Problem Set 1

1. Browse the paper by Nyarko (1991) which is posted on the website. Focus on Section IV. Following the paper, assume that the demand curve in period t is of the form

$$q_t = a_\omega - b_\omega p_t + \epsilon_t,$$

where the parameters (a, b) depend on the state of nature ω , and ϵ_t is a normal random variable with mean 0 and variance σ^2 . The agent is a monopolist who in each period, optimizes profit myopically, without experimentation. The cost of production is 0.

Following the paper, the true state is $\omega^* = (28.5, 5.25)$. However, (simplifying the paper), the monopolist believes that the state is in the set $\{\omega_1, \omega_2\}$, where $\omega_1 = (20, 1)$ and $\omega_2 = (16, 4)$. Let μ_t be the belief of the monopolist at the beginning of period t with $\mu_1 = 1/2$. The monopolist updates the belief at the end of each period, using Bayes' rule.

- (a) Explain how this exercise is a simplification of the paper by Nyarko.
- (b) Simulate the evolution of beliefs for a large number of periods. (You may have to experiment with the value of σ^2 .
- (c) In view of the simulations, comment on the section IV of the paper.
- 2. Recall the Vives model. Agent t has a payoff function $-E(\omega x_t \omega)^2$], where, to simplify here, ω has diffuse prior (infinite variance), and η_t are independent normally distributed r.v. with mean b and precision ρ_{η} . Each agent has a signal $s_t = \omega + \epsilon_t$ with $\epsilon \sim N(0, 1/\rho_{\epsilon})$ as in the standard model.
 - (a) Assume that agents are mistaken about the distribution of η_t . They believe that b = 0 whereas the true value is positive.
 - (b) Assume that agents optimize without looking at the history of past actions. Let μ_t be the expected value of ω or an outside observer, an econometrician, who knows the history of past actions, $h_t = \{x_1, ..., x_{t-1}\}$. Comment on the case b small.
 - (c) Assume now that any agent t observe the history h_t of past actions. Analyze the evolution of μ_t . Compare with the previous question. At some point, you may use the proposition of Vives (p. 8 of Notes 1).

- (d) 3. (Optional). Simulate the evolution of μ_t at a function of t for the particular realization of all noise terms equal to 0. (You may normalize other parameters to 1). Plot on a diagram the values of μ_t and ρ_t (the precision of the estimate of ω at the beginning of period t. Comment. (You may anticipate the answer in the previous question).
- (e) In view of your answer in question 2, what may be a "flaw" in the the assumption about b, in that question? Is the exercise nevertheless informative? Comment.
- 3. Consider the model of social learning with two states, 0 and 1, two actions 0 and 1, with a cost of investment equal to c. The prior belief (probability of state 1) is μ_1 . Any agent t has a signal $s_t = \omega + \epsilon_t$, where $\epsilon_t \sim N(0, 1/\rho_{\epsilon})$. Assume that the true state is 1.
 - (a) Does the belief converge? If yes, what is the limit? Does the sequence of actions eventually become a herd?
 - (b) Assume now that in each round, with probability π, the acting agent is a "noisy" agent who does not invest, because his cost is greater than 1. Rational agents know the model and the probability π. Answer the previous question.
 - (c) Assume that now that rational agents are not aware of the existence of noisy agents. (They think that $\pi = 0$). To make the case interesting, assume that π is very small. Answer the previous question and comment on the case where π is very small. You may give an informal answer.