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I. INTRODUCTION

Signal processing is very much tied to extracting information and making inferences from physical

phenomena. The traditional modalities, that our field is given credit for advancing, are speech, images,

video, communication signals, remote sensing and a number of biomedical sensors that digital and array

processing methods enable. More recently, Brain Machine Interfaces (BMI) have also become a research

focus of signal processing researchers. We continue to fill the gap between human signals and computers,

leading to today’s highly computerized social landscape.

Controlling the medium through which people inform each other and communicate, opens the door to

learn what they value and influence their beliefs, doing in an automated fashion what humans have been

competing to do throughout history, gaining prestige to gain power. For the architects of these networks

it is perhaps time to more closely consider their applications.

How do individuals influence each other decisions? Why leaders emerge in societies or fall out of favor?

How do societies steer their beliefs and values? In the last century mathematical models developed in

social sciences and economic theory attempted to capture macroscopic trends emerging from individuals

communications and their decision making process.

There are excellent review articles and books that summarize the theories used to infer and interpret

social swarming phenomena, and some have more closely inspired the models we review [1]–[3]. As we

will discuss in Section II, the aim of these theories is to define a conceptual framework to examine them

mathematically, to gain insights on what may happen under plausible simplifying assumptions. Often,

these mathematical models are separated from the physical modalities of these interactions because the
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emphasis is on the analysis of the mechanisms at work rather than the accurate quantitative prediction

of results.

These highly stylized models, which often postulate simple mechanisms for the sake of mathematical

tractability, can provide remarkable insights on the macroscopic trends observed in reality. In practice,

the type and media used for social interactions depend on technologies humans have devised over the

centuries to engage each other, facilitate transactions, share information, and last but not least, to make

correct decisions. Society structures are very much influenced by the advent of these technologies, since

they affect how easy it is to access what is useful, as well as to strategically place oneself to promote

selfish interests. Humans invent new methods and forge relationship, alliances and institutions to support

these technologies and in response to them. This is why a link in 1400th century Florence is not quite

the same as a link between humans, social groups or corporations today. These technologies, in order

to work, have to be adopted collectively. Hence, ultimately, their success depends on humans embracing

them to pursue their selfish purposes more efficiently, accurately and effectively.

What makes this time especially ripe for new theoretical ideas is that in the digital age, not only

interactions happen at lightning speed, but the information about them is efficiently encoded in bits,

which also leave a long lasting digital trace behind. This trace can be stored and replicated at very

modest cost. A dominant position in social media amounts to have a dominant position in influencing

what people value. Managing these digital interaction, not surprisingly, is the technological race that

is deciding the fortunes and the dismay of Internet companies. They are competing for becoming the

central carrier of information useful to the large majority of humans, so as to gain information about

those transactions, that would allow them, in turn, to influence the largest number of people. A more

recent development is that these information carriers today follow and sense us in many moments of our

life, through our Smartphones. As discussed in Section V, technologies are being developed and perfected

to provide accurate information about individuals and social contexts. Individuals release information in

exchange for receiving help with their decision making, and are lured to do so by a portfolio of tools

that is hard to resist even by the most private person.

Compared to the many excellent overviews that exist in this field, from books [1]–[3] to recent

comprehensive overviews [4], a goal of this paper is to compare basic models used in economics to

gain insight on social behavior with information fusion problems that have been widely investigated

in our field. We first review, in Section II, basic models that have been used in economics to capture

opinion diffusion among rational agents. We contrast these findings to similar sensor fusion problems

studied in information theory and in signal processing, where the limitations in the learning performance
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are the consequence of physical constraints in communicating, rather than self-interest. In Section III,

we discuss a more general information sharing model, where agents are allowed to have interactions

over an arbitrary network. In the same section, we draw analogies between these theories and studies

on network diffusion algorithms in signal processing. In Section IV-A, we briefly review the analysis of

network formation under strategic models, motivating the emergence of communication graph between

self-interested individuals with specific utilities that balance the costs and benefits of sharing information

with others. The last section of the paper suggests possible gaps in understanding how to more directly

use and directly value the wealth of information that computer networks are harvesting about humans

economic decision systems for economic analysis.

II. OPINION DIFFUSION AMONG RATIONAL AGENTS

Each individual’s opinion about a fact (weather, weight of an animal, suitability of a political candidate)

is in general subject to errors. In the averaging of individuals’ opinions, errors cancel each other and by

the law of large numbers, the average opinion of a large number of individuals is a much more precise

estimator. This property was well recognized already in 1785 when the marquis de Condorcet in [5]

advocated the virtues of voting by a large number of people, and of democracy for the aggregation of

individual informations. The insight of Condorcet in the aggregation of the information of a large number

of people motivated, in 1907, the article “Vox populi” by Francis Galton [6], who provided a colorful

demonstration, averaging the guesses of several people on the weight of an ox in a market and coming

remarkably close to its true value, thus demonstrating the concept that the averaging of opinions leads

to accurate estimates.

Condorcet was also well aware about the perturbation that are induced by the observation of others’

opinions or actions on that process of aggregation. Taking the example of voting, there is a critical

difference between voting by individuals who just express their preference based on their individual

information and individuals who observe the votes of others in a process of sequential decisions (e.g.,

votes), and are therefore influenced by their observation before choosing their action. That difference is

key for the mechanisms of social learning.

Modeling mathematically these phenomena includes basic ingredients that are familiar to researchers in

signal processing. Assume that the social learning is about a number θ that is the realization of a random

variable in a set Θ. That set can have a finite number of element, say 0 for “sunshine” and 1 for “rain”,

or a number in a continuum as the weight of an ox, as in the experiment of Galton. The agents involved

in the social learning process have a mental model relating their evidence to the unknown parameter θ.
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Let us assume that this evidence takes the form of a signal si. In the experiment of Galton, the signal is

the guess of an observer the ox, as based solely on the sight of the ox.

The action of the agent is denoted by a, in a set A. That set can have a finite number of elements or

be a continuum. When the agent takes or does not carry an umbrella, the set has two elements. When

the agent expresses an opinion about the weight of an ox, A is the continuum of real positive numbers.

The opinion expressed by an agent is an action that when observed by other agents, carries a signal that

feeds into the process of social learning. That message may be his information but in general that is not

the case: the action may be motivated by other factors besides the private information, that action may be

restricted to a limited set of possibilities or its observation by others may be garbled. The literature has

investigated a number of structures and has focused on the relation between these structures and whether

social learning converges to the true value of θ, and if so, how fast.

The standard model is the sequential model with complete recall where agents are put in an exogenous

sequence. Each agent’s information is his private information and the history of past actions by agents

who preceded him in the sequence. Agents are rational in two senses: (i) in the formulation of their

belief on θ (i.e., their subjective probability distribution on θ), they use Bayes’ rule in combining their

private information with the public information of the history of past actions; (ii) they chose the action

that maximizes the expected value, under their belief, of a payoff function that depends only on the true

value θ, their own action, and some individual characteristics.

Define here a belief as the the probability that an event occurs, (e.g. θ is in some set Θ). As in statistical

signal processing models, a core property of rational learning in the standard sequential model is that

the public belief is a martingale. A belief on an event can be viewed as the price of a stock, or a bet,

that delivers one dollar if the event eventually turns out to occur. The price changes as new information

comes in, but the expected value of the price change is zero. As in efficient financial markets, if that

price would be expected to, say, increase, agents would readjust upwards the price today. That relation

between rational learning, martingales and efficient financial market actually provides the key idea for

a proof of the convergence theorem of bounded martingales. This theorem implies that in the standard

social learning among rational agents, there cannot be perpetual random cycles of beliefs. That property

sets the rational learning apart from other processes such as adaptive learning. Beliefs converge, but they

may converge to a wrong value, or they may converge to the truth but the convergence may be slow.

Two generic models of individual information have been used with particular success in the literature.

The first is the Gaussian model in which the prior distribution of θ is Gaussian θ ∼ N (θ0, σ
2
0), and each

individual signal is the true value θ plus an additive Gaussian noise (AGN) si ∼ N (θ, σ2i ). That model
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is appropriate in some context such as the distribution of the ox weight, even if it includes negative

outcomes, assuming that σ0 and σi are small with respect to θ0. The model conveniently generates a

simple linear learning rule, but we should be aware of at least two important additional features: first any

new signal reduces the variance of the distribution of θ and thus the uncertainty about θ. Second, private

signals are unbounded. In this way, whatever the precision of public information, there are some private

signals that can “overrule” the consensus. These features play a critical role in social learning. The first

one implies that the as the variance of the public distribution of θ increases, individuals who know that

distribution reduce the weight of their own private information for their action and that action is therefore

less informative for others. This property slows down the process of social learning. The second feature

implies that an agent’s action always carries an information (that may be vanishingly small) to others. It

follows that the social learning is never “stuck” and converges (possibly slowly) to the true value of θ0.

In the second model of private information, private signals take values in a finite set. Without loss of

generality, one may assume the signals to be binary with value 0 and 1. For example if there are two

values of θ, 0 and 1, we may have P (si = θ|θ) = p, where p is a parameter that measures the precision

of the signal. Such a signal is bounded. Moreover, the variance is not monotonically decreasing with the

number of signals. For example, if the probability that θ = 1 is near 1, a signal 0 reduces that probability

and therefore increases the variance of the belief and the uncertainty of agents.

These two models can obviously be expanded, depending on setting, and their use should be adapted to

the context. In the experiment of Galton, the first model is relevant. The second model is more appropriate

when agents make a zero-one decision (e.g. taking out an umbrella depending on the probability of rain),

or when new information may increase the variance of the public belief. Because the Gaussian model

has been so successful both in economics and signal processing, we discuss it first in the context where

agents reveal their private information. We will consider binary signals later.

A. The Gaussian model

We assume here that in the Gaussian model that was previously introduced, the messages of agents

are just their signals: they speak the truth. We relax this assumption later. The model is illustrated in Fig.

1.

In this model, it is well known that the optimal fusion rule is a weighted average. Specifically, let

s = (s1, . . . , sn) and γi = σ20/σ
2
i be the signal to noise ratio of the signal at node i. The Minimum Mean
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Fig. 1: A group of social agents processing information about the weight of an ox.

Squared Error (MMSE) estimate can be expressed as

E{θ|s} =

∑n
i=1 γisi∑n
k=0 γk

.

To see how the error variance decreases as n increases, one can show that the MMSE reduction at the

nth stage is measured by the following factor:

ρn =

(
n∑
k=0

γk

)−1
=

ρn−1
1 + γnρn−1

.

In fact, the simple weighted averaging procedure that leads to the calculation of E{θ|s} provides estimates

with an error variance that is MMSEn = ρnσ
2
0 , at the fraction ρn < 1 of the original variance σ20 . The

accuracy of the estimate θ?n = E{θ|s} grows therefore linearly with the number of estimates that are

averaged. This estimate can be updated recursively, and each iteration can be viewed as a message passed

from one social agent to the rest of the group. Let hn = (a1, . . . , an) the history vector of the actions ai,

assuming that the agents indexes correspond to the order of their actions. Denoting by τn = ρn/ρn−1,

with simple algebra one can show that the estimate (and optimal action) of the nth agent is the convex

combination θ?n = (1− τn)sn+ τnθ
?
n−1. After the nth guess, the belief model pn(θ|hn−1, sn) is therefore

updated to be θ ∼ N (θ?n, σ
2
0ρn). An interesting aspect of this basic model is that agents do not need to

see the history of all the previous actions, i.e., they only need to receive the estimate from the previous
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agent, as shown in the serial communication model in Fig. 1. In the sequential rule, the coefficient τn,

representing the MMSE improvement resulting from the update, tends asymptotically to one, and it can

be interpreted as the amount of trust placed on the historical aggregate estimate compared to the private

information added in the mix; this phenomenon models how new information is trusted less and less,

capturing (and justifying) the opinion hardening of the experienced old-timers and the coefficient τn

can be viewed as the trust coefficient that the node places on the history compared to its own private

information. This illustrative example is especially helpful to grasp how powerful social learning can

be in mathematical terms and also to understand the strong tie that exists between economic modeling

and estimation theory principles that are also the foundations of signal processing. The main difference

between economic and signal processing modeling lies in what limits this ideal learning scenario.

In fact, in signal processing the ideal MMSEn = ρnσ
2
0 is unattainable due to technical limitations,

such as the finite precision of computers and limited communication resources that are available to

acquire the data. For example, the finite precision in the representation of sensors information si through

quantized values has been the subject of intense investigation in both signal processing (see e.g. [7]) and

information theory, where the problem is referred to as the multi-terminal source coding problem [8].

In [9] the authors considered a sequential decoding problem resembling the Gaussian model discussed

above and illustrated in Fig. 1. As customary in information theoretic analyses, the underlying assumption

that the nodes are exposed to infinitely long sequences of independent private observations regarding an

independent and identically distributed (i.i.d.) sequence of θ (in practice this works as a bound for the

case of a single guess). For example, the people in the market need to guess the weight of a large number

of oxes and now their guesses have to be written in a card, so that a limited number of digits can be

allotted to describe each guess. Let ρn = MMSEn/σ
2
0 now represent the MSE reduction when the bits

encoding the n− 1 signals are strictly not greater than Rn−1 per ox weight. If the previous n− 1 agent

can communicate only to its immediate neighbor (this is the case of serial network) and the message

can contain up to Rn−1 bits per ox weight, then the MSE reduction factor ρn = MMSEn/σ
2
0 obeys the

following recursive equation [9]:

ρn =
ρn−1

1 + γnρn−1
+

σ20
1 + γn

(
1− ρn−1
γn + ρn−1

)
2−Rn−1 .

It is interesting to compare this with the original MSE reduction factor with uncoded transmission, which

is identical as Rn−1 →∞. It is not difficult to verify that, unless the rates are allowed to grow to infinity

(at approximately a logarithmic rate with n), the distortion will no longer improve as O(1/n). Losses

arise also if the agents have access to all prior history of actions which in this case are the digital codes
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produced by the previous participants. This corresponds to the setup called parallel network in [9] where

the shared knowledge can be viewed as that of an information hub. In this case:

ρn =
ρn−1

1 + γnρn−1
+

(
σ20ρ

2
n−1

γn + ρn−1

)
2−Rn−1 .

Asymptotically, if all guesses have to be stored in a finite computer memory, with a total amount Rtot =∑n
i=1Ri of bits available per guess then, as n → ∞ the agents will have a vanishing rate allowed to

submit each guess and the attainable ρn in the limit becomes the solution of the equation:

Rtot =
n

2σ20

(
1

ρ
− 1

)
− 1

2
log ρ.

The information theoretic bound for the attainable accuracy under rate constraints may be relevant

in the future when collecting the wisdom of crowds in digital form in computer clouds, will be faced

with storage limits. These models can capture actual limits for wide organizations that are required to

accrue information over a dispersed area through the support of information technology in real time. In

this case, rate bounds can be directly tied to the power expenditure necessary to communicate reliably

Rn bits of information per second, which in a contention free channel affected exclusively by thermal

additive noise is given by the celebrated Shannon formula Rn < Wn log(1 + Pn

N0Wn
).

While the cost of digital telemetry, digital communications and computation has been at the center-

stage in the literature on sensor networking, in the vast majority of social sciences, the analysis has

been typically divorced from technological limitations, yet losses compared to the optimal estimate are

the norm rather than the exception. Vives in [10] included a cost for the quality of private information

explicitly in his analysis, that rises for si that are less noisy. However, nobody accounted for the cost of

sharing information with others in digital form, which is an interesting issue to consider as high-speed

trading communities increasingly rely on computer networks to share information and compute actions.

There is a relatively recent trend in computer science [11] that focuses on recasting game theoretic

analyses under computation constraints which leaves out communication constraints. The next section

reviews a model that has been used in economics to capture the lack of perfect information about the

other agents beliefs.

B. Private efficiency and social inefficiency in social learning

Imperfections in social network models typically arise because the agents act selfishly and do not take

into account the benefit of their private information for others. Suppose that the optimal investment level

of a firm depends on the future price θ and that, with a proper normalization, the loss function of the firm
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n that invests ai is −Ei{(ai − θ − ηi)2}, where the expectation Ei is computed according to the firm’s

belief about θ, and ηi is a parameter that is specific to the firm and cannot be observed by others. That

representation of the payoff of the firm captures the general property that one cannot observe exactly the

decision process of agents.

In the Gaussian model, the firm chooses ai = Ei{θ}+ ηi where Ei{θ} is computed as in the previous

section and is a linear function of si with parameters that are publicly known. The action ai is a message

on si that is garbled by the idiosyncratic noise ηi. That simple model that is derived from Vives in [10]

enables us to understand a key issue in the inefficiency of social learning. Assume first that each agent

chooses his action in ignorance of others. His action reveals his private information with a noise. When

an observer of history aggregates the information that is provided by the observation of the actions of n

agents, the precision of his belief on θ (the inverse of the variance), increases like nA where A is inversely

related to the variance of the observation noise ηi. Assume now that each agent i observes the actions

of all agents j with j < i. In that case, Vives has shown that the precision of the belief from history

increases with n like n1/3. In other terms, the convergence of the variance toward 0 is much slower in

the process of social learning, like 1/n1/3, instead of 1/n when agents ignore others. The slow learning

when individuals observe others has a simple interpretation. In the determination of Ei{θ}, agent i takes

a linear combination between the estimate from history and the estimate from his private information, as

we have seen previously. The weight of history grows with n since there is more information and the

weight of his private signal si decreases. Because of the noise ηi that has a constant variance, the impact

of the private signal becomes gradually dwarfed by the noise and the action ai becomes gradually less

informative about the signal si. The process is equivalent to an increase of the variance of ηi relative to

a constant impact of si on ai.

In the present model, selfish agents do not take into account the information that their action convey

to others. Simple intuition shows that a small subsidy that induces agents to amplify their difference with

the consensus belief is Pareto efficient. That subsidy has only a second-order welfare impact on each

agent i who is at his optimum but it has a first-order effect on the welfare the agents j with j > i.

When the noise ηi vanishes or when the decision model about agents is perfectly known, there is no

inefficiency in social learning although agents take an action that is different from their belief. A rational

observer who knows perfectly the decision model of the self-interested agent is able to recover perfectly

the private information of the agent. There is no informational difference between the message of the

action and the private information of the agent.

The inefficiency of social learning takes a remarkable form in the present model but that inefficiency
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is generic in all processes of social learning. Selfish agents who observe others use that information and

tend to imitate others, rationally. That imitation tends to reduce the information that they convey to others

by their own action.

Social learning converges here slowly, but it converges to the truth because individual signals are

Gaussian and unbounded. There is always some probability that some agents have a signal with a

sufficiently high absolute value to convey a message on his private information. In models where signals

are discrete, such as in the binary model, private signals are bounded and social learning may stop

altogether in finite time. The variance of the public belief on θ may remained bounded below by a

strictly positive number.

C. Pathologies in social learning: informational cascades and herds

In the previous discussion, the imperfection of the individuals’ messages arises from the observation

noise on the actions of others. A particularly strong form of message imperfection is the restriction of

the action set A to discrete values. The communication between agents is restricted as if they could

speak only two words. Even under such restriction, one can show that when agents are informed by an

unbounded signal, such as for example the case where si is the output of an additive Gaussian noise

channel, social learning while slow, still converges to the truth. However, when agents are privately

informed by a bounded signal, such as for example the signal emerging from a discrete memoryless

binary channel, then social learning may not converge to the truth. More remarkably, it may converge

to a distribution on θ such that after a finite time, agents who choose between two actions choose the

inferior one given the true value of θ. That is the celebrated property of the informational cascades of

Bikhchandani, Hirshleifer and Welch (BHW) [12] (see also [13]). The property is easy to explain.

In the BHW model, the parameter θ is randomly determined between the values of 1 (“good state”)

and 0 (“bad state”). The utility of each agent is ui = (θ−c)ai, with 0 < c < 1 and ai ∈ [0, 1]. The utility

mathematically captures the fact that a profit 1−c is realized only if θ = 1 and the action ai = 1 predicts

this outcome correctly, an action ai = 0 incurs in no cost and no benefit either way, while if the agent

decides in error ai = 1 when θ = 0 the utility is negative, and equal to −c. Without loss of generality,

take c = 1/2. Private signals are such that P (si = θ|θ) = q. Let µn the probability of the good state

at the beginning of round n, conditional on the history of past actions. From Bayes’ rule, if µn > q,

agent n takes the action an = 1 even if he has a bad signal (sn = 0): the weight of history dominates

his private signal. In that case, his private signal has no impact on his action and that action reveals

no information. The public belief remains unchanged and the process repeats itself for all future agents.
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There is an informational cascade and all agents take the same action, in this case invest, even if the true

state is bad. Such a situation must occur in finite time because of the martingale convergence theorem:

µn is a martingale and must converge but it cannot converge in the interval (q, 1 − q) because in such

an interval, private actions are signal revealing and make µn jump. One can exclude the convergence to

q or 1 − q for almost all values of (µ0, q). Therefore, the limit is outside of (q, 1 − q) in which case

an informational cascade takes place. That limit is reached in a finite number of steps because of the

discrete Bayes updating.

In an informational cascade, all agents take the same action and a herd must take place. The reverse

proposition is not true, as emphasized by Smith and Sørensen (2000) [14]. Modify the BHW model such

that agents have a Gaussian signal si = θ + wi where θ ∈ {0, 1}. Private signals are now unbounded.

The public belief µn which is a martingale, converges and the limit cannot be in the interval (0, 1),

following an argument that is similar to the case with binary signals. One can show that social learning

converges to the truth and µn converges to θ. However, with probability 1, a herd eventually takes place

in finite time! Because of the martingale convergence theorem, one cannot have an infinite subsequence

of “contrarian agents” who act against the consensus: such agents by going against the consensus reveal

that there information is stronger than the consensus and thus induce a jump in the consensus. Such

jumps cannot occur an infinite number of times because of the convergence of the martingale.

It is interesting to compare the information cascades, with the optimal rate of learning and with the rate

of learning that characterizes a set of sensors that shares information with and without communication

limitations. The interesting question is what happens when sensors can share only a binary decision,

emulating the scenario in the BHW model of rational agents that are limited to perform a binary action;

in the context of engineering design the goal of the action is to bear as much useful information as

possible to a fusion center, which collects the common knowledge, or to the next sensor.

In this case the engineering literature on the topic of decentralized detection is relevant, and the

interesting results that emerge are that the learning rate decreases but does not stop to grow, unlike the

BHW model. This problem was first posed by Tenney and Sandell in ’81 [15] and their results were

later generalized in [16] for a parallel architecture with a fusion center and in [17] for a serial network

configuration. In the parallel configuration [16], each one of the n agents evaluates a finite-valued function

(also known as the decision rule) ai ∈ {1, · · · , D} of its private observation si using a likelihood ratio

test and then transmits it to the fusion center. Based on these incomplete information {a1, · · · , an}, the

fusion center determines one true state out of the two hypotheses using the maximum a posteriori (MAP)

rule, as illustrated in Fig. 2. The objective of the fusion center is to minimize the error probability, under
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the assumption that the private observations are conditionally i.i.d, with a known conditional distribution

p(si|θ = j), j = 0, 1. For the case when D = 2, it has been shown that there exists an optimal decision

rule such that the probability of error decays exponentially fast with the number of the agents n. Hence,

given the log-likelihood ratio λi = p(si|θ=1)
p(si|θ=0) and the optimal threshold τ , it is asymptotically optimal to

have all the agents use the same decision rule, in the form

ai =

 0, if λi ≤ τ
1, otherwise

Interestingly, when there are M > 2 hypotheses, a single decision rule for all the agents will no longer

lead to an asymptotically exponential rate of learning. In fact, the optimal learning is attained by having

at most M(M − 1)/2 number of distinct decision rules [16]. Moreover, a tree structure for aggregation

of sensor decisions is studied in [16].

p(s1|θ) p(s2|θ) p(sn|θ)· · ·
s1 s2 sn

21 n· · ·

a1
a2

an−1

Environment θ

Fusion Center θ̂

Fig. 2: Parallel Configuration

Consider now the case when the agents are in a serial network configuration (often known as the

tandem network) [17]. Suppose that the agents are indexed consecutively with i = 1 being the first agent

and i = n being the last agent. Each agent observes a random signal si and evaluates a binary decision

ai ∈ {0, 1} using a likelihood ratio test. The decision is then passed to the next agent, but the history

of previous decisions hi+1 = (a1, · · · , ai−1) is not visible (see Fig. 3). Again, the goal is to design an

optimal strategy that minimizes the probability of error. Under the assumption that the observations si

are conditionally independent, it has been found that the probability of error is bounded away from zero

if and only if the absolute log-likelihood is bounded almost surely. In contrast, when the log-likelihood

is unbounded, it was proved in [17] that there exists a set of decision rules such that yields optimal rate
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of learning. Moreover, the set of optimal decision rules takes the form:

ai =


0, if λi ≤ τi,n(1)

1, if λi > τi,n(0)

ai−1, otherwise

where τi,n(1) ≤ τi,n(0) are the thresholds whose values depend on ai−1, i.e., the decision of the previous

agent and are given as a result of a rather complicated optimization. There are two interesting observations

to make. First, notice from the construction of the decision rules that it may be optimal for the agent to

simply copy his neighbor action/decision. Second, the rate of learning might stop, if the log-likelihood

is bounded almost surely, which is similar to the herding phenomenon observed in the BHW model. In

general, the rate of learning is much slower than exponential. In fact, authors in [17] proved that it is

always sub-exponential.

Environment θ

p(s1|θ) p(s2|θ) p(sn|θ)· · ·

s1 s2 sn

21 n· · ·
· · ·

a1 a2
an−1

Fig. 3: Tandem Network

Another interesting insight is that the key difference between the decentralized detection and the BHW

model is the driving force behind every decision that each agent makes (or the action that each agent

takes). In the BHW model, agents act selfishly in the sense that they do not make collective decisions

on behalf of the group because every agent is associated to an specific utility function which need to

be maximized when making a decision. In contrast, in the decentralized detection models, agents in fact

work together to achieve a common goal, that is, to maximize the rate of learning based on their collective

knowledge. Nevertheless, lack of learning in the serial network example may occur, irrespective of the

agents best intentions toward each other.

III. OPINION DIFFUSION IN GENERAL NETWORKS

Social learning is hardly obtained by accumulating all historical values sequentially. Agreement often

emerges organically, by averaging opinions among subsets of neighbors [18], [19]. Their selection is
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often random and opportunistic and agents act multiple times, often in asynchronous random events. In

fact, in recent years the analysis of social phenomena has increasingly emphasized all these aspects and,

among them, special attention has been placed in understanding the role of the network structure as the

scaffold that supports exchanges of information, rewards and costs. What we will discuss in this section

are models for the formation of these networks, but for the time being let us assume that the limitations

that exist in communicating with peers are given and that we are interested in analyzing their effect on

the process of opinion formation.

Smith and Sørensen (2008) [20] analyze limited memory in the sequential model by assuming that

agents sample randomly a limited number of past observations. The analysis is much more difficult than

in the model with complete recall because the history of actions does not generate a public belief that

evolves as a martingale. The boundedness of private information has a strong impact on the properties of

the social learning. It is intuitive that the weight of history increases with the sample size. Hence, quite

remarkably, welfare may fall in the sample size. More recent studies can be found in [4], who found

conditions where social learning can happen in unstructured communication settings.

A standard method to capture the limitations of observations is to represent the social network as a graph

G = (E, V ) where agents are the collection of n vertexes V and relationships are represented through

a set of edges E. Node i is can only exchange information with a subset Ni ⊂ V and the cardinality

di = |Ni| is called the node degree. The connectivity of the graph is often represented through an n×n
adjacency matrix A whose elements Aij = 1 iff ij ∈ E. Other useful matrices associated to the graph

G are the incidence matrix and the Laplacian matrix L = diag(d1, . . . dn)−A.

It is not difficult to recognize that the interest is in characterizing how estimates emerge and coalesce

in networks is parallel to the research trend in signal processing focusing on Consensus Gossiping (CG)

algorithms [21]. The motivation behind the research on CG algorithm is that sensor deployments are

vast and irregular. Rather than trying to forward information to a fusion center, researchers focused on

providing means to compute these queries via near-neighbors communications. This is not unlike human

societies that have created money so that information about the value of goods and their best allocation

can emerge through swarming of self-interested agents, rather than from the control of a central market

operator. CG algorithms offer similar advantages in sensor networking. In local communications normally

messages are assumed to have infinite precision, but there is a fixed cost per message to account for and

links may have also an associated cost.

One of the most widely studied algorithms is Average Consensus Gossiping (ACG), whose goal is to

compute and distribute the value of the average of a certain initial state variable xi,0, i = 1, . . . , n among
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all agents. We discuss some of its main characteristics that we will see later relate closely to the analysis

of opinion diffusion in arbitrary networks introduced by DeGroot in [22].

In its simplest instantiation, ACG attains this goal by having each node update its local state variable

as the following convex combination of its local state and of its neighbors states:

xi,k = xi,k−1 − ε
∑
j∈Ni

(xi,k−1 − xj,k−1),

where 0 < ε < 1/max(di). If the network has a path connecting every two agents, asymptotically the

entire network converges to xi,∞ = 1
n

∑n
i=1 xi,0 which is the average of all initial states. Stacking all the

variables in one vector xk = (x1,k, . . . , xn,k) one can see that these interactions correspond to perform

the linear mapping xk = (I − εL)xk−1 of the sensors states, where L is the graph Laplacian introduced

before. The graph Laplacian defined above is symmetric and has always a null vector represented by

the constant vector 1. It can be shown that the matrix I − εL− 11T /n is a contraction. Hence, at each

iteration the accuracy of ACG improves exponentially, with a rate that is equal to 1 − ελ2(L), where

λ2(L) is the second smallest eigenvalue of the graph Laplacian L. This simple analysis relates directly

the ability to attain consensus in the graph to a specific measure of connectivity that best capture the rate

of diffusion on G. In fact, the quantity λ2(L) is the so called Fiedler eigenvalue, or algebraic connectivity

of the graph, that has central importance in spectral graph theory [21], [23]. Furthermore, the nullity ν(L)

represents the number of connected components in the graph. Interestingly, if p = ν(L) > 1 then the

network will be partitioned in p groups in consensus.

Considering again Galton market experiment, we indicated that the agents estimating the weight of

the ox in the market could have been gossiping about their estimates with a near neighbor, weighting

differently the opinions they express depending on how trustworthy they were. We showed that the

optimal fusion rule is equivalent to the following convex combination of the current estimate with the

local private information θ?n = (1 − τn)sn + τnθ
?
n−1 and also indicated that, as the sequence of actions

gets longer, the trust placed on the private information diminishes.

To capture these effects in a more general social graph, a popular model proposed by DeGroot in [22]

associates to G = (E, V ) an n × n (doubly stochastic) trust matrix T , where the ij element τij > 0

if ij ∈ V and is zero otherwise. The elements τij in [22] are part of the model of the agent opinion

formation process. In this case agents average their estimate with others repeatedly, forming at every

round of gossip k a convex combination of their respective opinions. The model generically refers to the
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quantities that are averaged as beliefs xi,k. At each iteration, node i updates his belief as:

xi,k =
∑
j∈Ni

τijxi,k−1.

For the specific choice of T = I− εL the DeGroot model is equivalent to the ACG discussed above and,

hence, the reader should have no trouble guessing how the analysis goes: if the eigenvalue λ(T ) = 1

has multiplicity p then there will be p groups in agreement. For p = 1 the entire group can obtain an

estimate equal to θ?n asymptotically, and the rate of convergence is the spectral radius ρ(T − 11T /n)

which for T = I − εL is equivalent to 1− ελ2(L).

One can immediately note that the DeGroot model analysis is not concerned with establishing how

close the agents will come to the right decision but rather if they all will eventually agree (see Fig.

4 for an illustration). Also, the agents are exchanging directly their belief variables. In this sense, the

framework of Bayesian rational agents driven by selfish intents is lost.
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Fig. 4: Each color on the random graph nodes represents a different belief value. On the right side we

see all nodes with the same color after 300 interactions illustrating the convergence in opinion using

DeGroot Model.

There are many interesting variations of the DeGroot model. Among them worth mentioning are the

so called bounded confidence models. The Hegselmann-Krause (HK) model [24], [25] is perhaps the

closest one. Opinions are probabilities xi,k = P (θ = 1|hi,k, si) and are updated synchronously, similar

to the DeGroot model, through a convex combination of the neighbors beliefs. However, the HK model
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introduces a confidence level (or a threshold) τ to model the lack of influence among agents whose beliefs

are too distant, which is captured by modifying the trust matrix as function of the network state T (xk) to

exclude every edge ij such that |xi,k−xj,k| > τ . Specifically, let Ti,k = {j ∈ Ni : |xi,k − xjk| ≤ τ} be

the set of neighbors whose absolute opinion distances are less than τ after the kth interaction, i.e. the set

of trusted neighbors plus the node itself. Let |Ti,k| ≥ 1 be its cardinality. Then, after exchanging beliefs

with their neighbors, individual opinions are updated synchronously according to the following rule:

xi,k =
1

|Ti,k|
∑
j∈Ti,k

xj,k−1.

If at any point |Ti,k| = 1 then node i has no trustworthy neighbors and maintains his or her own opinion.

Though similar to the DeGroot model, a significant difference is that the trust matrix in the HK model

depends on the state and, therefore, the dynamics are non-linear. In particular, the set of neighbors with

which agent i updates its belief may change with k.

An extension of the HK model introduced in [24] includes asymmetric confidence intervals [−τl, τr]
and another related extension, called the heterogeneous HK (htHK) model [26], introduces different

confidence bounds τ̄ = [τ1, · · · , τn].

A randomized version of these models, which resembles asynchronous ACG algorithms is by Deffuant-

Weisbuch. Their model, introduced in [27], [28], analyzes random pair-wise interactions between agents

whose opinion distance is smaller than a threshold, instead of considering a synchronous update of all

the state at each iteration, i.e.

xi,k = xi,k−1 + µ(xj,k−1 − xi,k−1) (1)

xj,k = xj,k−1 + µ(xi,k−1 − xj,k−1),

where µ ∈ (0, 0.5] is called the mixing parameter. The interesting aspect of all bounded confidence models

is that they exhibit a phase transition from herding to polarized opinions. This is illustrated in Fig. 5 and

Fig. 6. In the first figure on the left we can see that over time two distinct belief emerge and they are

held by two groups of agents, while on the right a sample of the same initial random network model

converges to a consensus in belief. The only difference between the two is the value of the threshold that

defines the bounded confidence model. The second figure (Fig. 6) shows numerically that the transition

from consensus to a society split in groups that are polarized occurs at a certain value of the bounded

confidence threshold τ , with high probability. One can observe from more extensive numerical tests that

the phase transition is sensitive to the distribution of the initial beliefs but it is rather insensitive to the

actual topology of the graph G, as long as it is connected.
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Fig. 5: Opinion evolution with n = 100 agents in a connected random geometric graph network, on an

unit area with radius 0.6, for two different values of the confidence threshold τ .
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Fig. 6: Histogram of opinion distribution with τ = 0.5 if |xi,k − xj,k| < τ for k sufficiently large to

approach the limit.

IV. NETWORK FORMATION

In the previous section we introduced a graph that constrains the interactions among agents. For social

agents there is both self-interest in being exposed to information from other agents as well as a potential

cost that can represent the effort in engaging them in the interaction. How can one model the social forces

that forge a certain graph? This question is posed in an interesting class of studies, briefly highlighted

in Section IV-A, which considers the graph G of relationships as the outcome of strategic partnerships.

What is also interesting about these studies is that they depart from the classical game theoretic model

of equilibrium since the establishment of a link ij between two nodes requires a coordinated action from

the two edges. The question often posed in these studies is if these strategic alliances lead to the greatest
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social welfare.

If, however, we look at optimizing the network structure from the engineering perspective then the

graphical models that emerge come directly from the statistical model of the information, and they capture

the intrinsic dependency of the observations made by the agents and their latent decision variables. This

topic is fleshed out in Section IV-B.

A. Strategic network formation

In strategic network formation models, each node receives a certain utility ui(E) from a given graph

G = (V,E) and each partnership contributes to this utility by changing benefits and a costs to the two

nodes i and j that agree to become connected by an edge ij. In global terms, the efficiency of a graph

G can be measured either by its sum utility,
∑n

i=1 ui(E), which is highest for the most efficient graph,

or by considering if the utility vector u(E) = (u1(E), . . . , un(E)) dominates all other possible graph

utilities vectors, in the sense that ∀E′,∀i ∈ {1, n} : ui(E) ≥ ui(E
′), in which case the graph is called

Pareto efficient. A formulation for this problem that has been popular in both economics and computer

science is as follows (see Chapter 6 of [2] for a thorough review). Each node extracts a utility from a

graph that is larger if there is a lower distance from all other nodes, with a cost to maintain links that

grows with the nodal degree. For example, an interesting special case analyzed by Fabrikant in [29] is

when the utility of graph G to node i takes the form:

ui(E) =

n∑
j=1

−`ij(E)− cdi(E)

where `ij(E) is the length of the shortest path in E connecting node i and node j. What are the efficient

graphs and what graphs are stable? Note that the notion of stability here is considering what Jackson in

[2] calls pairwise stability, which for a certain graph G happens if:

• For all ij ∈ E, ui(E ≥ ui(E − ij) and uj(E) ≥ uj(E − ij)
• For all ij 6∈ E if ui(E + ij) > ui(E) then uj(E + ij) < uj(E)

In other words, all the edges present make the nodes connected better off and no node makes a sacrifice.

Looking at Fabrikant utility model, consider that the cost of not being connected to anybody is infinite.

This automatically excludes graphs that have isolated components from being efficient or pairwise stable

in this model. The interesting result is that the utility model above has a unique efficient network and

only two possible outcomes:

• For c < 1 the complete network is efficient. The cost for adding a link is always lower that the

benefit of being one hop distance. The complete network is also pairwise stable.
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• For c > 1 a star encompassing all nodes is the efficient configuration. One node is taking a large

burden in cost so that all the rest can have a 2 hop distance from each other. This is a pairwise

stable solution but not the only one.

Fabricant also proved in [29] that the diameter of any pairwise stable network is at most 2
√
c + 1

and that comparing the total cost −∑n
j=1 ui(E) of these stable solutions with the total cost of the star

configuration, which is 2(n − 1)(n − 1 + c), their ratio (called by Papadimitriou the price of anarchy

[30]) is no larger than 17
√
c.

There are many other utility functions and variations on this model, like for example the model

introduced by Bala and Goyal [31] where the terms −`ij(E) are replaced by δ`ij(E), with δ < 1, and the

network is directed. In some cases the phase transitions as the parameters that define costs and benefits

change that are very similar, others that instead lead to more complex topologies than the star or the

complete graph. There are also studies on the dynamic formation of networks, and we refer the reader

to [2] for more details.

In concluding this section we have seen that there is a wealth of mathematical tools to examine

opinion diffusion and also to predict the structures that are favored in these social interactions. The

theory, however, is divorced from the specific technological tools that are in some cases enhancing in

some cases influencing, in some cases replacing the agents decision making engine. These important

trends are outlined in Section V.

Before that, in the next section we introduce a totally different approach to select graphs to exchange

beliefs that is popular in machine learning and signal processing. In the context of decentralized sensors

systems, these models provide systematic guidelines to structure both communications and computations

aimed at making optimal Bayesian inferences [32]. In fact, the sensors communications can be organized

to emulate the implementation of the algorithm known as Belief Propagation [33], which requires passing

special messages over specific graphs, called Bayesian Networks, derived from the statistical model of

the information. Similarities that may exist between Belief Propagation and the processing of correlated

private information in social networks, can provide insight on a society ability to merge all evidence

successfully and behave as a rational swarm. This is another interesting direction to explore at the

intersection between artificial intelligence and socio-economic studies, which is discussed next.

B. Bayesian Networks and Belief Propagation

Pearl’s work [33] pioneered the use of graphical representations to perform Bayesian inference via

message passing. The graphs represent the conditional dependency existing between the random data
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acquired and between the data and latent variables in an observation model; the latent variables include

the unknown information θ that is the object of the inference. Considering a set of random variables

~θ = (θ1, . . . , θn), it is said their distribution factorizes according to a certain Bayesian Network1 (BN)

graph G = (V,E), if the joint distribution of these random variables can be expressed as:

p(θ1, . . . , θn) =

n∏
i=0

p(θi|Pa(θi))

where Pa(θi) is a subset of {θ1, . . . , θn}/{θi} whose elements are called parents of node θi; in the

BN graphs vertexes correspond to random variables and the parents have directed links towards all their

children, forming the set of edges E of G. It is important to remark that this type of factorization of

p(θ1, . . . , θn) is always possible, because of the chain rule of probability. However, the factorization is

truly beneficial in computing marginals when Pa(θi) are small. These graphical representation are the

scaffold for the celebrated algorithm called Belief Propagation (sometimes referred to as the sum product

algorithm) which leverages on this factorization especially when the resulting graphs are sparse.

Let us offer a concrete example. The case examined in Section II-A is far too simple to appreciate

the power of this machinery. In fact, the distribution of interest to make the inference is p(θ|s1, . . . , sn)

and, since the data are conditionally independent given p(s1, . . . , sn|θ) =
∏n
i=1 p(si|θ) the unknown

variable θ is the parent of all private information and the structure of the BN is rather trivial. There

is no need of marginalizing the distribution, all it is needed is to collect the beliefs p(si|θ). A more

interesting case arises when si = θi +wi where (θ1, . . . , θn) ∼ N (~θ0,Σ0); for simplicity, assume wi are

i.i.d. zero mean Gaussian noise random variables all with variance σ2 (this is also called a Gauss-Markov

model). In this case the agents are interested in making an inference on their own θi and this requires

marginalizing the other agents θj . When the observations si are conditionally independent given θi, si

have each θi as their single parent and are, therefore, simple appendices of the graphical structure of the

latent variables (θ1, . . . , θn). The complexity of the BN associated to a Gauss-Markov model is tied to

the sparsity of the inverse of their covariance, or Fisher Information Matrix (FIM) J = Σ−10 + 1
σ2 I . In

fact, let h = 1
σ2 (s1, . . . , sn). It can be shown [34] that:

p(θ1, . . . , θn|s1, . . . , sn) ∝ exp
{
−1

2
~θJ~θT + ~θhT

}
,

which is the general way the joint PDF of Gaussian vectors is written when studying the BN of the

associated Gauss-Markov models. The expression of the joint PDF in a graphical model is subject to the

1BN are sometimes referred to as graphical models, and expanded in the so called factor graphs.
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following general factorization (see Hammersley and Clifford [35]):

p(θ1, . . . , θn|s1, . . . , sn) ∝
∏
i∈V

ψi(θi)
∏
ij∈E

ψij(θi, θj)

which, in the case of the Gauss-Markov model we used as an example, has the following factors:

ψi(θi) = exp

{
−1

2
Aiθ

2
i + βiθi

}
, ψij(θi, θj) = exp

{
−1

2
(θi, θj)Bij(θi, θj)

T

}
.

The choice of the parameters Ai and Bij values is not unique. They need to be selected so that

~θJ~θT =
∑
i∈V

Aiθ
2
i +

∑
ij∈E

(θi, θj)Bij(θi, θj)
T ,

where G = (V,E) is the BN that one associates with the Gauss-Markov model, which is sparse as long as

J is sparse, given that Bij have to capture the contributions coming from all off-diagonal elements of J .

In general, Belief Propagation is based on the fact that, given the Hammersley and Clifford factorization

of the PDF, the variable elimination process of the PDF satisfies certain fixed point equations for the so

called message functions when the BN is a tree [33]. The elimination of a generic variable i is associated

i j
mi→j

Fig. 7: Message passing over a BN tree. The dashed line encircles the parents of node i. The message

mi→j is passed from node i to node j to eliminate the variables in the BN subtree rooted at i.

with the following fixed-point equations for the message functions mi→j(θj) (where i → j is a parent

to child link):

mi→j(θj) =

∫
ψij(θi, θj)ψi(θi)

∏
k→i,k∈Pa(θi)

mk→i(θi)dθi.

Combining the fixed point message functions at each node, one obtains:

pi(θi|s1, . . . , sn) ∝ ψi(θi)
∏

k→j,k∈Pa(θi)

mk→i(θi),

which means that, eventually, each node learns a function proportional to the belief that incorporates all

the evidence in the network and can make an optimum inference in the Bayesian sense. In other words,

the message function, mi→j(θj), from neighbor i to j is the function that results from saturating all of
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the variables in the parents Pa(θi) subtree rooted at node i (see Fig. 7). The implementation of belief

propagation is obtained by initializing these message functions to, for example, 1 for every value of

θj , and then iteratively exchanging messages that are re-computed using the equation above, until the

algorithm reaches its fixed points.

For random variables that are discrete and with finite sample spaces, the integrals are replaced by sums,

and mi→j(θj) are evaluated over discrete points. For Gaussian Markov fields like the one we considered

to show the BN representation, rather than exchanging message functions with continuous support, the

information exchange can also be considerably simplified but, to avoid too long of a digression, we direct

the reader to [36] and [34].

The analysis of belief propagation over BNs is very insightful since one can point to the difficulty

of a certain inference problem just by exploring the complexity of the associated BN. In this sense this

approach reveals what stochastic models are best suited for decentralized decision making. Typically

those whose BN are not loopy and with sparse dependencies work best, and are also those for which the

fixed points are unique. Wide experimentation with these algorithms shows also that the message passing

methodology in belief propagation has a considerable degree of resilience, even when the conditions for

exact convergence are violated.

Overall, this brief introduction should be sufficient to draw some relationship between graphical models

and social networks. In principle they are not related, since BN representations are agnostic about who

controls what the data, where they become available to make the decision, centrally or at a set of

separate agents, and BN do not allude to actual communications or social interactions; in other words,

they are merely a mathematical tool to organize efficiently the calculation of marginal probabilities and

make inferences. However, as remarked by several authors considering data aggregation in decentralized

sensor networks [32], BN do suggest a systematic methodology to organize communications among

distributed observers that have private information on phenomena with specific statistical dependency,

so that the network can perform an inference on latent variables that is optimal in the Bayesian sense.

The existence of graphical models that support the computation of optimum inferences is intriguing since

it may suggest potential pressure that may affect the network formation in a social setting, coming from

the inherent statistical structure of the collective information model. This pressure could manifest itself in

the agents empirical observation that forging certain information pathways, choosing certain hierarchies,

and processing specific messages that resemble those in belief propagation, all lead to faster and more

accurate local decisions for the parties involved.
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V. THE MARRIAGE OF SOCIAL AND INFORMATION NETWORKS

The marriage between social and information network has been an enormously successful and prolific

one, especially in recent years. For a large fraction of society, decision making, social and personal

expression are increasingly relying on computer networks. On the one hand, Internet companies compete

on introducing innovation that allows them to get more up-close and personal with their users everyday

choices. This phenomenon is discussed next.

A. The Internet telescope on social behavior

The great socio-economic implications of providing Internet information services to a large base of

consumers are easily apparent. At the same time, from looking at the evolution of Internet technologies

and applications, it seems that no amount of information about the customer is too much information

and the competition to grab this information is fierce. In fact, to further help this competition, the present

trend is towards establishing a standard for what is called context aware computing, i.e. a universal model

to capture service usage information from the consumer activity, as part of the IP Multimedia Subsystem

(IMS) Next Generation Networking (NGN) architecture. This standardization process would unleash

further advances in the sector by facilitating the design of components (hardware and software) that

would help generate Internet applications seamlessly integrated to work on computers and Smartphones.

While users are lured by the convenience of adopting technology to enhance their decision making, the

design and support of these sophisticated applications is clearly motivated by the rich information they

provide on their users, and the ability to influence their decisions in essentially two ways: 1) targeted

advertising; 2) recommendation systems [37].

Perhaps the greatest advances in the sector today are tied to the additional information Smartphones

can offer, by essentially stalking consumers in an increasingly invasive fashion, in exchange for help

on sorting out tasks and entertaining them in their daily activities. Starting from the first context-aware

application, a mobile tour guide called Active Badge [38], in the last ten years, there has been a growing

trend towards refining the network support for the generation of this side information [39]. The so

called location based services [40], available as Smartphones applications, accrue data about their users

contexts. At first, the only context variable recorded had been the user position (the GPS location).

Now a growing research area is devoted to capturing a richer record to discern the user activity, using

gyroscopes, microphones and cameras, to refine the notion of what is the context in which certain

actions are performed (e.g. is the user walking or still, is this a crowded area or a quiet place, etc.).

More importantly, computer networking is now exploring social, group and community contexts using
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indicators of what are the specific interest groups the consumer is engaged in as indicators of social

context [41] and from them there is a growing interest in developing context-aware recommendation

systems [42]. Recent proposals to refine social context information go as far as suggesting to modify

802.11 network protocols to essentially make Smartphones directly capable of establishing node to node

communications and support ad-hoc networking activities with peers with specific applications [43], [44].

These proposals build on a considerable body of research on Delay Tolerant Networks (DTN) started with

[45], that has focused on the design of mechanisms to route information among mobile terminals using

their random encounters. Applied on Smartphones, DTN protocols would allow collaborative activities

that could enhance communications among individuals engaged in a variety of social endeavors while,

in exchange, giving direct measures of the surrounding phones one use has been engaged with.

Where does the theory we described fit in? In the previous sections, in reviewing the basic mathematical

elements of social models, we have determined that the private information si, the actions available

ai ∈ Ai, the agent utility function ui(θ, ai) and, last but not least, the social relationships, are the necessary

ingredients to forecast human behavior. The examples we examined use simple tractable selections for all

of these mathematical entities but to predict real trends one would have to fit models using informative

data. How to best harvest private information from willing participants, in exchange for some desirable

service, is the real quest for Internet companies of various scales. It is clear that observing the specific

selection of the consumer (the agent actions), in response to Internet search results and context, provides

a basic glimpse on the association between private information, beliefs and actions taken by the agents,

which in the theoretical models is fully described by their utility functions. By personalizing search

engines, offering additional services, companies have the ability to collect evidence over many instances

on a specific individual selections. This represents a huge leap compared to what marketing activities

and studies had available prior to the Internet. Review systems, surveys and rating systems (e.g. the like

button on Facebook) and online shopping provide considerable evidence on the agent utility. Information

on the agent context offers an additional window onto the agent si that can improve the ability to discern

the social agent belief, and how that belief is translated into an action. Given that social settings help

shape agents opinions, having access to social context is also very important, and tracking social trends

can help fill the gaps in records that are generally very incomplete on the agents preferences, given the

wide number of options available for their actions. Finally, access to information about the belief of

many agents should give information about the variable θ examined in their decision. For example fusing

information about several agents purchase history, or subscription to blogs, could inform about the true

value of an asset or the importance of a political decision.
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Private Info.
s max

context,
search results,

· · · ûy(ŝ)

u(θ1, a)

u(θ2, a)

...

a

Fig. 8: Information about context and queries from the agent along with the agent decisions inform

indirectly on the individual economic choice system.

But a theory that defines a clear trade-off between the costs and benefits of such services seems to be

missing. Companies that work in this space, perhaps lacking a theory to focus their efforts on Internet

applications that would give the best information for the lowest cost, appear to be restlessly experimenting

with new products. In addition, even though the mathematical models we reviewed and the context data

accrued by Internet service data are related, a considerable amount of the data mining that is discussed in

the literature is either entirely based on heuristics or it explores statistically cause and effect relationships

in a rigorous Bayesian framework, but it does not make an explicit attempt of estimating the variables

and functions involved in the theoretical social models we described. In a sense, what is missing is a

framework to estimate rigorously the human economic choice system, relating context evidence with the

system model and ranking the quality of certain contextual information. This is a sensing and system

identification problem whose formulation may turn out to be outright impossible, but yet, that is well

worth thinking about. The research on influence diagrams interpreted as graphical models for individual

decision biases [46], [47], are examples of how one can systematically approach the problem of modeling

agents behavior. The problem also hinges on the unnerving issue of privacy, as the orwellian dystopia

(albeit implemented at the hands of private enterprises in most countries) increasingly resembles reality.

VI. CONCLUSION

Our paper compared models for social learning and opinion diffusion in the context of economics and

social science with those used in signal processing over networks of sensors, explaining how learning

emerges or fails to emerge in both scenarios. It also critically discusses how the advent of the Internet

and of Smartphones is generating a wealth of data and enhancing the decision making capabilities of
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social agents in ways that were never conceivable before. The paper also argues that more engineering

research is needed to advance modeling and inference algorithms and enhance even further the cyber

interactions of social agents. This area has tremendous potential as well as carries tremendous risks.

Consumers loose their privacy and can be influenced in undesired ways. Hence, a critical consideration

to make in expanding our understanding on this subject is to what extent it is safe to increase the ability

of hardware and software to capture contextual data about the customers.
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