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Social learning—by observing and copying others—is a highly successful
cultural mechanism for adaptation, outperforming individual information
acquisition and experience. Here, we investigate social learning in the context
of the uniquely human capacity for reflective, analytical reasoning. A hallmark
of the human mind is its ability to engage analytical reasoning, and suppress
false associative intuitions. Through a set of laboratory-based network exper-
iments, we find that social learning fails to propagate this cognitive strategy.
When people make false intuitive conclusions and are exposed to the analytic
output of their peers, they recognize and adopt this correct output. But they fail
to engage analytical reasoning in similar subsequent tasks. Thus, humans exhi-
bit an ‘unreflective copying bias’, which limits their social learning to the
output, rather than the process, of their peers’ reasoning—even when doing
so requires minimal effort and no technical skill. In contrast to much recent
work on observation-based social learning, which emphasizes the propagation
of successful behaviour through copying, our findings identify a limit on the
power of social networks in situations that require analytical reasoning.

1. Introduction
Social learning is a key cultural mechanism that improves the performance of
individuals and groups, often outperforming individual trial-and-error learning
[1,2]. Although the social imitation of successful behaviour is not uniquely
human [3–6], it has been particularly important to human evolution. Sophistica-
ted social learning mechanisms allowed humans to incorporate and accumulate
the knowledge accrued by others, instead of solely relying, as most mammals
do, on information that the individual can learn on its own, during its own
lifetime. This ability to exploit what is called a ‘cultural niche’ [7] allowed
humans to spread throughout radically different environments in time scales
too slow to produce genetic adaptations. Social learning has retained its impor-
tance for the spreading of best practices [8,9], healthy habits [10], cooperation
[11] or democratic participation [12]. Nevertheless, social learning has its limit-
ations. For example, extensively copying the behaviour of successful or
prestigious models is a low-cost way to acquire successful behaviours—but it
often comes at the potential cost of not understanding the reasons why these
behaviours were successful in the first place. In other words, social learners can
be prone to blindly copying the behaviour of their models, without acquiring
the causal knowledge or the reasoning processes that were responsible for this
behaviour [7]. For instance, social learners may copy several behaviours of a suc-
cessful fisher without knowing which behaviour is actually responsible for
catching many fish, much less why that technique is successful.

This limitation is especially relevant in an age of increasing connectivity, facili-
tated by the Internet and social media [13]. While modern telecommunication
technologies may impede some cognitive functions [14], many have suggested
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that social media could make for better decisions [15,16]. Here,
we investigate this claim by exploring whether and how social
networks can be conducive to the uniquely human strategy of
rational, analytic reasoning—whose engagement is critical for
sound financial decisions, accurate risk assessments and
many other demanding mental feats [17].

As social learning can, in theory, copy either a surface be-
haviour or the reasons behind this behaviour, networks can
serve two purposes in relation to analytic reasoning. First,
networks may propagate analytical reasoning processes. That is,
individuals who witness rational decisions going against
their intuition may be prompted to reflect on their initial intui-
tion, recognize it as incorrect and spontaneously switch to a
more analytic thinking style in subsequent, similar tasks. We
refer to this phenomenon as the contagion of analytical processing
(note that we use reasoning and processing interchangeably
throughout). Another possibility is that networks propagate
correct responses to analytic problems. That is, individuals who
witness rational decisions going against their intuition may
recognize their intuition as incorrect and adopt the correct
decision, but do so without engaging analytic reasoning
themselves. Thus, increased connectivity, by increasing the
availability of diverse information sources, may enable individ-
uals to obtain higher quality information and perspectives,
without necessarily being able to generate similar insights
independently. We refer to this phenomenon as the contagion
of analytical output.

Not all networks may be able to propagate analytical pro-
cessing or analytical output. Indeed, the effectiveness of
social learning can depend on the topology of the network
in which interactions occur. For example, in the context of
complex exploration tasks, social learning is especially ben-
eficial in networks with shorter average path length [18],
through which information about good solutions propagates
faster [19]. Network topology can also affect the effectiveness
and efficiency of group coordination [20] and consensus-
making [21]. To investigate whether, how and which social
networks might propagate analytical reasoning, we ran a
series of five laboratory-based network sessions, involving
20 subjects each. In each session, subjects sat at individual
computer workstations and solved a series of analytic pro-
blems. Each subject was randomly assigned to a node in an
underlying network, which determined the neighbours (in
the sense of the network, rather than physical proximity)
whose responses were visible to the subject. This general pro-
tocol was recently used to explore the effect of network
structure on coordination [20], consensus [21,22], foraging
[18] and behaviour diffusion [23].

2. The experiments
2.1. The networks
Different network topologies were used in the five sessions.
The first session provided a Baseline condition in which sub-
jects were not connected to any neighbour, and thus did not
see any of the other participants’ responses. The other sessions
spanned a wide range of possible structures (figure 1). At one
extreme, in the Clustered topology, we have a collection of five
fully connected cliques, with single connections between them.
This structure provides minimal opportunities for long-range
communication of ideas, while reinforcing local interaction. As
such, it reduces the diversity of information sources. Moreover,

this structure captures hierarchical situations: people who
connect different cliques have privileged positions, just as the
members of the central clique. The peripheral cliques may
correspond to different departments in an organization, with
a single member (manager) communicating with the central
management clique. At the other extreme, we have a Full
Connectivity topology wherein each individual is connected
to every other individual, facilitating instant information propa-
gation between every two individuals. In between, we have two
topologies wherein connections are randomly determined. In
the Erdó́s–Rényi topology, every two individuals have the
same probability of being connected—as a consequence, all
individuals in the final network have roughly the same
number of connections [24]. By contrast, the Barabási–Albert
topology is constructed in such a way that well-connected indi-
viduals are the most likely to acquire new connections—as
a consequence, the network includes a few highly connected
individuals who serve as communication hubs [25].

2.2. The problems
Subjects were asked to solve a series of three questions known
as the cognitive reflection test (CRT). These three questions
have been used in hundreds of studies as a test of analytic
reasoning [26]. All three require to engage analytic reasoning
in order to overcome an incorrect intuition. It is important to
recognize that no particular skill or knowledge is required to
generate the correct answer—only the engagement of effortful,
analytic reasoning process. Thus, there is no particular ‘trick’
which, once learned, can be used in subsequent tasks. The sub-
ject should simply recognize that initial intuition cannot be
trusted, and a more reflective attitude is needed.

Table 1 displays the three questions, their incorrect intuitive
response and their correct response. To measure the effect of
social connectivity, each subject answered five trials for each
of the three questions. In the first trial, subjects responded
independently. In the subsequent trials 2–5, subjects could
see the responses that their network neighbours (determined
by the subjects’ network topology) entered during the previous
rounds. No information was given about the accuracy of these
responses. Subjects were informed that they would accumulate
monetary rewards for every correct response they gave, on
every trial. This set-up provides us with an ideal test-bed to
pit analytical process contagion against analytical output con-
tagion. Output contagion should improve performance from
one trial to the next (within each question), but not from
one question to the next. Processing contagion should improve
performance from one question to the next, in addition to
improving performance from one trial to the next.

3. Results
3.1. Process contagion
Subjects’ performance appears in figure 2, trial by trial
and question by question. Separate logistic regressions were
conducted in each topology, in order to detect evidence of pro-
cess contagion or output contagion. In order to detect process
contagion, we tested whether the performance of subjects in
each of our four topologies improved across questions, over
and above the progression observed in the Baseline condition.
For example, in the case of the Clustered topology, we con-
ducted a logistic regression in which the predictors were the
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question (first, second, third), the topology (Baseline, Clustered)
and their interaction. The dependent measure was always the
performance (correct or incorrect) during the first trial of each
question. What counts as evidence for process contagion is a sig-
nificant interaction between question and topology, showing
that the increase in performance in the network group is greater
than the increase in performance in the Baseline group. We
detected no such significant interaction for any topology, all
z , 1.05, all p . 0.28. It appears that whatever the topology,
performance never improves significantly from one question
to the next.

3.2. Output contagion
To detect output contagion, we tested whether the perform-
ance of subjects in each of our four topologies improved
across trials within each question, over and above the pro-
gression observed in the Baseline condition. For example, in
the case of the Clustered topology, we conducted a logistic
regression in which the predictors were the trial (first, last),
the topology (Baseline and Clustered in this case) and their
interaction. What counts as evidence for process contagion is
a significant interaction between trial and topology, showing
that the increase in performance in the network group is greater

ClusteredBarabási−Albert

Full Erdos−Rényi

Figure 1. Network structures for all conditions. Each network has 20 subjects. After the first round of answers, subjects could see the answers entered by their
neighbours in the network. (Online version in colour.)

Table 1. The three questions in the cognitive reflection test, their incorrect intuitive responses and the correct responses that require the engagement of
reflective processing.

question
incorrect
intuition

correct
response

In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the

patch to cover the entire lake, how long would it take for the patch to cover half of the lake?

24 days 47 days

If it takes five machines 5 min to make five widgets, how many minutes would it take 100 machines to

make 100 widgets?

100 5

A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much does the ball cost? 10 cents 5 cents

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20131211
3

 on February 5, 2014rsif.royalsocietypublishing.orgDownloaded from 



than the increase in performance in the Baseline group. As
shown in table 2, we obtained such evidence for all topologies
except Clustered. In all other topologies, subjects’ performance
largely improved across trials, as the correct response to each
question spread in turn across the network.

3.3. The connectivity effect
The Clustered topology was an exception insofar as it seemed
unable to improve performance over and above what was

already observed in the Baseline group. One possible reason
might be that connectivity in the Clustered network is insuffi-
cient to spread the correct, analytical response. To test
whether the individual connectivity of a node was linked to
the final performance of the subject in this node, we computed
an index of connectivity (global distance to all other nodes, i.e.
closeness centrality) and an index of final performance (average
proportion of correct responses during the last trial of each ques-
tion), for each node in each network. As expected, these two
indices were significantly correlated, r(78) ¼ 0.38, p , 0.0001.
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Figure 2. Proportion of correct responses for each of the three CRT questions, across trials, in the five topologies.

Table 2. Results of the logistic regressions testing for output contagion. A significant interaction effect means that the rate of correct responses increases more
in the tested topology than in the Baseline condition. This is the case in all but the Clustered topology.

b s.e. (b) z p exp(b)

constant 21.01 0.29 23.46 ,0.001

topology ¼ Full 0.08 0.41 0.20 0.84 0.92

trial ¼ 5 2.62 0.45 5.79 ,0.001 13.74

interaction 2.31 0.60 3.86 ,0.001 10.09

constant 21.10 0.30 23.68 ,0.001

topology ¼ Erdó́s – Rényi 0.17 0.41 0.41 0.68 0.84

trial ¼ 5 2.11 0.42 5.06 ,0.001 8.25

interaction 1.80 0.57 3.14 0.002 6.06

constant 21.87 0.38 23.93 ,0.001

topology ¼ Barabási – Albert 0.94 0.48 1.98 0.05 0.39

trial ¼ 5 2.49 0.46 5.34 ,0.001 12.06

interaction 2.18 0.61 3.57 ,0.001 8.86

constant 20.93 0.29 23.24 0.001

topology ¼ Clustered ,0.01 0.41 ,0.01 .0.99 1.00

trial ¼ 5 0.93 0.39 2.41 0.02 2.53

interaction 0.62 0.55 1.12 0.26 1.86
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4. Discussion
In sum, our data show that networks can help to solve ana-
lytic problems—with two important caveats. First, networks
do not propagate the analytic reasoning style required to
independently arrive at correct answers. They can only pro-
pagate the selection of the correct response to analytic
problems, one at a time. Second, low-connectivity networks
will not do, and the least connected individuals within a net-
work will not obtain full benefits. Of these two results, the
failure of networks to propagate analytical processing is
especially striking. Consider that it is possible to prime analyti-
cal processing using very subtle cues—such as an evocative
image of Rodin’s Thinker [27] or listing questions using a chal-
lenging font [28]. How can we explain, then, that repeated
exposure to the analytic output of peers in a network, and
even the subsequent recognition and adoption of their correct
answer, all fail to prime analytic reasoning in subsequent tasks?

Social learning is a low-cost phenomenon because learners
evaluate behaviours, not on the basis of an understanding of
what makes a behaviour successful, but merely on the charac-
teristics of others who perform those behaviours. The trade-off
for minimizing those costs, though, is that without that deep
understanding, learners can be inaccurate in what they
choose to copy [7]. This propensity may explain why subjects
persist in copying only analytical responses in our tasks,
while copying analytical processing would be fairly easy,
cost-less and financially rewarding. The current data therefore
reveal what we call an unreflective copying bias—the tendency
to copy what others do as a result of successful analytic
processing, without engaging analytic processing oneself.

This observation suggests that there are limits to the effi-
cacy of social learning in propagating successful reasoning
strategies. As ‘cultural learning can increase average fitness
only if it increases the ability of the population to create adap-
tive information’ [7], our results exemplify imitation as a
form of free riding that ultimately may not improve society’s
capacity to innovate through analytical reasoning.

The discovery of the unreflective copying bias also sheds
new light on the ongoing debate about the promises and
perils of social media and the Internet. Some have suggested
that the Internet is ‘making us stupid’ [29] by encouraging
rapid, unthoughtful sampling of small bits of information
from many sources, thus limiting our capacity for concen-
tration, contemplation and reflection [30], and eliminating the
healthy diversity of opinions [31]. Yet, others have argued
that these technologies significantly expand opportunities for
learning, problem solving and informed decision-making
[16]. Intriguingly, our results suggest that both these views
might be correct, in their own time. On the one hand, the
unreflective copying bias can facilitate the rapid propaga-
tion of analytical responses over social networks, fulfilling
their promise of improved decision-making. But on the other
hand, the bias may very well decrease the frequency of analyti-
cal reasoning, by making it easy and commonplace for people
to reach analytical responses without engaging analytical
processing. In sum, the unreflective copying bias alone can
explain why increased connectivity may eventually make us
stupid by making us smarter first.

Our results complement the large literature on dual-process
accounts of reasoning, which has been recently popularized by a
number of authors [17,32–34]. In particular, our results suggest
that while people’s common bias in favour of intuition can lead

to problematic decisions, social learning fixes this problem, but
only superficially. In other words, social learning does not
seem to help individuals bypass their bias in favour of intuition,
but rather helps society as a whole thrive despite this bias.

Several limitations should be noted. Cultural anthro-
pologists make a distinction between copying, which has low
accuracy but also low cost, and teaching, which has higher accu-
racy, but is less accessible because of difficulty of finding willing
teachers [35]. Most social learning happens using copying [7],
and this is the form of social learning we focus on.

Secondly, our results do not entirely rule out the possi-
bility of contagion of analytical processing. There is always
a risk when drawing conclusions from a null result, because
null effects can result from insufficient statistical power. Note
though that our statistical power was largely sufficient to
detect contagion of analytical output, which suggests that
there was no contagion of analytical processing to detect.
A possible response, of course, is that contagion of analytical
processing may simply require a longer period of time to take
place compared with contagion of analytical output. Further
experiments using a larger collection of questions may help
increase confidence in our findings.

Thirdly, one limitation of our study is that the order of the
three CRT questions was kept constant across sessions, which
prevented us from controlling for the relative difficulty of
the questions. The literature is inconclusive about this relative
difficulty, though, as it appears to vary across samples. Note
that the data collected in the Baseline condition suggest that,
at least in our sample, participants found the three questions
to be equally difficult.

Finally, a possible objection to our result is that failure to
propagate analytical reasoning may be due to a qualitative
difference in the skills required to solve each of the CRT ques-
tions, and therefore may not indicate an absence of social
learning. We believe that this objection is unlikely to hold.
We specifically used the three standard CRT questions [26]
because they have been used in numerous studies to test
analytic reasoning and ability to suppress intuition. This vast
literature has never hinted at the possibility that the three ques-
tions might use significantly different, domain-specific skills.
Detailed studies of the psychological structure of the CRT
suggested that it indeed measures a single construct [36].

5. Material and methods
5.1. Subjects and sessions
Five experimental sessions were conducted during the spring and
summer of 2013. Each session involved 20 subjects, totalling 100
subjects. Subjects were students at the Department of Psychology
from the University of Oregon. The maximum of age was 26, the
minimum was 18 with the average age of 19.65 (s.d. 1.68).

Participation in the experiment was voluntarily and monet-
ary compensation was provided to participants. Each student
attempted 7 questions ! 5 attempts each ¼ 35 total attempts. Each
correct attempt earns the student $0.25, which leads to a maxi-
mum earning of 7 questions ! 5 attempts ! $0.25 ¼ $8.75. This is
in addition to the subject pool credit or show-up remuneration
the subjects have already received.

5.2. Procedure
Each session lasted approximately 45 min. Participants were ran-
domly assigned to one of the five experimental sessions (one
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control and four networked conditions). In the control condition,
each participant worked completely independently of others.
For each of the games in the four networked conditions, a com-
puter program randomly assigned each participant to one of the
20 available nodes in the network and hid the identities of
the participants. Note that subjects were unaware of the full
structure of the network to which they were assigned.

On arrival to the laboratory, participants had time to familiar-
ize themselves with the system by going through a step-by-step
Web-based tutorial. They were able to explore what the system
interface would look like, what type of questions would be
asked, how many questions and iterations will be in the game,
how to submit answers, how to read information about the
answers of their neighbours in the network (except in the control
condition) and how the payment is calculated (see the electronic
supplementary information for screen shots).

During the tutorial, subjects could raise their hands to ask the
experimenter any question about the game flow. Before starting
the experiment, each subject took a mandatory quiz to ensure
that s/he had read and understood the tutorial. The quiz
tested their understanding of key concepts of the game: how
many times will you see each question, does your reward
depend on the responses of other players (it does not) and how
the reward is calculated.

Once a participant successfully finishes the quiz, s/he enters
the experiment and waits for other participants. The experiment
begins as soon as all 20 participants are ready. Participants were
asked not to communicate with each other. Each participant had
a paper and a pen in case they were needed.

At the beginning, the subject sees a question and has 60 s
to read it. After 60 s, the screen changes to another one with
a text field for submitting the answer. On the first attempt of
each question, the participant answers the question completely
independently. The subject has 30 s to submit the answer. A count-
down timer on the screen indicates the amount of time left. If the
subject was unable to submit the answer during the allocated
time, his/her answer would not be recorded and s/he does not
receive credit for that attempt. But s/he will still be able to move
further. If the subject submits his/her answer before the timer
reaches zero, s/he receives the confirmation and waits until the
timeout, to ensure all participants are synchronized.

When the timer reaches zero, the field for submitting the
answer becomes unavailable, and the participants move to another
screen. On this screen, the subject sees an invitation to review a list

of answers by his/her network neighbours. The subject does not
know who these people are or where they sit. The subject is
aware that it is possible not to see all of their neighbours’ answers
(this happens if those neighbours were unable to submit their
answers on time).

The subject has 15 s to review these neighbours’ answers and
to consider whether to change his/her answer in the next iter-
ation. At the end of the 15 s, the subject moves to a screen
similar to the previous one. The only difference that if the
person submitted the answer on previous iteration, that answer
appears in the field by default. If the subject does not wish to
alter his/her answer, s/he still needs to click ‘Submit’ in order
to receive credit for the attempt. Also the right upper table is
populated with answers of the participant’s neighbours in the
network (only from round 2 to 5). The user has 30 s to resubmit
the answer or to change to a new answer.

The above process iterates five times, after which the subjects
are moved to the next question (a completely new question).
Again, subjects always have 60 s on their first attempt at a ques-
tion, which they answer completely independently—without
viewing network neighbours’ answers.

When a participant finishes the last (fifth) iteration of the last
question, s/he is redirected to a summary page with the results
of the experiment. On this page, s/he sees the final payment
and information about his/her own answers in each attempt,
as well as the correct answer to each question. The participant
receives credit (money) for each correct answer they give,
i.e. every attempt on every question. This means that they have
incentive to submit correct answers every time, including in
their first (independent) attempt.

All subjects played in the same controlled environment.
During all experiments, the laboratory, equipment, material,
descriptions, tutorial, list and sequence of questions, time to
read, answer the question and review the answer of neighbours
remained the same.
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