Chapter 1

Bayesian Inference

(09/17/17)

A witness with no historical knowledge

There is a town where cabs come in two colors, yellow and red.¹ Ninety percent of the cabs are yellow. One night, a taxi hits a pedestrian and leaves the scene without stopping. The skills and the ethics of the driver do not depend on the color of the cab. An out-of-town witness claims that the color of the taxi was red. The out-of town witness does not know the proportion of yellow and red cabs in the town and makes a report on the sole basis of what he thinks he has seen. Since the accident occurred during the night, the witness is not completely reliable but it has been assessed that such a witness makes a correct statement is four out of five (whether the true color of the cab is yellow or red). How should one use the information of the witness? Because of the uncertainty, we should formulate our conclusion in terms of probabilities. Is it more likely then that a red cab was involved in the accident? Although the witness reports red and is correct 80 percent of the time, the answer is no.

Recall that there are many more yellow cabs. The red sighting can be explained either by a yellow cab hitting the pedestrian (an event with high *prior* probability) which is incorrectly identified (an event with low probability), or a red cab (with low probability) which is correctly identified (with high probability). Both the *prior* probability of the event and the precision of the signal have to be used in the evaluation of the signal. Bayes' rule

¹The example is adapted from Salop (1987)

provides the method to compute probability updates. Let \mathcal{R} be the event "a red cab is involved", and \mathcal{Y} the event "a yellow cab is involved". Likewise, let r(y) be the report "I have seen a red (yellow) cab". The probability of the event \mathcal{R} conditional on the report ris denoted by $P(\mathcal{R}|r)$. By Bayes' rule,²

$$P(\mathcal{R}|r) = \frac{P(r|\mathcal{R})P(\mathcal{R})}{P(r)} = \frac{P(r|\mathcal{R})P(\mathcal{R})}{P(r|\mathcal{R})P(\mathcal{R}) + P(r|\mathcal{Y})(1 - P(\mathcal{R}))}.$$
(1.1)

The probability that a red cab is involved before hearing the testimony is $P(\mathcal{R}) = 0.10$. $P(r|\mathcal{R})$ is the probability of a correct identification and is equal to 0.8. $P(r|\mathcal{Y})$ is the probability of an incorrect identification and is equal to 0.2. Hence,

$$P(\mathcal{R}|r) = \frac{0.8 \times 0.1}{0.8 \times 0.1 + 0.2 \times 0.9} = \frac{4}{13} < \frac{1}{2}.$$

Note that this probability is much less than the precision of the witness, 80 percent, because a "red" observation is more likely to come from a wrong identification of a yellow cab than from a correct identification of a red cab.

The example reminds us of the difficulties that some people may have in practical circumstances. Despite these difficulties,³ all rational agents in this book are assumed to be Bayesians. The book will concentrate only on the difficulties of learning from others by rational agents.

A witness with historical knowledge

Suppose now that the witness is a resident of the town who knows that only 10 percent of the cabs are red. In making his report, he tells the color which is the most likely according to his rational deduction. If he applies the Bayesian rule and knows his probability of making a mistake, he knows that a yellow cab is more likely to be involved. He will report "yellow" even if he thinks that he has seen a red cab. If he thinks he has seen a yellow one, he will also say "yellow". His private information (the color he thinks he has seen) is ignored in his report.

The omission of the witness' information in his report does not matter if he is the only witness and if the recipient of the report attempts to assess the most likely event: the witness and the recipient of the report come to the same conclusion. But suppose there is a second witness with the same sighting skill (correct 80 percent of the time) and who also thinks he has seen a red cab. That witness who attempts to report the most likely event

²Using the definition of conditional probabilities, $P(\mathcal{R}|r)P(r) = P(\mathcal{R} \text{ and } r) = P(r|\mathcal{R})P(\mathcal{R}).$

 $^{^{3}}$ The ability of people to use Bayes' rule has been tested in experiments, with mixed results (Holt and Anderson, 1993).

says also "yellow". The recipient of the two reports learns nothing from the reports. For him the accident was caused by a yellow cab with a probability of 90 percent.

Recall that when the first witness came from out-of-town, he was not informed about the local history and he gave an informative report, "red". That report may be inaccurate, but it provides information. Furthermore, it triggers more information from the second witness. After the report of the first witness, the probability of \mathcal{R} increased from 0.1 to 4/13. When that probability of 4/13 is conveyed to the second witness, he thinks that a red car is more likely.⁴ He therefore reports "red". The probability of the inspector who hears the reports of the two witnesses is now raised to the level of the last (second) witness.

Looking for your phone as a Bayesian

You live in a two room apartment with two rooms, one that you keep orderly, one that is messy. After stepped out with a friend, you realize that you have left your cell phone behind. The phone is equally likely to be in one of the two rooms. You tell your friend: please looking for my phone that I have left in the apartment while I fetch the car that is parked in the next block. Your friend comes back without having found the phone. Which room is the more probable for the phone. Answer before reading the next paragraph.

You may think that your friend has looked into the two rooms. In the orderly room, it is harder to miss the phone. Therefore, no seeing the phone in that room makes it unlikely (compared to the other room) that the phone is there. You increase the probability of the messy room. You are a Bayesian.

In the formalization of this story, we can that there are two rooms 1 (orderly) and 2 (messy). There are two states of the nature: the phone is in room 1 or room 2. A search in room i, i = 1 or 2 produces a signal that is 1 (finding the phone) or 0 (not finding the phone. Each signal has a probability q_i to be equal to 1 if the phone is in room i. The probability of not finding the phone in room i when the phone is actually in room i is $1 - q_i$ is positive. If the phone is in room 3 - i, (the room other than i), the signal s_i is zero. When you do not find the phone in Room 1, you think, rationally, you increase your probability that the phone is in Room 2. If you search in Room 2 for about the same time, then you think that the probability of a mistaken signal $s_2 = 0$ is higher than $s_1 = 0$ if the phone is in Room 2. The precise Bayesian calculus will be done later in this chapter.

⁴Exercise: prove it.

1.1 The standard Bayesian model

1.1.1 General remarks

The main issue is to learn about *something*. In the Bayesian framework, the "something" is a possible fact, which can be called a *state of nature*. That fact may take place in the future or it may already have taken place with an uncertain knowledge about it. Actually, in a Bayesian framework, there is no difference between a future event and a past event that are both uncertain. The future event may be "rain" or "shine", to occur tomorrow. For a Bayesian, nature chooses the weather today (with some probability, to be described below), and that weather is *realized* tomorrow.

The list of possible states is fixed in Bayesian learning. There is no room for learning about states that are not on the list of possible states before the learning process. That is an important limitation of Bayesian learning. There is no "unknown unknown", to use the famous characterization of secretary of state Rumsfeld, only "known unknown". In other words, one knows what is unknown.

The Bayesian process begins by putting weights on the unknowns, probabilities on the possible states of nature. These probabilities may be objective, such as the probability of "tail" or "face" in throwing a coin, but that is not important. What matters is that these probabilities are the ones that the learner uses at the learning process. These probabilities will be called *belief*. A "belief" will be a distribution of probabilities over the possible states. By an abuse of language, a belief will sometimes be the probability of a particular state, especially in the case of two possible states: the "belief" in one state will obviously define the probability of the other state. The belief before the reception of information is called the *prior belief*.

Learning is the processing of information that comes about the state. This information comes in the form of a *signal*. Examples are the witness report of the previous section, a weather forecast, an advice by a financial advisor, the action of some "other" individual, etc... In order to be informative, that signal must depend on the state. But that signal is imperfect and does not reveal exactly the state (otherwise there would be nothing interesting to think about). A natural definition of a signal is therefore a random variable that can take different values with some probabilities and the distribution of these probabilities depend on the actual state. The processing of the information of the signal is the use of the signal to update the prior belief into the posterior belief. That step is the core of the Bayesian learning process and its mechanics are driven by Bayes' rule. In that process, the learner knows the mechanics of the signal, *i.e.*, the probability of receiving a particular signal value conditional on the true state. Bayes' rule combines that knowledge with the prior distribution of the state to compute the posterior distribution.

Examples

- 1. The binary model
 - States of nature $\theta \in \Theta = \{0, 1\}$
 - Signal $s \in \{0, 1\}$ with $P(s = \theta | \theta) = q_{\theta}$.
- 2. Financial advising (*i.e.*, Value Line):
 - States of nature: a stock will go up 10% or go down 10% (two states).,
 - Advice {Strong Sell, Sell, Hold, Buy, Strong Buy}.
- 3. Gaussian signal:
 - Two states of nature $\theta \in \Theta = \{0, 1\}$
 - Signal $s = \theta + \epsilon$, where s has a normal distribution with mean zero and variance σ^2 .
- 4. Gaussian model:
 - The state θ has a normal distribution with mean $\overline{\theta}$ and variance $sigma_{\theta}^2$.
 - Signal $s = \theta + \epsilon$, where s has a normal distribution with mean zero and variance σ_{ϵ}^2 .

Note how in all cases, the (probability) distribution of the signal depends on the state. These are just examples and we will see later how each of them is a useful tool to address specific issues. We begin with the simplest model, the binary model.

1.1.2 The binary model

In all models of rational learning that are considered here, there is a *state of nature* (or just "state") that is an element of a set. We will use the notation θ for this state. In the previous story, the states \mathcal{R} and \mathcal{Y} can be defined by $\theta \in \{0, 1\}$ or $\theta \in \{\theta_0, \theta_1\}$.

The sighting by the witness is equivalent to the reception of a signal s that can be 0 or 1. A signal that takes one of two value is called a *binary signal*. The uncertainty about

		s = 1	s = 0
States of Nature	$\theta = \theta_1$	q_1	$1 - q_1$
	$\theta = \theta_0$	$1 - q_0$	q_0

Observation (signal)

Table 1.1.1: Binary signal

the sighting is represented by the assumption that s is the realization of a random variable that depends on the true state. One possible dependence is given by Table 1.

Using the definition of conditional probability,

$$P(\theta = 1|s = 1) = \frac{P(\theta = 1 \cap s = 1)}{P(s = 1)} = \frac{P(s = 1|\theta = 1)P(\theta = 1)}{P(s = 1)}$$

which yields Bayes' rule

$$P(\theta = 1|s = 1) = \frac{q_1 P(\theta = 1)}{q_1 P(\theta = 1) + (1 - q_1)(1 - P(\theta = 1))}.$$
(1.2)

The signal 1 is "good news" about the state 1 (it increases the belief in state 1), if and only if $q_1 > 1 - q_0$, or

$$q_1 + q_0 > 1.$$

A signal can be informative about a state because it is likely to occur in that state, with q_1 . But one should be aware that it may be even more informative when it is very unlikely to occur in the other state, when $1 - q_0$ is low. If one is looking for piece of metal, a good detector responds to an actual piece. But a better detector may be one that does not respond at all when there is no metal in front of it.

When $q_1 = q_0 = q$, the signal is a symmetric binary signal (SBS) and in this case, we will call q the precision of the signal. (The precision will have a different definition when the signal is not a SBS). Note that q could be less than 1/2, in which case we could switch the roles of s = 1 and s = 0. The inequality q > 1/2 is just a convention, which will be kept here for any SBS.

Useful expressions of Bayes' rule

The formula in (1.2) is unwieldy. When the space state is discrete, it is often more useful to express Bayes' rule in terms of likelihood ratio, *i.e.*, the ratio between the probabilities

of two states, hereafter LR. (There can be more than two states in the set of states). Here we have only two states, but LR is also useful for any finite number of states, as will be seen in the search application below.

$$\underbrace{\frac{P(\theta=1|s=1)}{P(\theta=0|s=1)}}_{\text{posterior LR}} = \underbrace{\left(\frac{P(s=1|\theta=1)}{P(s=1|\theta=0)}\right)}_{\text{signal factor}} \times \underbrace{\left(\frac{P(\theta=1)}{P(\theta=0)}\right)}_{\text{prior LR}}.$$
(1.3)

The signal factor depends only on the properties of the signal. With the specification of Table 1,

$$\frac{P(\theta = 1|s = 1)}{P(\theta = 0|s = 1)} = \frac{q_1}{1 - q_0} \times \frac{P(\theta = 1)}{P(\theta = 0)}.$$
(1.4)

The expression of Bayes' rule in (1.3) is much simpler than the original formula because it takes a multiplicative form that has a symmetrical look.

State one is more likely when the LR is greater than 1. In the previous example of the car incident, say that "1" is "red". The prior for red cab is 1/10. The signal factor $P(s = 1|\theta = 1)/P(s = 1|\theta = 0)$ (correct / mistake) is .8/0.2=4. It is not sufficient to reverse the belief that yellow is more likely.

For some applications of rational learning, it will be convenient to transform the product in the the previous equation into a sum, which is performed by the logarithmic function. Denote by λ the prior *Log likelihood ratio* between the two states, and by λ' is posterior, after receiving the signal *s*. Bayes' rule now takes the form

$$\lambda' = \lambda + Log(q_1/(1-q_0)). \tag{1.5}$$

Both the multiplicative form in (1.3) and the additive form in (1.5) are especially when there is a sequence of signal. For example, with two signals s_1 and s_2 ,

$$\frac{P(\theta = 1|s_1, s_2)}{P(\theta = 0|s_1, s_2)} = \left(\frac{P(s_2|\theta = 1)}{P(s_2|\theta = 0)}\right) \times \left(\frac{P(s_1|\theta = 1)}{P(s_1|\theta = 0)}\right) \times \left(\frac{P(\theta = 1)}{P(\theta = 0)}\right)$$

One can repeat the updating for any number of signal observations. It is also obvious that the final update does not depend on the order of the signal observations.

Bounded signals and belief updates

The signal takes here only two values and is therefore bounded. The same is true if the number of signal values is more than two but finite. The implication is that values of the

posterior probabilities cannot be arbitrarily close to one or zero. They are bounded away from zero and one. This will have profound implications later one. At this stage, one can just state that the binary signal (or any signal with finite values) is bounded.

1.1.3 Multiple binary signals: search on the sea floor

Some objects that have been lost at sea are extremely valuable and have stimulated many efforts for their recovery: submarines, nuclear bombs dropped of the coast of Spain, airline wrecks. In searching for the object under the surface of the sea, different informations have been used: last sight of the object, surface debris, surveys of the area by detecting instruments. The combination of these informations through Bayesian analysis led to the findings of the USS Scorpion submarine (2009), the USS Central America with its treasure (1857-1988), the wreck of AF 447 (2009-2011).

Assume that the search area is divided in N cells. The prior probability distribution is such that w_i is equal to the probability that the object is in cell *i*. Using previous notation, $w_i = P(\theta = \theta_i)$. If the detector is passed over cell *i*, the probability of finding the object is p_i , which may depend on the cell because of variations in the conditions for detection (depth, type of soil, etc..). The question is how after a fruitless search over an area, the probability distribution is updated from w to w'. Let θ_i be the state that the wreck is in cell *i*, and \mathcal{Z} the event that no detection was made.

$$P(\theta = \theta_i | \mathcal{Z}) = \frac{1}{P(\mathcal{Z})} P(\mathcal{Z} | \theta = \theta_i) P(\theta = \theta_i).$$

 $P(\mathcal{Z}|\theta = \theta_i) = \begin{cases} 1 - p_i, \text{ if there if the detector is passed over cell } i, \\\\ 1, \text{ if the detector is not passed over cell } i. \end{cases}$

Defining $p_i = 0$ if there is no search in cell I (a search may not be over all the cells), the posterior distribution is given by

$$w'_{i} = A(1-p_{i})w_{i}, \text{ with } A = \frac{1}{\sum_{i=1}^{N}(1-p_{i})w_{i}}.$$
 (1.6)

An example: the search for AF447

In the early hours of June 1, 2009, with 228 passengers and crew, Air France Flight 447 disappeared in the celebrated "pot au noir".⁵ No message had been sent by the crew but both "black boxes"–they are red– were retrieved after a two years. They have provided a

 $^{^{5}}$ This part of the *Intertropical Convergence Zone* (ITCZ) between Brazil and Africa is well known to aviators. It has been a special challenge for all sailboats, merchant ships in the 19th century and racers today.

gripping transcript of a failure of social learning in the cockpit during the last ten minutes of the flight. We focus here on the learning process during the search for the wreck, 3000 meters below the surface of the ocean. It provides a fascinating example of information gathering and learning.

First, a prior probability distribution (PD) has to be established. At each stage the probability distribution should orient the next search effort the result of which should be used to update the PD, and so on. That at least is the theory. ⁶ It will turn out that the search for AF447 did not follow the theory. Following Keller (2015), the search which lasted almost two years before a complete success, proceeded in stages.

- 1. The aircraft had issued an automated signal on its position at regular time intervals. From this, it was established that the object should be in a circle of 40 nautical miles⁷ (nmi) centered at the last known position (LKP). That disk was endowed with a probability distribution, hereafter PD, that was chosen to be uniform.
- 2. Previous studies on crashes for similar conditions showed a normal distribution around the LKP with standard deviation of 8 nmi.
- 3. Five days after the crash, began a period during which debris were found, the first of them about 40 nmi from the LKP. A numerical model was used for "back drifting" to correct for currents and wind. That process, which is technical and beyond the scope of this analysis, led to another PD.
- 4. The three previous probability distributions were averaged with weights of 0.35, 0.35 and 0.3, respectively. These weights are guesses and so far, the updating is not Bayesian. It's not clear how a Bayesian updating could have been done at this stage. The PD is now the prior distribution represented in the panel A of Figure 1.1. The Bayesian use of that PD will come only after Step 5.
- 5. Three different searches were conducted, with no result, between June and the end of 2010.
 - (a) First, the black boxes of the aircraft are supposed to emit an audible sound for forty days. That search for a beacon is represented in the panel B of Figure 1.1. It produced nothing. There has been no Bayesian analysis at this stage, but all the steps in the search are carefully recorded and this data will be used later.
 - (b) One had to turn to other methods. In August 2009, a sonar was towed in a rectangular area SE of the LKP because of a relatively flat bottom. Still nothing.

⁶See L. Stone **.

⁷One nautical mile =1.15 miles (one minute arc on a grand circle of the Earth).

(A) Prior probabilities

(B) Search for pings

(C) Posterior probabilities after Stage 5

Source: Keller (2015).

- (c) Two US ships from the Woods Hole Oceanographic Institute and from the US Navy searched an area that was a little wider than the NW quadrant of the 40 nmi disk. By the end of 2010, there were still no results.
- 6. Enters now Bayesian analysis. Each of the previous three steps, was used to update the prior PD (which, your recall, was an average of the first three PDs). The disc was divided in 7500 cells. Each search step is equivalent to 7500 binary signals s_i equal to 0 or 1 that turn out to be 0. The probabilities go according to the color spectrum, from high (red) to low (blue).
 - (a) In step (a), the probability of survival for each bacon was set at 0.8. (More about this later). Conditional of survival, the probability of detection was estimated at

0.9. The probability of detection in that step was therefore 0.92. The updating is described in Exercise 1.2.

- (b) In step (b), the probability of detection was estimated at 0.9 and the no find led to another Bayesian update of the PD.
- (c) In step (c), the searches that were conducted in 2010 had another estimated probability of detection equal to 0.9 that was used in the third Bayesian update. The result of these three updates is represented in the panel C of Figure 1.1. The areas that have been searched have a low probability (in blue).
- 7. At this point, the results may have been puzzling. It was then decided, to assume that both the beacons in the black boxes had failed. The search in Panel B of the Figure was ignored and the distribution goes from Panel C to Panel D. See how the density of probability in the center part of the disc is now restored to a high level. The search was resumed in the most likely area and the wreck was found in little time (April 3, 2011).

In conclusion, the search relied on a mixture of educated guesses and Bayesian analysis. In particular, the failure of the search for pings should have led to a Bayesian increase of the probability of the failure of both beacons. The jump of the probability of failure from 0.1 to 1 in the final stage of the search seems to have been somewhat subjective, but it turned out to be correct.

1.1.4 The Gaussian model

The distributions of the prior θ and of the signal s (conditional on θ) are normal ("Gaussian", from Carl Friedrich Gauss). In this model, the learning process has nice properties. Using standard notation,

- $\theta \sim \mathcal{N}(\bar{\theta}, \sigma^2).$
- $s = \theta + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$.

The first remarkable property of a normal distribution is that it is characterized by two parameters only, the mean and the variance. The inverse of the variance of a normal distribution is called the precision, for obvious reasons. Here the notation is such that $\rho_{\theta} = 1/\sigma^2$ and $\rho_{\epsilon} = 1/\sigma_{\epsilon}^2$.

The joint distribution of two normal distribution is also normal (with a density proportional to the exponential of the a quadratic form). Hence, the posterior distribution (the

These learning rules will be used repeatedly. distribution of θ conditional on s) is also normal and the learning rule will be on two parameters only. First, the variance :

$$\sigma^{\prime 2} = \frac{\sigma^2 \sigma_\epsilon^2}{\sigma^2 + \sigma_\epsilon^2}$$

This equation is much simpler when we use the precision, which is updated from ρ to ρ' according to

$$\rho' = \rho + \rho_{\epsilon}.$$

Admire the simple rule: to find the precision of the posterior we just add the precision of the signal to the precision of the prior.

Using the precisions, the updating rule for the mean is also very intuitive:

$$m' = \alpha s + (1 - \alpha)m$$
, with $\alpha = \frac{\rho_{\epsilon}}{\rho}$

The posterior's mean is an average between the signal and the mean of the prior, each weighted by the precision of their distribution! It could not be more intuitive. And that rule is linear, which will be very useful.

$$\begin{cases} \rho' = \rho + \rho_{\epsilon}, \\ m' = \alpha s + (1 - \alpha)m, \quad \text{with} \quad \alpha = \frac{\rho_{\epsilon}}{\rho}. \end{cases}$$
(1.7)

The Gaussian model is very popular because of the simplicity of this learning rule which which is recalled: (i) after the observation of a signal of precision ρ_{ϵ} , the precision of the subjective distribution is augmented by the same amount; (ii) the posterior mean is a weighted average of the signal and the prior mean, with weights proportional to the respective precisions. Since the *ex post* distribution is normal, the learning rule with a sequence of Gaussian signals which are independent conditional on θ is an iteration of (1.7).

The learning rule in the Gaussian model makes precise some general principles. These principles hold for a wider class of models, but only the Gaussian model provides such a simple formulation.

- 1. The normal distribution is summarized by the two most intuitive parameters of a distribution, the mean and the variance (or its inverse, the precision).
- 2. The weight of the private signal s depends on the noise to signal ratio in the most intuitive way. When the variance of the noise term σ_{ϵ}^2 tends to zero, or equivalently

its precision tends to infinity, the signal's weight α tends to one and the weight of the *ex ante* expected value of θ tends to zero. The expression of α provides a quantitative formulation of the trivial principle according to which *one relies more on a more precise signal.*

- 3. The signal s contributes to the information on θ which is measured by the increase in the precision on θ . According to the previous result, the increment is exactly equal to the precision of the signal (the inverse of the variance of its noise). The contribution of a set of independent signals is the sum of their precisions. This property is plausible, but it rules out situations where new information makes an agent less certain about θ , a point which is discussed further below.
- 4. More importantly, the increase in the precision on θ is *independent of the realization* of the signal s, and can be computed ex ante. This is handy for the measurement of the information gain which can be expected from a signal. Such a measurement is essential in deciding whether to receive the signal, either by purchasing it, or by delaying a profitable investment to wait for the signal.
- 5. The Gaussian model will fit particularly well with the quadratic payoff function and the decision problem which will be studied later.

1.1.5 Comparison of the two models

In the binary model, the distinction good/bad state is appealing. The probability distribution is given by one number. The learning rule with the binary signal is simple. These properties are convenient when solving exercises. The Gaussian model is convenient for other reasons which were enumerated previously. It is important to realize that each of the two models embodies some deep properties.

The evolution of confidence

When there are two states, the probability distribution is characterized by the probability μ of the good state. This value determines an index of confidence: if the two states are 0 and 1, the variance of the distribution is $\mu(1-\mu)$. Suppose that μ is near 1 and that new information arrives which reduces the value of μ . This information increases the variance of the estimate, *i.e.*, it reduces the confidence of the estimate. In the Gaussian model, new signals cannot reduce the precision of the subjective distribution. They always reduce the variance of this distribution.

Bounded and unbounded private informations

Another major difference between the two models is the strength of the private information. In the binary model, a signal has a bounded strength. In the updating formula (??), the multiplier is bounded. (It is either p/(1-p') or (1-p)/p'). When the signal is symmetric, the parameter p defines its precision. In the Gaussian model, the private signal is unbounded and the changes of the expected value of θ are unbounded. The boundedness of a private signal will play an important role in social learning: a bounded private signal is overwhelmed by a strong prior. (See the example at the beginning of the chapter).

Binary states and Gaussian signals

If we want to represent a situation where confidence may decrease and the private signal is unbounded, we may turn to a combination of the two previous models.

Assume that the state space Θ has two elements, $\Theta = \{\theta_0, \theta_1\}$, and the private signal is Gaussian:

$$s = \theta + \epsilon, \quad \text{with } \epsilon \sim \mathcal{N}(0, 1/\rho_{\epsilon}^2).$$
 (1.8)

The LLR is updated according to

$$\lambda' = \lambda + \rho_{\epsilon}(\theta_1 - \theta_0)(s - \frac{\theta_1 + \theta_0}{2}).$$
(1.9)

Since s is unbounded, the private signal has an unbounded impact on the subjective probability of a state. There are values of s such that the likelihood ratio after receiving s is arbitrarily large.

1.1.6 Learning may lead to opposite beliefs: polarization

Different people have often different priors. The same information may lead to a convergence or a divergence of their beliefs. Assume first that there are only two states. In this case, without loss of generality, we can assume that the information takes the form of a binary signal as in Table 1. If two individuals observe the same signal s, their LR are multiplied by the same ratio $P(s|\theta_1)/P(s|\theta_0)$ that they move in the same direction.

In order to observe *diverging* updates, there must be more than two states. Consider the example with three states. these could be that the economy needs a reform to the left (state 1), to the center (state 2) or to the right (state 3). A signal s is produced either by a study or the implementation of a particular policy and provides an information on the state that is represented by the next table. (The signal s = 1 is a strong indication that

	s = 0	s = 1
$\theta = 1$	0.3	0.7
$\theta = 2$	0.9	0.1
$\theta = 3$	0.3	0.7

the center policy is not working).

Two individuals, Alice and Bob, have their own prior on the states. Alice thinks that a policy on the right will not work and Bob thinks that a policy on the left will not work. Both have equal priors between the center and the right or the left. An example is presented in the next table.

	Alice	Bob			Alice	Bob
1	0.47	0.06		1	0.79	0.1
2	0.47	0.47		2	0.11	0.11
3	0.06	0.47		3	0.1	0.79
	Priors			Poster	iors	

After the signal s = 1, Alice leans more on the left and Bob more on the right. The signal generates a *polarization* For Alice and Bob, the belief in the center decreases and for both of them, the beliefs in states 1 and 3 increase, but the increase is much higher for the state that has a higher prior, state 1 for Alice and state 2 for Bob. When θ is measured by a number, Alice and Bob draw opposite conclusions from the expected value of θ .

BIBLIOGRAPHY

* Anderson, Lisa R., and Charles A. Holt (1996). "Understanding Bayes' Rule," Journal of Economic Perspectives, 10(2), 179-187.

Salop, Steven C. 1987. "Evaluating Uncertain Evidence with Sir Thomas Bayes: A Note for Teachers," *Journal of Economic Perspectives*, 1(1): 155-159.

* Keller, Colleen M. (2015). "Bayesian Search for Missing Aircraft," slides.
 A superb presentation of four famous examples of Bayesian searches by a player in that field. Highly recommended.

Stone, Lawrence D., Colleen M. Keller, Thomas M. Kratzke and Johan P. Strumprer (2014). "Search for the Wreckage of Air France Flight AF 447," *Statistical Science*, 29 (1), 69-80.

Presents the search for AF 447. The next item, by a member of the team, is a conference presentation that discusses Bayesian searches for the USS Scorpion, the USS Central America, AF 447, and the failed search for MH 370. These slides are highly recommended, especially after reading the relevant section in this chapter.

Dixit, Avinash K. and Jörgen Weibull (2007). "Political polarization," *PNAS*, 104 (18), 7351-7356.

Williams, Arlington W., and James M. Walker (1993). "Computerized Laboratory Exercises for Microeconomics Education: Three Applications Motivated by the Methodology of Experimental Economics," *Journal of Economic Education*, 22, 291-315.

Jern, Alan, K-m I. Chang and C. Kemp (2014). "Belief Polarization is not always irrational," *Psychological Review*, **121**, 206-224.

EXERCISE 1.1. (The MLRP)

Construct a signal that does not satisfy the MLRP.

EXERCISE 1.2. (Simple probability computation, searching for a wreck)

An airplane carrying "two blackboxes" crashes into the sea. It is estimated that each box survives (emits a detectable signal) with probability s. After the crash, a detector is passed over the area of the crash. (We assume that we are sure that the wreck is in the area). Previous tests have shown that if a box survives, its signal is captured by the detector with probability q.

- 1. Determine algebraically he probability p_D that the detector gets a signal. What is the numerical value of p_D for s = 0.8 and q = 0.9?
- 2. Assume that there are two distinct spots, A and B, where the wreck could be. Each has a prior probability of 1/2. A detector is flown over the areas. Because of conditions on the sea floor, it is estimated that if the wreck is in A, the detector finds it with probability 0.9 while if the wreck is in B, the probability of detection is only 0.5. The search actually produces no detection. What are the ex post probabilities for finding the wreck in A and B?

EXERCISE 1.3. (non symmetric binary signal)

There are two states of nature, θ_0 and θ_1 and a binary signal such that $P(s = \theta_i | \theta_i) = q_i$. Note that q_1 and q_0 are not equal.

- 1. Let $q_1 = 3/4$ and $q_0 = 1/4$. Does the signal provide information? In general what is the condition for the signal to be informative?
- 2. Find the condition on q_1 and q_0 such that s = 1 is good news about the state θ_1 .

EXERCISE 1.4. (Bayes' rule with a continuum of states)

Assume that an agent undertakes a project which succeeds with probability θ , (fails with probability $1 - \theta$), where θ is drawn from a uniform distribution on (0, 1).

- 1. Determine the *ex post* distribution of θ for the agent after the failure of the project.
- 2. Assume that the project is repeated and fails n consecutive times. The outcomes are independent with the same probability θ . Determine an algebraic expression for the density of θ of this agent. Discuss intuitively the property of this density.