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The mechanism by which aggregate supply creates the income that generates its matching demand
(called Say’s Law), may not work in a general equilibrium with decentralized markets and savings in
bonds or money. Full employment is an equilibrium, but convergence to that state is slow. A self-fulfilling
precautionary motive to accumulate bonds (with a zero aggregate supply) can set the economy on an
equilibrium path with a fast convergence towards a steady state with unemployment that may be an
absorbing state from which no equilibrium path emerges to restore full employment.
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1. INTRODUCTION

In the recent global crisis, the demand for precautionary savings and the reduction of consumption
have played an aggravating role. The lower demand for goods may generate a self-fulfilling
equilibrium with unemployment and individuals’ uncertainty. This mechanism is proven here
in a model of general equilibrium with decentralized markets for goods and an economy-wide
market for bonds.

The mechanism invalidates the common view of “Say’s Law” that the aggregate supply (i.e.
the capacity to supply goods) creates its matching demand and that full employment is the natural
state of economies.1 In general equilibrium, there is no coordination problem between demand
and supply, hence an analytical model that addresses the problem of Say’s Law should have an
equilibrium with full employment. The model presented here has indeed such an equilibrium
in which all individuals realize their transactions according to perfect foresight and there is no
unused capacity of production. However, in addition to that full employment equilibrium, there
is at least one other equilibrium where output falls short of capacity.

In an equilibrium with unemployment, demand is low because some individuals prefer to
accumulate savings. The motive for precautionary saving is self-fulfilling2 and arises because
individuals are subject to a credit constraint and are uncertain about their opportunities to sell
goods in future periods. There is no aggregate shock in the economy3 and there is perfect foresight

1. What Say (1803) really meant is probably different from the current interpretation. He was not familiar with
general equilibrium.

2. The present model is in the line of Ayagari (1994), but Ayagari assumed individual exogenous productivity
shocks. There are no such shocks here.

3. For uncertainty with aggregate shocks, see Bloom (2009).
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on the future path of unemployment. All uncertainty arises because of individuals’ trades and
individuals’ heterogeneity.

In the full-employment equilibrium, the individuals’ heterogeneity has no impact because
as individuals are sure they can always sell in the future, they buy goods in each period,
aggregate demand equals the production capacity and full employment is self-fulfilling. In the
equilibrium with unemployment however, demand is less than capacity because some agents are
credit constrained or prefer to accumulate precautionary savings if they have a lower utility for
consumption during a period.

For simplicity, there is here no physical capital and goods are not storable. The impact of
saving on the demand for goods through investment is obviously important, but that issue should
be addressed separately. Here, the asset for saving or dissaving is a bond and in most of the article,
the net supply of bonds is zero. (Bonds could also be viewed as inside money.) The debts of some
agents are the assets of others. Although in an equilibrium with unemployment, agents want to
accumulate precautionary savings, that cannot be satisfied in the aggregate. Higher savings by
some agents entail the absence of sales by other agents who increase their debt.

The present model is related to the well known study of the Great Capitol Hill Baby Sitting
Co-op crisis by Sweeney and Sweeney (1977) where an “insufficient” quantity of money generates
the unemployment of resources in an economy without credit. It seems that unemployment
arises because people are chasing a fixed quantity of money in a kind of musical chairs
game. However, the critical feature is the credit constraint. A partial relaxation of the credit
constraint is equivalent to an increase of money. That equivalence is discussed at the end of the
paper.

At full employment, a shift of expectations4 towards a future with unemployment generates
a self-fulfilling behaviour with a higher saving and a lower demand. The downturn is sudden
and the convergence to the steady state with unemployment is fast: for a particular parametric
case, the dynamics are one dimensional in the aggregate debt with a convergence rate that is
strictly positive. The downturn is fast because agents are not constrained when they abstain
from consumption. The asymmetry with an upturn is an important result of the analysis and the
mechanism for this asymmetry may be a generic property in models of recoveries from financial
crises.

When the economy is in a steady state with unemployment, some agents are credit constrained.
An upturn requires higher expectations about the future, but if expectations shift towards
optimism, the constrained agents cannot increase their consumption. Agents become free from
the constraint only if they sell. In an economy with decentralized markets, the process takes time
as the aggregate demand trickles down gradually to the entire economy. If a transition toward full
employment is possible, in equilibrium, the convergence is slow. In the one dimensional case of
the model, the rate of convergence, while strictly positive, is asymptotically nil.

Under some parameters, the asymmetry between downturns and upturns takes a strong form:
the steady state with unemployment is an absorbing state out of which no equilibrium path can
emerge toward full employment.

Asymmetries between downturns and upturns of aggregate activity have been the subject
of a large literature that cannot be acknowledged here.5 The present model is not a model of

4. Such a shift has to occur through coordination between agents. In actual economies, a shift may be triggered
by real shocks that create their own impact on output. Here, we concentrate on the sole endogenous dynamics in the
interaction between debt and demand. The analysis of the coordination of a shift in expectations is obviously beyond the
scope of the present study.

5. For a recent theoretical model where the asymmetry is generated by be real effects such as adjustment costs,
see Jovanovic (2009)
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business cycles, but it may provide an analytical framework that is related to the protracted
impact of financial crises as discussed by Reinhart and Rogoff (2009), and Schularick and Taylor
(2012).

The issues that are addressed in this article are central in macroeconomics and hence not new.
In policy circles, the positive impact on private consumption on growth during a recession is
a triviality that has not been matched by a large number of formal analyses. The coordination
of aggregate demand and supply has been discussed, among many others, by John Law (1705),
Robertson (1892), and, of course, Keynes (1936).6 In the late 1960s, Leijhonhufvud (1968)
emphasized again, with no analytical model, that in an economy where goods are traded with
money, Say’s Law may not hold.

The coordination of demand and supply was analyzed by Diamond (1982, 1984) in a model of
search where individuals exchange their production, first directly for a good produced by another
agent, which they consume, second, through the intermediation of money. The externality in
exchanges is generated by the structural feature of search.Any equilibrium is inefficient compared
to the first best. The demand is represented by the opportunities for meeting an agent who has
produced in the recent past. With low production, the incentive to produce would be as low as
going to an empty singles’ bar. Supply and demand effects are therefore hard to separate and the
model does not emphasize the critical role of saving which, in some cases, is socially unproductive
in the aggregate, as argued by Keynes.

In this article, there is no search and agents can always produce up to capacity but they are
randomly matched in decentralized markets. The origin of that structure is found in Townsend
(1980) who pictures an economy as the two lanes of a turnpike of infinite length, with agents
moving in opposite directions, trading goods and money with their vis-à-vis in a sequence of sales
and purchases and never meeting the same agent again, as in Samuelson (1958). The closing of
the Townsend turnpike with discrete placement on a circle of infinite diameter is equivalent to a
continuum of agents on a finite circle with random matching. That is the basis for the construction
of Green and Zhou (1998, 2002), and Zhou (1999).

In Green and Zhou (2002), hereafter G-Z, infinitely lived agents are randomly matched in
pairs and, to simplify, in each period an agent may be either a buyer or a seller. Buyers are
homogeneous in their utility of consumption. The random matching generates a precautionary
demand for money. Except for the seller’s maximum capacity of production of one, there is no
indivisibility. In a symmetric equilibrium, sellers and buyers set the price of goods in money to a
stationary p, for which the distribution of money holdings converges to a geometric distribution
on the multiples of p. Under the price posting by the seller and the buyer in a match, there is a
continuum of equilibrium prices p. A lower price generates higher real balances and is therefore
Pareto improving.

In the present study, the matching structure is such that in each period, an agent is both a seller
and a buyer: within the period, each agent is a household with two heads, one buying and one
producing and selling, with no communication during the day.7 In addition, and that is a special
feature here with respect to other studies, agents have heterogeneous utilities for consumption. In
each period, an agent is set randomly (with independent draws through time) to have either a high
or a low need for consumption. As in G-Z and other papers discussed below, trade takes place in
decentralized markets between goods and bonds with a credit constraint. In an equilibrium, the
price of goods in bonds has a stationary value p that is determined through a price posting that is
similar (but not identical) to the process in G-Z.

6. See also Nash and Gramm (1969), Chamley (2012).
7. This assumption is removed in a section where in each period, half the population buys in the morning and sells

in the afternoon, with the reverse for the other half.
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An innovation in this article is a particular case where the dynamic path is characterized
through the evolution of one variable, the aggregate debt. This characterization is used to prove
algebraically how the steady state with unemployment can be an absorbing state.

In full employment, the buying head knows that the producing head at home will sell during the
day. He can therefore buy the good from the seller he meets in the match and be sure that his asset
balance is the same at the end of the day as at the beginning. Since everyone is buying, everyone
is producing and selling. There is no individual uncertainty and no motive for precautionary
savings from one period to the next. As a difference with G-Z, the arbitrary trading price p
can be normalized as in any model of Walrasian general equilibrium. There is no continuum of
equilibrium allocations indexed by the price p.

Suppose now that there is uncertainty on whether a matched customer will come during the
period to purchase the good that is produced by the household. If the household has a low need
for consumption during that period, it abstains from consumption in order to increase its savings,
up to some endogenous maximum. By the matching process, the fraction of non-consuming
agents is the fraction of agents who do not sell, the unemployed. The probability of not making
a sale during the period defines the unemployment rate. It generates the individual uncertainty
and sustains the precautionary motive in a self-fulfilling process that leads to an equilibrium with
unemployment.

The present study is also related to Guerrieri and Lorenzoni (2009) who show that in a liquidity
(or credit) constrained economy with decentralized markets, aggregate shocks on the production
may have a stronger impact on aggregate activity than in an economy with centralized markets.
Their model is based on the structure of Lagos and Wright (2005) where each period is divided
in three subperiods with trading in decentralized markets8 in the first two. In the last one, a
centralized market enables agents to reconstitute their money balances. Because of the linear
utility in that last subperiod, all agents have the same quantity of money for the next “round”
and each of these rounds is effectively a sequence of three periods equilibria. This framework is
not suitable for the analysis of the evolution of the distribution of money or bonds through time
which is the central issue in G-Z and in the present study. Furthermore, there is no aggregate
shock here.

The model is presented in Section 2. For simplicity, goods are assumed to be indivisible (an
assumption that is removed in Section 7). Following the analysis in that section, prices between
goods and bonds are normalized to one. In each period, an agent is determined by randomness
to be either with a high need or a low need for consumption. High need agents always consume
unless they are against their credit limit. Low need agents may accumulate savings. We can
therefore analyze the equilibria according to the consumption function of the low need agents.
By definition, a high regime takes place when all unconstrained agents consume. In the steady
state, there is full employment. A low regime takes place when agents with a low need save
up to some level that is endogenously determined. After setting the conditions for the optimal
consumption function, the argument is developed in three steps, each with two propositions.

In Section 3, the equilibrium in the high regime is analysed in two steps. First, the regime is
shown to converge to full employment. Second, after the path of unemployment is determined,
the consumption function is shown to be optimal if the level of the aggregate debt is not too high.
Convergence is slow, with a rate that is asymptotically equal to zero.

In Section 4, the same two-step analysis is carried for the low regime where agents save up
to one unit of bond. The convergence rate to a steady state with unemployment is asymptotically

8. Agents are not matched between pairs, but between islands with perfectly competitive markets. In each island
there is a productivity shock.
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strictly positive. Under some parameter conditions, the low regime path that converges to
unemployment is an equilibrium.

Section 5 shows that under some conditions, there is a path from full employment to a steady
state with unemployment and that the reverse is not true: the steady state with unemployment is
an absorbing state.

Section 6 provides extensions and shows the robustness of the properties. The argument for
the uniform price and stable equilibrium price p is reinforced in Section 6.1. In Section 6.2, there
can be multiple steady states with different levels of precautionary savings. Section 6.3 shows
that the model with a higher credit limit is equivalent to a model with a positive level of aggregate
assets and a credit limit of 1. (Outside money is a special case). In Section 6.4, the indivisibility
assumption is removed. It is shown that the discrete support of the distribution of savings is
locally stable when there is no indivisibility constraint. (Green and Zhou (2002) show global
stability in their model). In Section 6.5, finally, households are not separated in two different
heads during each period but the sequence of any agent’s buying and selling, within a period,
is determined randomly at the beginning of the period. In the concluding section, some issues
of robustness and research are discussed. Given the abstract structure of the model, the policy
remarks are suggestive and brief. Technical proofs are placed in the Appendix.

2. THE MODEL AND AN OVERVIEW OF EQUILIBRIA

2.1. The model

There is a continuum of goods and agents indexed on a circle by i∈[0,1). Time is discrete.
Goods are perishable between periods and indivisible. (Goods are divisible in Section 6.4.) In
each period, an agent is either of a high or low type. A type is revealed at the beginning of the
period and is defined by a random variable θi,t ∈{0,1} that is independently distributed across
agents and periods, with a probability of the high type α, (0<α<1), that is known by all agents.

The high type has a higher utility for consumption than the low type, or, equivalently, a higher
penalty for no consumption. The welfare Wi of any agent i is defined by the discounted sum of
expected utilities of consumption from all future periods:

Wi =E

⎡
⎣∑

t≥0

β tu(xi,t;θi,t)

⎤
⎦, with u(x,θ )= (1+θc)x−θc, (1)

where xi,t ∈{0,1} is the consumption of agent i in period t, β =1/(1+ρ) is the discount factor
between periods with ρ >0. The parameter c that is the penalty for no consumption while being
a high type will play an important role in the model.9

In any period, agent i is endowed with the capacity to produce one unit of good i, at no cost. As
in any macroeconomic model, agents consume goods produced by others. In a standard Walrasian
model with complete markets, production and consumption take place according to plan after
the auctioneer has found the equilibrium prices between supply and demand for consumption.
The fundamental feature of the present model is the absence of a central institution to coordinate
production and consumption. The complexity of the coordination of consumption and production
of different goods in a modern economy with decentralized markets is modelled by the following
structure.

9. The algebra with the penalty is simpler than with the utility x(1+cθ ) that is equivalent to u(x,θ ).
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During each time period t, each agent i∈[0,1) is a two-headed household with a buyer and
a seller. The household first decides whether to consume or not for that time period. If the
household consumes, then the buyer goes out to purchase the good j that is determined randomly
by a matching function j=φt(i) from [0,1) to [0,1). Without loss of generality, that matching
function is exogenous and is defined by

φt(i)=
{

i+ξt, if i+ξt <1,

i+ξt −1, if i+ξt ≥1,
(2)

where the random variables ξt ∈ (0,1) that are i.i.d., with a uniform density10 on [0,1).
The seller stays “at home” and waits for a customer during the day, that is the buyer from the

random household j′ =φ−1
t (i). The seller has the capacity to supply one unit of good i, at a zero

cost of production. The terms of the transactions will be described later.
A key assumption is that the household makes its consumption decision with an income

that is subject to idiosyncratic shocks. At the time of the consumption decision, the household
does not know whether it will make a sale during that day. Here, buyer and seller do not
communicate during the day (as in Guerrieri and Lorenzoni, 2009). The separation of consumption
and production in decentralized markets could also be done through a staggered matching, which
is more complicated. An extension where agents are randomly allocated between buying in the
first and the second half of each period, and selling in the other half, is provided by Section 6.5.
The main properties of the model hold.

Agents can transfer wealth between periods through a bond. In most of the article, the net sup-
ply of bonds is zero. One could also view the bonds as inside money.The savings of some agents are
the debts of others. (The case of a positive aggregate supply of bonds is considered in Section 6.3.)

Agents are subject to a credit constraint, which can be justified by standard arguments on the
recoverability of debts. The credit limit should be set in terms of real goods. Here, we set this limit
such that with probability one at the end of any period, an agent cannot have a debt greater than one
in units of good. (That exogenous limit is increased in Section 6.3.) An endogenous determination
of the credit limit, for example with respect to the expected future income of an agent, is beyond
the scope of the present study and should be the subject of further research. The credit limit could
be enforced here by a financial institution. Within a period, that institution allows the individual
to have a debt position higher than the constraint provided that the limit is not exceeded at the
end of the period, with certainty. (Banks do actually behave that way, as clearing houses, when
various transfers are scheduled within a period.) The implication of the assumption is that if the
probability of no sale (equal to the unemployment rate) is strictly positive, agents at the credit
constraint at the beginning of the period cannot consume. This property is also assumed to hold
when the unemployment rate is zero. (A sufficient condition is that agents face in each period an
idiosyncratic shock, with vanishingly small probability, by which then cannot produce.)11

There are two sets of prices, the intra-temporal prices between goods and bonds in any
period t, and the rate of return of bonds between periods. Since agents make decisions in a
decentralized environment and are symmetric in their technology and matching, it is natural to
consider equilibria in which for any period t, the price of goods in bonds is the same for any
i∈[0,1), and is equal to pt . We now address three issues in sequence: first, we focus on equilibria
where pt =p is constant over time; second, p is an equilibrium price of goods in bonds; third, p
can be normalized to 1.

10. One could use other matching functions φt such that for any subset H of [0,1), μ(H)=μ(φt(H)), where μ is
the Lebesgue-measure on [0,1) for a uniform random matching.

11. We also
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First, we assume that the “price level”, pt is constant over time, and hence that the real rate of
bonds (in terms of the price level) is equal to 0. There may be other equilibria in which pt varies
over time, exactly as in the Samuelson model of overlapping generations there are equilibria with
a non-stationary price level, in addition to the equilibrium with a stationary price. The existence
of that type of multiple equilibria (or a continuum of equilibria), has been studied extensively over
the last half century and is obviously not the subject here. Hence our assumption of a constant
price pt ≡p. Given the price p and the real constraint of one unit of goods, the credit constraint
in units of bonds is equal to p.

Following Green and Zhou (2002), in the bilateral relation between buyer and seller, we
assume price posting by the sellers and the buyers, with no bargaining. Throughout the article,
sellers cannot observe the bond holdings of the buyers. There are two steps.

Assume that all sellers post the same price p. Consider the deviation by an individual seller. If
he posts a lower price, he cannot attract more sales because the matching process is exogenous.
When the household decides at the beginning of the period whether to consume, it expects that
the price of the good is p, with probability 1. A lower posted price does not generate new customer
and it reduces the value of the sale that takes place if a customer shows up.12 Given the strategy
of other sellers (posting p), a price strictly below p is strictly dominated. This first step generates
the well known property in macroeconomics that prices are rigid downwards.

In the second step, for the “upward rigidity” of prices, one can use one of two independent
arguments. In the first one, all buyers are posting a maximum purchase price of p, with no
bargaining.13 Since all sellers post the price p, that value is rational. Given the posting by the
buyers, an upwards price deviation by the seller would end in no sale, whereas the production cost
is nil. In the second argument, one assumes that bonds and debts are registered with a financial
institution that issues cash for the day, and that cash carrying entails a very small proportional
cost. When all prices are equal to p, it is not rational to carry more than p to the market, and no
seller would post a price higher than p, since he would lose his demand.

The upward rigidity of prices is reexamined in the Section 6.1 that shows that under some
condition, when all sellers post the price p, the equilibrium distribution of bonds is such that a
seller posting a price higher than p would get a strictly smaller payoff, even if the buyer pays
whatever price is asked by the seller, subject to his own credit constraint. As a summary at this
stage, a seller who lowers his offer from p faces no higher demand and therefore a smaller amount
of revenue, and he loses his demand if his price is greater than p. That property, which is not an
assumption, is an extreme form of a kinked demand curve. The impact of the price behaviour on
aggregate activity is discussed again in the concluding section.

We have argued previously that the credit constraint must be in real terms and it is equal to p.
As in the standard model of general equilibrium, we can normalize one price. Given the previous
discussion, we set p=1.

2.2. The first best

The first best allocation maximizes a social welfare function. Without loss of generality, that
function can be taken as the sum (integral) of the agents’ utilities, which is identical to the ex ante
expected utility of any agent. Since goods are perishable, the optimization applies in each period
independently of the others and we can omit the time subscript. Let xi(θ ) be the consumption i

12. The setting with exogenous matching may be a stylized representation of the lag between a price reduction and
the higher volume of sales.

13. Green and Zhou (2002) assume that seller and buyer post prices and quantities for the transaction.
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for type θ . From (1), the first best allocation maximizes the function

J =
∫ 1

0
(αu(xi(1);1)+(1−α)u(xi(0);0))di, with xi ∈{0,1}. (3)

The optimal allocation is obviously xi(1)=xi(0)=1. The maximum level of utility from
consumption is achieved when consumption takes place in every period. In this allocation, all
agents produce and there is no unemployment.

Lemma 1. In the first best allocation, each agent consumes one unit in each period and there
is no unemployment.

The first best will turn out to be one of the equilibria, according to the equilibrium definition
that is given in the next section.

2.3. The structure of equilibria

As all transactions are zero or one, the distribution of the holdings of bonds is discrete with the
support contained in K={−1,0,1,2,...}. An agent with holdings k is said to be in state k. When
k =−1, he is in debt. Let �(t) be the vector of the distribution of agents at the beginning of period
t across states:

�(t)= (γ−1(t),γ0(t),...)′,

where γk(t) is the mass of agents in state k. It will be shown later that in any equilibrium, the
support of the distribution is bounded and �(t) is a vector of finite dimension. The population
has a total mass equal to 1 and the net aggregate amount of bonds is zero:

∑
k≥−1

γk(t)=1,
∑

k≥−1

kγk(t)=0. (4)

Let π (t) be the fraction of agents who do not demand goods in period t. The total demand is
1−π (t) and

1−π (t)=
∫

xi,tdi, (5)

where xi,t ∈{0,1} is the consumption of agent i in period t. Because of random matching, the
probability that an agent makes no sale is period t is π (t), which will be called the rate of
unemployment.

Let ki,t be the bond balance of agent i at the end of period t. That balance evolves such that

{
ki,t+1 =1+ki,t −xi,t, with probability 1−π (t),

ki,t+1 =ki,t −xi,t, with probability π (t).
(6)

Let π̃ t ={π (τ )}τ≥t be a path of unemployment rates for periods τ ≥ t. Suppose perfect foresight
on that path. The consumption function of an agent in period t depends only on his state (his
savings in bonds), his type (low or high) and the path of future unemployment rates π̃ t . Given the
consumption decisions and the unemployment rate in period t, the distribution of bonds in period
t+1 is deterministic. That distribution determines π (t+1) and the consumption functions in that
period. From period to period, the path of the unemployment rate is deterministic, and rational
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agents who know the structure of the model can compute that path. The assumption of perfect
foresight is therefore justified.

We can now define an equilibrium of the economy. The definition does not have to include the
determination of the prices that was discussed previously and is independent of the unemployment
rate and the distribution of bonds.14

Definition of an equilibrium. An equilibrium is defined by an initial distribution of bonds
�(0) that satisfies (4), a path of unemployment rates π̃0 ={π (τ )}τ≥0, a consumption function
xt =x(kt,θt,π̃

t), and the evolution of the distribution of assets that is determined by (6). The path
of unemployment rates satisfies (5) and the consumption function of any agent i maximizes, in
any period t, his utility function

E

[∑
τ≥t

βτ−tu(xi,t;θi,t)

]
,

for a given balance ki,t at the beginning of period t and type θi,t , subject to the accumulation
constraint(6), the credit constraint ki,t ≥−1, and under perfect foresight about the path of
unemployment after period t, π̃ (t)={π (τ )}τ≥t .

2.4. Optimal consumption functions

Agents of the high type have a simple behaviour: unless they are under a credit constraint, they
consume.

Lemma 2. In any period of an equilibrium, a high type agent consumes if he is not credit
constrained (in state −1).

The property is intuitive. Suppose a high-type agent saves today. He incurs a penalty c. The
best use of that savings is to consume it in the future when he is also a high type and he is credit
constrained. Because of discounting, the expected value of the future penalty is smaller than the
penalty today. The agent is better off by not saving. In the Appendix, the proof of the Lemma
follows that intuitive argument.

From Lemma 2, the dynamics of the economy are driven by the behaviour of the low type
agents. Since, in an equilibrium, the path π̃ t is known with perfect foresight, we omit it from
the notation. The optimization problem of an agent is standard. For a given path of future
unemployment rates, let Vk(t) denote the utility of an agent in state k (with a balance k), at the end
of period t, after transactions have taken place in period t. Recall that an agent in state −1 cannot
consume if the unemployment rate is non-zero. A low type agent who is not credit constrained
(in state k ≥0) consumes in period t if his utility of consumption is greater than the value of one
more unit of bonds. If he consumes, his balance increases with probability 1−π (t) from k to
k+1 and his expected utility of savings at the end of the period is π (t)Vk−1(t)+(1−π (t))Vk(t).
If he saves instead, his expected utility is π (t)Vk(t)+(1−π (t))Vk+1(t). For all the states k ≥−1,
we can write the Bellman equations{

V−1(t−1)=βE
[
u(0;θ )+π (t)V−1(t)+(1−π (t))V0(t))

]
,

Vk(t−1)=βE
[
maxx∈{0,1}

(
u(x;θ )+π (t)Vk−x(t)+(1−π (t))Vk−x+1(t)

)]
,k ≥0,

(7)

where expectations are taken with respect to the preference shock θ that is realized in period t.

14. However, the argument of the price stability in Section 6.1 does depend on the distribution of bonds.
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The difference between the expected utilities with saving and no saving, respectively, in period
t is called, by an abuse of notation, the marginal utility of savings, ζk(t):

ζk(t)≡π (t)
(
Vk(t)−Vk−1(t)

)+(1−π (t))
(
Vk+1(t)−Vk(t)

)
. (8)

Consumption is optimal for an agent of the low type and in state k if and only if

ζk(t)≤1. (9)

For any fixed t, the function Vk(t) is increasing in k. It is bounded by the discounted value of
consumption in all future periods. Therefore, the increments Vk(t)−Vk−1(t) are arbitrarily small
when k is sufficiently large and the previous condition (9) is satisfied. We have the following
Lemma (proven in the Appendix).

Lemma 3. There exists N̄ such that in any equilibrium and any period, any agent with a balance
that is at least equal to N̄ consumes. One can choose N̄ such that βN̄+1(1+c)/(1−β)<1.

Since a sale is at most for one unit, any agent, or any type, with savings greater than N̄ does
not increase his savings. The following property follows immediately.

Lemma 4. Assume that the support of the initial bond distribution is bounded by N0. Then, in
any period of an equilibrium, the support of that distribution is bounded by Max(N0,N̄).

Without loss of generality, in the rest of the article, N0 ≤ N̄ and in any equilibrium for any
period, the support of the distribution of bonds is bounded by N̄ .

It is intuitive that in any period, the marginal utility of saving of an agent decreases with
the level of saving. (This property is not taken as an assumption.) If this property holds, high-
type agents consume if and only if their savings at the beginning of a period are at least equal
to some value N , where N depends on the path of the unemployment rate in the future. We
define such a function as an N-consumption function. This property is not an assumption but it
will be shown to hold in an equilibrium. From the previous definitions, we have the following
characterization.

Lemma 5. The Nt-consumption function is optimal in period t if and only if

{
ζk(t)≥1 for k ≤Nt −1,

ζk(t)≤1 for k >Nt −1,
(10)

with ζk(t)=π (t)
(
Vk(t)−Vk−1(t)

)+(1−π (t))
(
Vk+1(t)−Vk(t)

)
.

From the previous result, we are led to define two regimes of consumption.

Definition of two regimes. In a high regime, all not credit constrained agents consume. In a
low regime, a low type agent consumes in a period t if and only if his savings at the beginning of
that period are at least equal to Nt ≥1.

Note that the consumption function is unique in the high regime. In a low regime however,
the equilibrium value of Nt may not be unique.
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2.5. High and low regimes with three states

The precautionary motive is driven by the penalty parameter c. If agents do not save more than
one unit, the dynamics are characterized by a variable of one dimension and can be analysed
algebraically. When c increases beyond that interval, the “target” level of saving rises above 1,
the vector of dynamic variables has a dimension higher than one, and one has to rely on numerical
results. In order to keep an algebraic analysis, we focus in the next three sections on the cases of
high and low regimes with individual savings bounded by 1. This upper bound on savings is not
exogenous, and it will be shown that in equilibrium, given some condition on c, no agent saves
more than one unit of bonds.

When the support of the distribution is bounded by 1, that distribution is defined by the vector

�(t)= (γ−1(t),γ0(t),γ1(t))′,

where γk(t) is the mass of agents in state k at the beginning of period t. Because the total mass
of agents is 1, and the net supply of bonds is 0,

γ−1(t)+γ0(t)+γ1(t)=1, γ−1(t)=γ1(t). (11)

The number of degrees of freedom is therefore reduced to one, and the analysis of the dynamics can
be characterized by one variable, which will be chosen as the amount of debt, B(t)=γ−1(t)=γ1(t).

Let x∈{0,1} be the consumption of a low-type agent in state 0: in the 0-consumption function,
that agent consumes, x=1; in the 1-consumption function, that agent saves, x=0. That is the
only difference between the high and low regimes when no agent holds more than one unit of
savings. Therefore, the Bellman equations (7) can be written

⎧⎪⎨
⎪⎩

V−1 =β
(
α
(−c+πV−1 +(1−π )V0

)+(1−α)
(
πV−1 +(1−π )V0

))
,

V0 =β
(
α
(
1+πV−1 +(1−π )V0

)+(1−α)
(
x+πV−x +(1−π )V1−x

))
,

Vk =β
(
1+πVk−1 +(1−π )Vk

)
, for k ≥1,

(12)

with x=0 in the low regime, and x=1 in the high regime. In the next two sections, we assume
that the economy is permanently on a path with a high and a low regime, respectively, and we
will show that under some conditions, these paths are equilibria.

3. THE HIGH REGIME

In the high regime, agents who do not consume are at the credit constraint, in state −1, with a
debt of 1. By the matching process, that fraction is equal to the fraction of agents who do not
produce, that is the unemployment rate:

π (t)=B(t)=γ−1(t). (13)

3.1. Dynamics

The evolution of the bond distribution �(t)= (γ−1(t),γ0(t),γ1(t))′, and of the unemployment rate
are determined by

�(t+1)=H(πt).�(t), with πt =γ−1(t), (14)
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0

B(t)

B(t+1)

B(0) 1/2 1

Figure 1

Dynamics of the aggregate debt (equal to the mass of credit constrained agents and to the unemployment rate) in the

high regime with three states.

and the transition matrix

H(π )=
⎛
⎝ π (t) π (t) 0

1−π (t) 1−π (t) π (t)
0 0 1−π (t)

⎞
⎠. (15)

For example on the first line, agents are in state −1 at the end of period t: either because they
were in state −1 at the beginning of the period, could not consume, and made no sale, hence the
term H11 =π (t); or because they were in state 0 at the beginning of period t, consumed, and made
no sale, hence the term H12 =π (t).

Since π (t)=B(t), using (11), (14), and (15),

B(t+1)=B(t)(1−B(t)). (16)

The evolution of B(t) is represented in Figure 1. Because each bond is the asset of an agent and
the liability of another, the total amount of bonds is bounded by 1/2. For any B(0), the value of
B(t) converges to 0 which defines the full employment steady state. That steady state is globally
stable under the consumption function of the high regime. Whether that consumption is optimal
on that path, and the path is an equilibrium, will be analysed later in the text.

Proposition 1. In the high regime, the economy converges monotonically to the full-employment
steady state with no debt. The rate of convergence of the unemployment rate is asymptotically
equal to zero.

3.2. Equilibrium

Using the Bellman equations (12) with x=1, the marginal utilities of savings ζk(t), (t ≥0), in
state k, defined in (8), satisfy the equations of backward induction{

ζ0(t)=β(π (t)(1+αc)+(1−π (t))ζ0(t+1)),

ζk(t)=β
(
π (t)ζk−1(t+1)+(1−π (t))ζk(t+1)

)
, for k ≥1.

(17)

By repeated iterations of (17), and using π (t)=B(t), we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ζ0(0)= (1+αc)β
(
B(0)+∑

t≥0β t+1(1−B(0))...(1−B(t))B(t+1)
)
,

with B(t+1)=B(t)(1−B(t)),

ζk(t)= βπ (t)

1−β(1−π (t))
ζk−1(t), for k ≥1.

(18)
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The previous equation shows that ζ0(0) is a function of B(0) and c. We can take the period 0 as an
arbitrary period and let ζ (B;c) be the marginal utility of saving for an agent with no savings in a
period when the aggregate debt is equal to B. We can expect that a higher level of debt B in some
period induces higher unemployment rates on the future path of the high regime and therefore a
higher value of ζ (B;c). That intuition is confirmed by the following result.

Lemma 6. In the high regime, the utility of a unit of additional savings is a function of the debt
B, ζ (B;c), as defined in (18). It is continuous, strictly increasing in B∈[0,1/2], and ζ (0;c)=0.

From (18), the value of ζ (B;c) increases linearly with the cost parameter c. Define c∗ such
that ζ (1/2;c∗)=1. Assume that c≤c∗. From Lemma 6 and because B(t) is decreasing with time
(Proposition 1 and Figure 1), ζ0(t)<1 for any t ≥0. Using the second equation in (18), ζk(t)<1
for any t ≥0 and k ≥1. Using Lemma (5), the 0-consumption is optimal for the low type agents:
the high regime is an equilibrium.

Assume now that c>c∗. By continuity, there exists B̄ such that ζ (B̄;c)=1. The arguments in
the previous paragraph apply for any B< B̄. We have proven the following result.

Proposition 2. If c≤c∗, with ζ (1/2;c∗)=1 and ζ (·;c) defined in (18), the full employment
equilibrium is globally stable. From any level of aggregate debt, the high regime is an equilibrium.

If c>c∗, there exists B̄(c)<1/2 such that from an initial level of debt B, the high regime is an
equilibrium if and only if B≤ B̄(c).

The full employment steady state can be the limit of an equilibrium path only if after some
date, that path is in the high regime. The previous property of local stability validates the relevance
of the full employment steady state. The case B> B̄(c) may generate a saving trap and will be
examined in Section 5.

4. THE LOW REGIME

The only difference with the high regime is that low type agents with no savings do not consume,
but instead, they save. As in the previous section, the support of the distribution of bonds is
bounded by 1 in period 0 and therefore in every period. The dynamics are analyzed through the
distribution vector �(t) of dimension 3.

4.1. Dynamics

The evolution of �(t) is now determined by

�(t+1)=L(π (t)).�(t), with L(π )=
⎛
⎝ π απ 0

1−π a π

0 b 1−π

⎞
⎠, (19)

and {
a= (1−α)π +α(1−π ),

b= (1−π )(1−α).
(20)

In any period t, the agents who do not consume are either credit constrained (of a mass equal
to γ−1(t)), or of low type and with no savings (of mass (1−α)γ0(t)). Hence,

π (t)=γ−1(t)+(1−α)γ0(t).
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B
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0 B* 1/2

(1 )

Figure 2

Dynamics of the fraction of liquidity-constrained agents in the low regime

Since the debt is equal to B(t)=γ1(t)=γ−1(t) and γ0(t)=1−γ−1(t)−γ1(t), the unemployment
rate is a linear function of B(t):

π (t)=1−α−(1−2α)B(t). (21)

Using (19), B(t+1)=γ1(t+1)=bγ0(t)+(1−π )γ1(t), the evolution of B(t) is determined by

B(t+1)=P(B(t)), with P(B)=−(1−2α)2B2 +(1−2α)2B+α(1−α). (22)

The polynomial P(B) has its maximum at B=1/2, with P(1/2)≤1/4. Hence there is a unique
value B∗ ∈ (0,1/2) such that P(B∗)=B∗. For any initial value B(0), the sequence B(t+1)=P(B(t))
converges monotonically to the fixed point B∗, as represented in Figure 2 where the dynamic path
begins at the full-employment steady state, with B(0)=0.

By (21), the evolution of the unemployment rate is also monotone but we have two cases.
When the fraction of high type agents, α, is relatively large, i.e. α>1/2, the unemployment rate
increases over time with the debt B(t). When α<1/2, the fraction of high type, who always
consume, is relatively small. In the first period of a switch to the low regime, demand falls
by a large amount since all the low type agents (who have a greater mass) do not consume. The
unemployment rate jumps up.As more agents accumulate the desired level of savings to consume,
unemployment decreases over time.

In Figure 2, from the initial position of full employment with zero debt, the amount of debt
increases over time to its steady state level. There is a remarkable difference with Figure 1: the
graph of the curve P(B) is not tangent to the 45◦ line at the fixed point B∗ =P(B∗).The convergence
to a steady state is asymptotically exponential and here with a strictly positive convergence rate.
Recall that in the high regime, the asymptotic convergence rate is zero. The convergence in
the low regime is therefore much faster than in the high regime. For the particular case with
α=1/2, the convergence is instantaneous as half the individuals do not consume in period 0.
One can easily verify that the stationary distribution of debt (1/4,1/2,1/4) is attained at the end
of period 0.
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Proposition 3. If the support of the initial distribution of bonds is bounded by 1, in the low
regime, the economy converges monotonically to a steady state with unemployment and debt.

(i) The rate of convergence is asymptotically strictly positive.
(ii) From an initial position of no debt, in the low regime after the jump in period 0, the rate

of unemployment increases with time if α>1/2, and decreases with time if α<1/2.

4.2. Equilibrium

As for the high regime, the marginal utilities of saving ζk(t) are obtained through the Bellman
equations (12) where x is now replaced by 0. In parallel to equations (17), we have⎧⎪⎨

⎪⎩
ζ0(t)=β(π (t)α(1+c)+b(t)+a(t)ζ0(t+1)),

ζ1(t)=β(π (t)(1−α)+π (t)αζ0(t+1)+(1−π (t))ζ1(t+1)),

ζk(t)=β
(
π (t)ζk−1(t+1)+(1−π (t))ζk(t+1)

)
, for k ≥2.

(23)

with a(t)=α(1−π (t))+π (t)(1−α), b(t)= (1−π (t))(1−α).
From Lemma 5, the low regime is an equilibrium if and only if ζ0(t)≥1, ζk(t)≤1, for k ≥1.

The steady state

In the steady state, omitting the time argument,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ζ0 =β
πα(1+c)+b

1−βa
,

ζ1 =β
(1−α)π +απζ0

1−β(1−π )
,

ζk =λk−1ζ1, with λ= βπ

1−β(1−π )
<1 for k ≥2.

(24)

Let π∗ be the unemployment rate of the low regime. ζ0 >1 is equivalent to

c>c1 = ρ

π∗α . (25)

This condition is equivalent to π∗αc/ρ ≥1, and it has an intuitive interpretation. A low regime
is an equilibrium in the steady state only if low-type agents have an incentive to save when their
balance is zero. The value of savings is the discounted value of the stream of payments, in each
future period, where the payment is equal to the product of the penalty c, the probability of being
a high type and the probability of not making a sale in that period. When that discounted value is
greater than 1, which is the value of consumption, saving is optimal.

The values of ζ0 and ζ1 in (24) are linear increasing functions of c, with ζ1 <1 if ζ0 =1.
Hence, there is a threshold c̄1 >c1 such that if c∈ (c1,c̄1), ζ0 >1>ζ1, and ζ0 =1>ζ1 for c=c1,
ζ0 >ζ1 =1 for c= c̄1. From (24), if c∈[c1,c̄1], ζk <1 and the low regime steady state is an
equilibrium.

If c> c̄1, the penalty of no consumption for the high type is sufficiently strong to accumulate
more than one unit of savings. In this case, which will be analysed in Section 6.2, the support of
the distribution of bonds extends beyond 1. From the previous discussion and since the variables
on the dynamic path are continuous functions of the initial condition, we have the following
result.
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Proposition 4. Let π∗ and B∗ be the rate of unemployment and the level of the debt in the steady
state of the low regime with the 1-consumption function (Proposition 3).

(i) The steady state is an equilibrium if and only if ρ/(απ∗)=c1 ≤c≤ c̄1, for some
value c̄1.

(ii) If c∈ (c1,c̄1), there exists an open interval containing B∗ such that if B is in that interval,
the low regime with the 1-consumption function is an equilibrium.

The second part of the proposition holds by a continuity argument: if c∈ (c1,c̄1), in a
neighborhood of the steady state, ζ0(t)>1>ζ1(t) and the dynamic path defines an equilibrium
in a neighbourhood of B∗. The steady state of that low regime is locally stable. The interesting
issue, to which we now turn, is the global stability, in particular the transitions between steady
states in the high and the low regime, respectively.

5. TRANSITIONS AND TRAPS

Under some parametric conditions, the economy at full employment can, at any time, move to a
situation of unemployment but the reverse may not be true.

5.1. Transition from full employment to unemployment

Assume that the economy is at full employment. To simplify the discussion, α=1/2. Under
the parameter conditions in Proposition 4, (c∈ (c1,c̄1)), the steady state with the 1-consumption
function (where low-type agents with no savings do not consume) is an equilibrium. When
α=1/2, c1 =4ρ and c̄1 =4ρ(3+4ρ). Since the transition path from full employment to that
steady state takes one period, that transition is an equilibrium. Because paths are continuous
in the parameters, we can extend the equilibrium property when α belongs to an open interval
containing 1/2.

Proposition 5. If c∈ (4ρ,4ρ(3+4ρ)), then there is an open interval J containing 1/2 such that
if α∈J , there is an equilibrium path with the 1-consumption function (in the low regime), from
the full-employment steady state to the steady state with unemployment.

The conditions on the penalty c have a simple interpretation. c>4ρ is the condition (25)
for the low regime to be an equilibrium: the penalty must be sufficiently high for agents with
zero savings to save. The condition c<4ρ(3+4ρ) is only technical: it guarantees that any agent
with one unit of savings chooses to consume. If c>4ρ(3+4ρ), low-type agents save more
than one unit. They have an Nt-consumption function where Nt ≥2, which may not be constant
over time. There is no algebraic characterization of the dynamic path. A numerical analysis of
the equilibrium steady states with savings of more than one unit is presented in Section 6.2.
The same upper-bound condition will be used in the next two results for the same technical
reason.

From the previous result, if the economy is at full employment with no debt at time 0, there are
at least two equilibrium paths. In the first, unemployment is maintained for ever. In the second,
self-fulfilling pessimism sets the economy on a path to unemployment.15

15. There is obviously a continuum of other equilibrium path when the switch between regimes is driven by a
Poisson process.
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5.2. Saving trap

When expectations switch from full employment to a path with unemployment, because
individuals can reduce their consumption, the expectation of unemployment is self-fulfilling. The
reverse may not hold. In an economy with unemployment, some agents are credit constrained.
If expectations shift toward optimism, these agents cannot consume and are unaffected by
expectations. These agents impose an “inertia” that may prevent the take-off on a path toward full
employment. Proposition 2 showed that, for some parameters, there is no high regime equilibrium
path that converges to full employment if the debt exceeds a critical level. Such a situation may
occur in the steady state of the low regime, as shown in the next result.

Proposition 6. Assume that the economy is in the low regime steady state of Proposition 4. If c
belongs to the interval (6+8ρ,4ρ(3+4ρ)), then there is an open interval J ′ containing 1/2 such
that if α∈J ′, there is no equilibrium path from the low regime steady state to the full employment
steady state.

The previous result requires that 6+8ρ <4ρ(3+4ρ), which holds if ρ is greater than some
value ρ∗. In this case, the unemployment in the near future has sufficient weight such that agents
with zero savings have a marginal utility of bonds greater than one. Since a switch to the high
regime requires their consumption, a take-off of the economy cannot occur. If c satisfies the
condition in Proposition 6, then it satisfy the condition in Proposition 5. Redefining the intervals
J and J ′, we can combine the two previous results

Proposition 7. If c belongs to the interval (6+8ρ,4ρ(3+4ρ)), then there is an open interval
J ∗ containing 1/2 such that if α∈J ∗, (i) there is an equilibrium path from full employment to
the steady state with unemployment; (ii) there is no equilibrium path from the steady state with
unemployment to full employment.

As discussed after Proposition 5, the upper bound of the interval for c, 4ρ(3+4ρ), is technical,
in order to ensure that agents do not save more than one units. The main sufficient condition is
the lower bound c>6+8ρ.

When for some distribution of bonds there are multiple equilibrium paths, a switch from one
path to another can occur only if the expectations of agents shift, with perfect coordination, to the
new path. In an actual economy, such a switch may be induced by a real shock that also introduces
its own impact. In the absence of real shocks—they are not in the analytical framework of this
study—the well-known technical artifice of a coordination through “sunspots” is convenient but
it requires a coordination between individuals that is not credible. The device does not take into
account the inertia that is created by the observation of history, among other issues. The analysis
of self-fulfilling switches probably requires the removal of the assumption of common knowledge
but that task is beyond the scope of the present study.16

6. EXTENSIONS

6.1. Prices

In Section 2.1, it was shown that when all sellers post a price of 1, posting a price smaller than 1
is strictly inferior. We now show that under some conditions, an upward deviation from 1 is also

16. Regime switches without common knowledge, in an economy with small real perturbations, are analysed in
Chamley (1999).
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inferior for a seller when the economy is in a steady state of the low regime that is described in
Section 4.

Proposition 8. Assume that the price of goods in bonds is stationary at 1. There is an open
interval I that contains 1/2 such that if α∈I, (i) posting a sales price p 	=1 yields a strictly
smaller utility than posting p=1 when the economy is in a low regime path from an initial
position of full employment; (ii) if the debt in period 0 is smaller than some value B̂, the same
property holds on a high regime path that converges to full employment.

6.2. High savings

In the previous sections, agents save no more than one unit of bond because the cost of non-
consumption for the high type, c, is within some range [c1,c̄1], (Proposition 4). When c> c̄1,
the precautionary motive induces agents to save more than 1. The main properties hold but the
analysis cannot be done with algebra. Here, we consider only steady states. In an equilibrium
steady state, the consumption function is an N-consumption where agents accumulate savings
up to the level N . Near the steady state, by continuity, the optimal consumption function will
also be an N-consumption function. We now show that for any N , such a consumption function
generates a steady state that will be shown to be an equilibrium for some value of c.

6.2.1. Multiple steady states. Without loss of generality, we can assume that the support
of the bond distribution is {−1,0,1,...,N}. That distribution is defined by a column vector �(t)=
(γ−1(t),γ0(t),γ1(t),...,γN (t))′ of dimension N +2. In any period t of the low regime with an
N-consumption function, the agents who consume are either of the high type with no constraint,
α(1−γ−1(t)), or of the low type in state N , (1−α)γN (t). Since the aggregate consumption is
1−π (t), the unemployment rate is

π (t)=1−(
α(1−γ−1(t))+(1−α)γN (t)

)
. (26)

Extending (19) to the dimension N +2, the evolution of the distribution �(t) is given by

�(t+1)=L(π (t)).�(t), (27)

where the transition matrix L(π ) of dimension (N +2)×(N +2) is defined by

L(π )=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π απ 0 0 ... 0
1−π a απ 0 ... 0
0 b a απ ... 0
...

. . .
. . .

. . .
. . .

...

0 ... b a απ 0
0 ... 0 b a π

0 0 0 ... b 1−π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28)

with a= (1−α)π +α(1−π ), b= (1−π )(1−α).
The matrix L(π ) has a unit eigenvalue of order 1 (Lemma 8 in the Appendix). Let

w(π )= (w−1(π ),...,wN (π ))′ be the eigenvector associated to the unit eigenvalue such that∑k=N
k=−1wk(π )=1, and define SN (π )=∑N

k=−1kwk(π ), the aggregate level of wealth associated
to w(π ). By assumption, the level of aggregate wealth is zero, and if π∗ is a steady state
unemployment rate, SN (π∗)=0.
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Figure 3

Steady states

Parameter values: β =0.9,α=0.25. In the base case with a credit limit of 1 and zero aggregate wealth, the points m, n

and q represent steady states with savings up to N =1, 2, and 3 units. The point m is an equilibrium with π =0.634 for

c∈[0.701,3.1075], the point n with π =0.802 for c∈[1.826,4.334], and the point q with π =0.842 for c∈[3.642,7.225].
On the upper line, the credit limit is equal to 3 with zero aggregate wealth or, equivalently, the limit is 1 with aggregate

wealth equal to 2 (see Section 6.3). For c=60, the points r, s and t are equilibria. When the credit limit is A≥1, the

maximum savings is N −A+1. For example, at the point r, agents save up to one unit

One verifies that SN (0)=N and SN (1)=−1. The function SN (π ) is declining in π and
continuous in π . Hence, there exists a value πN such that SN (πN )=0. This value of πN defines
a steady state for the N-consumption function. The graphs of the function are represented in
Figure 3 for different values of N . One verifies that the steady state unemployment rate rises
with N : when agents accumulate a larger amount of precautionary savings, demand is lower and
unemployment higher.

6.2.2. Equilibria. Consider a steady state with the N−consumption function. Using the
Bellman equations (7) in the steady state, the notation vk =Vk −Vk−1 for any k ≥0, and recalling
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the marginal utility of savings ζk =πvk +(1−π )vk+1, we have for N ≥2,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v0 =β(α(1+c)+(1−α)ζ0)

vk =β
(
αζk−1 +(1−α)ζk

)
for 1≤k ≤N −1,

vN =β
(
1−α+αζN−1

)
,

vN+k =βζN+k−1, for k ≥1.

The vector ζ ′ = (ζ0,...,ζN−1)′ satisfies the stationary equation17

ζ =βQN (π )ζ +βRN (π ), (29)

where the matrix QN (π ) and the vector RN (π ) are of dimension N :

QN (π )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a b 0 0 ... 0

πα a b 0 ... 0

0 πα a b ... 0
...

...
. . .

. . .
. . . 0

0 ... 0 πα a b

0 ... 0 0 πα a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, RN (π )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πα(1+c)
0
...
...

0
b

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Using the expressions of ζ and vk ,

⎧⎪⎪⎨
⎪⎪⎩

ζN = βπ

1−β(1−π )
(1−α+αζN−1),

ζN+k =
(

βπ

1−β(1−π )

)k

ζN , for k ≥1.

(30)

From the second equation, if ζN ≤1, then ζk <1 for any k >N . The necessary and sufficient
condition for an equilibrium is ζk ≥1 for k =0,...,N −1 and ζN ≤1. In order to determine
whether a steady state with an N-consumption function is an equilibrium, one first determines the
unemployment rate. Then one computes the vector ζ , verifies that all its components are greater
than 1, and that ζN in (30) is smaller than 1. These inequalities depend on the cost parameter c.

Numerical results are reported in Figure 3. Given fixed α and β, for each N , there is an
interval [cN ,c̄N ] such that the steady state under the N-consumption function is an equilibrium
if and only c∈[cN ,c̄N ]. As can be expected, the higher N , the higher the interval. The intervals
overlap. For example, if c=4, both the points n and q are equilibria. The multiplicity of equilibria
has a simple interpretation. A higher unemployment rate generates a higher precautionary motive
and more savings. The higher savings depress demand and generates the self-fulfilling higher
unemployment rate.

6.3. Higher credit limits and positive aggregate supply of bonds

The case of a higher credit limit A, with A≥2, turns out to be equivalent to a credit limit of 1 with
an aggregate wealth equal to A−1.

17. On a transition with an N-consumption function, ζ (t)=βQN (π (t))ζ (t+1)+βRN (π (t)).
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By the argument of Lemma 4, the support of the distribution is bounded and we can assume
that in a steady state, this support is the set {−A,−A+1,...,Z}. Extending the previous notation,
the distribution has to satisfy the two conditions that the mass of agents is 1 and the aggregate
wealth is 0:

k=Z∑
k=−A

γk =1,

k=Z∑
k=−A

kγk =0. (31)

Since
∑

γk =1, adding A−1 on both sides of the second equation,

k=Z∑
k=−A

(k+A−1)γk =A−1.

Define γ̃k =γk+A−1. The previous equation can be written

k=N∑
k=−1

kγ̃k =A−1,

with
N =Z +A−1. (32)

The steady state is the same as in the case of a credit limit of 1 with an aggregate wealth A−1.
Multiple steady states are represented in Figure 3 for A=3 along the upper horizontal line. There
is no steady state with an N-consumption function, N <3. At the steady state represented by the
point r with N =3 and A=3, agents save up to one unit of bond (Z =1 in (32)). In the steady
states represented by the points s and t, unemployment is higher with more precautionary savings.
Agents save up to two and three units, respectively. At the point r, unemployment is 0.735 and the
debt is 1.04. That point represents an equilibrium when c∈[21.44,87.5]. For c=60, the points s
and t are also equilibria.

The previous analysis can be used to analyse the impact of a positive supply of bonds, for
example, fiat money. Assume that each agent owns a quantity of bonds M ≥1, that is an integer,
and that prices are equal to 1. The model is isomorphic to the previous model with A=M. The
existence and the characterization of an unemployment equilibrium steady state, and the value
of the maximum amount of savings N , depend on the credit limit and the cost parameter c.

The case of a zero credit limit is just a special case which is a formal representation of the
issue discussed by Sweeney and Sweeney (1977) for the Capitol’s baby co-op where members
used vouchers to get babysitters and received vouchers by babysitting. A crisis occurs when there
is a self-fulfilling perception of a shortage of vouchers. The present model shows how multiple
equilibria can arise in such a setting.

6.4. Non-indivisibility

The indivisibility of goods is now removed. As in the other parts of the article, there is no
indivisibility for bonds. An agent i can now produce his good xi, at no cost, for any level in the
interval [0,1]. The utility function of any agent is the same as in the previous sections with the
definition in (1). It is illustrated by Figure 4. The matching process is the same as in the previous
sections. Each agent buys only from one agent and sells to one agent. The quantity of trade is
now in the interval [0,1]. The price of the good is equal to 1 in terms of bonds and is determined
by the postings of the seller and the buyer.
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(  = 0 )

(  = 1 )

Figure 4

Utility functions for the high type (θ =1) and the low type (θ =0)

The analysis shows first that the main property of the discrete model, multiple equilibrium
steady states with and without unemployment, and a discrete distribution of bond holdings, still
holds. Second, the discrete distribution of bond holdings in the steady state is locally stable: after
a perturbation that spreads the support of the distribution to a continuous interval, the distribution
converges back to the initial discrete distribution.18

The 1-consumption function of the discrete case is extended to the following function

c(k,θ )=
{

Min(1+k,1) for the high type, (θ =1),

Min(Max(k,0),1) for the low type, (θ =0).
(33)

A high type agent consumes as much as possible up to 1 and a low type consumes any “surplus”
of his savings over 0 up to a maximum of 1. (Higher threshold levels could be analysed, as for
the economy with indivisibilities.)

Assume that the economy is in a steady state with unemployment rate π , that the bond
distribution is discrete at {−1,0,1}, and that all sales are equal to 1. A simple exercise shows
that the distribution is stationary under the continuous consumption function in (33), and that the
unemployment rate is the same as in the discrete model: agents make a sale of 1 with probability
1−π and no sale with probability π . We now show that under the same parameter conditions as
in the main model, the above consumption function is optimal.

Consider an agent with wealth k =k+x with x∈[0,1) at the end of a period, and let Vk(x) be
his level of utility. Under the consumption function in (33),⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V−1(x)=β
(
α
(
c(x−1)+πV−1(0)+(1−π )V0(0)

)+(1−α)
(
πV−1(x)+(1−π )V0(x)

))
,

V0(x)=β
(
α
(
1+πV−1(x)+(1−π )V0(x)

)+(1−α)(x+πV0(0)+(1−π )V1(0))
)
,

V1(x)=β(1+πV0(x)+(1−π )V1(x)),

Vk(x)=β
(
1+πVk−1(x)+(1−π )Vk(x)

)
, for k ≥2.

(34)

18. Green and Zhou (2002) prove, in their model that requires more technique, a global stability property.
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If x=0, the first three equations determines (V−1(0),V0(0),V1(0)) that are identical to
(V−1,V0,V1) as determined by (12). Likewise, for any k ≥2, Vk(0)=Vk . Hence, the system (34)
determines the continuous function V (k) such that for any integer k ≥−1, V (k)=Vk(0)=Vk−1(1).

High-type agents always consume as much as possible, following the argument in Lemma 2.
Consider a low-type agent with a savings of k ∈ (−1,0) at the beginning of a period. His marginal
utility of consumption is 1. The marginal impact of a consumption reduction on this expected
utility at the end of the period is πV ′−1 +(1−π )V ′

0, where V ′
k is the derivative of Vk with respect

to x. The zero consumption is optimal if

1≤πV ′−1 +(1−π )V ′
0. (35)

Because Vk(x) is linear with Vk(0)=Vk and Vk(1)=Vk+1, (35) is equivalent to

1≤π (V0 −V−1)+(1−π )(V1 −V0)=ζ0

The condition is the same as in Lemma 5. A similar argument applies when k ≥0.
We now analyse the stability of the discrete distribution of wealth. Assume the following

perturbation in the discrete wealth distribution. A small mass of agents is spread on the interval
[−1,2). The spreading can be with atoms or atomless. By continuity, when the mass of the
spreaded agents is sufficiently small, the consumption function (33) remains optimal. We now
show through a heuristic argument that the distribution of bond holdings converges to a discrete
distribution on the support {−1,0,1}.

Project the distribution of wealth on the interval [0,1) by the congruence operator with modulus
1. Assume an agent has a wealth 0 (mod. 1) at the beginning of the period. After his consumption
decision, his wealth is still 0 (mod. 1) and his consumption does not change the wealth of the
agent he buys from (mod. 1). An examination of the various possible types and states shows that
at the end of the period, either the two agents have switched their wealth (mod. 1), or they have
the same wealth (mod. 1). The match of these agents does not change the projection of the wealth
distribution on [0,1). To summarize, there is no attrition of the mass of agent with wealth 0 at the
beginning of a period.

We now show that the mass of agents with wealth 0 increases if the mass of wealth in (0,1)
is strictly positive. Consider an agent with a wealth k ∈ (0,1) (mod. 1) who consumes k. Let k′
be the wealth of his seller (before trading). If k′ =0, we are back to the previous case where
agents exchange their wealth (mod. 1), and there is no impact on the wealth distribution (mod. 1).
If k′ ∈ (0,1), then the wealth of the seller increases to k+k′ (mod. 1). The interesting case is
k+k′ =0: neither of the two agents had a wealth equal to 0 before the match and both of them
have a wealth equal to 0 after the exchange. That match increases the mass of agents with a
wealth 0. Such a match occurs with a strictly positive probability as long as the mass of agents
with wealth k ∈ (0,1) is strictly positive.19

Although there is no indivisibility in consumption, the wealth distribution in the steady state
is still discrete because of the unit capacity of the suppliers.

19. This is a point where one relies on heuristics. To be more formal, one can either discretize the interval [0,1)
in an arbitrarily large number K of subintervals (the convergence could be observed in numerical simulations), or one
can assume a density function ft(k) of the distribution of k and show that after an exchange, the density at the point 0
increases by

∫ 1
0 ft(kt)ft(1−kt)dt, which is strictly positive as long as ft(k) is not identical to 0. Numerical simulations also

show that under the consumption function (33), from an arbitrary initial wealth distribution, the distribution converges
to a discrete distribution.
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6.5. Overlapping demands

The structure of trades is now modified such that the population is divided into two subgroups
with overlapping demands and production. Goods are indivisible as before Section 6.4. Each
period, a day, is divided in two halves, morning and afternoon, and in each spot i∈[0,1), there are
two agents, (i,1) and (i,2). At the beginning of a period, one of the agents randomly becomes a
morning agent who consumes in the morning and produces in the afternoon, and the other agent
is an afternoon agent, who does the reverse. The random draws are independent across spots and
periods. At the same time, an agent learns his type, high or low, with the same probabilities as
in the main model. There is no subjective discounting within a day and β is the discount factor
between consecutive days. The agents have the same utilities as in the main model.

Morning and afternoon consumers and producers are matched by functions φt,1(i,1)= i+ξt,1
(mod. 1), and φt,2(i,1)= i+ξt,2, (mod. 1), as in (2), with the random variables ξt,j that are i.i.d.,
with a uniform density on [0,1). The morning agents are very similar to the agents of the model
in the text. They have to make a consumption decision in a period before knowing whether they
will make a sale in the same period. The afternoon agents know whether they have sold in the
morning but they do not know whether they will be a morning agent in the next period.

6.5.1. Convergence to the low regime steady state. The low regime is defined as in the
model of the previous sections: the only agents who save are either credit constrained with a debt
of 1, or with a bond holding of 0 and of the low type. As for the main model, the analysis is in
two steps. First, the regime determines the wealth distribution that depends only on α. Second,
given that distribution, there are parameters β and c such that the consumption function of the
low regime is optimal. In the second step, we consider only the steady state.

Let γ (t) be the distribution of agents at the beginning of period t. Assume that there is no bond
balance higher than one unit. That property is stable in the dynamic process. At the beginning
of a period, let the wealth distributions of the morning and the afternoon agents be γ̂ and γ̃ ,
respectively. Omitting the time subscript for these distributions,

γ̂ = γ̃ = .5γ.

The rate of employment in the morning is 1−π ′ =2(αγ̂0 + γ̂1). The factor 2 arises because the
demand is from a mass of 1/2 in aggregate, but the ratio between consumers and producers
is 1. The distributions of the morning and afternoon agents at the end of the morning are γ̂ ′
and γ̃ ′ with

γ̂ ′ =
⎛
⎝1 α 0

0 1−α 1
0 0 0

⎞
⎠γ̂ , γ̃ ′ =

⎛
⎜⎜⎝

π ′ 0 0
1−π ′ π ′ 0

0 1−π ′ π ′
0 0 1−π ′

⎞
⎟⎟⎠γ̃ .

Note that the afternoon agents who begin the period with one unit of savings have two units at the
beginning of the afternoon if they make a sale in the morning. The vector γ̃ ′ has four components.
The unemployment rate in the afternoon is π ′′ =1−2(αγ̃ ′

0 + γ̃ ′
1 + γ̃ ′

2), and the distributions of the
morning and afternoon agents at the end of the afternoon are γ̂ ′′ and γ̃ ′′ with

γ̂ ′′ =
⎛
⎝ π ′′ 0 0

1−π ′′ π ′′ 0
0 1−π ′′ 1

⎞
⎠γ̂ ′, γ̃ ′′ =

⎛
⎝1 α 0 0

0 1−α 1 0
0 0 0 1

⎞
⎠γ̃ ′.

At the end of the day, the distribution of agents is equal to

γ (t+1)= γ̂ ′′+ γ̃ ′′.
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Using the property that γ (t)= (B(t),1−2B(t),B(t)) where B(t) is the total quantity of debt, one
can show that B(t+1) is a polynomial function of B(t) (as in (22), but of an order higher than 2).
One can compute numerically the steady state by the convergence of the dynamic process.20

6.5.2. Optimal consumption of the low regime steady state. We consider the steady
state in the low regime. Let V be the vector of state-dependent utilities of an agent at the end of
a period, after all consumptions and sales have taken place. That agent becomes a morning or
afternoon agent with equal probabilities at the beginning of next period. Hence,

V =β
Û +Ũ

2
, (36)

where Û and Ũ are the vectors of state-dependent utilities, at the beginning of a period, of morning
and afternoon agents, respectively. These utilities are defined before the agent learns his type (high
or low).

1. A morning agent is like an agent in the main model. When he holds k units, he
saves if 1+π ′′Vk−1 +(1−π ′′)Vk ≤π ′′Vk +(1−π ′′)Vk+1. Using the notation ζk =π ′′(Vk −
Vk−1)+(1−π ′′)(Vk+1 −Vk), saving is optimal if 1≤ζ0. Consumption is optimal if 1≥ζk .
The condition for his consumption function in the low regime is therefore

ζ0 ≥1≥ζk for any k ≥0. (37)

We need to consider only the first four states for the utility of the morning agent before
he learns his type, Û = (Û−1,Û0,Û1,Û2)′. This vector satisfies the backward induction
equation

Û =M̂V +

⎛
⎜⎜⎝

−αc
α

1
1,

⎞
⎟⎟⎠ with M̂ =

⎛
⎜⎜⎝

π ′′ 1−π ′′ 0 0
απ ′′ a b 0

0 π ′′ 1−π ′′ 0
0 0 π ′′ 1−π ′′

⎞
⎟⎟⎠.

2. An agent who consumes in the afternoon is in one of four possible states at the beginning
of the afternoon, −1,0,1, or 2. (He is in state 2 if he enters the day in state 1 and makes
a sale in the morning.) The condition for the low regime consumption function (where he
saves only if he is of the low type with no savings), is

V1 −V0 ≥1≥Vk+1 −Vk, for any k ≥1. (38)

In the low regime, the afternoon agent has, at the beginning of the afternoon, (before
knowing his type), the vector of utilities Ũ ′ = (Ũ ′−1,Ũ

′
0,Ũ

′
1,Ũ

′
2)′ that satisfies the backward

induction equation

Ũ ′ =M̃V +

⎛
⎜⎜⎜⎜⎝

−αc
α

1
1
1,

⎞
⎟⎟⎟⎟⎠, with M̃ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
α 1−α 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠.

20. Starting from γ (1)= (0,1,0)′, the process converges (up to the 4th decimal) before the 20th iteration if α∈
(0.15,0.85).
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When this agent enters the period in the morning, he is in one of three states −1, 0 or 1,
and the vector of utilities satisfies

Ũ =MŨ ′, with M=

⎛
⎜⎜⎝

π ′ 1−π ′ 0 0 0
0 π ′ 1−π ′ 0 0
0 0 π ′ 1−π ′ 0
0 0 0 π ′ 1−π ′

⎞
⎟⎟⎠,

Hence,

Ũ =MM̃V +M

⎛
⎜⎜⎝

−αc
α

1
1

⎞
⎟⎟⎠.

Using (36),

V = β

2
(Û +Ũ)=βAV +βB, with

A= 1

2

(
M̂ +MM̃

)
, B= 1

2

⎛
⎜⎜⎝

−αc
α

1
1

⎞
⎟⎟⎠+ 1

2
M

⎛
⎜⎜⎜⎜⎝

−αc
α

1
1
1

⎞
⎟⎟⎟⎟⎠.

The vector V is finally determined by

V = (I −βA)−1B.

The conditions (37) and (38) for the equilibrium in the low regime are verified numerically. Taking
β =0.8, the conditions are equivalent c∈ (3.71,7.18) for α=0.5, or c∈ (3.21,9.63) for α=0.9.

7. CONCLUSION

In the present analysis, there is no aggregate productivity shock and the critical assumption is
the credit constraint that restrains the demand for goods. Multiple equilibria arise with self-
fulfilling expectations of heterogeneous consumers’ regarding their future opportunities to trade
in decentralized markets. These expectations affect individuals’ choices between consumption
and saving, and aggregate consumption determines aggregate output, contrary to Say’s Law.

In the model, prices are set endogenously by agents in an environment of one-to-one matching
that is a strong form of imperfect competition and that generates a stylized form of a kinked
demand curve: when the price of goods in bond or money is the same in all markets, a seller
who lowers his price does not attract more sales to increase revenues, and he looses too many
sales if he increases the price. In equilibrium, endogenous prices are “rigid” both downwards and
upwards. Such rigidities seem to be empirically relevant in the short to medium term. But a higher
flexibility of prices may not be a sufficient condition to bring the economy to full employment.
It may even make things worse.

Consider briefly what would happen if a planner, or self-fulfilling expectations (with
remarkable coordination), would change all the prices. Assume for example, that a situation
of unemployment would lead to a decrease of all prices by the same amount (in terms of the
bonds). Each agent would obviously not experience any change in the ratio between the prices of
his output and the goods that he consumes. The level of assets in terms of goods would be higher,
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but the level of existing liabilities would also increase. The model would have to be altered to
deal with this issue, but note that in the previous sections, the dynamics towards unemployment
were driven by the agents against their credit constraint. On may conjecture that this problem
would be amplified if because of excess capacity, prices would fall and liabilities increase. In any
case, more research on this topic would be welcome.

As a first step here, the credit constraint is exogenous. The recent crisis has shown how credit
can actually be suddenly restricted in a downturn, thus amplifying the mechanism that is analysed
here. To make the endogenous credit limit depend on expected future trades would be a useful
task.

The present model is an abstract analytical tool and it is not directly useable for practical policy
prescriptions. In this context, an important role is played by the propagation of debt reductions in
the path toward full employment and an effective policy may be a subsidy of current consumption,
or a short-term tax on the rate of return to saving. If agents save in money, inflation would do
the job. Such a policy may induce all agents who are not credit constrained to consume, and thus
generate the high regime that converges to full employment.

APPENDIX: PROOFS

Proof of Lemma 2

Assume that an agent i who is not credit constrained, of the high type, and consumes in period 0, and an agent j identical
to agent i, (with the same wealth at the beginning of period 0), who instead of consuming, saves in period 0. After that
divergence of behaviour in period 0, both agents face the same distribution of types and sales in all periods t ≥1 and they
optimize in each period.

Let ki,t and kj,t the savings of agent i and j in period t after consumption for the same path of the realization of types
and sales. By definition of i and j, kj,1 =1+ki,t .

For a given history of types and sales, define T as the maximum of τ such that for 0≤ t ≤τ −1, kj,t ≥1+ki,t and
kj,τ =ki,τ . The value of T may be infinite. In some sense, agent j does not consume his saving of period 0 before period
T . (If T =1, these periods are omitted in the argument). Since agent i and j have the same history of sales in that time
interval, the consumption path of agent j can be reproduced by agent i.

By definition of T , agent j consumes in period T and agent i does not. The difference of utilities in that period T is
not greater than c. For the subsequent periods t >T , the utilities of the two agents are the same since they have the same
bond holdings at the end of period T and the same paths of types and sales. Let Ui and Uj be the utilities of these agents
from period 0 on. Since agent i can reproduce the consumption path of agent j for the periods before T ,

Ui ≥Uj +c+E[−βT c]≥Uj +c(1−β)>Uj,

where the expectation is taken over all paths of sales for t ≥0 and of types for t ≥1. Hence, consumption is strictly optimal
in period 0. �

Proof of Lemma 3

The utility of any agent is bounded above by that of perpetual consumption. The utility of an agent who holds k units of
savings at the end of a period is bounded below by the utility of the path with consumption in the next k periods and no
consumption thereafter while being of the high type:

β

1−β
(1−βk)− βk+1

1−β
c≤Vk(t)≤ β

1−β
.

Hence,

Vk(t)−Vk−1(t)≤ βk+1

1−β
(1+c).

A sufficient condition for (9) is βk+1 1+c

1−β
<1, which holds for k ≥ N̄ where N̄ is defined in the Lemma. �
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Proof of Lemma 6

We prove here the monotonicity property. Let B(t) and B′(t) the paths of the debt in the high regime for two different
levels debt in period 0, B(0) and B′(0), with B(0)>B′(0). Recall that the sequences B(t) and B′(t) are monotone decreasing
with B′(t)<B(t) for any t ≥0. Since B(t) and B′(t) are strictly smaller than 1,

1>B(t)+β(1−B(t))B(t+1)>B′(t)+β(1−B′(t))B′(t+1). (A.1)

Define for 0≤T1 ≤T2, the sum

ST1,T2 (B(T1))=B(T1)+β

T2∑
t=T1

β t−T1 (1−B(T1))...(1−B(t))B(t+1).

Fix T2 arbitrary and set T1 =T2 −1. Using (A.1),

if B(T1)>B′(T1), 1>ST1,T2 (B(T1))>ST1,T2 (B′(T1)).

Proceed by backward induction on T1 up to T1 =0 to show that 1≥S0,T2 (B(0))≥S0,T2 (B′(0)) for any T2 ≥1. Then take
the limit for T2 →∞. It follows that

ζ (B(0);c)=β(1+αc)S0,∞(B(0))>β(1+αc)S0,∞(B′(0))=ζ (B′(0);c).

The continuity of ζ (B;c) is proven by the continuity of the limit S0,∞(B). �

Proof of Proposition 6

We use the following Lemma that is proven after the proposition.

Lemma 7. Let α=1/2. If low type agents with no savings (in state 0) save in period 0, then in period 1, B(1)≥1/4.

Proposition 6 is now proven by contradiction. Assume first α=1/2. In the steady state with full employment, the marginal
utility of savings for the low type of agents is strictly smaller than 1. If there is an equilibrium path to full employment,
by continuity of the marginal utility of savings, there exists T̃ such that for any t ≥ T̃ , low-type agents in state 0 (with no
savings) consume. Let T be the smallest such value of T̃ .

If T ≥1, redefine period T −1 as period 0. By definition of T and Lemma 7, B(0)≥1/4. Using (18), the marginal
utility of savings of the low-type agents in state 0, satisfies the inequality

ζ0(1)≥ (1+ c

2
)

1

4(1+ρ)
. (A.2)

If c>6+8ρ, the right-hand side of the inequality is strictly greater than 1, which is a contradiction that the low-type
agents consume (Lemma 5). By continuity, the argument holds if α∈J ′ where J ′ is a neighbourhood of 1/2. �

Proof of Lemma 7

Let π be the unemployment rate in period 0. Let K be the upper bound of the support of the distribution of bonds in
period 0. Agents in period 0 have an N-consumption function and N ≥1 since low-type agents with no savings do not
consume. The aggregate consumption, 1−π is equal to α(γ0 + ...γN−1)+γN + ...+γK . Using α=1/2,

π = 1

2
(1+B0 −γN − ...−γK ).

Since, B(1)= (B(0)+ γ0

2
)π,

B(1)= (B(0)+ γ0

2
)

(
B(0)+ 1

2
(1−B0 −γN − ...−γK )

)
.

Adding the following two equations {
B0 =γ1 +2γ2 + ...+KγK ,

γ0 =1−B(0)−γ1 −γ2 − ...−γK ,

γ0 ≥1−2B(0), and substituting in the equation of B(1),

B(1)≥ 1

4
(1+B(0)−γN − ...−γK ).

The proof is concluded by noting that B(0)≥γN + ...+γK . �
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Proof of Proposition 8

Assume first that the economy is an steady state with the low regime. Consider a seller in state −1 who has the highest
marginal utility of savings and the highest potential gain from an increase of revenues. If he increases his price from 1 to
p∈ (1,2), any agent buying from him effectively decreases his state by two units because other sellers have a price of 1.
Therefore, the effect on his demand is the same if he increases his price by 1. Assume therefore that he increases his price
from 1 to 2. Consider a customer who is in state 0. If he buys, he incurs a debt strictly greater than 1 with probability 1
at the end of the period. At the price of 2, such an agent is credit constrained and cannot buy.

Consider now a low-type customer who is in state 1. Would he buy at the price of 2? No. He would be back to state
−1. That would be the same outcome as buying at the price of 1 if he were in state 0. But by definition of the low regime,
he does not buy in this case.

The customers that buy at the price of 2 are, at most, the high type agents in state 1. The probability to face such
an agent is αγ1 =αB, where B is the aggregate debt. The expected utility gain from the strategy is bounded above
by αB(V1 −V−1), where Vk is determined by the Bellman equations (7) with x=0. On the other hand, the posting of
1 generates a sale with probability α(1−2B)+B, in which case the agent has a utility gain of V0 −V−1. A sufficient
condition for no deviation from the price of 1 is therefore

αB(V1 −V−1)<(α(1−2B)+B)(V0 −V−1). (A.3)

When α=1/2, in the steady state, B=1/4, π =1/2 and (A.3) is equivalent to V1 −V−1 <4(V0 −V−1). Using the backward
induction equations (7) that determine Vk and substituting in the previous inequality, it is equivalent to (1−β)(1+c/2)<
(2−β)(1+c), which is satisfied. By continuity, (A.3) holds when α is in an open interval that contains 1/2 and when the
economy is in a neighbourhood of the steady state. One proves in the same way that sellers in state 0 or 1 do not deviate
from posting a price of 1.

When α=1/2, the low regime from full employment to unemployment has a transition of one period (Section 4).
The argument applies if in period 0, the economy is at full employment: in that period, no agent has any savings and a
posting higher than 1 reduces the probability of a sale to 0. Hence the argument applies for the two periods of the path of
the low regime. By continuity, it applies when α is in an open interval I that contains 1/2, when the dynamic path does
not converge in one period.

Consider now a high regime that converges to full employment. The value of B converges to 0. The previous argument
can be used with equation (A.3) replaced by

B(V1 −V−1)< (1−B)(V0 −V−1). (A.4)

Using the Bellman equations (12) with x=1 in the high regime, when B=π tends to 0, at the limit, V0 =V1 =β/(1−β),
and V−1 =β(−αc−βV0)<V0. The previous inequality becomes asymptotically equivalent to

B(V0 −V−1)< (1−B)(V0 −V−1), with V0 −V−1 >0.

which is satisfied when B→0. �

Lemma 8. For any π ∈[0,1], the matrix L(π ), defined in (28) has an eigenvalue equal to 1 that is of order 1.

We replace L(π ) by L in the proof. Recall that the matrix L is square and of dimension N +2. Call e the column-vector
of ones of dimension N +2. Since e′.L=e′ (the transition matrix preserves the mass of the distribution), 1 is an eigenvalue
of L. To show that it is of order 1, consider the matrix

L−I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π −1 απ 0 0 ... 0
1−π a−1 απ 0 ... 0

0 b a−1 απ ... 0
.
.
.

. . .
. . .

. . .
. . .

.

.

.

0 ... b a−1 απ 0
0 ... 0 b a−1 π

0 0 0 ... b −π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.5)

where I is the identity matrix of dimension N +2. Let �j be the determinant for the first j rows and columns of this
matrix. Replacing the last row of �N+1 by the sum of all rows of �N+1 and using a+b−1=−απ , �N+1 =−b�N with
b= (1−α)(1−π ). By induction, �N+1 = (−b)N (π −1) 	=0. The unit eigenvalue is of order 1. �
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