Cascades and Herds

PSE

March 11, 2024

The $2 \times 2 \times 2$ Model

- Minimum elements of the model
- What is the minimum number of states needed for a SL model ?
- What is the minimum number of signal values in the canonical SL model?
- What is the minimum number of possible actions?

The $2 \times 2 \times 2$ Model

- Minimum elements of the model
- What is the minimum number of states needed for a SL model ?
- What is the minimum number of signal values in the canonical SL model?
- What is the minimum number of possible actions?
- The model
- 2 states $\omega \in\{0,1\}$.
- 2 signal values $P(s=\omega)=q \in(0,1)$. (symmetric binary signal, SBS)
- $x \in 0,1$, payoff $U=x(\omega-c), \quad c \in(0,1$.

Social learning in the $2 \times 2 \times 2$ Model

- $\mu_{t}=P\left(\omega=1 \mid h_{t}\right), \quad \tilde{\mu}_{t}=P\left(\omega=1 \mid h_{t}, s_{t}\right)$.
- Use LR : with $s_{t}=1$,

$$
\tilde{\ell}_{t}=\frac{\tilde{\mu}_{t}}{1-\tilde{\mu}_{t}}=\frac{P\left(\omega_{1} \mid s=1\right)}{P\left(\omega_{0} \mid s=1\right)}=\frac{\frac{P\left(s=1 \mid \omega_{1}\right) P\left(\omega_{1}\right)}{P(s)}}{\frac{P\left(s=1 \mid \omega_{0}\right) P\left(\omega_{0}\right)}{P(s)}}=\ell_{t} \frac{P\left(s=1 \mid \omega_{1}\right)}{P\left(s=1 \mid \omega_{0}\right)} .
$$

- Use LLR: $\lambda_{t}=\log \left(\frac{\mu_{t}}{1-\mu_{t}}\right): \quad \tilde{\lambda}_{t}=\lambda_{t}\left\{\begin{array}{l}+a \text { if } s_{t}=1, \\ -a \text { if } s_{t}=0 .\end{array} \quad\right.$ with $a=\log \frac{q}{1-q}$.
- Action $x_{t}=1$ iff $\tilde{\lambda}_{t}>\gamma=\log (c /(1-c))$.

Cascade representation

Cascade representation

■ Convergence.

- Right and wrong cascades

Continuum of beliefs

■ Individual beliefs (instead of signals) are distributed according to the c.d.f. $F^{\omega}(\mu)$
First order stochastic dominance: if $\omega_{1}>\omega_{0}, F^{\omega_{0}}(s)>F^{\omega_{1}}(s)$
Observations

		$x_{t}=1$	$x_{t}=0$
States of Nature	$\omega=\omega_{1}$	$1-F_{t}^{\omega_{1}}(\gamma)$	$F_{t}^{\omega_{1}}(\gamma)$
	$\omega=\omega_{0}$	$1-F_{t}^{\omega_{0}}(\gamma)$	$F_{t}^{\omega_{0}}(\gamma) \quad$ with $\gamma=\log \left(\frac{c}{1-c}\right)$.

- Social learning

$$
\begin{equation*}
\lambda_{t+1}=\lambda_{t}+\nu_{t}, \text { with } \nu_{t}=\log \left(\frac{P\left(x_{t} \mid \omega_{1}\right)}{P\left(x_{t} \mid \omega_{0}\right)}\right) \tag{1}
\end{equation*}
$$

Representation

(Replace θ by ω).

Unbounded support of private beliefs

- There is no cascade.
- Discussion of the evolution of beliefs

Crashes and booms

■ Model: Two states ω_{0} and $\omega_{1}, s_{t}=\omega+\epsilon_{t}$ with ω and ϵ Gaussian; $x_{t} \in\{0,1\}$.

- Belief (LLR) of agent with signal $s \quad \lambda(s)=\lambda_{t}+\frac{\omega_{1}-\omega_{0}}{\sigma_{\epsilon}^{2}}\left(s-\frac{\omega_{0}+\omega_{1}}{2}\right)$.
- Cutoff for investment $\left(x_{t}=1\right)$:

$$
s>s^{*}\left(\lambda_{t}\right)=\frac{\omega_{0}+\omega_{1}}{2}-\frac{\sigma_{\epsilon}^{2}}{\omega_{1}-\omega_{0}} \lambda_{t}
$$

■ Model with one agent. Discussion

■ Model with a continuum of agent in each period: $X_{t}=1-F\left(s^{*}\left(\lambda_{t}\right)-\theta ; \sigma_{\epsilon}\right)$.
■ Observed aggregate activity

$$
Y_{t}=1-F\left(s^{*}\left(\lambda_{t}\right)-\theta ; \sigma_{\epsilon}\right)+\eta_{t}
$$

Crashes and booms with a continuum of agents

- Observed aggregate activity $\quad Y_{t}=1-F\left(s^{*}\left(\lambda_{t}\right)-\theta ; \sigma_{\epsilon}\right)+\eta_{t}$.
- $\lambda_{t+1}=\lambda_{t}+\log \left(\frac{f\left(x_{t}-\left(1-F\left(s^{*}\left(\mu_{t}\right)-\omega_{1} ; \sigma_{\epsilon}\right)\right) ; \sigma_{\eta}\right)}{f\left(x_{t}-\left(1-F\left(s^{*}\left(\mu_{t}\right)-\omega_{0} ; \sigma_{\epsilon}\right)\right) ; \sigma_{\eta}\right)}\right) \quad(f$ density function $)$.
- On the left, $\eta_{t} \equiv 0$.
- On the right, the evolution of the public belief is represented for random realizations η_{t}.

Signals and private beliefs

■ 2 states $\left\{\omega_{0}, \omega_{1}\right\}$ with equal probabilities. Private signals with distributions, cdf $F^{\omega}(s)$.

■ Call p the probability of $\$$ state e_{1} for an agent with signal s. When an agent receives the signal s, by Bayes' rule, the likelihood ratio between the two states is

$$
\begin{equation*}
\frac{F^{\prime \omega_{1}}(s)}{F^{\prime \omega_{0}}(s)}=\frac{p}{1-p} \tag{2}
\end{equation*}
$$

In state ω, F^{ω} generates a distribution of signals, for which the belief is given by the previous equation.

- The reverse applies: belief is a signal. The distribution of this signals must satisfy the previous equation.

Cascades and bounded private beliefs

■ Previous model: distribution of private beliefs with cdf $F^{\omega}(s)$ and density $f^{\omega}(s)$.

- Assume that $f(s)>0$ for $s \in(a, b)$ with $0<a<b<1$ and $f(s)=0$ otherwise. Private beliefs are bounded.

■ Payoff: agent choose the state that is more likely (equivalent to $c=1 / 2$).
■ Update: $\frac{\tilde{\mu}}{1-\tilde{\mu}}=\frac{\mu}{1-\mu} \frac{s}{1-s}$. Invest $(x=1)$ if $s>1-\mu$.
■ Cascade set with investment $a>1-\mu$ which is equivalent to $\mu>1-a$.
■ Cascade set with no investment $\mu<1-b$.
■ $\mathrm{MCT} \Longrightarrow \mu_{t} \rightarrow \mu^{*}$.

- The limit μ^{*} cannot be in the interval $(1-b, 1-a)$.
- A cascade occurs with probability one.

Cascades and unbounded private beliefs

- Assumption $f(s)>0$ on $(0,1)$ (to simplify)
- Assume that $f(s)>0$ for $s \in(a, b)$ with $0<a<b<1$ and $f(s)=0$ otherwise. Private beliefs are bounded.
- Payoff: agent choose the state that is more likely (equivalent to $c=1 / 2$).
- Update: $\tilde{\ell}=\ell \frac{s}{\underline{1-s}}$. Invest $(x=1)$ if $s>\frac{1}{1+\ell}$.
- Cascade set with investment $a>\frac{1}{1+\ell}$ which is equivalent to $\mu>1-a$.
- Cascade set with no investment $\mu<1-b$.
- $\mathrm{MCT} \Longrightarrow \mu_{t} \rightarrow \mu^{*}$.
- The limit μ^{*} cannot be in the interval $(1-b, 1-a)$.

