
Chapter 1

Bayesian Inference

(09/17/17)

A witness with no historical knowledge

There is a town where cabs come in two colors, yellow and red.1 Ninety percent of the cabs

are yellow. One night, a taxi hits a pedestrian and leaves the scene without stopping. The

skills and the ethics of the driver do not depend on the color of the cab. An out-of-town

witness claims that the color of the taxi was red. The out-of town witness does not know

the proportion of yellow and red cabs in the town and makes a report on the sole basis of

what he thinks he has seen. Since the accident occurred during the night, the witness is not

completely reliable but it has been assessed that such a witness makes a correct statement

is four out of five (whether the true color of the cab is yellow or red). How should one

use the information of the witness? Because of the uncertainty, we should formulate our

conclusion in terms of probabilities. Is it more likely then that a red cab was involved in

the accident? Although the witness reports red and is correct 80 percent of the time, the

answer is no.

Recall that there are many more yellow cabs. The red sighting can be explained either

by a yellow cab hitting the pedestrian (an event with high prior probability) which is

incorrectly identified (an event with low probability), or a red cab (with low probability)

which is correctly identified (with high probability). Both the prior probability of the event

and the precision of the signal have to be used in the evaluation of the signal. Bayes’ rule

1The example is adapted from Salop (1987)
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provides the method to compute probability updates. Let R be the event “a red cab is

involved”, and Y the event “a yellow cab is involved”. Likewise, let r (y) be the report “I

have seen a red (yellow) cab”. The probability of the event R conditional on the report r

is denoted by P (R|r). By Bayes’ rule,2

P (R|r) =
P (r|R)P (R)

P (r)
=

P (r|R)P (R)

P (r|R)P (R) + P (r|Y)(1− P (R))
. (1.1)

The probability that a red cab is involved before hearing the testimony is P (R) = 0.10.

P (r|R) is the probability of a correct identification and is equal to 0.8. P (r|Y) is the

probability of an incorrect identification and is equal to 0.2. Hence,

P (R|r) =
0.8× 0.1

0.8× 0.1 + 0.2× 0.9
=

4

13
<

1

2
.

Note that this probability is much less than the precision of the witness, 80 percent, because

a “red” observation is more likely to come from a wrong identification of a yellow cab than

from a correct identification of a red cab.

The example reminds us of the difficulties that some people may have in practical cir-

cumstances. Despite these difficulties,3 all rational agents in this book are assumed to be

Bayesians. The book will concentrate only on the difficulties of learning from others by

rational agents.

A witness with historical knowledge

Suppose now that the witness is a resident of the town who knows that only 10 percent of

the cabs are red. In making his report, he tells the color which is the most likely according

to his rational deduction. If he applies the Bayesian rule and knows his probability of

making a mistake, he knows that a yellow cab is more likely to be involved. He will report

“yellow” even if he thinks that he has seen a red cab. If he thinks he has seen a yellow

one, he will also say “yellow”. His private information (the color he thinks he has seen) is

ignored in his report.

The omission of the witness’ information in his report does not matter if he is the only

witness and if the recipient of the report attempts to assess the most likely event: the

witness and the recipient of the report come to the same conclusion. But suppose there is

a second witness with the same sighting skill (correct 80 percent of the time) and who also

thinks he has seen a red cab. That witness who attempts to report the most likely event

2Using the definition of conditional probabilities, P (R|r)P (r) = P (R and r) = P (r|R)P (R).
3The ability of people to use Bayes’ rule has been tested in experiments, with mixed results (Holt and

Anderson, 1993).
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says also “yellow”. The recipient of the two reports learns nothing from the reports. For

him the accident was caused by a yellow cab with a probability of 90 percent.

Recall that when the first witness came from out-of-town, he was not informed about the

local history and he gave an informative report, “red”. That report may be inaccurate,

but it provides information. Furthermore, it triggers more information from the second

witness. After the report of the first witness, the probability of R increased from 0.1 to

4/13. When that probability of 4/13 is conveyed to the second witness, he thinks that a

red car is more likely.4 He therefore reports “red”. The probability of the inspector who

hears the reports of the two witnesses is now raised to the level of the last (second) witness.

Looking for your phone as a Bayesian

You live in a two room apartment with two rooms, one that you keep orderly, one that

is messy. After stepped out with a friend, you realize that you have left your cell phone

behind. The phone is equally likely to be in one of the two rooms. You tell your friend:

please looking for my phone that I have left in the apartment while I fetch the car that is

parked in the next block. Your friend comes back without having found the phone. Which

room is the more probable for the phone. Answer before reading the next paragraph.

You may think that your friend has looked into the two rooms. In the orderly room, it is

harder to miss the phone. Therefore, no seeing the phone in that room makes it unlikely

(compared to the other room) that the phone is there. You increase the probability of the

messy room. You are a Bayesian.

In the formalization of this story, we can that there are two rooms 1 (orderly) and 2

(messy). There are two states of the nature: the phone is in room 1 or room 2. A search

in room i, i = 1 or 2 produces a signal that is 1 (finding the phone) or 0 (not finding the

phone. Each signal has a probability qi to be equal to 1 if the phone is in room i. The

probability of not finding the phone in room i when the phone is actually in room i is

1 − qi is positive. If the phone is in room 3 − i, (the room other than i), the signal si is

zero. When you do not find the phone in Room 1, you think, rationally, you increase your

probability that the phone is in Room 2. If you search in Room 2 for about the same time,

then you think that the probability of a mistaken signal s2 = 0 is higher than s1 = 0 if the

phone is in Room 1. Comparing the two rooms, you increase the probability of the phone

in Room 2. The precise Bayesian calculus will be done later in this chapter.

4Exercise: prove it.
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1.1 The standard Bayesian model

1.1.1 General remarks

The main issue is to learn about something. In the Bayesian framework, the “something”

is a possible fact, which can be called a state of nature. That fact may take place in the

future or it may already have taken place with an uncertain knowledge about it. Actually,

in a Bayesian framework, there is no difference between a future event and a past event

that are both uncertain. The future event may be “rain” or “shine”, to occur tomorrow.

For a Bayesian, nature chooses the weather today (with some probability, to be described

below), and that weather is realized tomorrow.

The list of possible states is fixed in Bayesian learning. There is no room for learning about

states that are not on the list of possible states before the learning process. That is an

important limitation of Bayesian learning. There is no ”unknown unknown”, to use the

famous characterization of secretary of state Rumsfeld, only “known unknown”. In other

words, one knows what is unknown.

The Bayesian process begins by putting weights on the unknowns, probabilities on the

possible states of nature. These probabilities may be objective, such as the probability of

“tail” or “face” in throwing a coin, but that is not important. What matters is that these

probabilities are the ones that the learner uses at the learning process. These probabilities

will be called belief. A “belief” will be a distribution of probabilities over the possible

states. By an abuse of language, a belief will sometimes be the probability of a particular

state, especially in the case of two possible states: the “belief” in one state will obviously

define the probability of the other state. The belief before the reception of information is

called the prior belief.

Learning is the processing of information that comes about the state. This information

comes in the form of a signal. Examples are the witness report of the previous section, a

weather forecast, an advice by a financial advisor, the action of some “other” individual,

etc... In order to be informative, that signal must depend on the state. But that signal is

imperfect and does not reveal exactly the state (otherwise there would be nothing inter-

esting to think about). A natural definition of a signal is therefore a random variable that

can take different values with some probabilities and the distribution of these probabilities

depend on the actual state. The processing of the information of the signal is the use of

the signal to update the prior belief into the posterior belief. That step is the core of the

Bayesian learning process and its mechanics are driven by Bayes’ rule. In that process,

the learner knows the mechanics of the signal, i.e., the probability of receiving a particular

signal value conditional on the true state. Bayes’ rule combines that knowledge with the
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prior distribution of the state to compute the posterior distribution.

Examples

1. The binary model

• States of nature θ ∈ Θ = {0, 1}

• Signal s ∈ {0, 1} with P (s = θ|θ) = qθ.

2. Financial advising (i.e., Value Line):

• States of nature: a stock will go up 10% or go down 10% (two states).,

• Advice {Strong Sell, Sell, Hold, Buy, Strong Buy}.

3. Gaussian signal:

• Two states of nature θ ∈ Θ = {0, 1}

• Signal s = θ+ ε, where s has a normal distribution with mean zero and variance

σ2.

4. Gaussian model:

• The state θ has a normal distribution with mean θ̄ and variance sigma2θ.

• Signal s = θ+ ε, where s has a normal distribution with mean zero and variance

σ2
ε .

Note how in all cases, the (probability) distribution of the signal depends on the state.

These are just examples and we will see later how each of them is a useful tool to address

specific issues. We begin with the simplest model, the binary model.

1.1.2 The binary model

In all models of rational learning that are considered here, there is a state of nature (or

just “state”) that is an element of a set. We will use the notation θ for this state. In the

previous story, the states R and Y can be defined by θ ∈ {0, 1} or θ ∈ {θ0, θ1}.

The sighting by the witness is equivalent to the reception of a signal s that can be 0 or

1. A signal that takes one of two value is called a binary signal. The uncertainty about
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States of
Nature

Observation (signal)

s = 1 s = 0

θ = θ1 q1 1− q1
θ = θ0 1− q0 q0

Table 1.1.1: Binary signal

the sighting is represented by the assumption that s is the realization of a random variable

that depends on the true state. One possible dependence is given by Table 1.

Using the definition of conditional probability,

P (θ = 1|s = 1) =
P (θ = 1 ∩ s = 1)

P (s = 1)
=
P (s = 1|θ = 1)P (θ = 1)

P (s = 1)
,

which yields Bayes’ rule

P (θ = 1|s = 1) =
q1P (θ = 1)

q1P (θ = 1) + (1− q1)(1− P (θ = 1)
. (1.2)

The signal 1 is “good news” about the state 1 (it increases the belief in state 1), if and

only if q1 > 1− q0, or

q1 + q0 > 1.

A signal can be informative about a state because it is likely to occur in that state, with

q1. But one should be aware that it may be even more informative when it is very unlikely

to occur in the other state, when 1− q0 is low. If one is looking for piece of metal, a good

detector responds to an actual piece. But a better detector may be one that does not

respond at all when there is no metal in front of it.

When q1 = q0 = q, the signal is a symmetric binary signal (SBS) and in this case, we will

call q the precision of the signal. (The precision will have a different definition when the

signal is not a SBS). Note that q could be less than 1/2, in which case we could switch the

roles of s = 1 and s = 0. The inequality q > 1/2 is just a convention, which will be kept

here for any SBS.

Useful expressions of Bayes’ rule

The formula in (1.2) is unwieldy. When the space state is discrete, it is often more useful

to express Bayes’ rule in terms of likelihood ratio, i.e., the ratio between the probabilities
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of two states, hereafter LR. (There can be more than two states in the set of states). Here

we have only two states, but LR is also useful for any finite number of states, as will be

seen in the search application below.

P (θ = 1|s = 1)

P (θ = 0|s = 1)︸ ︷︷ ︸
=
(P (s = 1|θ = 1)

P (s = 1|θ = 0)

)

︸ ︷︷ ︸
×
(P (θ = 1)

P (θ = 0)

)

︸ ︷︷ ︸
. (1.3)

posterior LR signal factor prior LR

The signal factor depends only on the properties of the signal. With the specification of

Table 1,
P (θ = 1|s = 1)

P (θ = 0|s = 1)
=

q1
1− q0

× P (θ = 1)

P (θ = 0)
. (1.4)

The expression of Bayes’ rule in (1.3) is much simpler than the original formula because it

takes a multiplicative form that has a symmetrical look.

State one is more likely when the LR is greater than 1. In the previous example of the

car incident, say that “1” is “red”. The prior for red cab is 1/10. The signal factor

P (s = 1|θ = 1)/P (s = 1|θ = 0) (correct / mistake) is .8/0.2=4. It is not sufficient to

reverse the belief that yellow is more likely.

For some applications of rational learning, it will be convenient to transform the product

in the the previous equation into a sum, which is performed by the logarithmic function.

Denote by λ the prior Log likelihood ratio between the two states, and by λ′ is posterior,

after receiving the signal s. Bayes’ rule now takes the form

λ′ = λ+ Log(q1/(1− q0)). (1.5)

Both the multiplicative form in (1.3) and the additive form in (1.5) are especially when

there is a sequence of signal. For example, with two signals s1 and s2,

P (θ = 1|s1, s2)

P (θ = 0|s1, s2)
=
(P (s2|θ = 1)

P (s2|θ = 0)

)
×
(P (s1|θ = 1)

P (s1|θ = 0)

)
×
(P (θ = 1)

P (θ = 0)

)
.

One can repeat the updating for any number of signal observations. It is also obvious that

the final update does not depend on the order of the signal observations.

Bounded signals and belief updates

The signal takes here only two values and is therefore bounded. The same is true if the

number of signal values is more than two but finite. The implication is that values of the
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posterior probabilities cannot be arbitrarily close to one or zero. They are bounded away

from zero and one. This will have profound implications later one. At this stage, one can

just state that the binary signal (or any signal with finite values) is bounded.

1.1.3 Multiple binary signals: search on the sea floor

Some objects that have been lost at sea are extremely valuable and have stimulated many

efforts for their recovery: submarines, nuclear bombs dropped of the coast of Spain, airline

wrecks. In searching for the object under the surface of the sea, different informations

have been used: last sight of the object, surface debris, surveys of the area by detecting

instruments. The combination of these informations through Bayesian analysis led to the

findings of the USS Scorpion submarine (2009), the USS Central America with its treasure

(1857-1988), the wreck of AF 447 (2009-2011).

Assume that the search area is divided in N cells. The prior probability distribution is

such that wi is equal to the probability that the object is in cell i. Using previous notation,

wi = P (θ = θi). If the detector is passed over cell i, the probability of finding the object

is pi, which may depend on the cell because of variations in the conditions for detection

(depth, type of soil, etc..). The question is how after a fruitless search over an area, the

probability distribution is updated from w to w′. Let θi be the state that the wreck is in

cell i, and Z the event that no detection was made.

P (θ = θi|Z) =
1

P (Z)
P (Z|θ = θi)P (θ = θi).

P (Z|θ = θi) =

{
1− pi, if there if the detector is passed over cell i,

1, if the detector is not passed over cell i.

Defining pi = 0 if there is no search in cell I (a search may not be over all the cells), the

posterior distribution is given by

w′i = A(1− pi)wi, with A =
1

∑N
i=1(1− pi)wi

. (1.6)

An example: the search for AF447

In the early hours of June 1, 2009, with 228 passengers and crew, Air France Flight 447

disappeared in the celebrated “pot au noir”.5 No message had been sent by the crew but

both “black boxes”–they are red– were retrieved after a two years. They have provided a

5This part of the Intertropical Convergence Zone (ITCZ) between Brazil and Africa is well known to
aviators. It has been a special challenge for all sailboats, merchant ships in the 19th century and racers
today.
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gripping transcript of a failure of social learning in the cockpit during the last ten minutes

of the flight. We focus here on the learning process during the search for the wreck, 3000

meters below the surface of the ocean. It provides a fascinating example of information

gathering and learning.

First, a prior probability distribution (PD) has to be established. At each stage the proba-

bility distribution should orient the next search effort the result of which should be used to

update the PD, and so on. That at least is the theory. 6 It will turn out that the search for

AF447 did not follow the theory. Following Keller (2015), the search which lasted almost

two years before a complete success, proceeded in stages.

1. The aircraft had issued an automated signal on its position at regular time intervals.

From this, it was established that the object should be in a circle of 40 nautical

miles7 (nmi) centered at the last known position (LKP). That disk was endowed

with a probability distribution, hereafter PD, that was chosen to be uniform.

2. Previous studies on crashes for similar conditions showed a normal distribution

around the LKP with standard deviation of 8 nmi.

3. Five days after the crash, began a period during which debris were found, the first of

them about 40 nmi from the LKP. A numerical model was used for “back drifting”

to correct for currents and wind. That process, which is technical and beyond the

scope of this analysis, led to another PD.

4. The three previous probability distributions were averaged with weights of 0.35, 0.35

and 0.3, respectively. These weights are guesses and so far, the updating is not

Bayesian. It’s not clear how a Bayesian updating could have been done at this stage.

The PD is now the prior distribution represented in the panel A of Figure 1.1. The

Bayesian use of that PD will come only after Step 5.

5. Three different searches were conducted, with no result, between June and the end

of 2010.

(a) First, the black boxes of the aircraft are supposed to emit an audible sound for

forty days. That search for a beacon is represented in the panel B of Figure 1.1.

It produced nothing. There has been no Bayesian analysis at this stage, but all

the steps in the search are carefully recorded and this data will be used later.

(b) One had to turn to other methods. In August 2009, a sonar was towed in

a rectangular area SE of the LKP because of a relatively flat bottom. Still

nothing.

6See L. Stone **.
7One nautical mile =1.15 miles (one minute arc on a grand circle of the Earth).
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(A) (B) (C)
Prior probabilities Search for pings Posterior probabilities

after Stage 5

Wreckage

(D)
Posterior assuming beacons failed

Source: Keller (2015).

Figure 1.1: Probability distributions in Bayesian search

(c) Two US ships from the Woods Hole Oceanographic Institute and from the US

Navy searched an area that was a little wider than the NW quadrant of the 40

nmi disk. By the end of 2010, there were still no results.

6. Enters now Bayesian analysis. Each of the previous three steps, was used to update

the prior PD (which, your recall, was an average of the first three PDs). The disc

was divided in 7500 cells. Each search step is equivalent to 7500 binary signals si

equal to 0 or 1 that turn out to be 0. The probabilities go according to the color

spectrum, from high (red) to low (blue).

(a) In step (a), the probability of survival for each bacon was set at 0.8. (More about

this later). Conditional of survival, the probability of detection was estimated at
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0.9. The probability of detection in that step was therefore 0.92. The updating

is described in Exercise 1.2.

(b) In step (b), the probability of detection was estimated at 0.9 and the no find

led to another Bayesian update of the PD.

(c) In step (c), the searches that were conducted in 2010 had another estimated

probability of detection equal to 0.9 that was used in the third Bayesian update.

The result of these three updates is represented in the panel C of Figure 1.1.

The areas that have been searched have a low probability (in blue).

7. At this point, the results may have been puzzling. It was then decided, to assume

that both the beacons in the black boxes had failed. The search in Panel B of the

Figure was ignored and the distribution goes from Panel C to Panel D. See how the

density of probability in the center part of the disc is now restored to a high level.

The search was resumed in the most likely area and the wreck was found in little

time (April 3, 2011).

In conclusion, the search relied on a mixture of educated guesses and Bayesian analysis. In

particular, the failure of the search for pings should have led to a Bayesian increase of the

probability of the failure of both beacons. The jump of the probability of failure from 0.1

to 1 in the final stage of the search seems to have been somewhat subjective, but it turned

out to be correct.

1.1.4 The Gaussian model

The distributions of the prior θ and of the signal s (conditional on θ) are normal (“Gaus-

sian”, from Carl Friedrich Gauss). In this model, the learning process has nice properties.

Using standard notation,

• θ ∼ N (θ̄, σ2).

• s = θ + ε, with ε ∼ N (0, σ2
ε ).

The first remarkable property of a normal distribution is that it is characterized by two

parameters only, the mean and the variance. The inverse of the variance of a normal

distribution is called the precision, for obvious reasons. Here the notation is such that

ρθ = 1/σ2 and ρε = 1/σ2
ε .

These learning

rules will be used

repeatedly.

The joint distribution of two normal distribution is also normal (with a density propor-

tional to the exponential of the a quadratic form). Hence, the posterior distribution (the

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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distribution of θ conditional on s) is also normal and the learning rule will be on two

parameters only. First, the variance :

σ′2 =
σ2σ2

ε

σ2 + σ2
ε

.

This equation is much simpler when we use the precision, which is updated from ρ to ρ′

according to

ρ′ = ρ+ ρε.

Admire the simple rule: to find the precision of the posterior we just add the precision of

the signal to the precision of the prior.

Using the precisions, the updating rule for the mean is also very intuitive:

m′ = αs+ (1− α)m, with α =
ρε
ρ
.

The posterior’s mean is an average between the signal and the mean of the prior, each

weighted by the precision of their distribution! It could not be more intuitive. And that

rule is linear, which will be very useful.





ρ′ = ρ+ ρε,

m′ = αs+ (1− α)m, with α =
ρε
ρ
.

(1.7)

The Gaussian model is very popular because of the simplicity of this learning rule which

which is recalled: (i) after the observation of a signal of precision ρε, the precision of

the subjective distribution is augmented by the same amount; (ii) the posterior mean is

a weighted average of the signal and the prior mean, with weights proportional to the

respective precisions. Since the ex post distribution is normal, the learning rule with a

sequence of Gaussian signals which are independent conditional on θ is an iteration of

(1.7).

The learning rule in the Gaussian model makes precise some general principles. These

principles hold for a wider class of models, but only the Gaussian model provides such a

simple formulation.

1. The normal distribution is summarized by the two most intuitive parameters of a

distribution, the mean and the variance (or its inverse, the precision).

2. The weight of the private signal s depends on the noise to signal ratio in the most

intuitive way. When the variance of the noise term σ2
ε tends to zero, or equivalently
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its precision tends to infinity, the signal’s weight α tends to one and the weight

of the ex ante expected value of θ tends to zero. The expression of α provides a

quantitative formulation of the trivial principle according to which one relies more

on a more precise signal.

3. The signal s contributes to the information on θ which is measured by the increase in

the precision on θ. According to the previous result, the increment is exactly equal to

the precision of the signal (the inverse of the variance of its noise). The contribution of

a set of independent signals is the sum of their precisions. This property is plausible,

but it rules out situations where new information makes an agent less certain about

θ, a point which is discussed further below.

4. More importantly, the increase in the precision on θ is independent of the realization

of the signal s, and can be computed ex ante. This is handy for the measurement

of the information gain which can be expected from a signal. Such a measurement

is essential in deciding whether to receive the signal, either by purchasing it, or by

delaying a profitable investment to wait for the signal.

5. The Gaussian model will fit particularly well with the quadratic payoff function and

the decision problem which will be studied later.

1.1.5 Comparison of the two models

In the binary model, the distinction good/bad state is appealing. The probability distri-

bution is given by one number. The learning rule with the binary signal is simple. These

properties are convenient when solving exercises. The Gaussian model is convenient for

other reasons which were enumerated previously. It is important to realize that each of

the two models embodies some deep properties.

The evolution of confidence

When there are two states, the probability distribution is characterized by the probability

µ of the good state. This value determines an index of confidence: if the two states are 0

and 1, the variance of the distribution is µ(1− µ). Suppose that µ is near 1 and that new

information arrives which reduces the value of µ. This information increases the variance

of the estimate, i.e., it reduces the confidence of the estimate. In the Gaussian model, new

signals cannot reduce the precision of the subjective distribution. They always reduce the

variance of this distribution.
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Bounded and unbounded private informations

Another major difference between the two models is the strength of the private information.

In the binary model, a signal has a bounded strength. In the updating formula (??),

the multiplier is bounded. (It is either p/(1 − p′) or (1 − p)/p′). When the signal is

symmetric, the parameter p defines its precision. In the Gaussian model, the private signal

is unbounded and the changes of the expected value of θ are unbounded. The boundedness

of a private signal will play an important role in social learning: a bounded private signal

is overwhelmed by a strong prior. (See the example at the beginning of the chapter).

Binary states and Gaussian signals

If we want to represent a situation where confidence may decrease and the private signal

is unbounded, we may turn to a combination of the two previous models.

Assume that the state space Θ has two elements, Θ = {θ0, θ1}, and the private signal is

Gaussian:

s = θ + ε, with ε ∼ N (0, 1/ρ2ε). (1.8)

The LLR is updated according to

λ′ = λ+ ρε(θ1 − θ0)(s− θ1 + θ0
2

). (1.9)

Since s is unbounded, the private signal has an unbounded impact on the subjective prob-

ability of a state. There are values of s such that the likelihood ratio after receiving s is

arbitrarily large.

1.1.6 Learning may lead to opposite beliefs: polarization

Different people have often different priors. The same information may lead to a conver-

gence or a divergence of their beliefs. Assume first that there are only two states. In this

case, without loss of generality, we can assume that the information takes the form of a

binary signal as in Table 1. If two individuals observe the same signal s, their LR are

multiplied by the same ratio P (s|θ1)/P (s|θ0) that they move in the same direction.

In order to observe diverging updates, there must be more than two states. Consider the

example with three states. these could be that the economy needs a reform to the left

(state 1), to the center (state 2) or to the right (state 3). A signal s is produced either by

a study or the implementation of a particular policy and provides an information on the

state that is represented by the next table. (The signal s = 1 is a strong indication that
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s = 0 s = 1
θ = 1 0.3 0.7
θ = 2 0.9 0.1
θ = 3 0.3 0.7

the center policy is not working).

Two individuals, Alice and Bob, have their own prior on the states. Alice thinks that a

policy on the right will not work and Bob thinks that a policy on the left will not work.

Both have equal priors between the center and the right or the left. An example is presented

in the next table.

Alice Bob
1 0.47 0.06
2 0.47 0.47
3 0.06 0.47

Alice Bob
1 0.79 0.1
2 0.11 0.11
3 0.1 0.79

Priors Posteriors

After the signal s = 1, Alice leans more on the left and Bob more on the right. The signal

generates a polarization For Alice and Bob, the belief in the center decreases and for both

of them, the beliefs in states 1 and 3 increase, but the increase is much higher for the state

that has a higher prior, state 1 for Alice and state 2 for Bob. When θ is measured by a

number, Alice and Bob draw opposite conclusions from the expected value of θ.



16 Bayesian tools16

BIBLIOGRAPHY

* Anderson, Lisa R., and Charles A. Holt (1996). “Understanding Bayes’ Rule,” Journal of

Economic Perspectives, 10(2), 179-187.

Salop, Steven C.. 1987. “Evaluating Uncertain Evidence with Sir Thomas Bayes: A Note

for Teachers,” Journal of Economic Perspectives, 1(1): 155-159.

* Keller, Colleen M. (2015). “Bayesian Search for Missing Aircraft,” slides.

A superb presentation of four famous examples of Bayesian searches by a player in

that field. Highly recommended.

Stone, Lawrence D., Colleen M. Keller, Thomas M. Kratzke and Johan P. Strumprer

(2014). “Search for the Wreckage of Air France Flight AF 447,” Statistical Science, 29 (1),

69-80.

Presents the search for AF 447. The next item, by a member of the team, is a

conference presentation that discusses Bayesian searches for the USS Scorpion, the

USS Central America, AF 447, and the failed search for MH 370. These slides are

highly recommended, especially after reading the relevant section in this chapter.

Dixit, Avinash K. and Jörgen Weibull (2007). “Political polarization,” PNAS, 104 (18),

7351-7356.

Williams, Arlington W., and James M. Walker (1993). “Computerized Laboratory Exer-

cises for Microeconomics Education: Three Applications Motivated by the Methodology

of Experimental Economics,” Journal of Economic Education, 22, 291-315.

Jern, Alan, K-m I. Chang and C. Kemp (2014). “Belief Polarization is not always irra-

tional,” Psychological Review, 121, 206-224.

https://www.jstor.org/stable/pdf/2138489.pdf
https://www.aeaweb.org/articles?id=10.1257/jep.1.1.155
http://fusion2015.org/wp-content/uploads/2015/07/Fusion2015_PlenaryTalk_ColleenKeller.pdf
https://arxiv.org/pdf/1405.4720.pdf
http://www.jstor.org/stable/1183043?seq=1#page_scan_tab_contents


17 Bayesian tools17

EXERCISE 1.1. (The MLRP)

Construct a signal that does not satisfy the MLRP.

EXERCISE 1.2. (Simple probability computation, searching for a wreck)

An airplane carrying “two blackboxes” crashes into the sea. It is estimated that each box

survives (emits a detectable signal) with probability s. After the crash, a detector is passed

over the area of the crash. (We assume that we are sure that the wreck is in the area).

Previous tests have shown that if a box survives, its signal is captured by the detector with

probability q.

1. Determine algebraically he probability pD that the detector gets a signal. What is

the numerical value of pD for s = 0.8 and q = 0.9?

2. Assume that there are two distinct spots, A and B, where the wreck could be.

Each has a prior probability of 1/2. A detector is flown over the areas. Because of

conditions on the sea floor, it is estimated that if the wreck is in A, the detector finds

it with probability 0.9 while if the wreck is in B, the probability of detection is only

0.5. The search actually produces no detection. What are the ex post probabilities

for finding the wreck in A and B?

EXERCISE 1.3. (non symmetric binary signal)

There are two states of nature, θ0 and θ1 and a binary signal such that P (s = θi|θi) = qi.

Note that q1 and q0 are not equal.

1. Let q1 = 3/4 and q0 = 1/4. Does the signal provide information? In general what is

the condition for the signal to be informative?

2. Find the condition on q1 and q0 such that s = 1 is good news about the state θ1.

EXERCISE 1.4. (Bayes’ rule with a continuum of states)

Assume that an agent undertakes a project which succeeds with probability θ, (fails with

probability 1− θ), where θ is drawn from a uniform distribution on (0, 1).

1. Determine the ex post distribution of θ for the agent after the failure of the project.

2. Assume that the project is repeated and fails n consecutive times. The outcomes are

independent with the same probability θ. Determine an algebraic expression for the

density of θ of this agent. Discuss intuitively the property of this density.
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Chapter 2

Sequences of information and
beliefs

2.1 Sequence of information with perfect memory

Suppose that A is a subset of the set Θ of all possible states. An example is one of two

states, but there could be more than two states. There could also be a continuum of states

and A could be, for example, an interval of real numbers. Let m1 be the probability of

A. There are N rounds, or periods, of information and N can be infinite. In each round,

a signal st is received. That signal may be, but does not have to be, a binary signal. It’s

probability distribution depends on the state. It therefore provides information on the

state. The history, ht, at the beginning of period t is defined as the sequence of signal

before t:

History in period t: ht = {s1, . . . , st−1}. (2.1)

We assume here perfect memory of the past signals.

After the reception of each signal st, the probability of A is revised from mt to mt+1. In

formal notation,

mt+1 = P (A|st, ht).

In many cases, the information of history ht will be summarized in mt which is the proba-

bility of A given the history ht. However, in some cases past history cannot be summarized

in the current belief, in particular when the signals st are not independent (Exercise 2.1).

19
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Stochastic path representations in probabilities

There are two states θ is equal to 1 or 0. There is a sequence of symmetric binary signals

st, (t ≥ 1) as defined in Table 1 with a symmetric signal, q0 = q1. For a given state, the

signals are independent. In each period t, the signal st is a random variable. Hence, the

sequence of values mt is a random sequence, a stochastic process. It can be represented

by a trajectory, which is random, as on Figure 2.1. In the figure, we assume that the

realization of the signals is the sequence {1, 0, 1, 1, 0, 1, 1, ...}. After each signal equal to 1,

the belief increases and it decreases after each 0 signal. The signals 1 and 0 cancel each

other and m1 = m3, mm2 = m4 = m6, m5 = m7. Note that the belief increase is smaller

at m4 than m3. That is because at m4, the belief from history is higher and the impact of

a good signal is smaller. (All the beliefs on the figure are greater than 1/2).

The probabilities of the branches are presented in blue under the assumption that the true

state is 1. We could have other trajectories with different probabilities for their branches.

t

1

mt

0
1 2 3 4 5 6 7 8

(q)

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

(q)

(q) (q)
(q)

(1-q)

(1-q)

1

Figure 2.1: The evolution of belief as a stochastic process

Stochastic path representations in LLR

Bayes’ rule in LR is simpler than the standard formula. For some applications, we can do
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even better with the Log Likelihood ratio (LLR). Define the prior LLR by

λ =
P (θ = 1)

P (θ = 0)
,

and, likewise, the posterior LLR, λ′. Equation (1.2) becomes

λ′ = λ+ a, with the signal term a =
P (s = 1|θ = 1)

P (s = 1|θ = 0)
. (2.2)

This expression has two useful properties: first the updating is additive; second the updat-

ing term is independent of the prior LLR. After some new information, agents with different

prior LLRs have the same updating of their LLR. In the process of receiving information,

different LLRs move in parallel!

In some cases, it will be useful to measure a belief by the Log likelihood (LLR). Recall that

Θ is the space of all possible states. It has a probability equal to 1. Let λ1 be the LLR of

the subset of states A with respect to Θ:

λ1 = Log
(P (θ ∈ A)

P (θ ∈ Θ)

)
= Log(P (θ ∈ A)).

We have seen (equation 2.2) that the Bayesian updating after some signal st is such that

λt+1 = λt + at, (2.3)

where at depends on the properties of the signal st and on the signal value that was

received in round t. Using the parallel updating of the LLRs, we have an elegant geometric

representation of the beliefs for a population of agents with different prior beliefs. Suppose

for example, that there are two agents, one with a higher private belief than the other, the

“optimist” and the “pessimist”, and that they receive the same sequence of informative

signals. The evolution of their LLRs is illustrated in Figure 2.2.

Note that upwards and downwards moves have the same magnitude. The LLR is obviously

not bounded. In the figure a LLR of 0 means equal probabilities for the two states. If the

LLR is negative, the state 0 is more likely.

We can generalize this to a model with a continuum of agents, of total mass that can

be taken equal to 1, each characterized by a prior belief. The distribution of prior beliefs

(measured in LLR) is characterized by a density function with support **, which is assumed

here to be a bounded interval of real numbers. When new information is received, the

evolution of the beliefs of the population is represented by (random) translations of the

support. For each of these supports, the density of the beliefs is the same as in the prior

distribution.
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Figure 2.2: The evolution of LLs

Bounded and unbounded private informations

Definition: When there exists M such that in the equation (2.3) for the updating of the

LLR, |at| ≤M for any t, the signal is bounded.

When there is no such upper-bound, the signal is unbounded.

Examples:

• In the binary model, a signal has a bounded strength. In the updating formula (1.2),

the multiplier is bounded. (It is either p/(1− p′) or (1− p)/p′).

• Assume that the state space Θ has two elements, Θ = {θ0, θ1}, and the private signal

is Gaussian:

s = θ + ε, with ε ∼ N (0, 1/ρ2ε). (2.4)

Bayes’ rule in log likelihood ratio (LLR) takes the form:

λ′ = λ+ ρε(θ1 − θ0)(s− θ1 + θ0
2

). (2.5)



23 Sequences of information and beliefs23

Since s is unbounded, the private signal has an unbounded impact on the subjective

probability of a state. There are values of s such that the likelihood ratio after

receiving s is arbitrarily large.

2.2 Martingales

Bayesian learning satisfies a strong property on the revision of the distribution of the states

of nature. Suppose that before receiving a signal s, our expected value of a real numberBayesian learning

satisfies the martingale

property: changes

of beliefs are

not predictable.

θ is E[θ]. This expectation will be revised after the reception of s. Question: given the

information that we have before receiving s, what is the expected value of the revision?

Answer: zero. If the answer were not zero, we would incorporate it in the expectation of

θ ex ante. This property is the martingale property. It is a central property of rational

(Bayesian) learning. The martingale property separates rational from non rational learning.

The martingale property with learning from a binary signal

Assume that there are two signal values, s =∈ {0, 1}. Let P (θ) be the probability that θ

is equal to some value (or is in some set). P and P ′ denote prior (before the signal s) and

posterior probabilities.

E[P ′(θ)] = P (s = 1)P ′(θ|s = 1) + P (s = 0)P ′(θ|s = 0),

= P (s = 1)
P (θ ∩ s = 1)

P (s = 1)
+ P (s = 0)

P (θ ∩ s = 0)

P (s = 0)
,

= P (θ ∩ s = 1) + P (θ ∩ s = 0),

= P (θ ∩ (s = 1 ∪ s = 0)) = P (θ).

An equivalent result is

E[P ′(θ)− P (θ)] = 0.

Note that P (θ) is not a random variable: it is the probability of θ before the signal is

received. Before that reception, the expected value of the change of P (θ) (caused by the

observation of the signal), is equal to 0! P (θ) is a martingale. If there are two states

θ ∈ {0, 1}, then E[θ] = P (θ = 1) and E[θ] satisfies the martingale property.

The martingale property holds in general for any form of signal and if θ takes arbitrary

values because it rests on the the property of conditional probabilities. Assume for example

that θ has a density g(θ), and that s has a density φ(s|θ) conditional on θ. Let ψ(θ|s)
be the density of θ conditional on s. By Bayes’ rule, ψ(θ|s) = φ(s|θ)g(θ)/φ(s), with

φ(s) =
∫
φ(s|θ)g(θ)dθ. Using

∫
φ(s|θ)ds = 1 for any θ,
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E
[
E[θ|s]

]
=

∫ (∫
θψ(θ|s)dθ

)
φ(s)ds =

∫ ∫
φ(s|θ)θg(θ)dsdθ =

∫
θg(θ)dθ = E[θ].

The similarity of this property with that of an efficient financial market is not fortuitous:

in a financial market, updating is rational and it is rationally anticipated. Economists have

often used martingales without knowing it.

A little formalism is helpful at this point. Assume that information comes as a sequence

of signals st, one signal per period. Assume further that these signals have a distribution

which depends on θ. They may or may not be independent, conditional on θ, and their

distribution is known. Define the history in period t as ht = (s1, . . . , st). The martingale

property is defined for a sequence of real random variables as follows.1

DEFINITION 2.1. The sequence of random variables Yt is a martingale with respect to

the history ht = (s1, . . . , st−1) if and only if

Yt = E[Yt+1|ht].

Expanding on the example with a binary signal, denote µt = E[θ|ht]. Because the history

ht is random, µt is a sequence of random variables. The proof of the next result is the

same as for the simple example

PROPOSITION 2.1. Let µt = E[θ|ht] with ht = (s1, . . . , st−1). It satisfies the martin-

gale property: µt = E[µt+1|ht].

Let A be a set of values for θ, A ⊂ Θ, and consider the indicator function IA for the set A
which is the random variable given by

IA(θ) =
{

1 if θ ∈ A,
0 if θ /∈ A.

Using P (θ ∈ A) = E[IA] and applying the previous proposition to the random variable IA
gives the next result.

PROPOSITION 2.2. The probability assessment of an event by a Bayesian agent is a

martingale: for an arbitrary set A ⊂ Θ, let µt = P (θ ∈ A|ht) where ht is the history of

informations before period t; then µt = E[µt+1|ht].

The likelihood ratio between two states θ1 and θ0 cannot be a martingale given the infor-

mation of an agent. However, if the state is assumed to take a particular value, then the

1A useful reference is Grimmet and Stirzaker (1992).
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likelihood ratio may be a martingale. Proving it is a good exercise.

PROPOSITION 2.3. Conditional on θ = θ0, the likelihood ratio

P (θ = θ1|ht)
P (θ = θ0|ht)

is a martingale.

2.3 Convergence of beliefs

Probabilities will be equivalent to “beliefs”. When more information comes in, does a belief

(the probability estimate of a particular state) converge to some value. (We postpone the

question whether it converges to the truth). We first need a definition of convergence. In

this book, any convergence of a random variable (for example, a belief) is a convergence

in probabiity2:

DEFINITION 2.2. Let X1, X2, . . . , Xn, . . . be random variables on some probability space

(Ω,F , P ). Xn tends to a limit X in probability if

• for any given ε > 0, P (|Xn −X| ≥ ε)→ 0 as n→∞.

Note that the limit X is a random variable. For example, Xt may be a belief at history

ht. The sequence of beliefs converges but we don’t know to which value it will converge.

A great property of any rational learning process is that beliefs converge. This convergenceBayesian beliefs

converge because

of the Martingale

Convergence Theorem.

occurs because the sequence of beliefs is a martingale that is bounded (between 0 and 1

by definition of a probability) and the martingale convergence theorem (MCT) states that

any bounded martingale converges.

The convergence of a bounded martingale, in a sense which will be made explicit, is a

great result which is intuitive. The essence of a martingale is that its changes cannot be

predicted, like the walk of a drunkard in a straight alley. The sides of the alley are the

bounds of the martingale. If the changes of direction of the drunkard cannot be predicted,

the only possibility is that these changes gradually taper off. For example, the drunkard

cannot bounce against the side of the alley: once he hits the side, the direction of his next

move is predictable.

2There are other criteria of convergence, for example the convergence almost sure (on a set of measure
one in Ω, or convergences of the expected value of |Xn|r, r ≥ 1), but these are not useful at this stage for
the analysis of the convergence of beliefs in a learning process. At this stage, there is no study of social
learning with an example of convergence in probability and no convergence almost surely.
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THEOREM 2.1. (Martingale Convergence Theorem)3

If Xt is a martingale with |X| < M <∞ for some M and all t, then there exists a random

variable X such that Xt converges to X.

Most of the social learning in this book will be about probability assessments that the state

of nature belongs to some set A ⊂ Θ. We have seen that probability assessments satisfy

the martingale property. They are obviously bounded by 1. Therefore they converge to

some value.

PROPOSITION 2.5. Let A be a subset of Θ and µt be the probability assessment µt =

P (θ ∈ A|ht), where ht is a sequence of random variables in previous periods. Then there

exists a random variable µ∗ such that µt → µ∗.

Proof (hint): (“buy low, sell high”)

There are various proofs of the MCT. Recall that the martingale property is the same

as the efficient market equation. If a market is efficient, there is not strategy that has a

positive expected gain. One proof of the MCT rests on the fact that the strategy “buy low,

sell high” cannot generate a positive expected profit. Economists should have discovered

the MCT.

We want to show that a belief, the probability of a state, or of an event, converges. Call

that belief in round t, pt. The stock is traded for T periods and new information is coming

between periods. The truth is known in round T + 1. The stock pays 1 if the event takes

place and 0 otherwise. The sequence of prices pt is a martingale.

Take two numbers b and a with 0 < b < a < 1. The difference a − b may be small, but

this is not important right now. The trading strategy is to buy one unit of the stock if the

price is smaller than b, hold the stock until the price is higher than b, and sell the stock as

soon as the price is higher than a. A new stock is bought when the price goes below b. In

the strategy “buy low and sell high”. “Low” and “high” are defined by the two values b

and a.

If in period T , you hold the stock, you sell it at whatever the price in that period, pT . The

strategy is illustrated by Figure 2.3.

Define by NT the number of times you buy a stock until round T , that is the number of

upwards crossings of the band (b, a) in the trajectory of the price, pt. The maximum loss

3Recall that we use only the convergence in probability. The theorem shows, under weaker conditions,
the stronger property that the martingale converges almost everywhere.
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Figure 2.3: A strategy of “buy low, sell high”

is b (if he has a stock that he sells in the last period). The gain is NT (a− b). Since b < 1,

the net profit is not smaller than

V = NT (a− b)− 1.

Because of the martingale property, the expected gain from the trading strategy cannot be

positive. Hence, for any T ,

E[NT ] ≤ 1

(a− b) .

The expectation of the number of upward crossing is bounded. From this, one can show

that the probability of an upward crossing after period t tends to zero if t tends to infinity.

One can then divide the interval [0, 1] in n intervals, each of with 1/n and iterate the

previous argument for the finite number n. That means that for any ε, the stochastic

process stays within one of these bands except with probability ε. Since the number n can

be take as large as one wants, that proves the convergence in probability.4

A heuristic remark on another proof of the Martingale Convergence Theorem

The main intuition of the proof is important for our understanding of Bayesian learning. It

is a formalization6 of the metaphor of the drunkard. In words, the definition of a martingale

4From these intuitive hints, the reader can construct a formal proof. For verification, see Williams
(1991).

6The proof is given in Grimmet and Stirzaker (1992). The different notions of convergence of a random
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states that agents do not anticipate systematic errors. This implies that the updating

difference µt+1 − µt is uncorrelated with µt. The same property holds for more distant

periods: conditional on the information in period t, the random variables µt+k+1 − µt+k
are uncorrelated for k ≥ 0.

Since µt+n − µt =

n∑

k=1

µt+k − µt+k−1,

conditional on ht, V ar(µt+n) =

n∑

k=1

V ar(µt+k − µt+k−1).

Since E[µ2
t+n] is bounded, V ar(µt+n) is bounded: there exists A such that

for any n,

n∑

k=1

V ar(µt+k − µt+k−1) ≤ A.

Since the sum is bounded, truncated sums after date T must converge to zero as T →∞:

for any ε > 0, there exists T such that for all n > T ,

V ar(µT+n − µT ) =

n∑

k=1

V ar(µT+k − µT+k−1) < ε.

The amplitudes of all the variations of µt beyond any period T become vanishingly small

as t→ 0. Therefore µt converges7 to some value µ∞. The limit value is in general random

and depends on the history.

Rational (Bayesian) beliefs cannot cycle forever

Another way to look at the convergence of rational beliefs is to ask why they cannot have

random cycles. If such cycles take place, there are random peaks and troughs, since the

beliefs are between 0 and 1. But then how can the belief evolve when, say, it is close to 1.

There is not much “room” to move up. Hence there cannot be much room to move down.

If the belief could move down by a large amount, then, since it cannot move up by much,

it should be have been adjusted right now. Of course, all this is in a probabilistic sense.

The belief may move down by a large amount, but the larger the jump down, the smaller

its probability. From this, we see that if the belief is close to 1, or to 0, it does not move

up or down very much between periods.

variable are recalled in the Appendix.

7The convergence of µt is similar to the Cauchy property in a compact set for a sequence {xt}: if
Supk(|xt+k − xt|)→ 0 when t→∞, then there is x∗ such that xt → x∗. The main task of the proof is to

analyze carefully the convergence of µt.
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One could also comment that if a belief, which has been generated by history is close to

1 , that means that history has provided convincing information that the event is highly

probable. Any new information is rationally combined with history but the “weight” of

this “convincing” history is such that new information can generate only a small change

of belief.

This deep property distinguishes rational Bayesian learning from other forms of learning.Rational beliefs

converge while

non rational beliefs

may not.

Many adaptative (mechanical) rules of learning with fixed weights from past signals are not

Bayesian and do not lead to convergence. In Kirman (1993), agents follow a mechanical

rule which can be compared to ants searching for sources of food, and their beliefs fluctuate

randomly and endlessly.

The evolution of confidence

When there are two states, the probability distribution is characterized by the probability

µ of the good state. This value determines an index of confidence: if the two states are 0

and 1, the variance of the distribution is µ(1− µ). Suppose that µ is near 1 and that new

information arrives which reduces the value of µ. This information increases the variance

of the estimate, i.e., it reduces the confidence of the estimate.
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EXERCISE 2.1. (Non independent signals)

Construct an example with non independent signals where the history at time t cannot

be summarized by the belief at time t.
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Chapter 3

Social learning

Why learn from others’ actions? Because these actions reflect something about their in-

formation. Why don’t we exchange information directly using words? People may not be

able to express their information well. They may not speak the same language. They may

even try to deceive us. What are we trying to find? A good restaurant, a good movie,

a tip on the stock market, whether to delay an investment or not,... Other people know

something about it, and their knowledge affects their behavior which, we can trust, must

be self-serving. By looking at their behavior, we will infer something about what they

know. This chain of arguments will be introduced here and developed in other chapters.

We will see how the transmission of information may or may not be efficient and may lead

to herd behavior, to sudden changes of widely believed opinions, etc...

For actions to speak and to speak well, they must have a sufficient vocabulary and be

intelligible. In the first model of this chapter, individuals are able to fine tune their

action in a sufficiently rich set and their decision process is perfectly known. In such

a setting, actions reflect perfectly the information of each acting individual. This case is a

benchmark in which social learning is equivalent to the direct observation of others’ private

information. Social learning is efficient in the sense that private actions convey perfectly

private informations.

Actions can reveal perfectly private informations only if the individuals’ decision processes

are known. But surely private decisions depend on private informations and on personal

parameters which are not observable. When private decisions depend on unobservable

idiosyncracies, or equivalently when their observation by others is garbled by some noise,

the process of social learning can be much slower than in the efficient case (Vives, 1993).
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3.1 A canonical model of social learning

3.1.1 Structure

The purpose of a canonical model is to present a structure which is sufficiently simple and

flexible to be a tool of analysis for a number of issues. Many models of rational social

learning are built with the following three blocks:

1. The information endowments: The state of nature is what the information is about.

It is denoted by θ and is randomly chosen by nature before the learning process in a

set Θ that can be finite or in a continuum. The probability distribution of nature is

the prior distribution and is known to all agents.

2. The private information of an agent i, i = 1, . . . , N , where N can be infinite, is what

provides a value to others when they observe his action. That private information is

modeled here by a random signal si. That signal has a probability distribution that

is known by others in most cases (to make some inference possible), but by definition

of private, the realization of the signal si cannot be observed by others. The signal

provide some information on the state θ because its distribution depends on the true

value of the state of nature θ. Any agent updates the prior on θ with the signal si

to form a private distribution of probability of θ.

3. The action xi of agent i is taken in round i, (i ≥ 1) and belongs to a set Ξ. (Without

loss of generality, Ξ is the same set for all agents. The action will be the “message”.

We can assume here that this action is such that

x∗i = Ei[θ], (3.1)

where Ei is the expectation of agent i when the action is taken.

One can explain the decision rule in (3.1) by the optimization of the agent.

For example, it is the decision rule if the agent maximizes the expected value

of the payoff function −(x − θ)2 or the function θx − x2/2, which both have

a simple intuitive interpretation. However, this “structural foundation” of the

behavioral rule is not required here for the analysis of the social learning. Note

that for these two functions, the optimal payoff is equal to minus the variance

of θ (up to a constant). That may be convenient in evaluating the benefit of

information.

What is essential at this stage, is that agents other than i know that (3.1) is the

decision rule. We will deal later with the important case of an imperfect or imperfectly

known decision rule. One can also have other payoff functions but they may lead to

a more complex inference problem without additional insight.
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Since agents “speak” through their actions, the definition of the action set Ξ is critical.

A language with many words may convey more possibilities for communication than a

language with few words. Individuals will learn more from each other about a parameter

θ when the actions are in an interval of real numbers than when the actions are restricted

to be either zero or one.

3.1.2 The process

In this chapter and the next, agents are ordered in an exogenous sequence. Agent t, t ≥ 1,

chooses his action in period t. We define the history of the economy in period t as the

sequence

ht = {x1, . . . , xt−1}, with h0 = ∅.
Agent t knows the history of past actions ht before making a decision.

To summarize, at the beginning of period t (before agent t makes a decision), the knowledge

which is common to all agents is defined by

• the distribution of θ at the beginning of time,

• the distributions of private signals and the payoff functions of all agents,

• the history ht of previous actions.

We will assume that agents cannot observe the payoff of the actions of others. Whether

this assumption is justified or not depends on the context. It is relevant for investment

over the business cycle: given the lags between investment expenditures and their returns,

one can assume that investment decisions carry the sole information. Later in the book,

we will analyze other mechanisms of social learning. For the sake of clarity, it is best to

focus on each one of them separately.

Agent t combines the public belief on θ with his private information (the signal st) to form

his belief which has a c.d.f. F (θ|ht, st). He then chooses the action xt to maximize his

payoff E[u(θ, xt)], conditional on his belief.

All remaining agents know the payoff function of agent t (but not the realization of the

payoff), and the decision model of agent t. They use the observation of xt as a signal on

the information of agent t, i.e., his private signal st. The action of an agent is a message

on his information. The social learning depends critically on how this message conveys

information on the private belief. The other agents update the public belief on θ once

the observation xt is added to the history ht: ht+1 = (ht, xt). The distribution F (θ|ht) is

updated to F (θ|ht+1).



36 Social learning36

3.2 The Gaussian model

Social learning is efficient when an individual’s action reveals completely his private infor-

mation. This occurs when the action set which defines the vocabulary of social learning is

sufficiently large. We begin with the Gaussian model (Section ??) that provides a simple

and precise case for discussion.

The prior distribution on θ is normal, N (m1, 1/ρ1), with mean m1 and precision ρ1. Since

we focus on the social learning of a given state of nature, the value of θ does not change

once it is set.

There is a countable number of individuals, indexed by i ≥ 1, and each individual i has

one private signal si such that

si = θ + εi, with εi ∼ N (0, 1/ρε).

Individual t chooses his action xt ∈ R once and for all in period t: the order of the

individual actions is set exogenously.

The public information at the beginning of period t is made of the initial distribution

N (θ̄, 1/ρθ) and of the history of previous actions ht = (x1, . . . , xt−1).

Suppose that the public belief on θ in period t is given by the normal distributionN (µt, 1/ρt).

This assumption is obviously true for t = 1. By induction, we now show that it is true in

every period.

(i) The belief of agent t

The belief is obtained from the Bayesian updating of the public belief N (µt, 1/ρt) with

the private information st = θ + εt. Using the standard Bayesian formulae with Gaussian

distributions, the belief of agent t is N (µ̃t, 1/ρ̃t) with




µ̃t = (1− αt)µt + αtst, with αt =

ρε
ρε + ρt

,

ρ̃t = ρt + ρε.

(3.3)

(ii) The private decision

From the specification of µ̃t in (3.3),

xt = (1− αt)µt + αtst. (3.4)
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(iii) Social learning

The decision rule of agent t and the variables αt, µt are known to all agents. From equationSocial learning

is efficient when

actions reveal

perfectly private

informations.

(3.4), the observation of the action xt reveals perfectly the private signal st. This is a key

property. The public information at the end of period t is identical to the information of

agent t: µt+1 = µ̃t, and ρt+1 = ρ̃t. Hence,




µt+1 = (1− αt)µt + αtst, with αt =

ρε
ρε + ρt

,

ρt+1 = ρt + ρε.

(3.5)

In period t+ 1, the belief is still normally distributed N (µt+1, 1/ρt+1) and the process can

be iterated as long as there is an agent remaining in the game. The history of actions

ht = (x1, . . . , xt−1) is informationally equivalent to the sequence of signals (s1, . . . , st−1).

Convergence

The precision of the public belief increases linearly with time:

ρt = ρθ + (t− 1)ρε, (3.6)

and the variance of the estimate on θ is σ2
t = 1/(ρθ + tρε), which converges to zero like

1/t. This is the rate of the efficient convergence.

The weight of history and imitation

Agent t chooses an action which is a weighted average of the public information µt from

history and his private signal st (equation (3.4)). The expression of the weight of history,

1 − αt, increases and tends to 1 when t increases to infinity. The weight of the privateImitation increases

with the weight

of history, but

does not slow down

social learning

if actions reveal

private informations.

signal tends to zero. Hence, agents tend to “imitate” each other more as time goes on. This

is a very simple, natural and general property: a longer history carries more information.

Although the differences between individuals’ actions become vanishingly small as time

goes on, the social learning is not affected because these actions are perfectly observable:

no matter how small these variations, observers have a magnifying glass which enables

them to see the differences perfectly. In the next section, this assumption will be removed.

An observer will not“see” well the small variations. This imperfection will slow down

significantly the social learning.

3.3 Observation noise

In the previous section, an agent’s action conveyed perfectly his private information. An

individual’s action can reflect the slightest nuances of his information because: (i) it is
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chosen in a sufficiently rich menu; (ii) it is perfectly observable; (iii) the decision model of

each agent is perfectly known to others.

The extraction of information from an individual’s action relies critically on the assumption

that the decision model is perfectly known, an assumption which is obviously very strong.

In general, individuals’ actions depend on a common parameter but also on private char-

acteristics. It is the essence of these private characteristics that they cannot be observed

perfectly (exactly as the private information is not observed by others). To simplify, assume

that the observation of the action of agent i is given by

xi = Ei[θ] + ηi, with ηi ∼ N (0, 1/ρη). (3.7)

The noise ηi is independent of other random variables and it can arise either because

there is an observation noise or because the payoff function of the agent is subject to an

idiosyncratic variable.1

Since the private parameter ηi is not observable, the action of agent i conveys a noisy

signal on his information Ei[θ]. Imperfect information on an agent’s private characteristics

is operationally equivalent to a noise on the observation of the actions of an agent whose

characteristics are perfectly known.

The model of the previous section is now extended to incorporate an observation noise,

along the idea of Vives (1993)2. We begin with a direct extension of the model where there

is one action per agent in each period. The model with many agents is relevant in the case

of a market and will be presented in Section 3.2.

An intuitive description of the critical mechanism

Period t brings to the public information the observation

xt = (1− αt)µt + αtst + ηt, with αt =
ρε

ρt + ρε
. (3.8)

The observation of xt does not reveal perfectly the private signal st because of a noise

ηt ∼ N (0, σ2
η). This simple equation is sufficient to outline the critical argument. As

time goes on, the learning process increases the precision of the public belief on θ, ρt,

which tends to infinity. Rational agents imitate more and reduce the weight αt which they

put on their private signal as they get more information through history. Hence, they

reduce the multiplier of st on their action. As t → ∞, the impact of the private signal

st on xt becomes vanishingly small. The variance of the noise ηt remains constant over

1For example if the payoff is −(xi − θ − ηi)2.
2Vives assumes directly an observation noise and a continuum of agents. His work is discussed below.
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time, however. Asymptotically, the impact of the private information on the level of action

becomes vanishingly small relative to that of the unobservable idiosyncracy. This effect

reduces the information content of each observation and slows down the process of social

learning.

Imitation increases

with the weight

of history and

reduces the signal

to noise ratio of

private actions.
The impact of the noise cannot prevent the convergence of the precision ρt to infinity.

By contradiction, suppose that ρt is bounded. Then αt does not converge to zero and

the precision ρt increases linearly, asymptotically (contradicting the boundedness of the

precision). The analysis now confirms the intuition and measures accurately the impact of

the noise on the rate of convergence of learning.

The evolution of beliefs

Since the private signal is st = θ + εt with εt ∼ N (0, σ2
ε ), equation (3.8) can be rewritten

xt = (1− αt)µt + αtθ + αtεt + ηt.︸ ︷︷ ︸
noise term

(3.9)

The observation of the action xt provides a signal on θ, αtθ, with a noise αtεt + ηt. We

will encounter in this book many similar expressions of noisy signals on θ. We use a

simple procedure to simplify the learning rule (3.9): the signal is normalized by aA standard normalization

will be used for

most Gaussian signals.
linear transformation such that the right-hand side is the sum of θ (the parameter to be

estimated), and a noise:

xt − (1− αt)µt
αt

= zt = θ + εt +
ηt
αt
. (3.10)

The variable xt is informationally equivalent to the variable zt. We will use similar equiva-

lences for most Gaussian signals. The learning rules for the public belief follow immediately

from the standard formulae with Gaussian signals (3.3). Using (3.8), the distribution of θ

at the end of period t is N (µt+1, 1/ρ
2
t+1) with





µt+1 = (1− βt)µt + βt

(xt − (1− αt)µt
αt

)
, with

βt =
σ2
t

σ2
t + σ2

ε + σ2
η/α

2
t

,

ρt+1 = ρt + 1

σ2
ε + σ2

η/α
2
t

= ρt +
1

σ2
ε + σ2

η(1 + ρtσ
2
ε )2

.

(3.11)

Convergence

When there is no observation noise, the precision of the public belief ρt increases by a

constant value ρε in each period, and it is a linear function of the number of observations

(equation (3.6)). When there is an observation noise, equation (3.11) shows that as ρt →∞,
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the increments of the precision, ρt+1 − ρt, becomes smaller and smaller and tend to zero.

The precision converges to infinity at a rate slower than a linear rate. The convergence of

the variance σ2
t to 0 takes place at a rate slower than 1/t.

The slowing down of the convergence when actions are observed through a noise has been

formally analyzed by Vives (1993). In a remarkable result, he showed that the precision of

the public information, ρt increases only like the cubic root of the number of observations,

At1/3. The value of the constant A depends on the observation noise, but the rate 1/3 is

independent of that variance. Recall that with no noise, the precision increases linearly

with t.

When the number of observations is large, 1000 additional observations with noise generate

the same increase of precision as 10 observations when there is no observation noise.

The result of Vives shows that the standard model of social learning where agents observe

perfectly others’ actions and know their decision process is not robust. When observations

are subject to a noise, the process of social learning is slowed down, possibly drastically,

because of the weight of history. That weight reduces the signal to noise ratio of individual

actions. The mechanism by which the weight of history reduces social learning will be

shown to be robust and will be one of the important themes in the book.

3.3.1 Large number of agents

The previous model is modified to allow for a continuum of agents. Each agent is indexed

by i ∈ [0, 1] (with a uniform distribution) and receives one private signal once at the

beginning of the first period3, si = θ + εi, with εi ∼ N (0, σ2
ε ). Each agent takes an action

xt(i) in each period4 t to maximize the expected quadratic payoff in (??). At the end of

period t, agents observe the aggregate action Yt which is the sum of the individuals’ actions

and of an aggregate noise ηt:

Yt = Xt + ηt, with Xt =

∫
xt(i)di, and ηt ∼ N (0, 1/ρη).

At the beginning of any period t, the public belief on θ is N (µt, 1/ρt), and an agent with

signal si chooses the action

xt(i) = E[θ|si, ht] = µt(i) = (1− αt)µt + αtsi, with αt =
ρε

ρt + ρε
.

3If agents were to receive more than one signal, the precision of their private information would increase

over time.

4One could also assume that there is a new set of agents in each period and that these agents act only
once.
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By the law of large numbers5,
∫
εidi = 0. Therefore, αt

∫
sidi = αtθ. The level of

endogenous aggregate activity is

Xt = (1− αt)µt + αtθ,

and the observed aggregate action is

Yt = (1− αt)µt + αtθ + ηt. (3.12)

Using the normalization introduced in Section ??, this signal is informationally equivalent

to
Yt − (1− αt)µt

αt
= θ +

ηt
αt

= θ +
(

1 +
ρt
ρε

)
ηt. (3.13)

This equation is similar to (3.10) in the model with one agent per period. (The variances

of the noise terms in the two equations are asymptotically equivalent). Proposition ??

applies. The asymptotic evolutions of the public beliefs are the same in the two models.

Note that the observation noise has to be an aggregate noise. If the noises affected actions

at the individual level, for example through individuals’ characteristics, they would be

“averaged out” by aggregation, and the law of large numbers would reveal perfectly the

state of nature. An aggregate noise is a very plausible assumption in the gathering of

aggregate data.

3.3.2 Application: a market equilibrium

This setting is the original model of Vives (1993). A good is supplied by a continuum of

identical firms indexed by i which has a uniform density on [0, 1]. Firm i supplies xi and

the total supply is X =
∫
xidi. The demand for the good is linear:

p = a+ η − bX. (3.14)

Each firm (agent) i is a price taker and has a profit function

ui = (p− θ)xi −
c

2
x2i ,

where the last term is a cost of production and θ is an unknown parameter. Vives views

this parameter as a pollution cost which is assessed and charged after the end of the game.

As in the canonical model, nature’s distribution on θ is N (µ, 1/ρθ) and each agent i has a

private signal si = θ + εi with εi ∼ N (0, 1/ρε). The expected value of θ for firm i is

Ei[θ] = (1− α)µ+ α(θ + εi), with α =
ρε

ρθ + ρε
. (3.15)

5A continuum of agents of mass one with independent signals is the limit case of n agents each of mass
1/n where n→∞. The variance of each individual action is proportional to 1/n2 and the variance of the
aggregate decision is proportional to 1/n which is asymptotically equal to zero.
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The optimal decision of each firm is such that the marginal profit is equal to the marginal

cost:

p− Ei[θ] = cxi.

Integrating this equation over all firms and using the market equilibrium condition (3.14)

gives

p−
∫
Ei[θ]di = cX =

c

b
(a+ η − p),

which, using (3.15), is equivalent to

(b+ c)p− ac− (1− α)µ = αθ + cη.

Dividing both sides of this equation to normalize the signal, the observation of the market

price is equivalent to the observation of the signal

Z = θ + c
η

α
, where α =

ρε
ρθ + ρε

.

The model is isomorphic to the canonical model of the previous section.

3.4 Extensions

Endogenous private information

See exercise 3.1.

Policy against mimetism

A selfish agent who maximizes his own welfare ignores that his action generates informa-

tional benefits to others. If the action is observed without noise, it conveys all the private

information without any loss. But if there is an observation noise, the information con-

veyed by the action is reduced when the response of the action is smaller. When time goes

on, the amplitude of the noise is constant and the agent rationally reduces the multiplier

of his signal on his action. Hence, the action of the agent conveys less information about

his signal when t increases. A social planner may require that agents overstate the impact

of their private signal on their action in order to be “heard” over the observation noise.

Vives (1997) assumes that the social welfare function is the sum of the discounted payoffs

of the agents

W =
∑

t≥0
βt
(
−Et[(xt − θ)2]

)
,

where xt is the action of agent t. All agents observe the action plus a noise, yt = xt + εt.

The function W is interpreted as a loss function as long as θ is not revealed by a random

exogenous process. In any period t, conditional on no previous revelation, θ is revealed
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perfectly with probability 1 − π ≥ 0. Assuming a discount factor δ < 1, the value of β is

β = πδ. If the value of θ is revealed, there is no more loss.

As we have seen in (3.3) and (3.4), a selfish agent with signal st has a decision rule of the

form

xt − µt = (1 + γ)
ρε

ρt + ρε
(st − µt), (3.16)

with γ = 0. Vives assumes that a social planner can enforce an arbitrary value for γ.

When γ > 0, the action to noise ratio is higher and the observers of the action receive

more information.

Assume that a selfish agent is constrained to the decision rule (3.16) and optimizes over γ:

he chooses γ = 0. By the envelope theorem, a small first order deviation of the agent from

his optimal value γ = 0 has a second order effect on his welfare. We now show that it has

a first order effect on the welfare of any other individual who make a decision. The action

of the agent is informationally equivalent to the message

y = (1 + γ)αs+ ε, with α =
ρε

ρt + ρε
.

The precision of that message is ρy = (1 + γ)2α2ρε.

Another individual’s welfare is minus the variance after the observation of y. The obser-

vation of y adds an amount ρy to the precision of his belief. If γ increases from an initial

value of 0, the variation of ρy is of the order of 2γα2ρε, i.e., of the first order with respect to

γ. Since the variance is the inverse of the precision, the impact on the variance of others is

also of the first order and dwarfs the second order impact on the agent. There is a positive

value of γ which induces a higher social welfare level.
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EXERCISES

EXERCISE 3.1. (Endogenous private information)

In the standard Gaussian model of social learning, each agent has to pay of fixed cost c

to get a signal with precision ρ which is

s = θ + ε, with ε ∼ N (0, 1/ρ).

The cost c is assumed to be small. Agent t makes a decision in period t (both on the signal

and on the action), and his action is assumed to be perfectly observable by others. The

payoff function of each agent is quadratic: U(x) = E[−(x− θ)2].

1. Show using words and no algebra, that there is a date T after which no agent buys

a private signal. What happens to information and actions after that date T?

2. Provide now a formal proof of the the previous statement. For this compute the

welfare gain that an agent gets by buying a signal.

3. Assume now that the cost of a signal with precision ρ is an increasing function,6 c(ρ).

Prove the following result:

• Suppose that c′(ρ) is continuous and c(0) = 0. If the marginal cost of precision

c′(ρ) is bounded away from 0, (for any ρ ≥ 0, c′(ρ) ≥ γ > 0), no agent purchases

a signal after some finite period T and social learning stops in that period.

4. Assume now that c(q) = qβ with β > 0. Analyze the rate of convergence of social

learning.
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Chapter 4

Cascades and herds

A tale of two restaurants

Two restaurants face each other on the main street of a charming alsatian village. There is

no menu outside. It is 6pm. Both restaurants are empty. A tourist comes down the street,

looks at each of the restaurants and goes into one of them. After a while, another tourist

shows up, evaluates how many patrons are already inside by looking through the stained

glass windows—these are alsatian winstube—and chooses one of them. The scene repeats

itself with new tourists checking on the popularity of each restaurant before entering one

of them. After a while, all newcomers choose the same restaurant: they choose the more

popular one irrespective of their own information. This tale illustrates how rational people

may herd and choose one action because it is chosen by others. Among the many similar

stories, two are particularly enlightening.

High sales promote high sales

In 1995, management gurus Michael Reacy and Fred Wiersema secretly purchased 50,000

copies of their business strategy book The Discipline of Market Leaders from stores which

were monitored for the bestseller list of the New York Times1. The authors must have

been motivated by the following argument: people observe the sales, but not the payoffs of

the purchases (assuming they have few opportunities to meet other readers). Of course, if

the manipulation had been known it would have had no effect, but people rationally expect

that for any given book, the probability of manipulation is small, and that the high sales

must be driven by some informed buyers.

1See Bikhchandani, Hirshleifer and Welch (1998), and Business Week, August 7, 1995. Additional
examples are given in Bikhchandani, Hirshleifer and Welch, (1992).

47
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The previous story illustrates one possible motivation for using the herding effect but it

is only indicative. For an actual measurement, we turn to Hanson and Putler (1996)

who conducted a nice experiment which combines the control of a laboratory with a “real

situation”. They manipulated a service provided by America Online (AOL) in the summer

of 1995. Customers of the service could download games from a bulletin board. The games

were free, but the download entailed some cost linked to the time spent in trying out the

game. Some games were downloaded more than others.

The service of AOL is summarized by the window available to subscribers which is re-

produced in Figure ??: column 1 shows the first date the product was available; column

2 the name of the product, which is informative; column 4 the most recent date the file

was downloaded. Column 3 is the most important and shows the number of customers

who have downloaded the file so far. It presents an index of the “popularity” of the prod-

uct. The main goal of the study is to investigate whether a high popularity increases the

demand ceteris paribus.

Figure 4.1: Applications for downloads

The impact of a treatment is measured by the increase in the number of downloads per day,

after the treatment, as a fraction of the average daily download (for the same product)
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before the treatment. The results are reported in Figure ??. All treatments have an

impact and the impact of the heavy treatment (100 percent) is particularly remarkable.

The experiment has an obvious implication for the general manipulation of demand through

advertisements.

Figure 4.2: Results

To ensure ceteris paribus, Hanson and Putler selected pairs of similar files which were

offered by AOL. Similarity was measured by characteristics and “popularity” at a specific

date. Once a pair was selected, one of the files was kept as the “control”, the other

was the “treatment”. The authors boosted the popularity index of the treatment file by

downloading it repeatedly. The popularity indexed was thus increased in a short session

by percentage increments of 25, 50 and 100. Customers of the service were not aware that

they were manipulated.

The essential issue and the framework of analysis

The previous examples share a common feature which is essential: individuals observe

the actions of others (and not their satisfaction), and the space of actions is discrete. The

actions are the words for the communication of information between agents. In the previous
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chapter, agents chose an action in a rich set (e.g., the set of real numbers), where even the

smallest differences between beliefs could be expressed. Here the finite number of actions

exerts a strong restriction on the vocabulary of social communication.

Bikchandani, Hirshleifer and Welch (1992), hereafter BHW, introduced the definition of

informational cascades in models of Bayesian learning.2 In a cascade, the public belief,

which is gathered from the history of observations, dominates the private information of

any individual: the action of any agent does not depend on his private information and all

agents are herding. Since actions do not convey information, nothing is learned and the

cascade goes on forever, possibly with an incorrect action. In the previous chapter we saw

how observation noise slows down the process of social communicatioin. Here, it eventually

comes to a complete stop.

A cascade generates a herd, but the concepts of cascade and herd are distinct. In aThere is an essential

difference between

a cascade and a

herd.

cascade, all agents ignore their information and take the same action. That behavior is

known by all. Hence any agent can predict the behavior of others, before they take action

and nothing is learned from the observation of others. In some way, the informational

cascade is an ex ante concept.

In a herd, all agents turn out to take the same action. The action of an agent cannot

be predicted before it is taken. Hence, something is learned from the observation of that

action. For example, after an “investment”, the belief in a “good state” is reinforced

because there was the possibility that the agent would have not invested. In a herd with

investment, the belief in the good state gradually increases. One should stress that here,

agents can never know that a herd takes place. In this sense, a herd is an post concept.

Of course, a informational cascade generates a herd, and in this case, agents do know that

they are in a herd. But the previous description hints at herds with no cascade. A cascade

implies a herd, but the reverse is not true. In fact, we will see that in a setting where

agents take discrete actions and no cascade occurs, a herd must eventually take place.

The simplest model of cascades is presented in Section 4.1. No formal arithmetics are

required for that section which presents the important properties. The general model is

analyzed in Section 4.2. The conditions for informational cascades are shown to be discrete

actions and bounded private beliefs. If private beliefs are unbounded, then there is always

the possibility that some agent with sufficiently strong and contrarian belief to diverge

2The expression “cascade” may be inappropriate for the description of a frozen behavior. Compare
with the description of a cascade in the prologue of Faust II. One should also point that the expression
“cascade” was already used by Gabriel Tarde (1890), in the same sense as BHW. (See the bibliographical
note).
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from “the crowd”. In this case, no cascade ever takes place. However, in this case, the

public belief converges to the truth. The public belief of the state tends to 1 or 0 and

the bar for the strength of a contrarian belief is higher and higher. As the probability

of a contrarian agent becomes smaller and smaller–a property that generates the ex post

herd–one learns less and less from the observation of others. Although no informational

cascade takes place, the social learning becomes vanishing small, asymptotically, which,

from a welfare point of view, is not very different from an informational cascade where

learning completely stops after finite time.

Section 4.4 presents a detailed analysis of herds and the convergence of beliefs3. Herds

always take place eventually, as a consequence of the Martingale Convergence Theorem.

There is in general some learning in a herd, but that learning is very slow. The conclusions

of the simple model of BHW are shown to be extraordinarily robust. They reinforce the

central message of the models of learning from others which is the self-defeating property

of social learning when individuals use rationally the public information.

4.1 The basic model of cascades

Students sometimes wonder how to build a model. Bikhchandani, Hirshleifer and WelshA textbook case

on how to build a

model
(1992), hereafter BHW, provide an excellent lesson of methodology4: (i) a good story

simplifies the complex reality and keeps the main elements; (ii) this story is translated

into a set of assumptions about the structure of a model (information of agents, payoff

functions); (iii) the equilibrium behavior of rational agents is analyzed; (iv) the robustness

of the model is examined through extensions of the initial assumptions.

We begin here with the tale of two restaurants, or a similar story where agents have to

decide whether to make a fixed size investment. We construct a model with two states

(defining which restaurant is better), two signal values (which generate different beliefs),

and two possible actions (eating at one of two restaurants)5.

3For this section, I have greatly benefited from the insights of Lones Smith.

4Banerjee (1992) presented at the same time another paper on herding, but its structure is more

idiosyncratic and one cannot analyze the robustness of its properties.

5The example of the restaurants at the beginning of this chapter is found in Banerjee (1992). The model

in this section is constructed on this story. It is somewhat mistifying that Banerjee after introducing herding
through this example, develops an unrelated model which is somewhat idiosyncratic. A simplified version

is presented in Exercise 4.2.
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The 2 by 2 by 2 model

As in any model of Bayesian social learning, the structure has three blocks, the state of

nature, the private informations, the private decisions for action and the observation of

these actions.

1. The state of nature θ has two possible values, θ ∈ Θ = {0, 1}, and is set randomly

once and for all at the beginning of the first period6 with a probability µ1 for the

state θ = 1. The value of θ could be the payoff of making a fixed size investment of 1.

It could also be defined as “restaurant A is better than B” (with θ = 0 representing

the opposite proposition).

2. N or a countable number of agents are indexed by the integer t. Each agent’s private

information takes the form of a SBS (symmetric binary signal) with precision q > 1/2:

P (st = θ | θ) = q. The signal represents the private information of an investor. It

could also represent the information of a travel book or a friend’s recommendation

about the quality of restaurant.

3. Agents take an action in an exogenous order as in the previous models of social

learning. The notation can be chosen such that agent t can make a decision in period

t and in period t only. An agent chooses his action x in the discrete set X = {0, 1}.
The action x = 1 may represent entering a restaurant, hiring an employee, or in

general making an investment of a fixed size. The yield of the action x depends on

the state of nature and is defined by

u(x, θ) =

{
0, if x = 0,

θ − c, if x = 1, with 0 < c < 1.

Since x = 0 or 1, another representation of the payoff is u(x, θ) = (θ − c)x. The

cost of the investment c is fixed.7 The yield of the investment is positive in the good

state and negative in the bad state. Under uncertainty, the payoff of the agent is the

expected value of u(x, θ) conditional on the information of the agent.

4. As in the previous models of social learning, the information of agent t is his private

signal and the history ht = (x1, . . . , xt−1) of the actions of the agents who precede

him in the exogenous sequence. The public belief at the beginning of period t is the

probability of the good state conditional on the history ht which is public information.

6The value of θ does not change because we want to analyze the changes in beliefs which are caused

only by endogenous behavior. Changes of θ can be analyzed in a separate study (see the bibliographical
notes).

7In the tale of two restaurants, c could be taken as 1/2.
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It is denoted by µt:

µt = P (θ = 1|ht).

Without loss of generality, µ1 is the same as nature’s probability of choosing θ = 1.

Let us use the representation of the social learning in Log likelihood as in Figure 2.2. The

Log likelihood ratio between states 1 and 0 in the public information at the beginning of

period t is λt. We call optimists the agents with signal s = 1 and pessimists the other

ones. Agent t combines the public belief with his private signal to form his belief. Let λ+t

and λ−t the belief of an optimist or a pessimist in period t. We have seen (2.3) that

λ+t = λt + a, λ−t = λt − a, with a = Log(q/(1− q)),

and that the LLR “distance” between agents is constant in the process of social learning.

A geometric representation

Agent t takes action 1 if his belief (in state 1) is greater than c, which is equivalent to a

LLR greater than Log(c/(1 − c)). Let us denote γ = Log(c/(1 − c)). Note that in the

example of the two restaurants, c = 1/2 and γ = 0. The social learning is now represented

in Figure 4.1 where the LLR is measured along the vertical axis.

In each period, a segment represents the distribution of beliefs: the top of the segment

represents the belief of an optimist, the bottom the belief of a pessimist and the mid-point

the public belief. The segments evolve randomly over time according to the observations.

In the first period, the belief of an optimist, λ+1 , is above γ while the belief of a pessimist,

λ−1 , is below γ. The action is equal to the signal of the agent and thus reveals that signal.

In the figure, s1 = 0, and the first agent does not invest. His information is incorporated

in the public information: the public belief in the second period, λ2, is identical to the

belief of the first agent: λ2 = λ−1 . The sequence of the signal ndowments is indicated in

the figure. When there is social learning, the signal of agent t is integrated in the public

information of period t+ 1.

Consider now period 5 in the figure: agent 5 is an optimist, invests and eveals his signal

since he could have been a pessimist who does not invest. His information is incorporated

in the public belief of the next period and λ6 = λ+5 . The belief of a pessimist in period 6 is

now higher than the cost c (here, it is equal to the public belief λ5). In period 6, the belief

of an agent is higher than the cost of investment, whatever his signal. He invests, nothing

is learned and the public belief is the same in period 7: a cascade begins in period 6. The
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In each period, the middle of the vertical segment is the public belief, while the top and the
bottom of the segment are the beliefs of an optimist (with a private signal s = 1) and of a
pessimist (with signal s = 0). The private signals are s1 = 0, s2 = 1, s3 = 0, s4 = 1, s5 = 1.
(Ignore the horizontal line at 1).

Figure 4.3: Cascade representation
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cascade takes place because all the beliefs are above the cut-off level c. This condition is

met here because the public belief λ6 is strictly higher than λ∗∗. Since λ6 is identical to

the belief of an optimist in period 5, the cascade occurs because the beliefs of all investing

agents are strictly higher than λ∗∗ in period 5. A cascade takes place because of the high

belief of the last agent who triggers the cascade.

Proposition 4.1 formalizes the previous discussion. It is expressed in beliefs µt = P (θ =

1|ht).

PROPOSITION 4.1. In any period t, given the public belief µt:

if µ∗ < µt ≤ µ∗∗, agent t invests if and only if his signal is good (st = 1);

if µt > µ∗∗, agent t invests independently of his signal;

if µt ≤ µ∗, agent t does not invest independently of his signal.
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4.2 Beyond the simple model

We keep the structure with two states θ ∈ {0, 1}, two actions x ∈ {0, 1}, with a payoff

(E[θ] − c)x, 0 < c < 1. The states 1 and 0 will be called “good” and “bad”. We extend

the previous model to admit any distribution of private beliefs that is generated by private

signals. Such a distribution is characterized by the c.d.f. F θ(µ) which depends on the state

θ. F θ(µ) denotes the c.d.f. of a distribution of the beliefs measured as the probability of θ1,

and F θ(λ) denotes the c.d.f. of a distribution of the LLR between θ1 and θ0. A graphical

representation of the distributions of beliefs in LLR is given in Figure (See also exercise

??).

λ0
The distribution of private beliefs is represented by the
curves with θ = 1 and θ = 0 in the two states.

Figure 4.4: Distribution of beliefs (in LLR)

Note that the mass of probabilities is shifted upwards (downwards) when θ = 1 (θ = 0):

in the good state, more agents are optimistic. This can be observed if private signals are

symmetric binary with precision q and q is drawn from a distribution. The shape of the

distribution of beliefs in LLR is invariant to the news. We have seen in ** that any new

information has the same additive impact (positive or negative) on the LLR of any agent.

The news just translate the distribution.

In Figure 4.2, the distribution of beliefs, as in Figure 4.2, is be placed in the diagram of

Figure ?? that illustrates the process of social learning. In any period, the acting agent’s

belief is drawn from the distribution that is determined by the state. An example is

represented by the red arrows with LLR λ1, λ2 and λ3 in the first three rounds.

If the belief is above the cutoff level (0 in the figure), then the agent takes x = 1. Otherwise,

he takes x = 0. The probability that this belief in LLR is positive is greater in the good

state. It is proportional to the area in blue in the good state and in red in the other state.

Therefore, when other agents observe x = 1, they increase their belief in the good state.

By how much?
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The distribution of private beliefs is represented by the curves with θ = 1
and θ = 0 in the two states. In any period, the belief of the acting agent
is taken randomly from the distribution that corresponds to the state.
If his belief is above (below) the cut-off line (here 0), his takes x = 1
(x = 0). See the discussion in the text.

Figure 4.5: Representation with a general bounded distribution of beliefs

Take the point of view of an outside observer. For him, x1 is just a binary signal on the

state. That signal is characterized by the probabilities x1 = 1 for each of the two states.

Here, the matrix of the probabilities takes the following form.

States of

Nature

Observations

xt = 1 xt = 0

θ = θ1 1− F θ1t (γ) F θ1t (γ)

θ = θ0 1− F θ0t (γ) F θ0t (γ)

For example, if θ = θ1, the probability that the acting agent has a LLR below γ is F θ11 (γ).

One can then fill the other elements of the matrix.

The update of the LLR after the observation of xt is, for an agent with LLR equal to λt

(any value), is determined as in (??) which is repeated here.
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λt+1 = λt + νt, with νt = Log
(P (xt|θ1)

P (xt|θ0)

)
. (4.1)

As we have seen before, the updating term νt is independent of the belief λt. Therefore,

the distribution of beliefs is translated by a random term νt from period t to period t+ 1.

Agent t invests if and only if his probability of the good state is greater than his cost, i.e.

if his LLR, λ, is greater than γ = Log(c/(1 − c)). The probability that agent t invests

depends on the state and is equal to πt(θ) = 1− F θt (γ), with γ = Log
( c

1− c
)
.

Given the above matrix of the signal xt,

λt+1 = λt + νt, with νt =





Log
(1− F θ1t (γ)

1− F θ0t (γ)

)
, if xt = 1,

Log
(F θ1t (γ)

F θ0t (γ)

)
, if xt = 0.

(4.2)

In this equation, νt ≥ 0 if xt = 1 and νt ≤ 0 if xt = 0. The observation of xt conveys

some information on the state as long as F θ1t (γ) 6= F θ0t (γ).

In period 2 of the figure, the beliefs are higher. Note that in either state, the probability of

x2 = 1 is higher. Both are closer to 1. Hence, the ratio between the blue and the red areas

(greater than 1) is closer to 1 and there is “less news” after the observation of x2 = 1. The

LLR increases by ν2 < ν1.

In the figure, the increase of the LLR after the observation x2 = 1 is such that the support

of the distribution is above the cutoff line: the most pessimistic person now believes that

the state θ = 1 is more likely. All agents take the action 1, in an informational cascade.

Suppose now that x3 = 0. We can see in Figure 4.2 that the ratio of the two areas below

the cutoff line, for θ = 1 and θ = 0, respectively is now much smaller than one, perhaps

of he order of 1/10. That means that the term ν2 is now negative with a large absolute

value. The observation x2 is followed by a large decrease of all beliefs. It is really news.

One verifies properties that we have seen before. At the beginning of period 2, the prob-

ability of x2 = 1 is high, near one. If one observes x2 = 1, then this is good news, it

increases the beliefs, but by a small amount. The probability of x2 = 0 is small, but this

event if followed by a large decrease of the beliefs. Remember that the expected change of

beliefs is zero. There is a large probability of a small upward change which is balanced a

small probability of a large downward change.
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4.3 Cascades and herds

The core of a social learning process is how agents convey their information through actions.

For this, their actions has to be affected by their information. But the public information

information may be so strong that it overwhelms private information and in this case,

private information is revealed through actions. For example, in a simple model with two

possible outcome of an investment decision, say, 1 or 0, the public belief (probability of

state 1) may be so high that even if an agent has a low signal (s = 0), he still makes the

investment. He invests both with a bad, and obviously, a good signal. His investment

reveals nothing about his private information. The following definitions, which apply to

any model of social learning will help to clarify the analysis.

DEFINITION 4.1. An agent is herding if his action is independent of his private infor-

mation.

DEFINITION 4.2. An information cascade takes place in period t when the agents’

actions generate no information on the state.

If all agents are herding in period t, there is no information in that period. The public

belief is the same in the next period. If the environment is the same (the structure of the

private signals is the same), then the action of an agent in the next period will also be

independent of his private information. All agents will be herding again. The public belief

stays the same and so on.

PROPOSITION 4.2. If all agents are herding in period t, in a stationary environment,

there is an informational cascade from period t on.

When a cascade takes place, one knows at the beginning of a period the action of a rational

agent before that action is taken. It also might happen that there is some uncertainty

about the action taken in, say, period t, and that this action turns out to be the same as

the one that was taken in the previous period.

DEFINITION 4.3. A herd takes place at date T if all actions after date T are identical:

for all t > T , xt = xT .

A cascade obviously generate a herd. Can there be a herd without a cascade? The answer is

yes! Even more so, when there are only two possible actions, or a finite number of actions,

a herd must eventually take place with probability one even if there is never a cascade!

The converse of Proposition 4.2 is not true. Herds and cascades are not equivalent. InAn important distinction:

an informational

cascade is sufficient

for a herd, but

a herd may occur

without a cascade.

a herd, all agents turn out to choose the same action—in all periods— although some of
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them could have chosen a different action. The following result, which is due to Smith and

Sørensen (2001) shows that in the standard model of social learning with discrete actions,

herds always take place eventually even in a setting where cascades cannot occur!

THEOREM 4.1. On any path {xt}t≥1 with social learning, a herd begins in finite time.

With probability 1, on any path of actions {x1, . . .} all actions are identical after some

finite time.

The result holds for any type of distribution of beliefs. If the distribution is bounded,

then we know that the path of actions ends in a cascade and therefore in a herd. If the

distribution is not bounded, then agents keep learning in every period and the public

belief converges to the truth. In this case, the public belief changes in every period, but

nevertheless, after some finite time, all actions are identical. Of course agents do not know

that there is a herd and that is why they keep learning.

The proof of the theorem is based on the MCT. The intuition for the proof is straight-

forward. If the theorem were not true, “contrarian actions” would be observed an infinite

number of time. Each such contrarian action would trigger a significant change of the

public belief. That would contradict the convergence of the public belief according to the

MCT.

4.4 The convergence of beliefs

When private beliefs are bounded, beliefs never converge to perfect knowledge. If the public

belief would converge to 1 for example, in finite time it would overwhelm any private belief

and a cascade would start thus making the convergence of the public belief to 1 impossible.

This argument does not hold if the private beliefs are unbounded because in any period

the probability of a “contrarian agent” is strictly positive.

PROPOSITION 4.3. Assume that the initial distribution of private beliefs is unbounded.

Then the belief of any agent converges to the truth: his probability assessment of the good

state converges to 1 in the good state and to 0 in the bad state.

Does convergence to the truth matter?

A bounded distribution of beliefs is necessary for a herd on an incorrect action, as em-

phasized by Smith and Sørensen (1999). Some have concluded that the properties of the

simple model of BHW are not very robust: cascades are not generic and do not occur for

sensible distributions of beliefs; the beliefs converge to the truth if there are agents with
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sufficiently strong beliefs. In analyzing properties of social learning, the literature hasTo focus on whether

social learning

converges to the

truth or not can

be misleading.

often focused on whether learning converges to the truth or not. This focus is legitimate for

theorists, but it is seriously misleading. What is the difference between a slow convergence

to the truth and a fast convergence to an error? From a welfare point of view and for many

people, it is not clear.

The focus on the ultimate convergence has sometimes hidden the central message of studies

on social learning: the combination of history’s weight and of self-interest slows down the

learning from others. The beauty of the BHW model is that it is non generic in some sense

(cascades do not occur under some perturbation), but its properties are generic.

If beliefs converge to the truth, the speed of convergence is the central issue. This is why

the paper of Vives (1993) has been so useful in the previous chapter. We learned from that

model that an observation noise reduces the speed of the learning from others. Since the

discreteness of the action space is a particularly coarse filter, the slowing down of social

learning should also take place here. When private beliefs are bounded, the social learning

does not converge to the truth. When private beliefs are unbounded, we should observe a

slow rate of convergence.

We saw that cascades do not occur for sensible distributions of beliefs because the signal

of the action (investment or no investment) is vanishingly weak when the public belief

tends to the cascade set corresponding to the action. This argument applies when the

distribution of beliefs is unbounded, since the mass of atoms at the extreme ends of the

distribution must be vanishingly small. Hence, there is an immediate presumption that

social learning must be slow asymptotically. The slow learning is first illustrated in an

example and then analyzed in detail.

A numerical example

The private signals are defined by s = θ + ε where ε is normally distributed with variance

σ2. An exercise shows that if µ tends to 0, the mass of agents with beliefs above 1 − µ
tends to zero faster than any power of µ. A numerical example of the evolution of beliefs is

presented in Figure 4.4. One observes immediately that the pattern is similar to a cascade

in the BHW model with the occurrence of “black sheeps”.

For this example only, it is assumed that the true state is 1. The initial belief of the agent

is µ1 = 0.2689, (equivalent to a LLR of -1), and σ = 1.5. The actions of individuals in each

period are presented by the lower schedule (equal to 0.1 if xt = 1 and to 0 otherwise). For

the first 135 periods, xt = 0 and µt decreases monotonically from around 0.27 to around
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The lower curve represents the action of an agent. If posi-
tive, the action is equal to 1, otherwise it is equal to 0.

Figure 4.6: Social learning with two actions and unbounded private beliefs (Gaussian
signals)

0.1. In period 136, the agent has a signal which is sufficiently strong to have a belief

µ̃136 > c = 0.5 and he invests. Following this action, the public belief is higher than 0.5

(since 0.5 is a lower bound on the belief of agent 135), and µ137 > 0.5. In the example,

µ137 = 0.54. The next two agents also invest and µ139 = 0.7. However, agent 139 does not

invest and hence the public belief must fall below 0.5: µ140 = 0.42. Each time the sign of

µt+1 − µt changes, there is a large jump in µt.

Figure 4.4 provides a nice illustration of the herding properties found by BHW in a model

with “black sheeps” which deviate from the herds. The figure exhibits two properties which

are standard in models of social learning with discrete decisions:

(i) when µt eventually converges monotonically to the true value of 1 (after period 300

here), the convergence is very slow;

(ii) when a herd stops, the public belief changes by a quantum jump.

The slow learning from others

Assume now a precision of the private signals such that σε = 4, and an initial public belief

µ1 = 0.2689 (with a LLR equal to -1). The true state is good. The model was simulated

for 500 periods and the public belief was computed for period 500. The simulation was

repeated 100 times. In 97 of the 100 simulations, no investment took place and the public

belief decreased by a small amount to a value µ500 = 0.2659. In only three cases did some
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investment take place with µ500 equal to 0.2912, 0.7052 and 0.6984, respectively. Hardly a

fast convergence!

By contrast, consider the case where agents observe directly the private signals of others

and do not have to make inferences from the observations of private actions. From the

specification of the private signals and Bayes’ rule,

λt+1 = λ1 + t(
θ1 − θ0
σ2
ε

)(
θ1 − θ0

2
+ ηt), with ηt =

1

t

t∑

k=1

εk.

Given the initial belief µ1 = 0.2689, θ0 = 0, θ1 = 1, t = 499 and σε = 4,

λ500 = −1 + (31.2)(0.5 + η500),

where the variance of η500 is 16/499 ≈ (0.18)2. Hence, λ500 is greater than 5.33 with

probability 0.95. Converting the LLR in probabilities, µ500 belongs to the interval (0.995, 1)

with probability 0.95. What a difference with the case where agents observed private

actions! The example—which is not particularly convoluted—shows that the convergence

to the truth with unbounded private precisions may not mean much practically. Even when

the distribution of private signals is unbounded, the process of social learning can be very

slow when agents observe discrete actions. The cascades are a better stylized description

of the properties of social learning through discrete actions than the convergence result of

Proposition 4.3. The properties of the example are confirmed by the general analysis of

the convergence that is provided in the Appendix.
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EXERCISE 4.1. (Probability of a wrong cascade)

Consider the 2× 2× 2 model that we have seen in class (2 states 1 and 0, 2 actions and

symmetric binary signal), where µ1 is the prior probability of the state 1, c ∈ (0, 1) the

cost of investment, and q the precision of the binary signal. There is a large number of

agents who make a decision in a fixed sequence and who observe the actions of past agents.

Assume that µ1 < c and that the difference c − µ1 is small. Let xt ∈ {0, } the action of

agent t. We assume that the true state (unknown by agents) is θ = 0.

1. Represent on a diagram with time (horizontal axis) and the probability of state 1 in

the public information (vertical axis), different examples of trajectories of the public

belief that end in a cascade with investment, which is a “wrong” cascade (since the

state is 0). We want to compute the probability of all these wrong cascades.

2. What is the probability that a cascade begins immediately after x1 = 1. What do

agents do in that cascade?

3. Call I the outcome that a cascade begins in some period in which all agents take

action 1. Show that the probability of I before the decision of the first agent, call

it π0 is the same as before the decision of the third agent after a history of actions

x1 = 1, x2 = 0.

4. Let π1 the probability of I after the history x1 = 1. Determine π1 as a function of

π0.

5. What is the probability that a cascade with investment begins after x1 = 0?

6. Using the previous questions, find another relation between π0 and π1.

7. Determine the probability π0 of a wrong cascade.

EXERCISE 4.2. (The model of Banerjee, 1992)

Assume that the state of nature is a real number θ in the interval (0, 1), with a uniform

distribution. There is a countable set of agents, with private signals equal to θ with

probability β > 0, and to a number uniformly distributed on the interval (0, 1) with

probability 1 − β > 0. (In this case the signal is not informative). The agent observes

only the value of his private signal. Each agent t chooses in period t an action xt ∈ (0, 1).

The payoff is 1 if xt = θ, and 0 if xt 6= θ. Agent t observes the history of past actions

and maximizes his expected payoff. If there is more than one action which maximizes his

expected payoff, he chooses one of these actions with equal probability.

1. Analyze how herds occur in this model.

2. Can a herd arise on a wrong decision?
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EXERCISE 4.3. (Action set is bounded below, Chari and Kehoe, 2000)

Consider a variation on the model of this chapter with two states, θ = 1 or 0 and symmetric

private signals s such that P (s = θ|θ) = q. Assume that any agent t chooses the action xt

that can be any real positive number: xt ≥ 0. The purpose of the exercise is to analyze

social learning when investment cannot be negative. Agents maximize the expected value

of the payoff function

u(x, θ) = 2(θ − c)x− x2, with x ≥ 0.

1. Analyze the decision rule in this model.

2. Can an informational cascade take place with positive investment? Can there be an

informational cascade with no investment?

3. Show that there is a strictly positive probability of under-investment in the following

sense: when the state is ba (θ = 0), agents eventually do not invest, which is the

right action: when the state is good (θ = 1), there can also be a cascade with no

investment.

EXERCISE 4.4. Confounded learning, Smith and Sørensen, 2001

There is a countable population of agents. A fraction α of this population is of type A

and the others are of type B. In period t, agent t chooses between action 1 and action 0.

There are two states of nature, 1 and 0. The actions’ payoffs are specified in the following

table.
Type A

x = 1 x = 0

θ = 1 1 0

θ = 0 0 uA

Type B

x = 1 x = 0

θ = 1 0 uB

θ = 0 1 0

Each agent has a SBS with precision p (on the state θ) which is independent of his type.

Let µ be the belief of an agent about state 1: µ = P (θ = 1).

1. Show that an agent of type A takes action 1 if and only if he has a belief µ such that

µ > (1− µ)uA. When does a type B take action 1?

2. Let λ be the public LLR between state 1 and state 0. Use a figure similar to the

figure in the text for the representation of the evolution of the public belief.

3. Using the figure, illustrate the following cases:

(i) an informational cascade where all agents take action 1.

(ii) an informational cascade where all agents take action 0.

(iii) an informational cascade where agents A take action 1, agents B take action 0.
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EXERCISE 4.5.

The exercise analyzes a first example with social learning where the payoff of action

depends not only on the state of nature but also on the actions of others (through a payoff

externality). Consider an investment project that requires two units of investment. The

cost of each unit of investment is c ∈ (0, 1). The payoff of the investment is 2θ where

θ ∈ {0, 1} is the state of nature The prior probability of the good state is µ with µ < c.

Take µ = 1/2 and c = 0.55

1. An agent receives two independent symmetric binary signal with precision q. Take

q = 3/4. (The exact value is not important for the problem, but a given numerical

value facilitates the writing of the answer.) Compute the probability that the invest-

ment is made in each of the two states of nature and the expected payoff of the agent

before he receives any signal.

2. It is now assumed that each unit of investment is made by a different agent, agent 1

first, and then agent 2. Each agent receives one independent symmetric binary signal

on θ with the same precision q as before. Agent 2 cannot observe the signal of agent

1 but observes the action of agent 1 (which is 1 or 0). Remember that the project

pays off only in the good state and if both agents invest. Determine the probability

of the realization of the project in this setting. Compare with the solution in the

first setting and discuss. Extend your discussion beyond the exercise which should

be only a step stone for more general remarks.

EXERCISE 4.6. (“Hot Money”, Chari and Kehoe, 2001)

The exercise expands on the previous one. Consider a small open economy in which a

government borrows from foreign lenders to fund a project. There are M risk-neutral

agents who are ordered in an exogenous sequence. Agent there are N agents who make

the investment. There are two states for the developing country, θ = 0 or 1. The prior

probability of the good state is µ0. Each loan pays a return 1 if the project is funded, after

M periods, and the state of the economy is good (θ = 1). Each agent has a symmetric

binary signal with precision q about θ. The cost of making an investment, for each agent,

is c, (0 < c < 1). Each agent i observes the actions of agents j with j < i.

Define µ∗ = c. Nature’s probability of state 1 is µ0. By assumption,

1− q
q

µ0

1− µ0
<

c

1− c <
µ0

1− µ0
.

1. Assume N = 3 and M = 5. Analyze the equilibrium. (Show that if there is no

herding, agents with a good signal invest and that agents with a bad signal do not

invest. Note that the sequence (0, 1, 0, 1, 0) does not lead to funding).
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2. Show the same property for N = 2M − 1 for any M .

EXERCISE 4.7. Discontinuity of the Markov process of social learning

Take the standard model of Section 4.2 where the investment cost is 1/2 (with payoff

(E[θ]−1/2)x), and each agent has a SBS with precision drawn from the uniform distribution

on (1/2, 1). Each agent knows his precision, but that precision is not observable by others.

1. Determine explicitly the Markov process defined by (??) when θ = 0.

2. Show that 0 is the unique fixed point in µ if θ = 0.

3. Show that B(·, 1) is not continuous in the first argument at the fixed point µ = 0,

and that therefore the partial derivative of B with respect to the second argument

does not exist at the fixed point.

4. From the previous question, show that the condition of Theorem 4 in Smith and

Sørensen (2001) does not apply to the standard model of social learning with discrete

actions.

5. Assume that in each period, with probability α > 0, the agent is a noise agent who

invests with probability 1/2. With probability 1−α, the agent is of the rational type

described before. The type of the agent is not publicly observable. Is your answer to

Question 3 modified?
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Solution to Exercise 4.4

1. All the agents of type A take action 1. They are herding. Social learning takes place

only because agents B choose x = 1 if and only if they have a signal 0. Let x be

the action taken by agent 1 who is of type A with probability α and of type B with

probability 1− α. We have

φ(0) =
P (x = 0|θ = 1)

P (x = 0|θ = 0)
=

q

1− q , φ(1) =
P (x = 1|θ = 1)

P (x = 1|θ = 0)
=
α+ (1− α)(1− q)
α+ (1− α)q

.

Social learning

λt+1 = λt + Log
(
φ(xt)

)
.

2. In case 2, the precision q is sufficiently large and the support contains the interval

(γA, γB)11. No agent is herding.

φ(1) =
αq + (1− α)(1− q)
α(1− q) + (1− α)q

=
1

φ(0)
.

The observation of x is informative. One verifies that φ(1) > 1 if and only if α > 1/2.

The intuition for the inequality is straightforward.

3. In case 3, all agents are herding, but they do not take the same action: the agents of

type A choose action 1 and the agents of type B choose action 0. In any period, the

probability of observing x = 1 is α.

4. In case 4, all agents are herding on the same action 1. There is no herding on the

action 0, because γB > γA. Herding on the action 0 may occur if γA > γB and the

precision q is sufficiently small.

11A necessary condition is 2Log(q/(1− q)) > Log(uB)− Log(uA).
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4.5 Appendix

4.5.1 The asymptotic rate of convergence is zero

When beliefs are bounded, they may converge to an incorrect value with a wrong herd. The

issue of convergence speed makes sense only if beliefs are unbounded. This section provides

a general analysis of the convergence in the binary model. Without loss of generality, we

assume that the cost of investment is c = 1/2.

Suppose that the true state is θ = 0. The public belief µt converges to 0. However, as

µt → 0, there are fewer and fewer agents with a sufficiently high belief who can go against

the public belief if called upon to act. Most agents do not invest. The probability that an

investing agent appears becomes vanishingly small if µ tends to 0 because the density of

beliefs near 1 is vanishingly small if the state is 0. It is because no agent acts contrary to

the herd, although there could be some, that the public belief tends to zero. But as the

probability of contrarian agents tends to zero, the social learning slows down.

Let f1 and f0 be the density functions in states 1 and 0. From the proportional property

(Section ??), they satisfy

f1(µ) = µφ(µ), f0(µ) = (1− µ)φ(µ), (4.6)

where φ(µ) is a function. We will assume, without loss of generality, that this function is

continuous.

If θ = 0 and the public belief converges to 0, intuition suggests that the convergence is

fastest when a herd takes place with no investment. The next result which is proven in the

Appendix characterizes the convergence in this case.

PROPOSITION 4.5. Assume the distributions of private beliefs in the two states satisfy

(4.6) with φ(0) > 0, and that θ = 0. Then, in a herd with xt = 0, if t → ∞, the public

belief µt satisfies asymptotically the relation

µt+1 − µt
µt

≈ −φ(0)µt,

and µt converges to 0 like 1/t: there exists α > 0 such that if µt < α, then tµt → a for

some a > 0.

If φ(1) > 0, the same property applies to herds with investment, mutatis mutandis.

The previous result shows that in a herd, the asymptotic rate of convergence is equal to 0.
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The domain in which φ(µ) > 0 represents the support of the distribution of private beliefs.

Recall that the convergence of social learning is driven by the agents with extreme beliefs.

It is therefore important to consider the case where the densities of these agents are not

too small. This property is embodied in the inequalities φ(0) > 0 and φ(1) > 0. They

represent a property of a fat tail of the distribution of private beliefs. If φ(0) = φ(1), we

will say that the distributions of private beliefs have thin tails. The previous proposition

assumes the case of fat tails which is the most favorable for a fast convergence.

We know from Theorem 4.1 that a herd eventually begins with probability 1. Proposition

4.5 characterized the rate of convergence in a herd and it can be used to prove the following

result12.

THEOREM 4.2. Assume the distributions of private beliefs satisfy (4.6) with φ(0) > 0

and φ(1) > 0. Then µt converges to the true value θ ∈ {0, 1} like 1/t.

The benchmark: learning with observable private beliefs

When agents observe beliefs through actions, there is a loss of information which can be

compared with the case where private beliefs are directly observable. In Section ??, the

rate of convergence is shown to be exponential when agents have binary private signals. We

assume here the private belief of agent t is publicly observable. The property of exponential

convergence in Section ?? is generalized by the following result.

PROPOSITION 4.6. If the belief of any agent t is observable, there exists γ > 0 such

that µt = e−γtzt where zt tends to 0 almost surely.

The contrast between Theorem 4.2 and Proposition 4.6 shows that the social learning

through the observation of discrete actions is much slower, “exponentially slower13”, than

if private informations were publicly observable.

Proofs

12See Chamley (2002).

13Smith and Sørensen (2001) provide a technical result (Theorem 4) which states that the Markov

process defined in (??) exhibits exponential convergence of beliefs to the truth under some differentiability

condition. Since the result is in a central position in a paper on social learning, and they provide no
discussion about the issue, the reader who is not very careful may believe that the convergence of beliefs is

exponential in models of social learning. Such a conclusion is the very opposite of the central conclusion of

all models of learning from others’ actions. The ambiguity of their paper on this core issue is remarkable.
Intuition shows that beliefs cannot converge exponentially to the truth in models of social learning. In all

these models, the differentiability condition of their Theorem 4 is not satisfied (Exercise 4.7).
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Proposition ??

Let µ and µ̄ be the lower and upper bounds of the distribution of beliefs in period 1. We

assume that if µ < µ < µ̄, then F θ11 (µ) < F θ01 (µ). This property holds for any period. By

the Martingale Convergence Theorem, λt converges to some value λ∞ almost surely. By

contradiction, assume λ∞ ∈ (γ − δ, γ + δ). Since F θ1t (λ∞) < F θ0t (λ∞), there exist ε > 0

and α > 0 such that if |λ− λ∞| < ε, then

Log
(1− F θ1t (λ)

1− F θ0t (λ)

)
> α, and Log

(F θ1t (λ)

F θ0t (λ)

)
< α.

Since λt → λ∞, there is T such that if t > T , |λt − λ∞| < α/3. Take t > T . If xt = 1,

then by Bayes’ rule in (4.2), λt+1 > λt +α, which is impossible since λt − λt+1 < 2α/3. A

similar contradiction arises if xt = 0. �

Proposition 4.5

An agent chooses action 0 (he does not invest) if and only if his belief µ̃ is smaller than

1/2, i.e. if his private belief is smaller than 1 − µ, where µ is the public belief. In state

θ, the probability of the event x = 0 is F θ(1 − µ). Since F 1(µ) < F 0(µ), the observation

x = 0 is more likely in state 0. It is “bad news” and induces the lowest possible public

belief at the end of the period. The sequence of public beliefs in a herd with no investment

satisfies

µt+1 =

(
1−

∫ 1

1−µt
f1(ν)dν

)
µt

(
1−

∫ 1

1−µt
f1(ν)dν

)
µt +

(
1−

∫ 1

1−µt
f0(ν)dν

)
(1− µt)

. (4.7)

Taking an approximation for small µt,

µt+1 ≈

(
1− f1(1)µt

)
µt

(
1− f1(1)µt

)
µt +

(
1− f0(1)µt

)
(1− µt)

.

Using the condition of the proposition for the initial beliefs,

µt+1 − µt
µt

≈ (f0(1)− f1(1))µt = −φ(0)µt.

For the second part of the result, we use the previous approximation and consider the

sequence {zk} defined by

zk+1 = zk − az2k. (4.8)

This sequence tends to 0 like 1/k. Let yk be such that zk = (1 + yk)/(ak). By substitution

in (4.8),

1 + yk+1 = (k + 1)
(1 + yk

k
− (1 + yk)2

k2

)
.



72 Cascades and herds72

A straightforward manipulation14 shows that yk+1 < yk. Hence zk tends to 0 like 1/k when

k →∞.�

Proposition 4.6

The evolution of the public belief is determined by Bayes’ rule in LLR:

λt+1 = λt + ζt, with ζt = Log(µ̂t/(1− µ̂t)) (4.9)

Since θ = 0, the random variable ζt has a bounded variance and a strictly negative mean,

−γ̄, such that

γ̄ = −
∫ 1

0

Log
( ν

1− ν
)
f0(ν)dν > 0. (4.10)

Choose γ such that 0 < γ < γ̄. Let νt = λt + γt. We have νt+1 = νt + ζ ′t with E[ζ ′t] =

−(γ̄ − γ) < 0. Therefore, νt = ν0 +
∑t−1
k=1 ζ

′
k where

∑n
k=1 ζ

′
k/n tends to −(γ̄ − γ) < 0

almost surely. Hence,
∑t−1
k=1 ζ

′
k tends to −∞ almost surely. Therefore, νt tends to −∞ and

eνt tends to 0, almost surely. By definition of νt, µt ≤ e−γteνt .

�

Theorem 4.3

A herd takes place after period t if xt+k = 0 for any k ≥ 1. The complement of this event

is contained in the union of the events Ak where Ak is defined as the herd’s stop in period

t+ k with the history (xt+1 = 0, . . . , xt+k−1 = 0, xt+k = 1). The probability of that event,

conditional on the state θ = 0, is

P (Ak) = (1− πt) . . . (1− πt+k−1)πt+k ≤ πt+k,

with πt+k =

∫ 1

1−µ
t+k

f0(ν)dν,

and where µ
t+k

is the path of beliefs generated in a herd with no investment (Proposition

4.5). Using the proportional property (??), f0(ν) ≈ νf1(1) for ν ≈ 0. Therefore, when µt

is near 0,

πt+k ≈
f1(1)

2
µ2
t+k
≈ a

(t+ k)2
for some constant a.

The probability of the union of the Ak is smaller than the sum of the probabilities P (Ak)

which is of the order of
∑
k≥0 1/(t + k)2, i.e., of the order of 1/t. Hence, the probability

that a herd is broken once after date t tends to 0 like 1/t.

14

1 + yk+1 = 1 +
1

k
−

1

k
−

1

k2
+ yk +

yk

k
− 2yk

k + 1

k2
− y2k

k + 1

k2
< 1 + yk.
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The key step here is not that the belief µt tends to zero at a constant (strictly positive)

rate, as alleged in Smith and Sørensen (2001), but that the probability that a contrarian

agent shows up at date t tends to 0 like 1/t2. The square term arises because of condition

(4.6): the integral of beliefs above 1−µ is of the order of the area of a triangle proportional

to µ if µ→ 0.

Let C be the set of histories in which the public belief µt tends to zero. The complement of

C is the intersection of the sets Am = ∪k≥mAk for all m. From the previous computation,

P (Am) tends to zero like 1/m and the sequence Am is monotone decreasing. It follows

that a herd begins almost surely. Furthermore, the probability that µt is different from

the sequence of most pessimistic beliefs after date t, µ
t

= B(µ
t−1, 0), tends to 0 like 1/t.

�
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4.5.2 Why do herds occur?

Herds must eventually occur as shown in Theorem 4.1. The proof of that result rests on

the Martingale Convergence Theorem: the break of a herd induces a large change of the

beliefs which contradicts the convergence. Lones Smith has insisted, quite rightly, that

one should provide a direct proof that herds take place for sure eventually. This is done

by computing the probability that a herd is broken in some period after time t. Such a

probability tends to zero as shown in the next result.

THEOREM 4.3. Assume the distributions of private beliefs satisfy (4.6) with φ(0) > 0

and φ(1) > 0. Then the probability that a herd has not started by date t tends to 0 like 1/t.

4.5.3 Discrete actions and the slow convergence of beliefs

The assumption of a “fat tail” of the distribution of beliefs, φ(0) > 0, φ(1) > 0, is easy to

draw mathematically but it is not supported by any strong empirical evidence.

The thinner the tail of the distribution of private beliefs, the slower the convergence of

social learning. However, if private signals are observable, the convergence is exponential

for any distribution. The case of a thin tail provides a transition between a distribution

with a thick tail and a bounded distribution where the convergence stops completely in

finite time, almost surely (Chamley, 2002).

It is reasonable to consider the case where the density of beliefs is vanishingly small when

the belief approaches perfect knowledge. We make the following assumption. For some

b > 0, c > 0,

f1(1) = 0, and Limµ→0

(
f1(µ)/(1− µ)b

)
= c > 0. (4.11)

The higher is b, the thinner is the tail of the distribution near the truth. One can show

that the sequence of beliefs with the history of no investment tends to 0 like 1/t1/(1+b)

(Exercise ??).

The main assumption in this chapter is, as emphasized in BHW, that actions are discrete.

To simplify, we have assumed two actions, but the results could be generalized to a finite

set of actions. The discreteness of the set of actions imposes a filter which blurs more the

information conveyed by actions than the noise of the previous chapter where agents could

choose action in a continuum. Therefore, the reduction in social learning is much more

significant in the present chapter than in the previous one.

Recall that when private signals can be observed, the convergence of the public belief is
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exponential like e−αt for some α > 0. When agents choose an action in a continuum and

a noise blurs the observation, as in the previous chapter, the convergence is reduced to

a process like e−αt
1/3

. When actions are discrete, the convergence is reduced, at best, to

a much slower process like 1/t. If the private signals are Gaussian, (as in the previous

chapter), the convergence is significantly slower as shown in the example of Figure ??.

The fundamental insight of BHW is robust.

4.6 Bibliographical notes

Social learning in a changing world

Throughout this chapter and the next, the state of nature is invariant. This assumption

is made to focus on the learning of a given state and it applies when the state does not

change much during the phase of learning. Assume now, following Moscarini, Ottaviani

and Smith (1998),that the value of θ switches between θ0 and θ1 according to a random

Markov process: the set of states of nature Θ = {θ0, θ1} is fixed but between periods, θ

switches to the other value with probability π.

Suppose that all agents are herding in period t. Does the public belief stay constant as in

the previous sections of this chapter? Agents learn nothing from the observation of others,

but they know that θ evolves randomly. Ignoring the actions from others, the public belief

(probability of state θ1) regresses to the mean, 1/2. Therefore, after a finite number of

periods, the public belief does not dominate the belief of some agents in which case not

all agents herd. The herding by all agents stops. This property is interesting only if π is

neither too small nor too high: if π is very small, the regression to the mean is slow and

the herding behavior may last a long time; if π is sufficiently large, the expectation of the

exogenous change between periods is so large that the learning from others’ actions which

is driven by their information about past values of θ bears no relation with the current

value of θ. No cascade can occur.

Experiments

The BHW model has been experimented in the laboratory by Anderson and Holt (1996),

(1997). Such experiments raise the issues of the actual understanding of Bayesian inference

by people (Holt and Anderson, 1996), and of the power of the tests. A important difficulty

is to separate the rational Bayesian learning from ad hoc rules of decision making after the

observations of others’ actions (such as counting the number of actions of a given type in

history, or taking into account the last observed action)15. Huck and Oechssler (1998) find

that the tests of Anderson and Holt are not powerful against simple rules. More recent

15This issue is raised again in empirical studies on the diffusion of innovations (Section ??).
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experimental studies include Çelen and Kariv (2002b), (2002c), or Holt (2001).



Chapter 5

Delays

Does the waiting game end with a bang or a whimper?

Each agent chooses when to invest (if at all) and observes the number of

investments by others in each period. That number provides a signal on

the private information of other agents about the state of nature. The

waiting game has in general multiple equilibria. An equilibrium depends

on the intertemporal arbitrage between the opportunity cost of delay and

the value of the information that is gained from more observations. The

informational externality generates strategic substitutabilities and comple-

mentarities. Multiple equilibria appear which exhibit a rush of activity or

delays, and generate a low or high amount of information. The convergence

of beliefs and the occurrence of herds are analyzed under a variety of as-

sumptions about the boundedness of the distribution of private beliefs, the

number of agents, the existence of an observation noise, the length of the

periods, and the discreteness of investment decisions.

In 1993, the US economy was in a shaky recovery from the previous recession. The optimism

after some good news was dampened by a few bad news, raised again by other news, and so

on. In the trough of the business cycle, each agent is waiting for some “good news” about

an upswing. What kind of news? Some count occupancy rates in the first class section

of airplanes. Others weigh the newspapers to evaluate the volume of ads. Housing starts,

expenditures on durables are standard indicators to watch. The news are the actions of

77
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other agents. Everyone could be waiting because everyone is waiting in an “economics of

wait and see” (Sylvia Nasar, 1993).

In order to focus on the problem of how a recession may be protracted by the waiting game

for more information, we have to take a step back from the intricacies of the real world and

the numerous channels of information. In this chapter, agents learn from the observation

of the choices of action taken by others but not from the payoffs of these actions. This

assumption is made to simplify the analysis. It is also justified in the context of the business

cycle where lags between the initiation of an investment process and its payoff can be long

(at least a year or two). The structure of the model is thus the same as in Chapter 3 but

each agent can make his investment in any period: he has one option to make a fixed size

investment. The central issue is when to exercise the option, if at all.

When the value of the investment is strictly positive, delay is costly because the present

value of the payoff is reduced by the discount factor. The opportunity cost of delay for

one period is the product of the net payoff of investment and the discount rate. Delay

enables an agent to observe others’ actions and infer some information on the state of

nature. These observations may generate good or bad news. Define the bad news as an

event such that the agent regrets ex post an irreversible investment which he has made,

and would pay a price to undo it (if it were possible). The expected value of this payment

in the next period after observing the current period’s aggregate investment, is the option

value of delay. The key issue which commands all results in this chapter is the trade-off,

in equilibrium, between the opportunity cost and the option value of delay.

Consider the model of Chapter *** with two states of nature and assume that agents can

choose the timing of their investment. If all beliefs (probability of the good state) are

below the cost of investment, the only equilibrium is with no investment and there is a

herd as in the BHW model. If all beliefs are higher than the cost of investment, there

is an equilibrium in which all agents invest with no delay. This behavior is like a herd

with investment in the BHW model and it is an equilibrium since nothing is learned by

delaying. The herds in the BHW model with exogenous timing are equilibria in the model

with endogenous timing.

However, the model with endogenous timing may have other equilibria with an arbitrage

between the option value and the opportunity cost of delay. For a general distribution

of private beliefs, the margin of arbitrage may occur at different points of the distribu-

tion. Generically, there are at least two equilibrium points, one in the upper tail of the

distribution and another in the lower tail. In the first equilibrium, only the most opti-

mistic agents invest; in the second, only the most pessimistic delay. The two equilibria in
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which most agents delay or rush, respectively, are not symmetric because of the arbitrage

mechanism. In the first, the information conveyed by the aggregate activity must be large

in order to keep the agents at the high margin of beliefs (with a high opportunity cost)

from investing. In the second, both the opportunity cost of relatively pessimistic agents

and the information conveyed by the aggregate activity are low. In the particular case of

a bounded distribution, the rush where few agents delay may be replaced by the corner

solution where no agent delays.

Multiple equilibria are evidence of strategic complementarities (Cooper and John, 1988).

These complementarities arise here only because of informational externalities. There is no

payoff externality. As in other models with strategic complementarities, multiple equilibria

may provide a support for sudden switches of regime with large fluctuations of economic

activity (Chamley, 1999).

The main ideas of the chapter are presented in Section 5 with a simple two-agent model

based on Chamley and Gale (1994). The unique equilibrium is computed explicitly.

The general model with heterogeneous beliefs is presented in Section 5. It is the full

extension of the BHW model to endogenous timing. Heterogeneous beliefs is a plausible

assumption per se and it generates non random strategies. The model has a number of

players independent of the state of nature and generalizes Chamley and Gale (1994) who

assume identical beliefs. In the model with identical beliefs, the endowment of an option

is the private signal and the number of players thus depends on the state of nature. This

case is particularly relevant when the number of players is large.

When private beliefs are not identical, the analysis of the symmetric sub-game perfect

Bayesian equilibria (PBE) turns out to be simple due to an intuitive property which is

related to the arbitrage condition: an agent never invests before another who is more

optimistic. Therefore, the agent with the highest belief among those who delay must be

the “first” to invest in the next period if there is any investment in that period (since he

has the highest belief then). All equilibria where the arbitrage condition applies can be

described as sequences of two-period equilibria.

Some properties of the model are presented in Section ??. Extensions will be discussed in

the next chapter. When the public belief is a range (µ∗, µ∗∗), the level of investment in

each period is a random variable and the probability of no investment is strictly positive.

If there is no investment, the game stops with a herd and no investment takes place in any

subsequent period. Hence the game lasts a number of periods which is at most equal to

the number of players in the game. If the period length tends to zero, the game ends in
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a vanishingly short time. Since an agent can always delay until the end of the game, and

the cost of delay tends to zero with the length of the period, the information generated by

the game also tends to zero with the period length: another effect of arbitrage.

The game is illustrated in Section ?? by an example with two agents with normally dis-

tributed private signals (unbounded), which highlights the mechanism of strategic comple-

mentarity. When the time period is sufficiently short, there cannot be multiple equilibria,

under some specific conditions. The presence of time lags between observation and action

is thus necessary for the existence of multiple equilibria.

The case of a large number of agents (Section ??) is interesting and illustrates the power

of the arbitrage argument. When the number of agents tends to infinity, the distribution

of the levels of investment tends to a Poisson distribution with a parameter which depends

on the public belief, and on the discount rate. This implies that as long as the public belief

µ is in the interval (µ∗, µ∗∗), the level of investment is a random variable which is small

compared to the number of agents. The public belief evolves randomly until it exits the

interval: if µ < µ∗, investment goes from a small random amount to nil forever; if µ > µ∗∗,

all remaining agents invest with no further delay. The game ends with a whimper or a

bang.

The Appendix presents two extensions of the model which show the robustness of the

results: (i) with a very large number of agents (a continuum) and an observation noise,

there are multiple equilibria as in the model with two agents; the equilibrium with high

aggregate activity generates an amount of information which is significantly smaller than

the equilibrium with low activity and delays; (ii) multiple equilibria also appear when

individual investments are non-discrete.

5.1 The simplest model

There are two players and time is divided in periods. There are two states of nature,

The simple model

is another example

of how to start

the analysis of

general issues

as presented in

the introduction.

One should stylize

as much as possible.

The investigation

of robustness and

extensions will

be easier once

the base model is

firmly understood.

θ ∈ {0, 1}. In state 0, only one of two players (chosen randomly with equal probability)

has one option to make an investment of a fixed size in any period. In state 1, both players

have one option. To have an option is private information and is not observable by the

other agent. Here, the private signal of the agent is the option. The number of players

in the game depends on the state of nature1. As an illustration, the opportunities for

productive investment may be more numerous when the state of the economy is good.

1One could also think that the cost of investment is very high for one or zero agent thus preventing the
investment. Recall that in the BHW model, the number of players does not depend on the state of nature.
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For an agent with an option, the payoff of investment in period t is

U = δt−1(E[θ]− c), with 0 < c < 1,

where E is the expectation conditional on the information of the agent and δ is the discount

factor, 0 < δ < 1.

All agents in the game have the same private information (their own option), and observe

the same history. They have the same belief (probability of state θ = 1). Let µt be the

belief of an agent at the beginning of period t. The belief in the first period is given2 and

satisfies the next assumption in order to avoid trivialities.

Assumption5.1. 0 < µ− c < δµ(1− c).

Agents play a game in each period and the strategy of an agent is his probability of

investment. We look for a symmetric perfect Bayesian equilibrium (PBE): each agent

knows the strategy z of the other agent (it is the same as his own); he anticipates rationally

to receive a random amount of information at the end of each period and that the subgame

which begins next period with a belief updated by Bayes’ rule has an equilibrium.

Let z be the probability of investment in the first period by an agent with an option. Such

an agent will be called a player. We prove that there is a unique symmetric equilibrium

with 0 < z < 1.

• z = 1 cannot be an equilibrium. If z = 1, both agents “come out” with probability

one, the number of players and therefore the state is revealed perfectly at the end of

the period. If an agent deviates from the strategy z = 1 and delays (with z = 0), he

can invest in the second period if and only if the true state is good. The expected

payoff of this delay strategy is δµ(1−c): in the first period, the good state is revealed

with probability µ in which case he earns 1−c. The discount factor is applied because

the investment is made in the second period. The payoff of no delay is µ−c, and it is

smaller by Assumption 5.1. The strategy z = 1 cannot define a PBE. Note that the

interpretation of the right-hand side inequality is now clear: the payoff of investment,

µ− c, should be smaller than the payoff of delay with perfect information in the next

period.

• z = 0 cannot be an equilibrium either. The argument is a bit more involved and

proceeds by contradiction. If z = 0, there is no investment in the first period for

2One could assume that agents know that nature chooses state θ = 1 with probability µ0. In this case,
by Bayes’ rule, µ = 2µ0/(1 + µ0).
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any state, no information and therefore the same game holds at the beginning of

period 2, with the same belief µ. Indefinite delay cannot be an equilibrium strategy

because it would generate a zero payoff which is strictly smaller than the payoff of

no delay, µ − c > 0 (Assumption 5.1). Let T be the first period in which there is

some investment with positive probability. Since z = 0, T ≥ 2. In period T , the

current value of the payoff of investment is µ − c > 0 because nothing has been

learned before. The present value of this payoff is strictly smaller than the payoff of

immediate investment, µ − c. Hence, T ≥ 2 is impossible and z = 0 cannot be an

equilibrium strategy.

The necessity of investment in every period

We have shown that in an equilibrium, agents randomize with 0 < z < 1. The level of total

investment is a random variable. We will see that the higher the level of investment, the

higher the updated belief after the observation of the investment. In this simple model,

one investment is sufficient to reveal to the other player (if there is one), that the state is

good. No investment in the first period is bad news. Would anyone invest in the second

period after this bad news? The answer is no, and the argument is interesting.

If anyone delays in the first period and expects to invest in the second period after the

worst possible news (zero investment), his payoff in the subgame of period 2 is the same

as that of investing for sure in period 2. (He invests if he observes one investment). That

payoff, δ(µ− c), is inferior to the payoff of immediate investment because of the discount.

The player cannot invest after observing no investment. Hence, if there is no investment

in the first period, there is no investment in any period after. We will see in this chapter

that this property applies in more general models. The argument shows that: (i) if there is

no investment, the ex post belief of any agent must be smaller than the cost of investment

c; (ii) since agents randomize in the first period, the event of no investment has a positive

probability. There is a positive probability of an incorrect herd.

Using the previous argument, we can compute the payoff of delay. If an agent delays,

he invests in period 2 if and only if he sees an investment (by the other agent) in period

1, in which case he is sure that the state is good and his second period payoff is 1 − c.
The probability of observing an investment in the first period is µz, (the product of the

probability that there is another agent and that he invests). The payoff of delay (computed

at the time of the decision) is therefore δµz(1− c).

Arbitrage and the existence of a unique PBE

Since 0 < z < 1, agents randomize their investment in the first period and are indifferent

between no delay and delay. This arbitrage condition between the value of investment and



83 Delays83

the value of the option to invest is essential in this chapter and is defined by

µ− c = δµz(1− c). (5.1)

By Assumption 5.1, this equation in z has a unique solution in the interval (0, 1). The

analysis of the solution may be summarized as follows: first, the arbitrage condition is

necessary if a PBE exists; second, the existence of a unique PBE follows from the arbitrage

condition by construction of the equilibrium strategy. This method will be used in the

general model.

Interpretation of the arbitrage condition

A simple manipulation shows that the arbitrage equation can be restated as

1− δ
δ

(µ− c) =
(
µz(1− c)− (µ− c)

)

= P (x = 0|µ)
(
c− P (θ1|x = 0, µ)

) (5.2)

where P (x = 0|µ) is the probability for an agent with belief µ that the other agent does not

invest in period 1, i.e. the probability of bad news. The term µ− c has the dimension of a

stock, as the net present value of an investment. The left-hand side is the opportunity cost

of delay: it is the value of investment multiplied by the interest rate between consecutive

periods. (If δ = 1/(1 + r), then (1 − δ)/δ = r). The right-hand side will be called

the information value of delay. It provides the measurement of the value of information

obtained from a delay. To interpret it, note that the term P (θ1|x = 0, µ) is the value of an

investment after the bad news in the first period. If an agent could reverse his decision to

invest in the first period (and get the cost back), the associated value of this action would

be c− P (θ1|x = 0, µ). The option value of delay is the expected “regret value” of undoing

the investment when the agent wishes he could do so. The next properties follow from the

arbitrage condition.

In an equilibrium,

the cost of delay

is equal to the

information value

of delay---the

expected regret

value. This arbitrage

is the linchpin

of all equilibria

in this chapter.

Information and time discount

The power of the signal which is obtained by delay increases with the probability of in-

vestment z in the strategy. If z = 0, there is no information. If z = 1, there is perfect

information.

The discount factor is related to the length of the period, τ , by δ = e−ρτ , with ρ the

discount rate per unit of time. If δ varies, the arbitrage equation (5.1) shows that the

product δz is constant. A shorter period (higher δ) means that the equilibrium must

generate less information at the end of the first period: the opportunity cost of delay is

smaller and by arbitrage, the information value of delay decreases. Since this information
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varies with z, the value of z decreases. From Assumption 5.1, 0 < z < 1 only if δ is in the

interval [δ∗, 1), with δ∗ = (µ− c)/(µ(1− c)).

If δ → δ∗, then z → 1. If δ ≤ δ∗, then z = 1 and the state is revealed at the end of the

first period. Because this information comes late (with a low δ), agents do not wait for it.

If δ → 1 and the period length is vanishingly short, information comes in quickly but there

is a positive probability that it is wrong. The equilibrium strategy z tends to δ∗. If the

state is good, with probability (1−δ∗)2 > 0 both agents delay and end up thinking that the

probability of the good state is smaller than c and that investment is not profitable. There

is a trade-off between the period length and the quality of information which is revealed

by the observation of others. This trade-off is generated by the arbitrage condition. The

opportunity cost of delay is smaller if the period length is smaller. Hence the value of the

information gained by delay must also be smaller.

A remarkable property is that the waiting game lasts one period, independently of the

discount factor. If the period is vanishingly short, the game ends in a vanishingly short time,

but the amount of information which is released is also vanishingly short. In this simple

model with identical players, the value of the game does not depend on the endogenous

information which is generated in the game since it is equal to the payoff of immediate

investment. However, when agents have different private informations, the length of the

period affects welfare (as shown in the next chapter).

Investment level and optimism

In the arbitrage equation (5.1), the probability of investment and the expected value of

investment are increasing functions of the belief µ: a higher µ entails a higher opportunity

cost and by arbitrage a higher option value of delay. The higher information requires that

players “come out of the wood” with a higher probability z. This mechanism is different

from the arbitrage mechanism in the q-theory of Tobin which operates on the margin

between the financial value µ and an adjustment cost.

Observation noise and investment

Suppose that the investment of an agent is observed with a noise: if an investment is made,

the other agent sees it with probability 1−γ and sees nothing with probability γ, (γ small).

The arbitrage operates beautifully: the information for a delaying agent is unaffected by

the noise because it must be equal to the opportunity cost which is independent of the

noise. Agents compensate for the noise in the equilibrium by increasing the probability of

investment (Exercise ??).
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Large number of agents

Suppose that in the good state there are N agents with an option to invest and that in

the bad state there is only one agent with such an option. These values are chosen to

simplify the game: one investment reveals that the state is good and no investment stops

the game. For any N which can be arbitrarily large, the game lasts only one period, in

equilibrium, and the probability of investment of each agent in the first period tends to zero

if N →∞. Furthermore, the probability of no investment, conditional on the good state,

tends to a positive number. The intuition is simple. If the probability of investment by a

player remains higher than some value α > 0, its action (investment or no investment) is

an signal on the state with a non vanishing precision. If N →∞, delay provides a sample

of observations of arbitrarily large size and perfect information asymptotically. This is

impossible because it would contradict the arbitrage with the opportunity cost of delay

which is independent of N . The equilibrium is analyzed in Exercise ??.

Strategic substitutability

Suppose an agent increases his probability of investment from an equilibrium value z. The

option value (in the right-hand side of (5.1) or (5.2)) increases. Delay becomes strictly

better and the optimal response is to reduce the probability of investment to zero: there

is strategic substitutability between agents. In a more general model (next section) this

property is not satisfied and multiple equilibria may arise.

Non symmetric equilibrium

Assume there are two agents, A and B, who can see each other but cannot see whether

the other has an option to invest. It is common knowledge that agent B always delays in

the first period and does not invest ever if he sees no investment in the first period.

Agent A does not get any information by delaying: his optimal strategy is to invest with no

delay, if he has an option. Given this strategy of agent A, agent B gets perfect information

at the end of period 1 and his strategy is optimal. The equilibrium generates perfect

information after one period. Furthermore, if the state is good, both agents invest. If the

period length is vanishingly short, the value of the game is µ− c for agent A, and µ(1− c)
for agent B which is strictly higher than in the symmetric equilibrium. If agents could

“allocate the asymmetry” randomly before knowing whether they have an option, they

would be better off ex ante.
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5.2 A general model with heterogeneous beliefs

The structure of the model extends the canonical model in Section 4.2 by allowing each agent

to make his fixed size investment in any period of his choice. There are N agents each with

one option to make one irreversible investment of a fixed size. Time is divided in periods

and the payoff of exercising an option in period t is δt−1(θ− c) with δ the discount factor,

0 < δ ≤ 1, and c the cost of investment, 0 < c < 1. The payoff from never investing is zero.

Investment can be interpreted as an irreversible switch from one activity to another3.

The rest of the model is the same as in the beginning of Section 4.2. The productivity

parameter θ which is not observable is set randomly by nature once and for all before the

first period and takes one of two values: θ0 < θ1. Without loss of generality, these values

are normalized at θ1 = 1 for the “good” state, and θ0 = 0 for the “bad” state. As in Section

??, each agent is endowed at the beginning of time with a private belief which is drawn

from a distribution with c.d.f. F θ1 (µ) depending on the state of nature θ. For simplicity

and without loss of generality, it will be assumed that the cumulative distribution functions

have derivatives4. The support of the distribution of beliefs is an interval (µ
1
, µ̄1) where

the bounds may be infinite and are independent of θ. The densities of private beliefs satisfy

the Proportional Property (??). Hence, the cumulative distribution functions satisfy the

property of first order stochastic dominance: for any µ ∈ (µ
1
, µ̄1), F 1

1 (µ) < F 0
1 (µ).

After the beginning of time, learning is endogenous. In period t, an agent knows his private

belief and the history ht = (x1, . . . , xt−1), where xk is the number of investments in period

k.

The only decision variable of an agent is the period in which he invests. (This period is

postponed to infinity if he never invests). We will consider only symmetric equilibria. A

strategy in period t is defined by the investment set It(ht) of beliefs of all investing agents:

an agent with belief µt in period t invests in that period (assuming he still has an option)

if and only if µt ∈ It(ht). In an equilibrium, the set of agents which are indifferent between

investment and delay will be of measure zero and is ignored. Agents will not use random

strategies.

As in the previous chapters, Bayesian agents use the observation of the number of invest-

ments, xt, to update the distribution of beliefs F θt into the distribution in the next period

F θt+1. Each agent (who has an option) chooses a strategy which maximizes his expected

3The case where the switch involves the termination of an investment process (as in Caplin and Leahy,

1994) is isomorphic.

4The characterization of equilibria with atomistic distributions is more technical since equilibrium strate-
gies may be random (e.g., Chamley and Gale, 1994).
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payoff, given his information and the equilibrium strategy of all agents for any future date

and future history. For any period t and history ht, each agent computes the value of

his option if he delays and plays in the subgame which begins in the next period t + 1.

Delaying is optimal if and only if that value is at least equal5 to the payoff of investing in

period t. All equilibria analyzed here are symmetric subgame perfect Bayesian equilibria

(PBE).

As in the model with exogenous timing (Section ??), a belief can be expressed by the

Log likelihood ratio (LLR) between the two states, λ = Log(µ/(1 − µ)) which is updated

between periods t and t+ 1 by Bayes’ rule

λt+1 = λt + ζt, where ζt = Log
(P (xt | It, θ1)

P (xt | It, θ0)

)
,

and P (xt | It, θ) =
nt!

xt!(nt − xt)!
πxt

θ (1− πθ)nt−xt , πθ = P (λt ∈ It | θ).
(5.3)

All agents update their individual LLR by adding the same value ζt. Given a state θ, the

distribution of beliefs measured in LLRs in period t is generated by a translation of the

initial distribution by a random variable ζt.

5.2.1 Characterization and existence of equilibria

The incentive for delay is to get more information from the observation of others. Agents

who are relatively more optimistic have more to loose and less to gain from delaying: the

discount factor applies to a relatively high expected payoff while the probability of bad news

to be learned after a delay is relatively small. This fundamental property of the model

restricts the equilibrium strategies to the class of monotone strategies. By definition, an

agent with a monotone strategy in period t invests if and only if his belief µt is greater than

some value µ∗t . The next result, which is proven in the appendix, shows that equilibrium

strategies must be monotone.

LEMMA 5.1. (monotone strategies) In any arbitrary period t of a PBE, if the payoff

of delay for an agent with belief µt is at least equal to the payoff of no delay, any agent with

belief µ′t < µt strictly prefers to delay. Equilibrium strategies are monotone and defined by

a value µ∗t : agents who delay in period t have a belief µt ≤ µ∗t .

Until the end of the chapter, strategies will be defined by their minimum belief for invest-

ment, µ∗t . Since no agent would invest with a negative payoff, µ∗t ≥ c. The support of the

distribution of µ in period t is denoted by (µ
t
, µ̄t). If all agents delay in period t, one can

define the equilibrium strategy as µ∗t = µ̄t.

5By assumption, an indifferent agent delays. This tie breaking rule applies with probability zero and is
inconsequential.



88 Delays88

The existence of a non trivial equilibrium in the subgame which begins in period t depends

on the payoff of the most optimistic agent6, µ̄t− c. First, if µ̄t ≤ c, no agent has a positive

payoff and there is no investment whatever the state θ. Nothing is learned in period t (with

probability one), or in any period after. The game stops. Second, if µ̄t > c, the next result

(which parallels a property for identical beliefs in Chamley and Gale, 1994) shows that in

a PBE, the probability of some investment is strictly positive. The intuition of the proof,

which is given in the appendix, begins with the remark that a permanent delay is not

optimal for agents with beliefs strictly greater than c (since it would yield a payoff of zero).

Let T be the first period after t in which some agents invest with positive probability. If

T > t, the current value of their payoff would be the same as in period t (nothing is learned

between t and T ). Because of the discount factor δ < 1, the present value of delay would

be strictly smaller than immediate investment which is a contradiction.

LEMMA 5.2. (condition for positive investment) In any period t of a PBE:

(i) if c < µ̄t (the cost of investment is below the upper-bound of beliefs), then

any equilibrium strategy µ∗t is such that c ≤ µ∗t < µ̄t; if there is at least

one remaining player, the probability of at least one investment in period t is

strictly positive;

(ii) if µ̄t ≤ c (the cost of investment is above the upper-bound of beliefs), then

with probability one there is no investment for any period τ ≥ t.

The decision to invest is a decision whether to delay or not. In evaluating the payoff of

delay, an agent should take into account the strategies of the other agents in all future

periods. This could be in general a very difficult exercise. Fortunately, the property of

monotone strategies simplifies greatly the structure of equilibria. A key step is the next

result which shows that any equilibrium is a sequence of two-period equilibria each of which

can be determined separately.

LEMMA 5.3. (one-step property ) If the equilibrium strategy µ∗t of a PBE in period

t is an interior solution (µ
t
< µ∗t < µ̄t), then an agent with belief µ∗t is indifferent between

investing in period t and delaying to make a final decision (investing or not) in period t+1.

Proof Since the Bayesian updating rules are continuous in µ, the payoffs of immediate

investment and of delay for any agent are continuous functions of his belief µ. Therefore, an

agent with belief µ∗t in period t is indifferent between investment and delay. By definition

6Recall that such an agent may not actually exist in the realized distribution of beliefs.
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of µ∗t , if he delays he has the highest level of belief among all players remaining in the

game in period t+ 1, i.e., his belief is µ̄t+1. In period t+ 1 there are two possibilities: (i)

if µ̄t+1 > c, then from Lemma 5.2, µ∗t+1 < µ̄t+1 and a player with belief µ̄t+1 invests in

period t + 1; (ii) if µ̄t+1 ≤ c, then from Lemma 5.2 again, nothing is learned after period

t; a player with belief µ̄t+1 may invest (if µ̄t+1 = c), but his payoff is the same as that of

delaying for ever. �

In an equilibrium, an agent with belief µ compares the payoff of immediate investment, µ−c,
with that of delay for exactly one period, W (µ, µ∗), where µ∗ is the strategy of others. (For

simplicity we omit the time subscript and other arguments such as the number of players

and the c.d.f. F θ). From Lemma 5.3 and the Bayesian formulae (5.3) with πθ = 1−F θ(µ∗),
the function W is well defined. An interior equilibrium strategy must be solution of the

arbitrage equation between the payoff of immediate investment and of delay:

µ∗ − c = W (µ∗, µ∗).

The next result shows that this equation has a solution if the cost c is interior to the

support of the distribution of beliefs.

LEMMA 5.4. In any period, if the cost c is in the support of the distribution of beliefs,

i.e., µ < c < µ̄, then there exists µ∗ > c such that µ∗− c = W (µ∗, µ∗): an agent with belief

µ∗ is indifferent between investment and delay.

Proof Choose µ∗ = µ̄: there is no investment and therefore no learning during the period.

Hence, W (µ̄, µ̄) = (1 − δ)(µ̄ − c) < µ̄ − c. Choose now µ∗ = c. With strictly positive

probability, an agent with belief c observes n − 1 investments in which case his belief is

higher (n is the number of remaining players). Hence, W (c, c) > 0. Since the function W

is continuous, the equation µ∗ − c = W (µ∗, µ∗) has at least one solution in the interval

(c, µ̄). �

The previous lemmata provide characterizations of equilibria (PBE). These characteriza-

tions enable us to construct all PBE by forward induction and to show existence.

THEOREM 5.1. In any period t where the support of private beliefs is the interval

(µ
t
, µ̄t):

(i) if µ̄t ≤ c, then there is a unique PBE with no agent investing in period t or after;

(ii) if µ
t
< c < µ̄t, then there is at least one PBE with strategy µ∗t ∈ (c, µ̄t);

(iii) if c ≤ µ
t
, then there is a PBE with µ∗t = µ

t
in which all remaining players invest in

period t.
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In case (ii) and (iii) there may be multiple equilibria. The equilibrium strategies µ∗t ∈
(µ
t
, µ̄t) are identical to the solutions of the arbitrage equation

µ∗ − c = W (µ∗, µ∗), (5.4)

where W (µ, µ∗) is the payoff of an agent with belief µ who delays for one period exactly

while other agents use the strategy µ∗.

The only part which needs a comment is (ii). From Lemma 5.4, there exists µ∗t such that

c < µ∗t and µ∗ − c = W (µ∗, µ∗). From Lemma 5.1, any agent with belief µt > µ∗t strictly

prefers not to delay and any agent with belief µt < µ∗t strictly prefers to delay. (Otherwise,

by Lemma 5.1 an agent with belief µ∗t would strictly prefer to delay which contradicts the

definition of µ∗t ). The strategy µ∗t determines the random outcome xt in period t and the

distributions F θt+1 for the next period, and so on.

5.3 Properties
5.3.1 Arbitrage

Let us reconsider the trade-off between investment and delay. For the sake of simplicity,

we omit the time subscript whenever there is no ambiguity. If an agent with belief µ delays

for one period, he foregoes the implicit one-period rent on his investment which is the

difference between investing for sure now and investing for sure next period, (1− δ)(µ− c);
he gains the possibility of “undoing” the investment after bad news at the end of the

current period (the possibility of not investing). The expected value of this possibility is

the option value of delay. The following result, proven in the appendix, shows that the

belief µ∗ of a marginal agent is defined by the equality between the opportunity cost and

the option value of delay.

PROPOSITION 5.1. (arbitrage) Let µ∗ be an equilibrium strategy in a game with

n ≥ 2 remaining players, µ < µ∗ < µ̄. Then µ∗ is solution of the arbitrage equation

between the opportunity cost and the option value of delay

(1− δ)(µ∗ − c) = δQ(µ∗, µ∗), with

Q(µ, µ∗) =
n−1∑

k=0

P (x = k|µ, µ∗, F θ, n)Max
(
c− P (θ = θ1|x = k;µ, µ∗, F θ, n), 0

)
,

(5.5)

where x is the number of investments by other agents in the period.
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The function Q(µ, µ∗) is a “regret function” which applies to an agent with belief µ. It

depends on the strategy µ∗ of the other agents and on the c.d.f.s F θ at the beginning of the

period. Since the gain of “undoing” an investment is c minus the value of the investment

after the bad news, the regret function Q(µ, µ∗) is the expected value of the amount the

agent would be prepared to pay to undo his investment at the beginning of next period.

At the end of that period, each agent updates his LLR according to the Bayesian formula

(5.3) with πθ = 1−F θ(µ∗t ). A simple exercise shows that the updated LLR is an increasing

function of the level of investment in period t and that the lowest value of investment xt = 0

generates the lowest level of belief at the end of the period. Can the game go on after the

worst news of no investment? From Proposition 5.1, we can deduce immediately that the

answer is no. If the agent would invest after the worst news, the value of Q(µ∗, µ∗) would

be equal to zero and would therefore be strictly smaller than µ∗ − c which contradicts the

arbitrage equation (5.5).

PROPOSITION 5.2. (the case of worst news) In any period t of a PBE for which

the equilibrium strategy µ∗t is interior to the support (µ
t
, µ̄t), if xt = 0, then µ̄t+1 ≤ c and

the game stops at the end of period t with no further investment in any subsequent period.

The result shows that a game with N players lasts at most N periods. If the period length

τ is vanishingly short, the game ends in a vanishingly short time. This case is analyzed in

Section ??.

5.3.2 Representation of beliefs

An example of the evolution of beliefs is illustrated in Figure ??. The reader may compare

with the equivalent Figure ?? in the case of exogenous timing. Beliefs are measured by the

LLR and are bounded, by assumption. The support of their distribution at the beginning

of a period is represented by a segment. Suppose that the state is bad: θ = 0. At

the beginning of period 1, the private beliefs of the N players are the realizations of N

independent drawings from a distribution with density f0(·) which is represented by a

continuous curve. (The density in state θ = 1 is represented by a dotted curve).

In period 1, agents with a belief above λ∗1 exercise their option to invest. The number of

investments, x1, is the number of agents with belief above λ∗1, which is random according

to the process described in the previous paragraph.

Each agent who delays knows that x1 is generated by the sum of N−1 independent binary
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The number of investments in a period t depends on the number of agents with a belief
higher than λ∗t . At the end of a period, the updated distributions in the two states are
truncated, translated and rescaled. Period 3 (in which the representation of the densities
is omitted) corresponds to a case with three equilibria. In period 4, there is no investment
since all beliefs are smaller than the cost of investment.

Figure 5.1: An example of evolution of beliefs

variables equal to 1 with a probability πθ that depends on θ: πθ = 1 − F θ(λ∗1). The

probability is represented in Figure ?? by the lightly shaded area if θ = 0 and the darker

area if θ = 1.

From the updating rule (5.3), the distribution of LLRs in period 2 is a translation of the

distribution of the LLRs in period 1, truncated at λ∗1, and rescaled (to have a total measure

of one): λ∗1 − λ1 = λ̄2 − λ2. An agent with LLR equal to λ∗1 in period 1 and who delays

has the highest belief in period 2. The news at the end of period 1 depend on the random

number of agents with beliefs above λ1. In Figure ??, the observation of the number of

investments in period 1 is bad news: the agent with highest belief has a lower belief in

period 2 compared to period 1.

There are two critical values for the LLR in each period: (i) an agent who has a LLR below

the break-even value γ = Log(c/(1 − c)) does not invest; (ii) no agent who has an LLR

above some value λ∗∗ delays. The value λ∗∗ is defined such that if λ > λ∗∗, the payoff of
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no delay is higher than that of delay with perfect information one period later. Since the

latter yields δµ(1− c) to an agent with belief µ, we have

λ∗∗ = Log
( µ∗∗

1− µ∗∗
)
, with µ∗∗ − c = δµ∗∗(1− c). (5.6)

Note that λ∗∗ (or µ∗∗) depends essentially on the discount rate. If the discount rate is

vanishingly small, the opportunity cost of delay is vanishingly small and only the super-

optimists should invest: if δ → 1, then λ∗∗ →∞.

5.3.3 Herds: a comparison with exogenous sequences

Case (iii) in Theorem 5.1 is represented in period 3 of Figure ??. The lower bound of the

distribution of beliefs is higher than the cost of investment, with λ3 > γ = Log(c/(1− c)).
There is an equilibrium called a rush, in which no agent delays. In that equilibrium, nothing

is learned by delay since the number of investments is equal to the number of remaining

players, whatever the state of nature. This outcome occurs here with endogenous delay

under the same condition as the “cascade” or herd of BHW, in which all agents invest,

regardless of their private signal7.

For the distribution of beliefs in period 3, there may be another equilibrium with an interior

solution λ∗3 to the arbitrage equation (5.4). Since agents with the lowest LLR λ3 strictly

prefer to invest if all others do, there may be multiple equilibria with arbitrage, some of

them unstable. This issue is reexamined in the next subsection.

For the case of period 4, all beliefs are below the break-even point: λ̄4 < γ. No investment

takes place in period 4 or after. This equilibrium appears also in the BHW model with

exogenous timing, as a cascade with no investment. From Proposition 5.2, this equilibrium

occurs with positive probability if agents coordinate on the equilibrium λ∗3 in period 3.

The present model integrates the findings of the BHW model in the setting with endogenous

timing. We could anticipate that the herds of the BHW model with exogenous timing

are also equilibria when timing is endogenous because they generate no information and

therefore no incentive for delay.

The cascades of

the BHW model are

also equilibria

when timing is

endogenous. A rush where all agents invest with no delay can take place only if the distribution of beliefs

(LLR) is bounded below. However, if beliefs are unbounded, the structure of equilibria is

7In the BHW model, distributions are atomistic, but the argument is identical.
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very similar to that in Figure ??. In a generic sense, there are multiple equilibria and one

of them may be similar to a rush. This issue is examined in an example with two agents

and Gaussian signals. The Gaussian property is a standard representation of unbounded

beliefs.

EXERCISES

EXERCISE 5.1.

Consider the model of Section 5. Determine the belief (probability of the good state) after

the bad news of no investment. Determine the limit of this value when δ → 1.

EXERCISE 5.2. Observation noise

Consider the model of Section 5 with observation noise. Assume that if an agent invests,

he is seen as investing with probability 1− γ and not investing with probability γ, where

γ is small. Determine the equilibrium strategy. Show that for some interval γ ∈ [0, γ∗)

with γ∗ > 0, the probability of the revelation of the good state and the probability of an

incorrect herd are independent of γ.

EXERCISE 5.3.

Consider the simple model of delay in Section 5 where there are two possible states 1 and

0. In state 1, there are two agents each with an option to make an investment equal to 1

at the cost c < 1. In state 0, there is only one such agent. The gross payoff of investment

is θ. The discount factor is δ < 1 and the initial probability of state 1 is µ such that

0 < µ− c < µδ(1− c).

1. A government proposes a policy which lowers the cost of investment, through a

subsidy τ which is assumed to be small. Unfortunately, due to lags, the policy lowers

the cost of investment by a small amount in the second period, and only in the second

period. This policy is fully anticipated in the first period. Analyze the impact of this

policy on the equilibrium and the welfare of agents.

2. Suppose that in addition (in each state) one more agent with an option to invest

(and discount factor δ), and a belief (probability of the good state) µ < c. How is

your previous answer modified?

EXERCISE 5.4.

Consider the model of Section 5 with N players in the good state and one player in the

bad state. Solve for the symmetric equilibrium. Show that the probability of a herd with
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no investment converges to π∗ > 0 if N → ∞. Analyze the probability of investment by

any agent as N →∞.

EXERCISE 5.5.

Show that there is strategic substitutability at an equilibrium with the strategy µ∗ if

µ∗ >

√
c/(1− c)

1 +
√
c/(1− c)

.

EXERCISE 5.6.

In the model of Section ??, assume n → ∞ and the period length converges to zero,

(δ → 1), at a rate slower than n. Assume that not all agents invest in the equilibrium

(there is no rush).

1. Determine the payoff of an agent with private belief µ as a function of µ, µ̄ and c.

2. Is there a measurement of the externality of information which an agent with private

belief µ receives from the agents in the upper tail of the distribution of beliefs?



96 Delays96

REFERENCES

Bar-Ilan, A. and A. Blinder (1992). “Consumer Durables: Evidence on the Optimality of

Doing Nothing,” Journal of Money Credit and Banking, 24, 253-272.

Caplin, A. and J. Leahy (1994). “Business as Usual, Market Crashes and Wisdom after

the Fact,” American Economic Review, 84, 547-564.

Chamley, C. and D. Gale (1994). “Information Revelation and Stragegic Delay in a Model

of Investment,” Econometrica, 62, 1065-85.

Chamley, C. (2000). “Delays and Equilibria with Large and Small Information in Social

Learning,” mimeo, Boston University.

Chari, V. V. and P. Kehoe (2000). “Financial Crises as Herds,” mimeo, Federal Reserve

Bank of Minneapolis.

Hendricks, K. and D. Kovenock (1989). “Asymmetric Information, Information Exter-

nalities, and Efficiency: the Case of Oil Exploration,” RAND Journal of Economics, 20,

164-182.

Nasar, S. (1993). “The Economics of Wait and See,” The New York Times, May 12.

Smith, L. and P. Sørensen (1994). “Pathological Outcomes of Observational Learning,”

Econometrica, 68, 371-398.

Vives, X. (1993). “How Fast Do Rational Agents Learn?,” Review of Economic Studies,

60, 329-347.



97 Delays97

Appendix: continuum of agents with observation noise

In macroeconomics, aggregate data are reported at discrete intervals, quarterly or monthly.

These data (e.g. GDP growth, housing starts, durable expenditures) pertain to a large

number of agents. They are also affected by noise and imperfection, and may be subject

to revisions. The theoretical model of this section should be viewed in that context.

By assumption, there is a continuum of agents of total mass equal to one. As in the

two-agent model, each rational player gets his private information in the form of a signal

s = θ + ε where the noise ε is independent from any other private noise or other variables

in the economy and is normally distributed N (0, σ2
ε ). This process of private information

generates in the first period an unbounded support of the distribution of private beliefs.

At the end of each period, each agent observes the level of aggregate activity

Yt = yt + ηt,

where yt is the integral of the investments by the rational agents, and ηt is a random term

which is exogenous, independent from all the other variables in the economy and normally

distributed N (0, σ2
η). The history ht is now defined by ht = (Y1, . . . , Yt−1).

The analytical method of Section 5 applies. In any period t of a PBE, the strategy is

monotone. It is defined by the marginal value of the signal s∗t which depends on ht: an

agent delays if and only if his signal17 is smaller than s∗t . The value of s∗t is determined by

the arbitrage between the payoff of immediate investment and that of delay for one period

only. The equilibrium with an infinite number of periods is thus reduced to a sequence

of two-period equilibria. As long as the learning phase proceeds, agents in the interval of

beliefs (s∗t , s̄t) invest in period t and are taken away from the game at the end of period t.

If an agent with signal s∗t delays in period t, he has the highest belief in period t+ 1. Note

that the distribution of beliefs is bounded above in each period after the first.

Let F be the cumulative distribution function of the normal distribution N (0, σ2
ε ). Since

the mass of agents is equal to one, the observation in period t is equal to

Yt = Max
(
F (s∗t−1 − θ)− F (s∗t − θ), 0

)

︸ ︷︷ ︸
+ ηt︸ ︷︷ ︸,

endogenous activity yθ,t = y(θ,s
∗) noise

with s∗1 =∞ by convention.

The variable Yt is a signal on θ through the arguments of the cumulative distribution

functions. If s∗t is either large or small, the endogenous level yt is near zero or near the

17It is simpler to work here with signals rather than with beliefs.
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mass of remaining players, for any value of θ. In this case, the signal of the endogenous

activity yt is dwarfed by the noise ηt, and the information content of Yt becomes vanishingly

small.

Consider an agent with LLR equal to λt at the beginning of period t. Conditional on the

observation Yt, his LLR at the end of the period is equal to λt+1 with

λt+1 = − (Yt − y1,t)2 − (Yt − y0,t)2
2σ2

ε

+ λt,

=
y1,t − y0,t

σ2
ε

(Yt − y1,t + y0,t
2 ) + λt.

An agent with a marginal belief for investment who delays in period t has the highest

belief in period t + 1. He does not invest in the next period t + 1 if and only if his ex

post observation LLR is smaller than Log(c/(1 − c)). We have the following result which

is analogous to Proposition 5.2.

PROPOSITION 5.6. In any period t of a PBE, if the observation Yt is such that

y1,t − y0,t
σ2
ε

(Yt −
y1,t + y0,t

2
) < Log

(c(1− s∗t )
s∗t (1− c)

)
,

where s∗t is the equilibrium strategy in period t, then there is no endogenous investment

after period t. All activity is identical to the noise and provides no information.

A numerical example

Figure ?? represents the option value Q(s, s) and the opportunity cost of delay ((1 −
δ)/δ)(µ(s) − c) as functions of the signal value s in the first period. Three graphs are

represented for different standard errors of the observational noise. The diagram is very

similar to Figure ?? for the case with two agents18. There are multiple equilibria if the

discount rate and the variance of the observation noise are not small. These properties are

intuitive.

The speed of learning

Recall that in the model of Section 5 with a bounded distribution of beliefs, there may

be multiple equilibria with delay or no delay, respectively. An equilibrium with delay

generates significant information when the marginal belief for investment is high (because

of the opportunity cost), while a rush generates no information. We will now see that the

rush is a stylized representation of an equilibrium in the model with a continuum of agents

and observation noise in which few agents delay.

18The values are functions of µ in Figure ?? and functions of s in Figure ??.
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Figure 5.2: Equilibria with a continuum of agents
If the true state is good (✓ = ✓1), this equation becomes

�2(⌘, ✓; s
⇤) � �1 =

⇣
F (s⇤ � ✓0, �✏) � F (s⇤ � ✓1, �✏) + ⌘

⌘2

2�2
⌘

� ⌘2

2�2
⌘

. (5.11)

The expectation, or the ex post average, of this updating over all realizations of the obser-

vation noise ⌘ is

�(✓1; s
⇤) = E[�2(⌘, ✓; s

⇤) � �1] =

⇣
F (s⇤ � ✓0, �✏) � F (s⇤ � ✓1, �✏)

⌘2

2�2
⌘

. (5.12)

Let �(s⇤) = �(✓1; s
⇤) be the certainty equivalent of the updating expression (5.11). If the

true state is bad, using the same notation one finds

�(✓0; s
⇤) = ��(✓1; s

⇤) = ��(s⇤).

Other pa-
rameters: µ = 0.6, θ0 = 0, θ1 = 2, σε = 12, δ = 1− r.

Figure 5.2: Equilibria with a continuum of agents

Consider in the first period an agent with a belief measured by a LLR equal to λ1. Denote

by f(·;σ) the density of the distribution N (0, σ2), and by s∗ the equilibrium strategy in

the first period. Following the observation of aggregate investment in the period, Y =

1− F (s∗ − θ;σε) + η, the agent updates his LLR from λ1 to λ2(θ, η, s∗) defined by

λ2(η, θ; s∗) = λ1 + Log

(
f(Y − 1 + F (s∗ − θ1, σε);ση)

f(Y − 1 + F (s∗ − θ0, σε);ση)

)
.

If the true state is good (θ = θ1), this equation becomes

λ2(η, θ; s∗)− λ1 =

(
F (s∗ − θ0, σε)− F (s∗ − θ1, σε) + η

)2

2σ2
η

− η2

2σ2
η

. (5.11)

The expectation, or the ex post average, of this updating over all realizations of the obser-

vation noise η is

∆(θ1; s∗) = E[λ2(η, θ; s∗)− λ1] =

(
F (s∗ − θ0, σε)− F (s∗ − θ1, σε)

)2

2σ2
η

. (5.12)

Let ∆(s∗) = ∆(θ1; s∗) be the certainty equivalent of the updating expression (5.11). If the

true state is bad, using the same notation one finds

∆(θ0; s∗) = −∆(θ1; s∗) = −∆(s∗).
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The two expected values of the updates of the LLR conditional on the good and the bad

states are just opposite of each other. The positive value ∆(s∗) provides an indicator of

the learning process in the period and depends on the equilibrium strategy s∗.

In the example of Figure ??, for ση = 0.125 and r = 0.10, there are two stable equilibria

with strategies s∗H < s∗L. Investment is higher in the s∗H -equilibrium than in the s∗L-

equilibrium. The respective mean values of the changes of beliefs are

∆(s∗H) = 0.0015, ∆(s∗L) = 0.129.

The difference in information between the two equilibia is significant. In the equilibrium

with low investment in the first period (s∗L), the variation of the LLR is 80 times19 higher

than in the H-equilibrium.

In the equilibrium with high investment (s∗H), a large fraction of agents invest with no

delay. In that period and the periods after, agents do not learn much. The equilibrium is

remarkably similar to the rush equilibrium of the model with bounded beliefs of Section 5

(in which they learned nothing). The rush is a stylized property of the s∗H -equilibrium.

Learning in multiple periods

After the first period, the support of private beliefs has a finite upper-bound. This is

important: it means that agents never learn with certainty whether the state is good.

Furthermore, in each period after the first, with a strictly positive probability investment

stops completely in a cascade with no investment: assuming a marginal value s∗τ in the

support of beliefs20 for each τ ≤ t, then s∗t+1 ≥ s̄t+1 with some strictly positive probability.

The game and the evolution of beliefs proceed as in the model of Section 5 with a finite

number of agents. In each period, the possible equilibria are of the types described in

Theorem 5.1.

5.3.9 Investments of variable size

We have seen how the model with discrete actions and exogenous timing can be extended

to a model In the models considered so far, individual actions are an imperfect filter

of individual information because they are discrete. Lee (199 actions were taken in a

continuum, they would reveal perfectly a one dimensional private information (Lee (1993)).

19Other simulations have shown similar results.

20The marginal value is not close to the upper-bound of the support as in Section ??, because the mass
of endogenous investment would be dwarfed by the observation noise and would not convey significant
information.
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Such a critique is similar to the argument of an unbounded distribution in Smith and

Sørensen (Chapter 3) and is subject to the same counter-argument: the perfect information

on individuals’ actions and on their decision models are required, which is not realistic.

The problem of social learning with individual actions in a continuum has to be analyzed

in the context of imperfect observability. The previous setting is now extended to include a

variable investment size and an observation noise. Each agent has one option to invest and

the investment which is made only once (if ever) is chosen in the set of real numbers. For

example, agents decide both the period in which to purchase a new car and the amount

spent on the car, (number of accessories, etc...). Each agent has therefore two choice

variables, the time of the investment and its scale. As before, investment is irreversible.

Following the previous results, one can assume without loss of generality that there are

two periods. Since the scale of investment is taken in a continuum, we redefine the payoff

function.

Any agent who has not yet exercised his option to invest receives a payoff equal to (1− δ)b
per period where δ is the discount factor. An agent who never invests receives a payoff

equal to b. The difference 1− δ corresponds to the rate of return between two periods.

For tractability, the payoff of investment is a quadratic function21. If the agent invests in

period t, he foregoes in that period the payoff of never investing and gets a payoff with

a current value equal to E[2az − (θ − z)2], where the expectation operator E depends on

the information of the agent, and a is a constant parameter. The scale of investment z is

chosen in the set of real numbers, and θ is the productivity parameter which is determined

as in the previous sections.

The payoff of investing in period 1 is

U1 = 2az − E
[
(θ − z)2

]
− b,

and the payoff of investing in the second period is

U2 = (1− δ)b+ δE
[
2az − (θ − z)2 − b

]
.

By assumption, nature’s distribution of θ is N (θ̄, ω0). θ is not directly observable, but each

agent receives once, before the first period, a signal

s = θ + ε, with ε ∼ N (0, σε).

In this section the symbol s denotes the private signal of an agent (not his belief). The

21The model presented here is inspired by Bar-Ilan and Blinder (1992).
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private noise ε is normally distributed and independent from any other random variable in

the model.

As in Section ??, each agent is infinitesimal and the total mass of agents is equal to one.

At the end of period 1, the observed level of aggregate investment is equal to

Y = y + η, with η ∼ N (0, ση),

where y is the integral of the individual investments z. The variable η is an exogenous

random term which is independent from the other variables in the economy.

It can be shown that for some parameter values, there are multiple PBEs with monotone

strategies such that agents delay if and only if they have a private signal smaller than some

value s∗. The signal at the end of the first period is the aggregate investment

Y = z1(θ; s∗) + z2(θ; s∗) + η.

Each of the two terms z1(θ; s∗) and z2(θ; s∗) is an increasing function of θ, for given s∗, and

thus contributes to the information on θ. The two terms represent two separate effects.

The first is proportional to the mass of agents who invest in period 1. It is identical to

the endogenous investment in a model where each investment has a fixed scale. This is

the timing effect. The second term depends on the mean scale of investment by investing

agents and is called the level effect.

Because of the observation noise η, the information which is conveyed through each of the

two effects depends on the impact of θ on z1 and z2. If the impact is small, it is drowned

in the noise. It can be shown that the magnitude of the level effect in z2(θ; s∗) becomes

vanishingly small if the precision of the individual signal, 1/σ2
ε , tends to zero. There is

a simple interpretation: if an individual has a signal of small precision, the scale of his

investment does not depend much on his signal. The timing effect however remains of the

same order of magnitude as the (given) mass of agents, and does not become vanishingly

small when 1/σ2
ε tends to zero. The information property of Y is similar to that in a model

with fixed investment scale.

A numerical example

Since there is no algebraic solution to the model, we consider a numerical example. From

the previous discussion, we know that the important parameter is the precision of the

private signals. The ratio σε/ω0 is taken to be equal to 5. It implies that if an agent could

observe directly the signals of others, in order to double the precision of his estimate (as
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measured by the inverse of the variance), he would have to observe roughly 25 other private

signals.

The option value Q(s, s∗) = ω2
1 − E{s,s∗}[ω2

2(Y, s, s∗)] and the opportunity cost of delay

c(s) for the marginal agent s = s∗ are represented in a figure that is similar to Figure 5.3.3.

In particular, there are two stable equilibria, with a large and a small mass of delaying

agents, respectively.

An analysis

Individual decisions

An agent with a signal s updates the public information distribution on θ with his own

signal s. His subjective distribution is therefore N (m1(s), ω1), with

m1(s) = θ̄ + γ(s− θ̄), γ =
ω2
0

ω2
0 + σ2

ε

and
1

ω2
1

=
1

ω2
0

+
1

σ2
ε

. (5.13)

If he invests in the first period, he chooses a level z(s) which depends on his information:

z(s) = a+m1(s) = a+ (1− γ)θ̄ + γs, (5.14)

and the payoff of investing in the first period is

U1(s) = −ω2
1 + 2am1(s) + a2 − b.

An agent with signal s who delays while others use the strategy s∗ invests in period 2 and

has a payoff

U2(s, s∗) = (1− δ)b+ δE{s,s∗}
[
−ω2

2(Y, s, s∗) + 2am2(Y, s, s∗) + a2 − b
]
,

where the expectation is computed over ω2
2(Y, s, s∗) and m2(Y, s, s∗) which are the mean

and the standard error of θ, respectively, after the observation of Y .

Since m2(Y, s, s∗) is an updating of m1(s), then E{s,s∗}[m2(Y, s, µ∗)] = m(s), and the

difference between the payoffs of delay and investment in the first period is

U2(s, s∗)− U1(s) =

δ
(
ω2
1 − E{s,s∗}[ω2

2(Y, s, s∗)]
)
−
(

1− δ
)(
−ω2

1 + a2 + 2am1(s)− 2b
)
.

This difference can be rewritten as the difference between the option value Q(s, s∗) and

the opportunity cost c(s) of delay:

U2(s, s∗)− U1(s) = δ
(
Q(s, s∗)− c(s)

)
, with
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Q(s, s∗) = ω2
1 − E{s,s∗}[ω2

2(Y, s, s∗)],

c(s) =
1− δ
δ

(
−ω2

1 + a2 + 2am1(s)− 2b
)
.

(5.15)

In models with normal distributions and linear decision rules, the learning rules are linear

and the ex post variance, ω2, is independent of the observation and can be computed ex

ante. This very nice property does not hold in the present model because the endogenous

investment y is not a linear function of the random variables.

Equilibrium and information

A symmetric equilibrium in monotone strategies is defined by a value s∗ which satisfies the

arbitrage equation between the option value and the opportunity cost:

Q(s∗, s∗) = c(s∗).

Using the updating rule (5.13) and the expression of the individual level of investment z(s)

in (5.14), the level of endogenous aggregate activity is equal to

y(θ; s∗) =

∫

s∗−θ

(
a+ (1− γ)θ̄ + γ(θ + ε)

)
f(ε;σε)dε

=
(
a+ (1− γ)θ̄ + γθ

)(
1− F (s∗ − θ;σε)

)
+ γ

∫

s∗−θ
εf(ε;σε)dε.

We can normalize θ̄ = 0, (or incorporate (1− γ)θ̄ in the definition of a).

Since

∫

s∗−θ
εf(ε;σε)dε = σ2

ε f(s∗ − θ;σε), and 1− F (z;σ) = F (−z;σ),

y(θ; s∗) =
(
a+

ω2
0θ

ω2
0 + σ2

ε

)
F (θ − s

∗
σε ; 1) +

ω2
0σ

2
ε

ω2
0 + σ2

ε

f(θ − s
∗

σε ; 1)

= z1(θ; s∗) + z2(θ, s∗).

(5.16)

The aggregate activity which is observed is

Y = z1(θ; s∗) + z2(θ; s∗) + η.

Suppose that σε →∞. Since

σ2
ε f(

θ − s∗
σε

; 1) =
σε√
2π
exp
(
− (θ − s∗)2

2σ2
ε

)
,

one can see in equation (5.16) that the magnitude of the level effect in z2(θ; s∗) becomes

vanishingly small.
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5.3.10 Proofs

Lemma 5.1

We first prove the following: in any arbitrary period t of a PBE, if an agent with belief

µt delays, then any agent with belief µ′t < µt strictly prefers to delay. Let the arbitrary

period be the first one. Consider an agent with belief µ who has a strategy with delay:

this is a rule to invest in period t, (with t ≥ 2), if and only if the history ht in period t

belongs to some set Ht. For this agent the difference between the payoff of the strategy of

delay and the payoff of immediate investment is

W (µ) =
∑
t≥2,ht∈Ht

δt−1P (ht|µ)
(
P (θ = θ1|µ, ht)− c

)
− (µ− c)

=
∑
t≥2,ht∈Ht

δt−1P (ht|s)
(
P (ht|θ = θ1)
P (ht|µ)

µ− c
)
− (µ− c)

=
∑
t≥2,ht∈Ht

δt−1
(
µ(1− c)P (ht|θ = θ1)− c(1− µ)P (ht|θ = θ0)

)

−(µ− c)
= as− b− (µ− c),

where a and b are independent of µ:

a =
∑
t≥2,ht∈Ht

δt−1
(

(1− c)P (ht|θ = θ1) + cP (ht|θ = θ0)
)
,

b = c
∑
t≥2,ht∈Ht

δt−1P (ht|θ = θ0).

For µ = 0, because t ≥ 2, δ < 1 and
∑
t≥2,ht∈Ht

P (ht|θ = θ0) ≤ 1,

W (0) = c
(

1−
∑

t≥2,ht∈Ht

δt−1P (ht|θ = θ0)
)
> 0.

Since an agent with belief µ delays, W (µ) ≥ 0. Since W is linear in s, W (µ′) > µ − c for

any µ′ < µ.

Consider now an agent with belief µ′ who mimicks an agent with belief µ: he invests at

the same time as the agent with belief µ (i.e., in period t if and only if ht ∈ Ht). For such

an agent, the difference between the payoff of this strategy and that of investing with no

delay is W (µ′), which by the previous argument is strictly positive if µ′ < µ. The agent

with belief µ′ strictly prefers to delay.

The set of beliefs for delay is not empty since it includes all values below c. The value of

µ∗t in the lemma is the upper-bound of the set of beliefs of delaying agents. The previous

result in this proof shows that any agent with µ̃t < µ∗t delays. �
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Proposition 5.1

Denote by W (µ, µ∗) the payoff of an agent with belief µ who delays for one period while

other agents follow the strategy µ∗. By (5.4), µ∗ is solution of

µ∗ − c = W (µ∗, µ∗).

Denote by P (xt = k|µ, µ∗, f j , n) the probability that xt = k for an agent with belief µ

when all other agents use the strategy µ∗, the density functions are f j and the number of

remaining players is n. Using Bayes’ rule and the sum of probabilities equal to one,

µ∗ − c =
∑

k

P (xt = k|µ∗, µ∗, f j , n)
(
P (θ = θ1|x = k;µ∗, µ∗, f j , n)− c

)

=
∑

k

P (xt = k|µ∗, µ∗, f j , n)Max
(
P (θ = θ1|x = k;µ∗, µ∗, f j , n)− c, 0

)

−
∑

k

P (xt = k|µ∗, µ∗, f j , n)Max
(
c− P (θ = θ1|x = k;µ∗, µ∗, f j , n), 0

)
.

An agent who delays invests in the next period only if his payoff is positive. Therefore, the

payoff of delay is

W (µ∗, µ∗) =

δ
∑

k

P (x = k|µ∗, µ∗, f j , n)Max
(
P (θ = θ1|x = k;µ∗, µ∗, f j , n)− c, 0

)
.

We conclude the proof by comparing the two previous equations and using the decompo-

sition µ∗ − c = (1− δ)(µ∗ − c) + δ(µ∗ − c). �



Chapter 6

Regime switches

In the winter of 1989, despite of the simmering of future events in the Soviet Union,

Kissinger delivered another Cold-War rhetoric in a speech to US governors (Halberstam,

1991). In the Spring and the Summer, the simmering led to ebullition with growing demon-

strations in East Germany. people.”1 Twelve days later, Honecker resigned. On November

9 the Berlin Wall fell. “Western observers were initially stunned at the speed of the eco-

nomic and political collapse of the East German regime. With hindsight however, the

regime’s economic collapse seems to have been inevitable.”2. Events that had been hard

to imagine in the sphere of public information acquired an aspect of obvious inevitability.

Later, “springs” of various colors, orange or green, would bring surprises in the Ukraine and

in Arab countries. The subsequent fading of the flowers do not foreclose the possibility of

similar surprises in the future. This chapter focuses on the mechanism by which such events

can take rational agents by surprise and on the contrast between the low expectations ex

ante and a feeling of obvious determination ex post.

Sudden and unexpected changes in political regimes, economic activity, financial crises,

share a fundamental underlying property. The payoff of individuals’ actions, (e.g., street

demonstration, investment) increases with other agents taking the same action. The col-

lective behavior generates strategic complementarities.

In the previous chapter, the coordination game with strategic complementarities took place

in one period. All individuals were thinking simultaneously without learning from the past.

1Lohman, 1994, p. 42).
2Lohmann (1994, 43)
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The process of equilibrium selection between a high and a low level of aggregate activity

rested on the agents’ imperfect information about others’ payoffs and the possibility that

the fundamentals of the economy took “extreme values” where one action (e.g., investment

or no investment) was optimal independently of others’ actions. In the one-period setting,

all individuals were thinking by induction without the possibility of learning. Learning

from the observation of others’ actions is the central issue in this chapter.

6.1 Contexts and issues

How do business cycles, demonstrations toward a revolution and conventional discourse

(what the French call “wooden speak”) share the property that the payoffs of individual

action is augmented by the number of other individuals taking the same action? Three

different contexts are first presented to justify a canonical model.

Business cycles

The profitability of individual investment increases with the level of activity in the economy,

which itself increases with the level of individual investments. This feature has been repre-

sented in models with imperfect competition by Blanchard and Kiyotaki (1987), Schleifer

(1986), Cooper (1993), and others. In such models, more aggregate investment increases

the productivity of the economy and the demand curve of each firm shifts upwards, thus

generating more profits which in turn stimulate more investment by each individual firm.

The strategic complementarity between individuals’ investments, if sufficiently strong, gen-

erates multiple Nash equilibria that are indicative of business cycles.

A canonical model is a simple analytical representation that focuses on a particular effect

and is abstracted from the clutter of non essential features of the reality. Assume that

there is a large number of agents, that is a continuum with a mass normalized to 1. There

is one period and each agent has to make a 1 or 0 decision, for example whether to make

a fixed size investment or not. Each agent is characterized by his own cost of investment,

c, that is taken from a distribution with a density f , as represented by the graph (f) in

the lower panel of Figure 6.1). The cumulative distribution for that density is represented

by the curve (F ) in the upper panel of the figure.

The positive impact on the payoff of anyone’s investment by the aggregate investment,

X, is represented here by an increasing function of X. Without much loss of generality,3

we can assume that this function is linear. We are thus led to the payoff function for

3Some non linear gross payoff functions can be transformed into a linear payoff by changing the distri-
bution of the costs c.

https://notendur.hi.is/ajonsson/kennsla2003/Blanchard_Kiyotaki.pdf
http://faculty.wcas.northwestern.edu/~lchrist/papers/implementation.pdf
http://www.jstor.org/stable/2235067?seq=1#page_scan_tab_contents
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investment x by an agent with cost c:

w(x,X, c) =

{
X − c, if x = 1,
0, if x = 0.

(6.1)

Suppose that all agents follow the monotone strategy to invest when their cost is less some

some cutoff c̄. The value c̄ defines the strategy. By definition of the c.d.f., the gross payoff

of any investing agent is F (c̄) − c. For an agent with a cost less than F (c̄), investment

has a positive payoff. We can thus define a reaction function. A strategy is defined as

investing when the cost is less than c. (It is monotone). When others have the strategy

c̄, the optimal response is F (c̄). A Nash equilibrium strategy c∗ is a fixed point of the

cumulative distribution function: F (c∗) = c∗. In Figure 6.1, a fixed point is represented

by an intersection of the graph of F with the 45o line. Here, there are three such points.

The middle point can be discarded by a loose argument on stability. The points L and H

represent low and high levels of aggregate activity.

Financial crises and speculative attack

Consider a bank for which the probability of bankruptcy increases with the quantity of

deposits withdrawals, X. Using a previous argument, assume that this function is linear.

Let c the cost for depositors to withdraw their deposits, and for example invest them in

projects of lower return. One can normalize the costs and the gross payoff from avoiding

the capital loss in case of the bank failure such that the payoff for withdrawing (x = 1),

and not withdrawing (x = 0) are given by

w(x,X, c) =

{
X − c, if x = 1,
a(1−X), if x = 0,

(6.2)

where a measures the payoff if the bank does not go bankrupt, an event with probability

1−X. The payoff difference between the two actions is (1 + a)X − c− a. It has the same

form as (6.1). A speculative attack against a central bank that manages a regime of fixed

exchange rate is the formally same as an attack against a commercial bank that manages

a fixed exchange rate between its deposits and the legal currency.

The Leipzig demonstrations

The fall of the Berlin wall was preceded by a wave of increasing demonstrations in Leipzig,

beginning in September 1989.4 Suppose that the individual benefit from participating in a

demonstration (action x = 1) increases with the size of the demonstration, X, and depends

on the individual cost c that increases with approval for the regime. Such a payoff can be

represented by the same function as (6.1). The framework that is now presented provides

4Other waves of demonstrations took place after the fall of the wall, See Lohmann (1994).



110 Regime switches110

!

"

# $

%

# $$ $
"!

&'(
&')(&')(

*
+

&,(

&,)(*

Figure 6.1: Cumulative distribution functions are represented in the upper part and asso-
ciated density functions in the lower part.

an analytical representation of the sudden change of beliefs from the unpredictable to the

“inevitable” of the Western observers at that time.

Social changes and revolutions

Why do sudden changes of opinions or revolutions which were not anticipated with high

probability seem anything but surprising in hindsight? This question was asked by Kuran

(1995). The gap between the ex ante and the ex post views is especially striking when no

important exogenous event occurs (e.g., the fall of the communist regimes)5.

These social changes depend essentially on the distribution of individuals’ payoffs, on which

each agent has only partial information. According to Kuran, “historians have systemati-

cally overestimated what revolutionary actors could have known”. If a revolution were to

be fully anticipated, it would probably run a different course. The July 14th entry in the

5For a common view before the fall, read the speeches of H. Kissinger in Halberstam (1991).
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diary of Louis XVI was “today, nothing”6. Before a social change, individuals who favor

the change do not have perfect information on the preferences of others ex ante, but they

are surprised to find themselves in agreement with so many ex post, and this common view

in hindsight creates a sense of determinism.

Following Kuran (1988), (1995), suppose that individuals decide in each period between

two actions or “expressed opinions” as revealed by some behavior: action 1 is to speak

against a given political regime, while action 0 is to speak in favor. Each individual is

characterized by a preference variable c which is distributed on the interval [0, 1] with a

cumulative distribution function F (c). The preference for the regime increases with c.

There is a continuum of individuals with a total mass equal to one. For an individual

with parameter c, the payoff of his action x (which is either 0 or 1), is a function which

is (i) decreasing in the “distance” between his action and his preference, (ii) increasing in

the mass of individuals who choose the same action. For example, in talking to someone,

the probability to find a person speaking against the regime increases with the mass X

of people speaking against the regime. Assume that speaking against the regime yields a

payoff X− c. Likewise, speaking for the regime has a payoff 1−X− (1− c). The difference

between speaking against and speaking for is thus

u(c) = X − c− (1−X) + (1− c) = 2(X − c). (6.3)

It has the same form as the previous utility for demonstrating.

The model of “Private Truths and Public Lies” of Kuran is thus a special case of the

canonical model with strategic complementarities. For a suitable distribution of individual

preferences, the model has multiple equilibria under perfect information. Kuran follows the

ad hoc rule of selection and assumes that a regime stays in power as long as the structure

of preferences allows it. When this structure evolves such that the regime is no longer

a feasible equilibrium, society jumps to the other equilibrium regime. But it is obvious

that for the analysis of sudden changes of beliefs, such an ad hoc rule in a static model,

with perfect information, is not appropriate. The previous discussion points to a dynamic

approach and an explicit formulation of expectations in a setting of imperfect information

and learning. These features have a central place in the dynamic models of this chapter.

In such a model, we will see that until the very end of the old regime, the public information

is that a large fraction of the population supports the old regime, whereas the actual

distribution could support a revolution. When the regime changes, beliefs change in two

6However, the entry may mean “no hunting”. The quote at the beginning of the chapter is from a

conversation between Louis XVI and the duke of La Rochefoucault-Liancourt. In the numerous stages of
the French revolution, the actors did not seem to have anticipated well the subsequent stages, especially

when they manipulated the crowds.
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ways: first, the perceived distribution of preferences shifts abruptly towards the new regime;

second, the precision of this perception is much more accurate. The high confidence in

the information immediately after the revolution may provide all individuals with the

impression that the revolution was deterministic.

6.2 Analysis in a canonical model

Following the previous discussion, the canonical model is defined by the continuum of

heterogenous agents, each characterized by his cost of “investment” c, and the payoff

function in (6.1). As with many analyses of strategic complementarities, we begin with the

case of perfect information, both on the structure of the economy, and on the strategies of

all agents. We then move on to imperfect information.

6.2.1 Perfect information

Suppose that in some period, the actual distribution of costs is represented by the c.d.f. F1

as in Figure 6.5. Under perfect information about F1, there are two equilibria in monotone

strategies (to act when the cost is less than some cutoff), L1 and H1. In a setting of

perfect information within one period, there is no criterion for choosing a high or a lower

cutoff point for an equilibrium strategy. And recall that either equilibrium requires that all

agents have no uncertainty on the strategies of others and coordinate on the same strategy.

Hysteresis as a device for equilibrium selection

Suppose that agents coordinate on the equilibrium L1 and that the game is reproduced in

another period with a structure of costs (the density function of the costs) that is slightly

different. In the figure, the new c.d.f. is represented by the curve (F2). When agents know

in period 2 that the equilibrium L1 has been achieved in the first period, it is reasonable

to assume that with the two possible equilibria L2 and H2, they choose L2 which is closest

to L1. This selection device may be loosely defined as inertia or hysteresis. Between the

two periods, a small change in the structure of the economy generates a small change in

the aggregate activity.

Suppose now that the structure of economy moves a little more from (F2) to (F3): the low

equilibrium vanishes and H3, at a high level, is the unique equilibrium. A small change in

the structure of the economy generates a large jump of the aggregate activity. After the

jump, further small changes of the structure do not generate another jump. For example,

if the c.d.f. returns to (F1), the level of activity stays high at H1 and does not jump down
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F1, F2 and F3 are the realizations of the c.d.f. F for three periods. The c.d.f. evolves
slowly between consecutive periods and agents coordinate on the equilibrium strategy that
is closest equilibrium strategy in the previous period. Between the second and the third
period, the strategy jumps to a higher equilibrium level.

Figure 6.2: Evolutions of a cdf (or the reaction function)

to L1. In this setting with perfect information and the selection through inertia, when the

structure evolves by small steps, the aggregate activity in any period is strongly dependent

on the its level in the previous period. There is hysteresis. The aggregate activity evolves

by small steps during extended regimes that are separated by large jumps.

The assumptions about perfect information on the structure and the strategies, together

with the ad hoc criterion of inertia are somewhat problematic in a setting with a large

number of diverse agents. We will now see that the pattern of hysteresis and regime

switches will be robust when agents have imperfect information and learn from past level

of aggregate activity.

6.2.2 Coordination with imperfect information

The distribution of the costs is not directly observable. It is perceived by agents through

probability distributions that are agent specific. These distributions are updated after the

observations of aggregate activity. The distribution of costs evolves randomly by small

steps from period to period. Nature does not make jumps.7 In each period, agents play

a one period game under imperfect information with a payoff equal to the expected value

7Natura non facit saltus (Leibnitz).
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of the payoff in (6.1). For practicality, the pool of agents is new in each period.8 As

in a one-period setting with no learning from the actions of others (in a global game),

imperfect information on the structure of fundamentals will enable us to solve the problem

of strategic coordination.

Learning from activity with strategic complementarities and the tail property

Consider again the point L in Figure 6.1. That point is compatible with the functions (F )

and (F1). For the first, there is another equilibrium (under perfect information) with a

higher activity, at the point H. For the second, (F1), there is no such equilibrium. The

level of activity at the point L is determined by the mass of agents with a cost lower than

cL, in the left tail of the density function f . When the cost cL is low, the left tail of

the distribution should, in a realistic model, provide little information on the rest of the

distribution. We call this the tail property.

The tail property is important when agents learn about the structure of an economy with

strategic complementarities. In such a setting, the strategic complementarity operates like

a critical mass. Either few agents take action because that critical mass is not reached and

the payoffs of action are low, except for these few agents, or that critical mass of active

agent is reached and that is why a large mass is acting, except for the few that have a cost

much higher than the average. In the present setting where agents are differentiated by

their own cost of action, the strategic complementarity imposes that in an equilibrium the

cutoff point of the cost for investment is in the tail of the distribution, to the left or to the

right. In that case, agents learn little from the observation of others. We can thus expect

that under strategic complementarity when the structure of the economy evolves randomly

by small steps, the level of activity hovers around successive plateaus where little is learn,

which are separated by abrupt changes that generate a large amount of information.

Modeling the essential property of leaning under strategic complementarity

In the construction of a canonical model we have to keep it simple and yet to embody

the complexity of the possible states of nature that individuals face under imperfect in-

formation. For tractability, one has to choose a family of possible distributions that are

indexed by some parameters. However, the reduction of the states of the world to a few

parameters may also trivialize the inference problem. If for example, the distribution of

the costs is normal with mean m and variance σ2, two observations of the mass in a tail of

the distribution, no matter how far from the mean, are sufficient to identify perfectly the

8If agents live more than one period, the evolution of their cost provides additional information on the
evolution of the distribution of costs, and the inference problem becomes very complex.
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two parameters, thus providing perfect information on the distribution. That is obviously

not a plausible representation.

One example of a family of distribution that keeps the tail property is presented in the

Appendix, following Chamley (1999). It has the shape of a square hat with the central part

moving randomly left or right. The observation of the mass in tail on the side of the “hat”

provides on information on the position of the central part as long as that central part does

not “bite” on the tail. The properties of the model can be investigated analytically. In

particular, provided that the variance of the distribution is within some bounds, there is a

unique equilibrium that is strongly rationalizable. The model is effectively a global game

model. At this stage, this may be the only global game model with an infinite number of

periods where the fundamental evolves random in small steps.9

The tail property can also be modeled by the combination of a simple family of cost

distributions, normal distributions with fixed variance, and the observation of aggregate

activity subject to a noise with a fixed variance. In this setting, when the cutoff for taking

action is very low, the mean of the fundamental distribution has a small impact on the

mass of agents taking action, and that impact is drowned by the noise. In this case, the

observation of aggregate activity provides little information on the mean of the distribution.

When the cutoff point is near the center of the distribution, small variations of the mean

have an impact that dwarfs the noise and the observation of aggregate activity is highly

informative.

Observing the activity of others through noise

We assume that the population is the sum of two groups. In the first, the distribution of

costs is normal N (θt, σ
2
θ), where σθ is a publicly known constant, and θt follows a random

walk that will be discussed below. The second is the sum of a fixed mass a that always

invest, and a population with a uniform distribution of costs with density β on the interval

(b, B). At the end of any period t, agents observe the variable Yt defined by

Yt = a+ β(b+ c∗t ) + F (c∗t ; θt) + ηt, with ηt ∼ N (0, σ2
η). (6.4)

The noise ηt may arise from imperfect data collection or from the activity of “noise agents”

who act independently of the level of the aggregate activity.

Since individuals follow the strategy to invest when their cost is lower than c∗t , that value

9Other models with multiple periods either assume that the fundamental is subject to unbounded shocks
between periods, thus generating a sequence of one period global game models (Carlsson and Van Damme
****), or have a global game with a unique equilibrium only in the first period, after which equilibria are
multiple (Angeletos and Hellwig (****).
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is publicly known and the observation of aggregate activity is informationally equivalent

to the observation of

Zt = F (c∗t ; θt) + ηt. (6.5)

As discussed above, when |c∗−θ| is large, F (c∗; θ) does not depend much on θ and it is near

0 or 1. In that case, the noise η dwarfs the impact of θ on F (c∗; θ), and the observation of

Y conveys little information on θ. Learning is significant only if |c∗− θ| is relatively small,

i.e., when the associated density function f(c∗; θ) is sufficiently high. But the strength

of the strategic complementarity is positively related to f(c∗; θ) (which is identical to the

slope of the reaction function under perfect information). We thus verify that learning and

strategic complementarity are positively related. Agents only learn a significant amount of

information when the density of agents near a critical point is sufficiently large to push the

economy to the other regime.10

“Natura non facit saltus”11

Following the discussion around Figure 6.5, there imperfect information because the struc-

ture of (the costs in) the economy evolves randomly over time. In all known cases, aggregate

productivity (the inverse of the cost) does not jump but evolves only in small steps. This

restriction has an important implication for multi-period models with strategic comple-

mentarity and imperfect information.12 For computation, the mean of the distribution, θt

is assumed to take a value on the grid

Θ = {ω1, . . . , ωK}, with ω1 = γ, ωK = Γ. (6.6)

The distance between consecutive values is equal to ε, which can be small. Between consec-

utive periods, the value of θ evolves according to a symmetric random walk: it randomly

either stays constant or move to a set of a small number of adjacent grid points. If θ is on

a reflecting barrier (γ or Γ), it moves away from that barrier with some probability.

6.3 The behavior of the canonical model

In each period, t, learning and decision making proceed in the following steps.

1. Let {πk,t−1} be the public distribution of probabilities on the grid Ω at the beginning

of period t − 1 when agents determined the strategy c∗t−1. This belief is updated in

10This property has a strong form in the model with a rectangular distribution that is sketched in the
Appendix.

11Leibnitz
12For example, it rules out multi-period global games with an aggregate parameter that is subject to

unbounded random shocks (Carlsson and Van Damme ***), and for which a new global game takes place
in each period.
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two steps, first using the knowledge of the strategy in the previous period, c∗t−1,

second, using the law of the random evolution of θ between period t− 1 and period

t. Using the observation of the aggregate activity Yt−1 in the previous period, which,

as we have seen, is equivalent to Zt−1 = F (c∗t−1;ωk) + ηt−1, and Bayes’ rule, the first

updating leads to the distribution {πk,t} with

Log(π̂k,t) = Log(πk,t−1)−
(
Zt − F (c∗t , ωk)

)2

2σ2
η

+ α, (6.7)

where α is a constant such that the sum of the probabilities πk,t is equal to one.13

2. The second updating, from {πk,t} to the public belief {πk,t} at the beginning of

period t, is straightforward. For example is θt follows a random walk with equal

probabilities of 1/3 for staying constant, or moving up or down by one step on the

grid, for all points away from the boundaries,

πk,t = (π̂k−1,t + π̂k,t + π̂k+1,t)/3. (6.8)

3. Each agent with a cost c knows that c is drawn from the true distribution with mean

θt. He updates the public distribution {πk,t} into {πk,t(c)} as in (??):

Log(πk,t(c)) = Log(πk,t)−
(c− ωk)2

2σ2
ε

+ α′, (6.9)

where α′ is a constant such that the sum of the probabilities is equal to one. Note

that each agent “pulls” the distribution of θt towards his own cost c.

4. Each agent computes for his own cost c, the cumulative distribution function (CVF).

By definition of the CVF, the agent assumes that all the agents with a cost not

greater than his own c make the investment, of equivalently that the strategy of

others is c. Given this assumption, the agent computes the expected value of the

mass of investment according to his probability estimates of θt. The CVF is therefore

defined by

Vt(c) = E[Fθt(c)|{πk,t(c)}]. (6.10)

5. The function Vt(c) is increasing in c. In the analytical model with a rectangular

density, under some parametric conditions, this function is proven to have a slope

smaller than one and its graph has a unique intersection with the 45o line. Hence

there is a unique equilibrium strategy c∗t such that Vt(c
∗
t ) = c∗t ). (This equilibrium

is much stronger than a Nash equilibrium because it is strongly rationalizable).

13 In this model, agents could use the fact that θt takes discrete values in order to obtain more information
from the observation of Yt. However, this feature is spurious. The random changes of θt could be defined
such that the distribution of θt has a piecewise linear density function in every period. The previous
updating formula should therefore be understood as the relevant formula for the “nodes” of the density
function of θt, (at integer values of θt). The entire distribution of θt could be recovered through a linear
interpolation.
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However, the model with observational noise cannot exhibit a unique equilibrium for

all values of the random noise. Suppose for example that the economy is in a low

state and that the distribution of costs is such that there are two equilibria under

perfect information. A very high value of the noise in some period may induce a

large mass of agents to act in the next period. This could reveal a large amount of

information, and generate two equilibria for the next period.

The main purpose of the model in this section is not to show that there is a unique

equilibrium for all realizations of (θt, ηt). It is to show that the properties of the

analytical model apply for most of these realizations: under the types of uncertainty

and heterogeneity which are relevant in macroeconomics or in other contexts of social

behavior, the model generates a SREE for most periods. In the numerical model

below, there is a SREE in each of the 600 periods which are considered.
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Under perfect information, if θ > θH (θ < θH), the equilibrium is unique with a low (high)
level of activity. In the middle band there are two equilibria with high and low activity.

Figure 6.3: The realization of the random path of θ

The numerical example

The properties of the model are illustrated for a particular realization of the random walk of

θt that is represented in Figure 6.3. In the region θ ≤ 7, there is only one equilibrium under

perfect information with low activity. In the region θ ≥ 29, there is only one equilibrium

under perfect information, with high activity. The sum of the stationary probabilities of

these two events is less than 1/2. In the simulation, the values of ηt are set to zero but
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of course, unbeknownst to the agents. Note that in the first period of the simulation in

Figure 6.3, θ is in the high region with a unique regime of low activity.14

The first regime switch, from high to low, takes place in period 61. The public beliefs and

the CVF just before and after the switch are represented in figure 6.4. On the left panel,

the vertical line indicates the true value of θt and the curve is the graph of the probability

distribution of θt in the public information. The right panel presents the graph of the

CVF.

Just before the switch, in period 60, the public belief is completely off the mark: the actual

value of the fundamental θt is very low while the public belief puts strong probabilities on

high values of the fundamental. Because the public believes that the individual costs are

high, the CVF is low in the range (0, 20) and there is a unique equilibrium, which in this

case is a SRE, with a low aggregate activity.

Just after the switch, in period 61, the public belief has completely changed while the funda-

mental has barely moved. The CVF has shifted up. In the equilibrium, which is also a SRE

14 The parameters of the model are chosen such that the random walk is symmetric with p = 1/3,
and has five independent steps within each period (which is defined by the observation of the aggregate
activity). There is a mass of agents equal to 2 who have negative private costs. The first sub-population
has a uniform density equal to β = 0.5. The other parameters are σθ = 1.5, ση = 1 and K = 35. The
mass of the cluster is equal to 14.
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in this case, the level of activity jumps up to a new regime.
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On the left panel, the vertical line indicates the true value of θ60 and the curve represents
the probability distribution of θ60 according to the public information at the beginning of
period 60. The right panel presents the graph of the CVF.

Figure 6.4: Public belief on θ and CVF before and after a switch
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From the observation of the activity at the point L, the only information is that the left
border of the high density (point A) is to the right of L.

Figure 6.5: A square distribution
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