ in the infrared maps) were unresolved.
A second reason for rejecting clouds was the obvious presence
of strong local heating. Such embedded objects could produce
strong deviations from the single-temperature blackbody
assumption. However, a few clouds, with evidence for very
moderate levels of local heating, have been included. These
were relatively large clouds, and the analysis was restricted to
portions of the cloud well away from the area of local heating.
A third major reason for exclusion of clouds was the irregu-
larity of the infrared optical depth contour levels. In summary,
clouds whose dust optical depth images were large (> 4'), fairly
regular (to enable elliptical contour fitting), and showing little
evidence of embedded point sources were selected. In Table 1

TABLE 1

OBSERVED AND INFERRED EXPONENTS OF THE RADIAL DENSITY LAW
n(r) oc r~? FOR SELECTED CLOUDS

Cloud Right Ascension Declination '

(CB) (1950.0) (1950.0) Rygopiea Yo=1+I[s* v
003......... 0"26™00° 56°25'33" 9 29(0.1) 2.7
028......... 503 51 —04 0000 8 1.7 (0.1) 1.3
029......... 519 42 —03 4424 8 1.8 (0.1) 13
030......... 527 04 05 4245 13 2.3(0.1) 2.1
056......... 712 32 —250338 5 1.6 (0.1) 1.0
063......... 1548 11 —03 5714 9 2.0(0.1) 1.8
069......... 16 59 26 —33 1245 8 1.9 (0.1) 1.3
088......... 17 25 35 —251352 8 1.8(0.1) - 13
203........ 19 41 43 18 5745 7 2.1(0.2) 15
206......... 19 44 11 18 5507 9 1.6 (0.1) 1.2
217 20 05 54 36 5707 6 1.7 (0.1) 1.1
218......... 20 10 42 —01 3000 10 25(0.1) 23

2 s=dlog N/d log p.
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F1G. 1.—Contour plots of dust optical depth (t4,,,) for two clouds selected for this study. (@) CB 206; contours are at 2.1, 2.4, 2.7, 3.0, and 3.6 (in units of 10~%). (b)

CB 29; contours begin at 1.2 x 10~ and are stepped by 0.3 x 10~ 5.

the 12 clouds selected are listed by CB number and coordi-
nates. Figure 1 shows examples of the dust optical depth
contour plots for two clouds selected for this study (CB 206,
CB 29).

3. ANALYSIS

The dust optical depth 74, is proportional to the dust
column density Ng4,. As a result, for the purpose of this study,
the optical depth maps can be considered column density
maps. Hence, the quantity which is directly accessible is the
dust column density N, along a certain line of sight whose
“impact parameter” (or projected radius, i.e., the minimum
distance to the line of sight from the cloud center) is p. The
process of determining volume density power laws can then be
divided into three steps: (1) determination of the impact
parameters p; for a set of values of the column density N,,
yielding a set of data pairs (p;, N,); (2) determination of the
least-squares linear slope in the (log p, log N) plot, yielding a
column density power law; (3) determination of a correction to
convert the exponent found for the column density power law
into the exponent of the volume density power law.

3.1. Ellipse Fitting

In previous studies, the association of impact parameters
with column densities was made using the assumption of
global spherical symmetry (circular column density contours,
e.g., Frerking et al. 1987). Examination of the plots of column
density N, in Figures la and 1b is sufficient to conclude that
the shapes of the contours are not circular. Furthermore, CB
found a mean ellipticity (ratio of the lengths of the major and
minor axes) of 2 for the optically opaque cores of these clouds.
Thus, the large majority of small clouds are not spherical.

We have developed a method of fitting ellipses to contours
of constant column density. These elliptical fits better represent
the column density distributions for the clouds. The fitting
procedure returns the values of the lengths of the semimajor
and semiminor axes of the best-fit ellipse, the coordinates of the
center of the ellipse, and the position angle of the ellipse. The
ellipse-fitting procedure is fully described in the Appendix. It
consisted of determining the ellipse which best fits a curve of
constant intensity (contour level) defined in a two-dimensional
distribution of pixel values.

aor each of the selected clouds, we have examined the cloud
contour plots and chosen a range of column densities corre-
sponding to radii as large as possible but still composed of
contour levels which appeared regular enough to be well rep-
resented by ellipses. The column density step between two con-
secutive levels was selected to be small (in order to yield many

samples of the radial column density variations) but large
enough so as not to oversample the angular resolution or noise
levels of the IRAS co-added maps. Our ellipse-fitting pro-
cedure was then used to fit ellipses to the set of contour levels
contained in that range.

The goodness of each fit was checked by plotting the
contour level and the fitted ellipse. Figure 2 shows an example
of how the contours of CB 206 have been approximated by
elliptical contours. In this figure, as a result of approximating
each contour level by a fitted ellipse, some of the ellipses cross
one another. This has no physical meaning and does not affect
the determination of the radial density gradients because this
determination does not use all the information contained in
the fitted ellipse but only the values of the lengths of its axes. In
general for the clouds, except for a few of the most irregular
contours, the fit achieved was usually judged to be good to
excellent.

3.2. Column Density Power Laws

The procedure of fitting ellipses to contour levels yielded a
set of values {xq, yo, a, b, 8} for each contour of constant
column dust density N. The impact parameter p was then
approximated by the geometric mean, (ab)!/2, of the lengths of
the semimajor and semiminor axes. Although this approach
removes some information about the ellipticity of the cloud, it
is superior to assuming circular symmetry. The circular sym-
metric approach typically uses azimuthally averaged column
densities to represent the column density at each radius. Here
we obtain a more accurate description of the column density
through the elliptical fitting. An analysis of the radial depen-
dence along the two independent directions of the major and
minor axes would require a model of the volume density law

18°507

18°40”

Dec.

U

R R R BT N

19"46™00° 19"45m00° 19"44™00° 19"43™00°

R. A

FiG. 2—Example of the result of the ellipse-fitting procedure for CB 206.
The curves shown are the best-fit ellipses to the contours of Fig. 1a.
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for each cloud which is more complex than a simple power law
with radius. By adopting p = (ab)'/? for each contour level of
column density value N, we are including all the positions
belonging to that contour level and associating with these posi-
tions an impact parameter that is a representative average of

their impact parameters.

Hence, the ellipse-fitting procedure is used to produce a run
of data pairs, {(p, N);}, for each cloud. Figure 3 shows the plot
of (log p, log N), as well as the linear least-squares fits to the
points in this plane, for each of the clouds. In this figure, s is the

slope of each line, i.e.,

_dlogN

S=dlogp

Hence, we have N(p) oc p~* with o = | s].

3.3. Relation between N(p) oc p~*and n(r) cc r™?

In previous works it was generally assumed that the expo-
nent y of the volume density law n(r) oc r~ 7 could be obtained

log N

log N

log N

log N

-36

-4.5

-4.5
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-45
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by adding unity to the absolute value of the column density
slope a, i.e., that y = 1 + o (Tomita et al. 1979). For the pur-
poses of comparison, let us define this value of yasy, =1 + a.
In the fifth column of Table 1 we list the values of y,, derived
from the ellipse fitting for each cloud. The uncertainties listed
correspond to the uncertainties of the fitted slopes of the (log p,
log N) lines. We note, however, that the total uncertainty (due
to image noise, contour plotting, and ellipse fitting) is likely to
be higher.

The assumption that the true y coincides with y,, is valid only
for a cloud with infinite radius, as will be shown below. In
Figure 3 some of the clouds exhibit the presence of a curvature
of the data points with increasing p away from the line, which
seems to indicate a steeper power law at larger impact param-
eters. This is most likely due to the proximity of the edges of
the clouds. If a simple volume density power law, n(r) oc r~?, is
appropriate for these clouds, the proximity of the edge of a
cloud will produce the downward curvature of the column
density N(p) for large impact parameters p (see below). Hence,

T T TN r~17 71771 e rrrrrtrrry
- CB003 - - 7]
CB028 | _,5|- CBOZ9 |
B 1 *r \ | \\\\
- Isi=1.9 . X i Js|=0.8
| _ lsl=0.7 -5 ]
-5 |- — L .
S T . T | B R [N I TN e
4 5 6 7 4 5 68 7 4 586789
_| T I FI 1 I T I ) I 1 h | ' T ' Ll ] T I ] T I T l 1 I 1 Tl
-5 — -
= CB030 — 6 CB056 -4 |- CB063
- Isl=13 4 <L | \\\\
\\ 6.6 ls[=0.6 45 |~ gmro |
Tl ol 1y 1T s | T A | | I I T B
4567891 4 65 6 7 3 4 5 8 7 8
" R I ) I ) I ] T l 1 I T ITI—I [ T I T I ¥ T | ) l 1 I T l T '
L 4 -45} — -46| -
CB069 | CBO88 | I CB203 |
-5 e — -6 \ T
- ] Is|=0.7 fsl=1.1
lsl=0.8 5 ® - ¢ A
-6.5 |— — -55| —
-d l 1 l . I 1 l 1 IIIIIIILI I 1 I 1 I 1 1 I IJ ALI 1 I 1 I
6 7 8 9 1 4567891 5 6 7 8 9 1
L L DL DL DL BN T T 1T T T 71T 70 S38SFT 171711
i CB208 | CB217 B CB218 -
= | 451 \ -1 -4+ -
i ’H\.o:\\" 4 - . - fsl=16 .
y n _H-o.v | -asl |
1 I 1 I 1 I 1 LI l 1 ' l 1 I 1 l 1 J 1 I -LLI ' 1 I 1 IJJ H
4 5 67 8 9 4 5 6 7 B8 5 686 7 8 9
log p log p log p

F1G. 3.—Plots of log N vs. log p for the 12 selected clouds. The straight lines are least-squares fits to the points shown. The slopes of the lines are indicated as
| s|-values. Note the presence of curvature of the data points away from some of the lines for larger radii. This is an indication of the proximity of the cloud edges (see

text).
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TABLE 2
CoLUMN DENsITY EQUATIONS FOR VOLUME DENSITY POWER LAWS WITH INTEGER INDICES

Volume Density
Power-Law Index y

Column Density Dependence

[n(r) cr=7] Column Density Dependence on p when R — o
[ TP N(p) oc R(1 — p?/R?)'12 a
R R2 — p?)ii2

Lo, N ln R =P .
2 1 R% — p?)'i2

N(p) o< ; arctan il o N(p)cp™?

R2 — p?)1/2
B Npyoc B2 N@) ocp™?
Rp

R2 — p?2)l/2 R2 — p?)l/2

e N(p) oc R —p)" + — arctan R=-r" N(@p)ocp™3

2R2p2

2 N(p) diverges.

the simple assumption that y equals 1 + « will fail as a way of
obtaining the true volume density exponent .

3.4. Effects of Finite Cloud Radius

In order to relate the observed index y, to the desired index
y, and given that we approximated the impact parameter p by
the geometric mean, (ab)'/2, we next modeled the expected runs
of (log p, log N) for the case of a spherically symmetric cloud,
with n(r) oc r 7. For any line of sight through a cloud of finite
radius R,

X

N(p) o J R(x2 + p?)"dx (6)

0

where X = (R? — p?)Y/2, A numerical calculation of N(p) was
performed for a fixed value of p. A set of such calculations
yielded a plot of the run of N with p for each value of R and y
chosen. Numerical integrations were needed for the case of
noninteger y. For integer y, Table 2 indicates how n(r) and N(p)
are related. A volume density power law n(r) oc r~7 will only
yield a column density power law whose exponents differ by
unity for all y > 1 and where R — co.

Figure 4 shows the predicted data points (log &, log N) cor-
responding to y =2, ie, a power law n(r)oc r~2, where
& = p/R. A best-fit line of slope |s| = 1.6 is also shown. The
presence of a downward curvature to the data points, relative
to the line as & approaches unity is clear. Therefore, under the
assumption that simple volume density power laws are appro-
priate for these clouds, the presence of curvature in the plots of
Figure 3 is a direct consequence of the finite radii of the clouds.

Figure 4 shows that 1 + |slope| =y, # y. For the specific
set of values of & used in this figure, the slope of the line is — 1.6
and, therefore, 1 + |slope| # 2. In other words, a cloud with a
radial volume density law proportional to r~2 (y = 2) will
produce an empirical (log &, log N) plot with a least-squares
line having a slope of —1.6, giving a value of y, = 2.6.
However, this difference between y and y, (Ay =y — 7o) may
provide a way of inferring the true value of y from the observed
value of y,. For the conditions of Figure 4, a set of empirical
data points yielding a slope of —1.6, and hence a value of
yo = 2.6, would indicate a true volume density power law with
y =2,ie,Ay = —0.6.

We have generated a set of model plots, similar to Figure 4,
but for a range of values of y and for different distributions of

values of & In each case, we obtained a correspondence
between the value of y,, inferred from the least-squares fit to
the modeled points, and the input value of y that produced
those points. The information contained in this large number
of model plots was analyzed in two ways.

First, by considering the subset of model plots obtained with
fixed values of y, but different values of &, we have verified that
yo approaches y as R increases relative to the volume of the
cloud probed for the column density variation. In Figure 5 we
show this result for a fixed value of y (y = 2) and a specific set of
values of £. We define &, = Pax/R, Where p,., is the largest
value of the impact parameter sampled. Hence, as &,
decreases, a smaller fraction of the cloud volume is probed with
(log p, log N) points. We find that y, is close to y for small
values of £,,,, that is, as long as the last sample point is well
within the edge of the cloud (p,,,, < R).

Second, by taking one specific set of values of £ and varying
the input values of y, we obtained a set of points (y, y,), which
are plotted in Figure 6. Each of the data points in this figure
was obtained for a specific run of values of £ labeled by a

O—l-llllllllllllll
. Model Cloud| |
[ n(r) < r ||
B ¢ =p/R ||
-5 —]
z - -
0 n .
i) L -
-1 s=-186 —
ol b bl

-.6 -2 0

F1G. 4—Theoretical (log £, log N) plot computed for a cloud of radius R in
which the power-law relation, n(r) oc r~2, holds. The radial coordinate is ¢; =
p./R. The least-squares fit line of slope | s| = 1.6 is shown. Note the downward
curvature of the data points relative to the line as £ — 1.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1991ApJ...381..474Y&amp;db_key=AST

No. 2, 1991

2'8|r|||||||||||
2.6

2.4

Yo

2.2

!IIIlIIIlIlI’I

2

|FT||I—FI|I—I_III1IIIII

1.8

-
™
o
S

émax

Fi1G. 5—Plot of y, = 1 + |s| against £, for a given set of impact param-
eters, where s is the slope of the least-squares fit line in the (log ¢, log N) plot,
& max = Pmax/R, and R is the radius of the cloud. Note that y, — y when R — oo,
as expected.

parameter A. This parameter defines a specific set of model
column density and impact parameter data points for fitting,
indexed as a set of values of ¢ as

&= {ifAi=1,2,...,10}. 0

Note that larger values of 1 correspond to smaller values of
& max> and will therefore produce a smaller cloud edge proximity
correction, Ay. In addition, (1) for the same set of values of &, y,
is closer to y for large values of y,, hence the Ay correction due
to finite radius is less important for larger values of y,; and (2)
Yo is always an upper limit to the true y (Ay < 0, always).

The information contained in Figure 6 is presented in Figure
7 as a plot of Ay versus y,. This figure can be used to correct
the exponents y, = 1 + | s| for the effect of finite cloud radius.
As an example of this correction process, consider a cloud
whose radius is 0.3 pc. For 10 evenly spaced points, the last at
an impact parameter of 0.15 pc (Pax = 0.15 pc), the value of 4
is 20. Assume also that column density probes of the cloud
return the value |s| = 1.0. Then, y, = 2.0, and Figure 7 gives
Ay = —0.2.Hence,y = 1.8.

TT T[T T T I
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F1G. 6.—Plot of y, vs. y, for different sets of values of ¢ specified by the
parameter Aby {¢;} = {i/A,i=1, ..., 10}.

RADIAL DUST DENSITY IN SMALL MOLECULAR CLOUDS

479

O_I—I_IT_I_IT—I_IIIIIIIFI’IIIIIIIII—

Ay=y—7,

—JJ|I||||III|IIII|I_III_[_ILII
1 156 2 25 3 35

Yo

F1G. 7—Plot of Ay = y — y, vs. 7,, for different sets of values of ¢ specified
by the parameter A by {£;} = {i/4, i = 1, ..., 10}. This figure (adapted for the
specific run of values of ¢ contained in the data) can be used to correct for the
effect of finite cloud radius.

Using Figure 7 (adapted for the specific runs of values of &
contained in our observed cloud data), we determined the true
volume density power law for each of the selected clouds, cor-
rected for the effect Ay of finite cloud radii. The cloud radii
were estimated by viewing the maps of optical depth and typi-
cally adopting the geometric mean of the longest and the short-
est axes. The adopted values of the cloud radii (in arcminutes)
are presented in Table 1. The final, Ay-corrected values of the
true dust density power-law index y are presented in the last
column of Table 1.

4. DISCUSSION

A histogram of the empirical values of y, and the model
matched values y found in this study are presented in Figure 8.
The correction for finite cloud radius shifts all clouds to lower
values of y, indicating a less steep power law than would be
inferred without the correction. We find corrected exponents in
the range —1 to —5/2, with 75% of the clouds between —1
and —2. A simple mean yieldsy = 1.6 + 0.2(1 o).

Adopting a single dust temperature along each line of sight
is a poor assumption because there are likely temperature gra-
dients along the line of sight. From equation (1) we see that the
IRAS emission has a stronger contribution from the warmer
dust. However, over the projected extents of the clouds studied,
the observed temperature (Tyo/100) Variation was small (AT/
T < 0.2) with the temperature increasing outward (clouds
heated by the interstellar radiation field, and without strong
internal heat sources). This implies that the absolute values of
the density exponents derived are upper limits to the true
density exponents. In other words, if the actual temperature
increases outward, the single-temperature model will yield arti-
ficially steeper density laws. Using the expression derived by
Langer et al. (1989), we estimate that the correction in the
exponent due to small temperature gradients (AT/T < 0.2) is
less than 0.3, for temperatures of the order of 20 K.

In order to investigate our sensitivity to steep power laws in
the IRAS maps, we have determined the radial variation of the
emission intensity of an average representative point source at
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FiG. 8.—Histograms of (a) the raw power index y, (uncorrected for the
effect of finite cloud radius) and (b) the corrected power index 7, found for the
clouds. The correction for finite cloud radius shifts most clouds to lower values
of y. In both cases, the values found are restricted to a relatively narrow range
of values, between 1 and 5/2.

60 um. The intensity decreased approximately as p~2 (yo = 3).
Thus, if the volume density power laws of the clouds were
steeper than r~3, the histograms of Figure 8 would show a
concentration of clouds at the right end of the diagrams, piling
up near y = 3 (our steepness limit). Since this is not the case, we
conclude that power indices steeper than about — 3 are rare or
absent.

These results are in fair agreement with most studies of gas
density laws. These studies have consisted of using molecular
transitions (CO; Arquilla & Goldsmith 1985; CO and H,CO,
Snell 1981) to measure gas column densities in several dark
cloud envelopes. These different studies have found most gas
density structures to be consistent with y = 2.

Tomita et al. (1979) applied a star-count technique to POSS
images of 12 dark clouds to measure the visual extinction of
background starlight. They found steep power-law exponents,
in the range of —3 to —35, indicating strong central conden-
sations. However, Cernicharo et al. (1985), probed the density
structure of dark clouds in the Taurus-Auriga-Perseus
complex using the same star-count technique. Cernicharo et al:
(1985) found y = 1.3 + 0.2(3 ) as the best fit to their data.
They estimate that their results are valid for the envelopes of
clouds with radii between 0.1 and 1 pc.

The clouds in this study exhibit smaller (softer) values of vy
than were found by Tomita et al. (1979), but ones which are in
good agreement with those of Cernicharo et al. (1985). Hence,
we conclude that the notion that dust density laws are strongly
steeper than gas density laws is incorrect. Furthermore,
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because no strong difference was found between gas and dust
radial density laws, it is likely that radiation pressure does not
play an important role in determining the equilibrium configu-
ration of the dust (William & Bhatt 1982) in the globules
studied here. This result may not be valid for globules with a
strong internal heat source which were excluded from this
study.

Low values of y can help explain the absence of strong
thermal coupling between the gas and the dust in these
globules, as discussed by Leung (1985) and found by CYH. A
small value of y keeps the local density at most cloud radii
close to the mean density (= 10* cm~3), which is below the
value of ~10° cm 3 required for thermal coupling,

Theoretical studies of density profiles in isothermal clouds
predict an exponent of —2 for equilibrium conditions (cf.
Chandrasekhar 1957; Larson 1969; Penston 1969). Inter-
estingly, the self-similar model of cloud collapse developed by
Shu (1977) applies well to the physical conditions in Bok
globules (low internal temperatures, small masses, subsonic
flows, and pressure-bounded objects). This model predicts an
r~2 law for the density distribution in the nearly static outer
envelope, and an r 32 law for the freely falling inner envelope.
Our results are in accord with these predictions. However,
given the uncertainties involved in the determination of the
density-law exponents, we believe that is not yet possible to
describe the dynamical state of these clouds reliably using
IRAS data alone. In addition, comparisons with theoretical
models should be regarded with caution because these do not
include the effects of rotation, magnetic fields, or clumpiness,
all of which probably affect the dynamics of real clouds.

Interestingly, the values found for y in most studies of gas
and dust using a variety of methods are similar and are
restricted to a relatively narrow range. This similarity may
provide the basic support for the existence of a linear relation
between visual extinction and gas column density in these
clouds. Furthermore, the narrow range of density laws found
seems to indicate that small dark clouds with extreme density
structures are rare.

The method developed in this study to obtain radial volume
density power laws is an important improvement over pre-
vious attempts. However, the increased complexity of this
method, namely, the ellipse-fitting procedure together with the
correction for finite cloud radius, are only fully justified when
used with higher quality data (better angular resolution and
higher signal-to-noise ratio than are used in this study) and
larger cloud sizes. Such improvements would help in satisfying
the conflicting requirements of using points at large distance
from the cloud edge but at impact parameters large enough to
be meaningful, given the large IRAS beam size. This technique,
coupled with highly resolved far-infrared cloud images gener-
ated, for example, by ISO or SIRTF, will decisively address the
internal dynamics of dust in these clouds.

5. SUMMARY AND CONCLUSIONS

We have developed an improved method of determining the
radial volume dust density distribution of small clouds. We
have applied this method to 12 small molecular clouds
observed by IRAS. IRAS co-added survey images containing
these clouds have been analyzed to generate dust temperature
and dust optical depth contour plots. Our method included
fitting ellipses to contour levels of constant column density to
determine the run of column density with impact parameter.
Under the assumption of a simple volume density power law
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with radius, n(r)ocr”?, we have investigated the relation
between the exponent y and the slope s of the least-squares fit
to the (log p, log N) data. We found that corrections for the
effect of a finite cloud radius (Ay =y — y4; 7o = 1 + | s|) may
be large. In addition, we have found the following:

1. The clouds selected for this study have true volume
density power indices in the range —1 to —5/2 (75% between
—1 and —2), similar to values found in studies of the gas
density laws.

2. The dust density laws found here are flatter than those
determined from star counts by Tomita et al. (1979), but in fair
agreement with the star-count results of Cernicharo et al.
(1985).
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3. There is no evidence (of the form of power-law indices
near or steeper than 3) for grain settlement into the cores of
these clouds.

4. The detailed dynamical state of any particular cloud is
difficult to ascertain from IRAS data, given the angular
resolution of IRAS, the sometimes large correction due to
finite cloud radius, and the internal heating produced by
embedded sources.

This study was partially supported by NASA ADP (NAS
7-918 and NAG 51160) and NSF (AST 8915606) grants and
contracts to D. P. C. Support from the Gulbenkian Founda-
tion in the form of a scholarship to J. L. Y. is gratefully
acknowledged.

APPENDIX

ELLIPSE-FITTING PROCEDURE

We describe here our method of determining the ellipse that best approximates a closed two-dimensional curve, e.g., a contour
level in a contour plot. Determining an ellipse means determining a complete set of parameters which unambiguously define that
ellipse. In §§ 1 and 2 of this Appendix we describe two different sets of parameters completely defining an ellipse. The fitting

procedure is described in § 3 below.

1. PARAMETERS DEFINING AN ELLIPSE

An ellipse is defined by five parameters. Given a coordinate system, these parameters can be chosen to be the coordinates of the
center, (xo, ¥o); the lengths of the semimajor and semiminor axes, a and b; and the position angle 6 of the major axis relative to some
reference direction (e.g., @ with respect to the x-axis). The parametric equations of such an ellipse are

<x> <x0> (cos 6
=) +("
y Yo sin 6

or

—sin 6 \/a cos «
1
cos f))(b sin a) ’ (AD

X = Xxo + a cos 0 cos o — b sin 6 sin a,

y=Yyo+asinfcosa+bcosfsina,

(A1)

where a varies from O to 27 and represents the angular phase of a point on the ellipse, relative to the semimajor axis.

2. MOMENTS OF A DISTRIBUTION

Let us consider a two-dimensional closed curve {(x, y)} and define the following two first-order moments, X and ¥, and the three

second-order moments, V,, V,, V,,:

=
5= grsf .

I/,‘E§(x—i)2da/§;da=3?—iz, /
Vy53€<y—y)2da/§da=ﬁ—yz,

nys§(x—>'c>(y—,v)da/3€da =T - ij.

(A2a)

(A2b)

(A2¢)

(A2d)

(A2e)
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Applied to the case of an ellipse whose parametric equations are given by x(«) and y(a) as in equations (A1), equations (A2) reduce

to
2n 2n
J-CEI xdoz/Jv do = xq , (A3a)
0 0

2n 2n
sz yda/j doa = yo , (A3b)
0 0
v, = a? cos? 6 + b* sin? 0 ’ (A30)
2
- a? sin? 0 —02- b? cos? 6 ’ (A3d)
2 p2 0 :
nyz(a b*) cos smf). (A3e)
2
Inverting this system of equations, we obtain
Xo =X, (Ada)
Yo=1J, (A4b)
@ =V, + V, + [(Va = V)’ +4VL12, (Ade)
b=V +V, = [(Vi = V) +4Vi]V2, (Add)
V.-V,
cos (20) = e sin (260) = 2Viy (Ade)

(V.= V) +4VvL]V2° (Ve — V> +4vi]

Equations (A3) indicate that the set of five parameters {X, y, V,, V,, V,,} composed of the two first-order moments and the three
second-order moments, defined in equations (A2), is equivalent to the set {x,, yo, @, b, 6} defined in § 1 of this Appendix.

If the curve C is given by a discrete set of n points {(x;, y))} (e.g., a distribution of pixels), calculation of its moments is done by
approximating equations (A2) with

1 n

FRVLE S (ASa)
n;=

- 1 ¢

yE= Y i (AS5b)
ni=1
1 - 2 o2

Vor= Y xt—x%, (A5¢)
n;=y
L&, o

Ve Yy -7, (ASd)
ni=1
1 & __

V;yz; Y Xy —Xy. (ASe)

I
-

3. ELLIPSE FITTING TO A CURVE

Given a curve C to be fitted by an ellipse, we define the best-fitting ellipse as the ellipse which minimizes the expression

X; — Xo) €0s 0 + (y; — y,) sin 0 : — Yo) €08 0 + (x; — x,) sin 6 2
X2=2|:( o) = (i = ¥o) +(y Vo) = 0 _1] )

This can be done using a nonlinear, five-dimensional least-squares fit. However, we have verified that, in most cases, the best-fitting
ellipse coincides with the ellipse which has the same moments of the curve C.

Hence, it is generally sufficient to calculate the moments of C. The ellipse which has the same moments is almost always the
best-fitting ellipse.

i
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