Cascades and Herds

PSE

March 11, 2024

The 2x2x2 Model

- Minimum elements of the model
 - What is the minimum number of states needed for a SL model ?
 - What is the minimum number of signal values in the canonical SL model?
 - What is the minimum number of possible actions?

The 2x2x2 Model

- Minimum elements of the model
 - What is the minimum number of states needed for a SL model ?
 - What is the minimum number of signal values in the canonical SL model?
 - What is the minimum number of possible actions?
- The model
 - 2 states $\omega \in \{0,1\}.$
 - 2 signal values $P(s = \omega) = q \in (0, 1)$. (symmetric binary signal, SBS)

-
$$x \in 0, 1$$
, payoff $U = x(\omega - c)$, $c \in (0, 1.)$

Social learning in the 2x2x2 Model

$$\bullet \ \mu_t = P(\omega = 1 | h_t), \qquad \tilde{\mu}_t = P(\omega = 1 | h_t, s_t).$$

• Use LR : with $s_t = 1$,

$$\tilde{\ell}_t = \frac{\tilde{\mu}_t}{1 - \tilde{\mu}_t} = \frac{P(\omega_1 | s = 1)}{P(\omega_0 | s = 1)} = \frac{\frac{P(s = 1 | \omega_1) P(\omega_1)}{P(s)}}{\frac{P(s = 1 | \omega_0) P(\omega_0)}{P(s)}} = \ell_t \frac{P(s = 1 | \omega_1)}{P(s = 1 | \omega_0)}$$

• Use LLR:
$$\lambda_t = Log(\frac{\mu_t}{1-\mu_t})$$
: $\tilde{\lambda}_t = \lambda_t \begin{cases} +a \text{ if } s_t = 1, \\ -a \text{ if } s_t = 0. \end{cases}$, with $a = Log \frac{q}{1-q}$.

• Action $x_t = 1$ iff $\tilde{\lambda}_t > \gamma = Log(c/(1-c))$.

Cascade representation

- Convergence.
- Right and wrong cascades

Continuum of beliefs

■ Individual beliefs (instead of signals) are distributed according to the *c.d.f.* $F^{\omega}(\mu)$ First order stochastic dominance: if $\omega_1 > \omega_0$, $F^{\omega_0}(s) > F^{\omega_1}(s)$

Observations

		$x_t = 1$	$x_t = 0$	
States of Nature	$\omega = \omega_1$	$1-F_t^{\omega_1}(\gamma)$	$F_t^{\omega_1}(\gamma)$	
	$\omega = \omega_0$	$1-F_t^{\omega_0}(\gamma)$	$F_t^{\omega_0}(\gamma)$	$\gamma = Log \Big(rac{c}{1-c} \Big)$

Social learning

$$\lambda_{t+1} = \lambda_t + \nu_t, \text{ with } \nu_t = Log\Big(\frac{P(x_t|\omega_1)}{P(x_t|\omega_0)}\Big). \tag{1}$$

Representation

- There is no cascade.
- Discussion of the evolution of beliefs

Crashes and booms

- Model: Two states ω_0 and ω_1 , $s_t = \omega + \epsilon_t$ with ω and ϵ Gaussian; $x_t \in \{0, 1\}$.
- Belief (LLR) of agent with signal s $\lambda(s) = \lambda_t + \frac{\omega_1 \omega_0}{\sigma_{\epsilon}^2} \left(s \frac{\omega_0 + \omega_1}{2}\right).$
- Cutoff for investment $(x_t = 1)$: $s > s^*(\lambda_t) = \frac{\omega_0 + \omega_1}{2} \frac{\sigma_{\epsilon}^2}{\omega_1 \omega_0} \lambda_t$.
- Model with one agent. Discussion
- Model with a continuum of agent in each period: $X_t = 1 F(s^*(\lambda_t) \theta; \sigma_{\epsilon})$.
- Observed aggregate activity $Y_t = 1 F(s^*(\lambda_t) \theta; \sigma_\epsilon) + \eta_t.$

Crashes and booms with a continuum of agents

• Observed aggregate activity $Y_t = 1 - F(s^*(\lambda_t) - \theta; \sigma_{\epsilon}) + \eta_t.$

- On the left, $\eta_t \equiv 0$.
- On the right, the evolution of the public belief is represented for random realizations η_t .

Signals and private beliefs

- 2 states $\{\omega_0, \omega_1\}$ with equal probabilities. Private signals with distributions, cdf $F^{\omega}(s)$.
- Call *p* the probability of \$*state*₁ for an agent with signal *s*. When an agent receives the signal *s*, by Bayes' rule, the likelihood ratio between the two states is

$$\frac{F^{\prime\omega_1}(s)}{F^{\prime\omega_0}(s)} = \frac{p}{1-p}.$$
(2)

In state ω , F^{ω} generates a distribution of signals, for which the belief is given by the previous equation.

The reverse applies: belief is a signal. The distribution of this signals must satisfy the previous equation.

Cascades and bounded private beliefs

- Previous model: distribution of private beliefs with cdf $F^{\omega}(s)$ and density $f^{\omega}(s)$.
- Assume that f(s) > 0 for $s \in (a, b)$ with 0 < a < b < 1 and f(s) = 0 otherwise. Private beliefs are bounded.
- Payoff: agent choose the state that is more likely (equivalent to c = 1/2).

• Update:
$$\frac{\mu}{1-\tilde{\mu}} = \frac{\mu}{1-\mu} \frac{s}{1-s}$$
. Invest $(x=1)$ if $s > 1-\mu$.

- Cascade set with investment $a > 1 \mu$ which is equivalent to $\mu > 1 a$.
- Cascade set with no investment $\mu < 1 b$.

• MCT $\Longrightarrow \mu_t \to \mu^*$.

- The limit μ^* cannot be in the interval (1-b, 1-a).
- A cascade occurs with probability one.

Cascades and unbounded private beliefs

- Assumption f(s) > 0 on (0,1) (to simplify)
- Assume that f(s) > 0 for $s \in (a, b)$ with 0 < a < b < 1 and f(s) = 0 otherwise. Private beliefs are bounded.
- Payoff: agent choose the state that is more likely (equivalent to c = 1/2).

• Update:
$$\tilde{\ell} = \ell \frac{s}{1-s}$$
. Invest $(x = 1)$ if $s > \frac{1}{1+\ell}$.

- Cascade set with investment $a > \frac{1}{1+\ell}$ which is equivalent to $\mu > 1-a$.
- Cascade set with no investment $\mu < 1 b$.
- MCT $\Longrightarrow \mu_t \to \mu^*$.
- The limit μ^* cannot be in the interval (1-b, 1-a).