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The 2x2x2 Model

Minimum elements of the model

- What is the minimum number of states needed for a SL model ?

- What is the minimum number of signal values in the canonical SL model?

- What is the minimum number of possible actions?

The model

- 2 states ω ∈ {0, 1}.

- 2 signal values P (s = ω) = q ∈ (0, 1). (symmetric binary signal, SBS)

- x ∈ 0, 1, payoff U = x(ω − c), c ∈ (0, 1.)
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Social learning in the 2x2x2 Model

µt = P (ω = 1|ht), µ̃t = P (ω = 1|ht, st).

Use LR : with st = 1,

ℓ̃t =
µ̃t

1− µ̃t
=

P (ω1|s = 1)

P (ω0|s = 1)
=

P (s = 1|ω1)P (ω1)
P (s)

P (s = 1|ω0)P (ω0)
P (s)

= ℓt
P (s = 1|ω1)

P (s = 1|ω0)
.

Use LLR: λt = Log(
µt

1− µt
): λ̃t = λt

{
+a if st = 1,

−a if st = 0.
, with a = Log

q
1− q .

Action xt = 1 iff λ̃t > γ = Log(c/(1− c)).
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Cascade representation
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Cascade representation

Convergence.

Right and wrong cascades
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Martingales and social learning

Definition: µt = Et[µt+1]. (Super-martingale: µt ≤ Et[µt+1]).

MCT: If µt is a bounded martingale, there is µ∗ such that µt → µ∗ in probability.
Intuition:

❏ There cannot be (random) predictable up- or down-turns.

❏ One cannot make money in an efficient market (proof by Doob with upward crossing Lemma)

❏ Other intuition (in L2): consecutive changes of µt are uncorrelated and E[(Xt+T −Xt)
2] is

bounded, therefore,
∑

τ≥t E[(Xt+1 −Xt)
2] → 0 at t → ∞.

❏ Many proofs

The standard Bayesian process of updating after a signal is a martingale, if
the agent has the right distribution of the signal.

Great tool for analysis of convergence, but many cases where SL is not a martingale.
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Tools

Two states ω ∈ {0, 1}. Bayesian learning.

In state 1,

ℓt =
P (ω = 0|tt)
P (ω = 1|tt)

is a martingale.

P (ω = 1|ht cannot converge to 0.

(Symmetric result for state 0)
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Signals and private beliefs

2 states {ω0, ω1} with equal probabilities. Private signals with distributions, cdf Fω(s).

Call p the probability of ω1 for an agent with signal s. When an agent receives the signal
s, by Bayes’ rule, the likelihood ratio between the two states is

F ′ω1(s)

F ′ω0(s)
=

p

1− p
. (1)

In state ω, Fω generates a distribution of signals, for which the belief is given by the
previous equation.

The reverse applies: belief is a signal. The distribution of this signals must satisfy the
previous equation.
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Continuum of beliefs

Individual beliefs (equivalent to private signals) are distributed according to the c.d.f.
Fω(µ)

First order stochastic dominance: if ω1 > ω0, F
ω0(s) > Fω1(s)

Social learning

λt+1 = λt + νt, with νt = Log
(P (xt|ω1)

P (xt|ω0)

)
. (2)
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Representation

(Replace θ by ω).
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Conditions for informational cascades

Two (necessary) conditions:

❏ Bounded beliefs: At some point the “most convinced” person cannot overwhelm the public
belief.

❏ Discrete action: at some point, switching action requires a quantum difference in belief.

Exercise: two actions and private signals st = ω + ϵt, with ϵt ∼ N(0, σ2).
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Exercise: Crashes and booms with a continuum of agents

Model: Two states ω0 and ω1, st = ω + ϵt with ω and ϵ Gaussian; xt ∈ {0, 1}.

Belief (LLR) of agent with signal s λ(s) = λt +
ω1 − ω0

σ2
ϵ

(
s− ω0 + ω1

2

)
.

Cutoff for investment (xt = 1): s > s∗(λt) =
ω0 + ω1

2 − σ2
ϵ

ω1 − ω0
λt.

Model with one agent. Discussion

Model with a continuum of agent in each period: Xt = 1− F (s∗(λt)− θ;σϵ).

Observed aggregate activity Yt = 1− F (s∗(λt)− θ;σϵ) + ηt.
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Crashes and booms (2)

Observed aggregate activity Yt = 1− F (s∗(λt)− θ;σϵ) + ηt.

λt+1 = λt + Log
(f(xt −

(
1− F (s∗(µt)− ω1;σϵ)

)
;ση)

f(xt −
(
1− F (s∗(µt)− ω0;σϵ)

)
;ση)

)
, ( f density function).

On the left, ηt ≡ 0.

On the right, the evolution of the public belief is represented for random realizations ηt.
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Cascades and bounded private beliefs

Previous model: distribution of private beliefs with cdf Fω(s) and density fω(s).

Assume that f(s) > 0 for s ∈ (a, b) with 0 < a < b < 1 and f(s) = 0 otherwise. Private
beliefs are bounded.

Payoff: agent choose the state that is more likely (equivalent to c = 1/2).

Update: µ̃
1− µ̃ =

µ
1− µ

s
1− s . Invest (x = 1) if s > 1− µ.

Cascade set with investment a > 1− µ which is equivalent to µ > 1− a.

Cascade set with no investment µ < 1− b.

MCT =⇒ µt → µ∗.

The limit µ∗ cannot be in the interval (1− b, 1− a).

A cascade occurs with probability one.
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Cascades and herds

Two states ω ∈ {0, 1}, two actions (to simplify).

No assumption on private beliefs (bounded or unbounded).

Definitions

❏ A herding agent ignores the private signal (and takes a decision based on the public
information).

❏ A herd is when all agents are taking the same action.

Properties

❏ A informational cascade generates a herd.

❏ For any distribution of private beliefs, with probability 1, there is some T such that a herd
begins at time T .

Intuition
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probabilities depend on the aggregate output.
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Part two: Delays

Motivation
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Questions

“Waiting to see” what?

“We’re just not seeing a lot of activity.”

Activity of others. But are they also waiting?

There could be a variety of mechanisms (models):

❏ Some sectors have unknown excess capacity which has to be depleted, while other sectors
are waiting for this.

❏ Here, all the activity is driven by waiting agents. Focus in on the interaction between
activity and information.

Anticipated property of the model: Penguins.

The model with turn out to be an extension of BHW with endogenous timing of
investment.
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Toy model

2 states {ω0, ω1}

2 agents with option to make one investment (fixed size) in period t, x ∈ {0, 1} and
payoff Et[δ

t−1(ω − c)].

In state 0, one agent; in state 1, 2 agents. P (ω = 1) = µ1.. Remark.

Fundamental assumption:
0 < µ− c < δµ(1− c).

Justification of the two inequalities
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Equilibrium: necessary properties

PBE equilibrium, symmetric strategies.

Strategy in period 1: probability to invest z.

z = 1 cannot be an equilibrium strategy.

z = 0 cannot be an equilibrium strategy. (A little more tricky, but simple with two
periods).

If there is an equilibrium, 0 < z < 1.

If there is no investment in period 1, there is no investment after.
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Equilibrium: arbitrage and existence

Since 0 < z < 1, payoff of no delay = payoff of delay.

Payoff of delay = δµz(1− c).

Equilibrium:
µ− c = δµz(1− c).

Because of the fundamental assumption, unique value 0 < z < 1.

Value of the game: µ− c.

Comments
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Interpretation of the arbitrage condition

1− δ

δ
(µ− c) =

(
µz(1− c)− (µ− c)

)
= P (x = 0|µ)

(
c− P (ω1|x = 0, µ)

)
Information and time discount.

❏ 0 < z < 1 only if δ is in the interval [δ∗, 1), with δ∗ = (µ− c)/(µ(1− c)).

❏ If δ → δ∗, then z → 1.

❏ If δ → 1 and the period length is vanishingly short, information comes in quickly but there is
a positive probability that it is wrong.
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Other properties

Optimism and investment level: mechanism on information and arbitrage, ̸= Tobin-q.

Observation noise

❏ if an investment is made, the other agent sees it with probability 1− γ and sees nothing
with probability γ, (γ small).

Large number of agents: N agents in state 1 and 1 agent in state 0.

❏ Exercise

Non symmetric equilibrium
Two agents, A and B, (see each other bu uncertain whether the other has an option). B
always delays and does not invest ever if no investment in the first period.

❏ If A has an option, no delay, payoff µ− c.

❏ Payoff of B is δµ(1− c), higher than in the symmetric equilibrium. Asymptotically (δ → 1),
payoff µ(1− c) equivalent of instant revelation.
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General model with any random number of identical agents (1)

Two states.

All agents have the same belief.

The number of agent is random two distributions, and the distribution with the high state
dominates the other in the first-order.

Key property: in any subgame beginning in period t, the payoff of the game is the payoff
of investing right away, µt − c.

To solve for the equilibrium, is is sufficiently to consider delays for one period. The
trade-off is between no delay with payoff µt − c, and delay with no delay in the next
period with payoff µt+1 − c.
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General model with any random number of identical agents (2)

Arbitrage equation
µt − c = δEt[(max(µt+1 − c, 0)]

Results are the same (extended).

In particular, if there is no investment in a period, there is no investment after.
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Heterogenous beliefs and fixed number of agents : Illustration
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An example of evolution of beliefs in a model with delays
λt is the LLR between state 1 and state 0.
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Proposition

Let µ∗ be an equilibrium strategy in a game with n ≥ 2 remaining players: the belief of the
marginal agent who does not delay.

Then µ∗ is solution of the arbitrage equation between the opportunity cost and the option
value of delay

r(µ∗ − c) = Q(µ∗), with δ = 1
1 + r ,

Q(µ∗) =

n−1∑
k=0

P (x = k|µ∗, Fω, n)Max
(
c− P (ω = ω1|x = k;µ∗, Fω, n), 0

)
,

(3)

where x is the number of investments by other agents in the period.

Q is a “regret function” that measures the option value of delay: the expected price that
the agent would pay to undo the investment after receiving bad news at the end of the
period.
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