
Chapter 4

Cascades and herds

One million people cannot be wrong.

Each agent observes what others do and takes a zero-one decision in
a pre-ordered sequence. In a cascade, all agents herd on a su�ciently
strong public belief and there is no learning. In a herd, all agents turn
out to take the same decision. A cascade generates a herd but the
converse is not true. Cascades are non generic for atomless distributions
of beliefs while a herd always takes place, eventually! Since a herd does
take place eventually, the probability that it is broken must converge to
zero. Hence, there is some learning in a herd (it is not broken), but the
learning is very slow. The stylization of that property is the cascade.

Beliefs converge to the truth only if the distribution of private beliefs
is unbounded, but the self-defeating principle in social learning implies
that the convergence is slow. Since the filter imposed by discrete actions
is coarse, the slowdown of social learning is much more significant than
in the previous chapter. Applications for welfare properties and pricing
policies by a monopoly are discussed.

A tale of two restaurants

Two restaurants face each other on the main street of a charming alsatian village. There is

no menu outside. It is 6pm. Both restaurants are empty. A tourist comes down the street,

looks at each of the restaurants and goes into one of them. After a while, another tourist

shows up, evaluates how many patrons are already inside by looking through the stained

glass windows—these are alsatian winstube—and chooses one of them. The scene repeats

itself with new tourists checking on the popularity of each restaurant before entering one
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50 Cascades and herds

of them. After a while, all newcomers choose the same restaurant: they choose the more

popular one irrespective of their own information. This tale illustrates how rational people

may herd and choose one action because it is chosen by others. Among the many similar

stories, two are particularly enlightening.

High sales promote high sales

In 1995, management gurus Michael Reacy and Fred Wiersema secretly purchased 50,000

copies of their business strategy book The Discipline of Market Leaders from stores which

were monitored for the bestseller list of the New York Times1. The authors must have

been motivated by the following argument: people observe the sales, but not the payo↵s of

the purchases (assuming they have few opportunities to meet other readers). Of course, if

the manipulation had been known it would have had no e↵ect, but people rationally expect

that for any given book, the probability of manipulation is small, and that the high sales

must be driven by some informed buyers.

The previous story illustrates one possible motivation for using the herding e↵ect but it

is only indicative. For an actual measurement, we turn to Hanson and Putler (1996)

who conducted a nice experiment which combines the control of a laboratory with a “real

situation”. They manipulated a service provided by America Online (AOL) in the summer

of 1995. Customers of the service could download games from a bulletin board. The games

were free, but the download entailed some cost linked to the time spent in trying out the

game. Some games were downloaded more than others.

The service of AOL is summarized by the window available to subscribers which is repro-

duced in

??: column 1 shows the first date the product was available; column 2 the name of the

product, which is informative; column 4 the most recent date the file was downloaded.

Column 3 is the most important and shows the number of customers who have downloaded

the file so far. It presents an index of the “popularity” of the product. The main goal of

the study is to investigate whether a high popularity increases the demand ceteris paribus.

The impact of a treatment is measured by the increase in the number of downloads per day,

after the treatment, as a fraction of the average daily download (for the same product)

before the treatment. The results are reported in Figure ??. All treatments have an

impact and the impact of the heavy treatment (100 percent) is particularly remarkable.

1See Bikhchandani, Hirshleifer and Welch (1998), and Business Week, August 7, 1995. Additional
examples are given in Bikhchandani, Hirshleifer and Welch, (1992).
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Figure 4.1: Applications for downloads

The experiment has an obvious implication for the general manipulation of demand through

advertisements.

To ensure ceteris paribus, Hanson and Putler selected pairs of similar files which were

o↵ered by AOL. Similarity was measured by characteristics and “popularity” at a specific

date. Once a pair was selected, one of the files was kept as the “control”, the other

was the “treatment”. The authors boosted the popularity index of the treatment file by

downloading it repeatedly. The popularity indexed was thus increased in a short session

by percentage increments of 25, 50 and 100. Customers of the service were not aware that

they were manipulated.

The essential issue and the framework of analysis

The previous examples share a common feature which is essential: individuals observe the

actions of others and the space of actions is discrete. The actions are the words for the

communication of information between agents. In the previous chapter, agents chose an

action in a rich set made of all the real numbers. Here the finite number of actions exerts
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a strong restriction on the vocabulary of social communication.

If there is a seminal study on social learning, it is the paper by Bikchandani, Hirshleifer and

Welch (1992), hereafter BHW2. They introduced the definition of informational cascades

in models of Bayesian learning. In a cascade, the public belief, which is gathered from the

history of observations, dominates the private signal of any individual: the action of any

agent does not depend on his private information. In a cascade, all agents are herding.

Since actions do not convey private informations, nothing is learned and the cascade goes

on forever, possibly with an incorrect action. The failure of social learning is spectacular.

A cascade generates a herd, but the concepts of cascade and herd are distinct. A herdThere is an essential
difference between
a cascade and a herd.

is defined as an outcome where all agents take the same action after some period. Which

period is a random event and it is unknown at the start of the learning process. Actually,

we we will see that it may never be known. In a herd not all agents may be herding. It is

**
precisely because not all agents are herding in a herd that some learning takes place. The

probability that the herd could be broken generates some information. But this probability

must be vanishingly small for the herd to be sustained. Hence, the amount of social learning

in a herd is very small.

Cascades do not occur, except in very special models which are not generic, while herds

always take place eventually. The reader may think that cascades are therefore not impor-

tant. Wrong: cascades are good approximations for the properties of the generic models

of learning from others’ actions when these actions are discrete.

Suppose that the set of states is finite. The support of a distribution of probabilities

**
(beliefs) is the set of states that have a strictly positive belief (probability). If the set of

the states is a continuum, for example a continuum of real numbers and the distribution

of probabilities has a continuous distribution, the support of the the distribution is the

subset where the density function is strictly positive. We will see that the process of social

learning depends on whether the probability distributions, of the state or or a signal on

the state, are bounded or not.

The general model is built on the models with bounded private beliefs which have been

presented in Section ??. (The reader is advised to review that section if necessary). The

evolution of the beliefs is presented in a diagram which will be used later in the book.

When the support is bounded, private beliefs become dominated by a public belief which is

2Banerjee (1992) presented at the same time another paper on herding, but its structure is more
idiosyncratic and one cannot analyze the robustness of its properties.
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either optimistic or pessimistic, as the number of observations increases. Such a situation

actually never occurs when private beliefs have a distribution without points of positive

mass (which is not just a perturbation of a distribution with such points). However, the

limit behavior of the model is closely approximated by cascades.

Beliefs converge to the truth, almost surely, only if the support of the distribution of

beliefs is unbounded. In this respect, the results of BHW have been criticized as not

robust. Such theoretical focus on the limit beliefs is misleading. What matters is the

speed of convergence.

Section 4 presents a detailed analysis of herds and the convergence of beliefs3. Herds always

take place eventually, as a consequence of the Martingale Convergence Theorem. There is

in general some learning in a herd, but that learning is very slow. The conclusions of the

simple model of BHW are shown to be extraordinarily robust. They reinforce the central

message of the models of learning from others which is the self-defeating property of social

learning when individuals use rationally the public information.

The social optimum

In an equilibrium, no agent takes into account the externality created by his action for the

information of others. In a social optimum, this externality is taken into account (as in the

model with actions in a continuum, Section 3.4). A social optimum is constrained in the

sense that each agent “speaks” to others only through his action. An agent has a decision

rule according to which his action depends on his private belief and the public belief. He

can reveal his private belief only through his action. He departs from the selfish rule of

using history for his own payo↵ only if the externality provided to others outweighs the

personal loss.

In Section ??, it is shown that the social optimal rule is to forget history if the belief from

history—the public belief—is in some interval of values, and to herd otherwise. If the belief

is outside of that “interval of experimentation”, there is no social learning anymore. The

socially optimal rule may be implemented by setting a price of investment contingent on

the public belief.

Monopoly pricing of a new good

A monopoly who captures some consumer surplus will take into account the benefit of

experimentation for the future. This problem is considered in Section ??. A monopoly

3For this section, I have greatly benefited from the insights of Lones Smith and I am very grateful to
him.
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introduces on the market a new good of imperfectly known quality. The optimal strategy

is divided in two phases. The first is the “elitist phase”: the price of the good is relatively

high. Only the agents with a good signal on the good buy and the volume of sales raises

the estimate of the other agents. When this estimate is su�ciently high, the monopoly

lowers the price to reach all customers.

The incentive to learn is inversely related to the discount rate. If the discount rate is

vanishingly small, the di↵erence between the level of social welfare and the monopoly

profit converges to zero. At the limit, the monopoly follows a strategy which is socially

optimal. (Monopoly profits are redistributed).

4.1 The basic model of herding

Students sometimes wonder how to build a model. Bikhchandani, Hirshleifer and WelshA textbook case on
how to build a model (1992), hereafter BHW, provide an excellent lesson of methodology: (i) a good story sim-

plifies the complex reality and keeps the main elements; (ii) this story is translated into

a set of assumptions about the structure of a model (information of agents, payo↵ func-

tions); (iii) the equilibrium behavior of rational agents is analyzed; (iv) the robustness of

the model is examined through extensions of the initial assumptions.

We begin here with the tale of two restaurants, or a similar story where agents have to

decide whether to make a fixed size investment. We construct a model with two states

(defining which restaurant is better), two signal values (which generate di↵erent beliefs),

and two possible actions (eating at one of two restaurants)4.

4.1.1 The 2 by 2 by 2 model

1. The state of nature ✓ has two possible values, ✓ 2 ⇥ = {0, 1}, and is set randomly once

and for all at the beginning of the first period5 with a probability µ1 for the “good” state

✓ = 1.

2. N or a countable number of agents are indexed by the integer t. Each agent’s private

4The example of the restaurants at the beginning of this chapter is found in Banerjee (1992). The model
in this section is constructed on this story. It is somewhat mistifying that Banerjee after introducing herding
through this example, develops an unrelated model which is somewhat idiosyncratic. A simplified version
is presented in Exercise ??.

5The value of ✓ does not change because we want to analyze the changes in beliefs which are caused
only by endogenous behavior. Changes of ✓ can be analyzed in a separate study (see the bibliographical
notes).
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information takes the form of a SBS (symmetric binary signal) with precision q > 1/2:

P (st = ✓ | ✓) = q.

3. Agents take an action in an exogenous order as in the previous models of social learning.

The notation can be chosen such that agent t can make a decision in period t and in period

t only. An agent chooses his action x in the discrete set X = {0, 1}. The action x = 1 may

represent entering a restaurant, hiring an employee, or in general making an investment of

a fixed size. The yield of the action x depends on the state of nature and is defined by

u(x, ✓) =

( 0, if x = 0,

✓ � c, if x = 1, with 0 < c < 1.

Since x = 0 or 1, another representation of the payo↵ is u(x, ✓) = (✓ � c)x. The cost of

the investment c is fixed.6 The yield of the investment is positive in the good state and

negative in the bad state. Under uncertainty, the payo↵ of the agent is the expected value

of u(x, ✓) conditional on the information of the agent. By convention, if the payo↵ of x = 1

is zero, the agent chooses x = 0.

4. As in the previous models of social learning, the information of agent t is his private

signal and the history ht = (x1, . . . , xt�1) of the actions of the agents who precede him in

the exogenous sequence. The public belief at the beginning of period t is the probability of

the good state conditional on the history ht which is public information. It is denoted by

µt:

µt = P (✓ = 1|ht).

Without loss of generality, µ1 is the same as nature’s probability of choosing ✓ = 1.

4.1.2 Informational cascades

Agents with a good signal s = 1 will be called optimists and agents with a bad signal s = 0

will be called pessimists. An agent combines the public belief with his private signal to

form his belief. If µ is the public belief in some arbitrary period, the belief of an optimist

is higher than µ and the belief of a pessimist is lower. Let µ+ and µ
� be the beliefs of the

optimists and the pessimists7: µ�
< µ < µ

+.

A pessimist invests if and only if his belief µ� is greater than the cost c, i.e. if the public

belief is greater than some value µ
⇤⇤

> c. (If c = 1/2, µ⇤⇤ = q). If the public belief is

6In the tale of two restaurants, c is the opportunity cost of not eating at the other restaurant.

7By Bayes’ rule,

µ� =
µ(1� q)

µ(1� q) + (1� µ)q
< µ <

µq

µq + (1� µ)(1� q)
= µ+.
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such that a pessimist invests, then a fortiori, it induces an optimist to invest. Therefore,

if µt > µ
⇤⇤ agent t invests whatever his signal. If µt  µ

⇤⇤, he does not invest if his signal

is bad.

Likewise, let µ⇤ be the value of the public belief such that µ+ = c. If µt  µ
⇤, agent t does

not invest no matter the value of his private signal. If µt > µ
⇤ he invests if he has a good

signal. The cases are summarized in the next result.

PROPOSITION 4.1. In any period t, given the public belief µt:

if µ⇤
< µt  µ

⇤⇤, agent t invests if and only if his signal is good (st = 1);

if µt > µ
⇤⇤, agent t invests independently of his signal;

if µt  µ
⇤, agent t does not invest independently of his signal.

Cascades and herds

Proposition 4.1 shows that if the public belief, µt, is above µ⇤⇤, agent t invests and ignores

his private signal. His action conveys no information on this signal. Likewise, if the public

belief is smaller than µ
⇤, then the agent does not invest. This important situation deserves

a definition.

DEFINITION 4.1. An agent herds on the public belief when his action is independent

of his private signal.

The herding of an agent describes a decision process. The agent takes into account only

the public belief; his private signal is too weak to matter. If all agents herd, no private

information is revealed. The public belief is unchanged at the beginning of the next period

and the situation is identical: the agent acts according to the public belief whatever his

private signal. The behavior of each agent is repeated period after period. This situation

has been described by BHW as an informational cascade. The metaphor was used first by

Tarde at the end of the nineteenth century.

DEFINITION 4.2. If all agents herd (Definition 4.1), there is an informational cascade.

We now have to make an important distinction between the herding of all agents in an

informational cascade and the definition of a herd.
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DEFINITION 4.3. A herd takes place at date T if all actions after date T are identical:

for all t > T , xt = xT .

In a cascade, all agents are herding and make the same decision which depends only on

the public belief (which stays invariant over time). Hence, all actions are identical.

PROPOSITION 4.2. If there is an informational cascade in period t, there is a herd in

the same period.

The converse of Proposition 4.2 is not true. Herds and cascades are not equivalent. InAn important distinction:
an informational
cascade is sufficient
for a herd, but a
herd may occur without
a cascade.

a herd, all agents turn out to choose the same action—in all periods— although some of

them could have chosen a di↵erent action. We will see later that generically, cascades do

not occur, but herds eventually begin with probability one! Why do we consider cascades

then? Because their properties are stylized representations of models of social learning.

In the present model, an informational cascade takes place if µt > µ
⇤⇤ or µt  µ

⇤. There

is social learning only if µ⇤
< µt  µ

⇤⇤. Then xt = st and the action reveals perfectly

the signal st. The public belief in period t + 1 is the same as that of agent t as long as

a cascade has not started. The history of actions ht = (x1, . . . , xt�1) is equivalent to the

history of signals (s1, . . . , st�1).

Assume that there is no cascade in periods 1 and 2 and that s1 = 1 and s2 = 1. Suppose

that agent 3 is a pessimist. Because all signals have the same precision, his bad signal

“cancels” one good signal. He therefore has the same belief as agent 1 and should invest.

There is a cascade in period 3.

Likewise, two consecutive bad signals (s = 0) start a cascade with no investment, if no

cascade has started before. If the public belief µ1 is greater than c and agent 1 has a good

signal, a cascade with investment begins in period 2. If µ1 < c and the first agent has a

bad signal, he does not invest and a cascade with no investment begins in period 2.

In order not to have a cascade, a necessary condition is that the signals alternate consec-

utively between 1 and 0. We infer that

• the probability that a cascade has not started by period t converges to zero expo-

nentially, like �
t for some parameter � < 1;

• there is a positive probability that the cascade is wrong: in the bad states all agents

may invest after some period, and investment may stop after some period in the good

state;
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• beliefs do not change once a herd has started; rational agents do not become more

confident in a cascade.

PROPOSITION 4.3. When agents have a binary signal, an informational cascade occurs

after some finite date, almost surely. The probability that the informational cascade has

not started by date t converges to 0 like �
t for some �

t with 0 < � < 1.

A geometric representation

The evolution of the beliefs is represented in Figure ??. In each period, a segment represents

the distribution of beliefs: the top of the segment represents the belief of an optimist, the

bottom the belief of a pessimist and the mid-point the public belief. The segments evolve

randomly over time according to the observations.

In the first period, the belief of an optimist, µ+
1 , is above c while the belief of a pessimist,

µ
�
1 , is below c. The action is equal to the signal of the agent and thus reveals that signal.

In the figure, s1 = 0, and the first agent does not invest. His information is incorporated

in the public information: the public belief in the second period, µ2, is identical to the

belief of the first agent: µ2 = µ
�
1 . The sequence of the signal endowments is indicated in

the figure. When there is social learning, the signal of agent t is integrated in the public

information of period t+ 1. Using the notation of the previous chapter, µt+1 = µ̃t.

Consider now period 5 in the figure: agent 5 is an optimist, invests and reveals his signal

since he could have been a pessimist who does not invest. His information is incorporated

in the public belief of the next period and µ6 = µ
+
5 . The belief of a pessimist in period 6 is

now higher than the cost c (here, it is equal to the public belief µ5). In period 6, the belief

of an agent is higher than the cost of investment, whatever his signal. He invests, nothing

is learned and the public belief is the same in period 7: a cascade begins in period 6. The

cascade takes place because all the beliefs are above the cut-o↵ level c. This condition is

met here because the public belief µ6 is strictly higher than µ
⇤⇤. Since µ6 is identical to

the belief of an optimist in period 5, the cascade occurs because the beliefs of all investing

agents are strictly higher than µ
⇤⇤ in period 5. A cascade takes place because of the high

belief of the last agent who triggers the cascade. Since this property is essential for the

occurrence of an informational cascade, it is important and will be discussed later in more

details.

In this simple model, the public belief µt = P (✓ = 1|ht) converges to one of two values

(depending on the cascade). From the Martingale Convergence Theorem, we knew µt would

necessarily converge in probability. The exponential convergence is particularly fast. The

informational cascade may be incorrect however: all agents may take the wrong decision.
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In each period, the middle of the vertical segment is the public belief, while the top and the
bottom of the segment are the beliefs of an optimist (with a private signal s = 1) and of a
pessimist (with signal s = 0). The private signals are s1 = 0, s2 = 1, s3 = 0, s4 = 1, s5 = 1.

Figure 4.2: Cascade representation

Black sheeps

Assume there is a cascade in some period T in which agents invest whatever their signal.

Extend now the previous setting and assume that agent T may be of one of two types.

Either he has a signal of precision q like the previous agents, or his precision is q0 > q and

q
0 is su�ciently high with respect to the public belief that if he has a bad signal (sT = 0),

he does not invest. The type of the agent is private and therefore not observable, but the

possibility that agent T has a higher precision is known to all agents.

Suppose that agent T does not invest: xT = 0. What inference is drawn by others? The

only possible explanation is that agent T has a signal of high precision q
0 and that his

signal is bad: the information of agent T is conveyed exactly by his action.

If agent T invests, his action is like that of others. Does it mean that the public belief

does not change? No! The absence of a black sheep in period T (who would not invest)

increases the confidence that the state is good. Social learning takes place as long as not all

agents herd. The learning may slow down however as agents with a relatively low precision

begin to herd. The inference problem with heterogeneous precisions requires a model which

incorporates the random endowment of signals with di↵erent precisions. A model with two
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types of precision is presented in the appendix.

The simple model has served two useful purposes: (i) it is a lesson on how to begin to

think formally about a stylized fact and the essence of a mechanism; (ii) it strengthens the

intuition about the mechanism of learning and its possible failures. These steps need to

be as simple as possible. But the simplicity of the model could generate the criticism that

its properties are not robust. The model is now generalized and we will see that its basic

properties are indeed robust.

4.2 The standard model with bounded beliefs

We now extend the previous model to admit any distribution of private beliefs as described

in Section ??. Such a distribution is characterized by the c.d.f. F
✓(µ) which depends on

the state ✓. Recall that the c.d.f.s satisfy the Proportional Property (??) and therefore the

assumption of first order stochastic dominance: for any µ in the interior of the support of

the distribution, F ✓0(µ) > F
✓1(µ). By an abuse of notation, F ✓(µ) will represent the c.d.f.

of a distribution of the beliefs measured as the probability of ✓1, and F
✓(�) will represent

the c.d.f. of a distribution of the LLR between ✓1 and ✓0.

We keep the following structure: two states ✓ 2 {✓0, ✓1}, two actions x 2 {0, 1}, with a

payo↵ (E[✓]� c)x, ✓0 < c < ✓1. The states ✓1 and ✓0 will be called “good” and “bad”. We

may take ✓0 = 1 and ✓0 = 0, but the notation may be clearer if we keep the symbols ✓1

and ✓0 rather than using numerical values.

4.2.1 Social learning

At the end of each period, agents observe the action xt. Any belief � is updated using

Bayes’ rule. This rule is particularly convenient when expressed in LLR as in equation

(??) which is repeated here.

�t+1 = �t + ⌫t, with ⌫t = Log

⇣
P (xt|✓1)
P (xt|✓0)

⌘
. (4.1)

The updating term ⌫t is independent of the belief �t. Therefore, the distribution of beliefs

is translated by a random term ⌫t from period t to period t+1. Agent t invests if and only

if his probability of the good state is greater than his cost, i.e. if his LLR, �, is greater

than � = Log(c/(1� c)). The probability that agent t invests depends on the state and is

equal to ⇡t(✓) = 1� F
✓
t (�).
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States of

Nature

Observations

xt = 1 xt = 0

✓ = ✓1 1� F
✓1
t (�) F

✓1
t (�)

✓ = ✓0 1� F
✓0
t (�) F

✓0
t (�) with � = Log

⇣
c

1� c

⌘
.

The action in period t, xt 2 {0, 1}, provides a binary random signal on ✓ with probabilities

described in Table ??. Since the c.d.f. F
✓1 dominates F

✓0 in the sense of first order

stochastic dominance (Proposition ??), there are more optimistic agents in the good than

in the bad state on average. Hence, the probability of investment is higher in the good

state, and the observation xt = 1 raises the beliefs of all agents.

Following the observation of xt, the updating equation (??) takes the particular form

�t+1 = �t + ⌫t, with ⌫t =

8
>>><

>>>:

Log

⇣1� F
✓1
t (�)

1� F
✓0
t (�)

⌘
, if xt = 1,

Log

⇣
F

✓1
t (�)

F
✓0
t (�)

⌘
, if xt = 0.

(4.2)

In this equation, ⌫t � 0 if xt = 1 and ⌫t  0 if xt = 0. The observation of xt conveys

some information on the state as long as F ✓1
t (�) 6= F

✓0
t (�).

Since the distribution of LLRs is invariant up to a translation, it is su�cient to keep track

of one of the beliefs. If the support of beliefs is bounded, we choose the mid-point of the

support, called by an abuse of notation the public belief. If the support is not bounded,

the definition of the public belief will depend on the particular case.

The Markov process

The previous process has an abstract formulation which may provide some perspective on

the process of social learning. We have seen that the position of the distribution in any

period can be characterized by one point �t. Let µt be the belief of an agent with LLR

equal to �t. The Bayesian formula (4.2) takes the general form µt+1 = B(xt, µt) and xt is

a random variable which takes the value 1 or 0 according to Table ??. These values depend

only on �t and therefore µt depends on ✓. The process of social learning is summarized by
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the equations 8
<

:

µt+1 = B(µt, xt),

P (xt = 1) = ⇡(µt, ✓).
(4.3)

The combination of the two equations defines a Markov process for µt. Such a definition is

natural and serves two purposes. It provides a synthetic formulation of the social learning.

It is essential for the analysis of convergence properties. However, such a formulation

can be applied to a wide class of processes and does not highlight specific features of the

structural model of social learning with discrete actions.

4.2.2 Bounded beliefs

Assume the initial distribution of private beliefs is bounded. Its support is restricted to a

finite interval (�1,�1). This case is represented in Figure ??. Let �t be the public belief

in period t, i.e., the mid-point of the support: �t = (�t + �̄t)/2 and let � = (�̄t � �t)/2,

a constant. If �t is greater than the value �
⇤⇤ = � + �, the support of the distribution is

above � and agent t invests, whatever his belief. Likewise, if �  �
⇤ = � � �, no agent

invests. In either case, there is an informational cascade. There is no informational cascade

as long as the public belief stays in the interval (�⇤
,�

⇤⇤) = (���, �+�). The complement

of that interval will be called the cascade set.

Figure ?? is drawn under the assumption of an atomless distribution of beliefs but it can

also be drawn with atoms as in Figure ??.

i We know from the Martingale Convergence Theorem that the probability of the good

state, µt = e
�t/(1+ e

�t), converges in probability. Hence, �t must converge to some value.

Suppose that the limit is not in the cascade set. Then, asymptotically, the probability that

xt = 1 remains di↵erent in states ✓1 and ✓0. Hence, with strictly positive probability, the

common belief is updated by some non vanishing amount, thus contradicting the conver-

gence of the martingale. This argument is used in the Appendix to prove that �t must

converge to a value in the cascade set.

PROPOSITION 4.4. Assume that the support of the initial distribution of private beliefs

is I = [�1��,�1+�]. Then �t converges almost surely to a limit �1 /2 (���, �+�) with

� = Log(c/(1� c)).

Is the occurrence of a cascade generic?
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In each period, the support of the distribution of beliefs (LLR) is represented by a segment.
The action is xt = 1 if and only if the belief (LLR) of the agent is above �. If agent t

happens to have a belief above (below) �, the distribution moves up (down) in the next
period t+ 1. If the entire support is above (below) �, the action is equal to 1 (0) and the
distribution stays constant.

Figure 4.3: Cascade representation

The previous result shows that the beliefs tend to the cascade set. But for an arbitrary

distribution of initial beliefs, is this convergence as fast as with the discrete beliefs of

Figure ??, or is it slow? It turns out that, for most distributions which are “smooth”, the

convergence is slow and cascades do not occur.
Generically, cascades
do not occur!

The mechanism can be explained simply. Suppose that the beliefs converge to the upper

part of Figure ?? where agents invest. The probability that agent t invests is lower in

the bad than in the good state, but as the beliefs move upwards, these two probabilities

converge to each other with a common limit equal to one. The observation of an investment

conveys a vanishingly small amount of information and the upward shift of the beliefs is

also vanishingly small8.

Assume the distribution of initial beliefs has a density f
✓(µ) in state ✓ such that

f
1(µ) = µ�(µ), and f

0(µ) = (1� µ)�(µ), (4.4)

8The argument does not apply when beliefs are high and there is no investment in the period. In that
case, the probability of no investment is low in both states, but the ratio between these probabilities is not
small.
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for some function �(µ) with a support in [a, 1�a], a > 0. This distribution is “natural” in

the sense that it is generated by a two-step process in which agents draw a SBS of precision

µ with a density proportional to �(µ). A simple case is provided by a uniform distribution

of precisions where � is constant. The proof of the following result is left to the reader.

PROPOSITION 4.5. Assume that the density of initial beliefs are proportional to µ and

to 1� µ in the two states. If there is no cascade in the first period, there is no cascade in

any period.

The result applies if �(µ) does not put too much mass at either end of its support. This is

intuitive: in the model with discrete beliefs (Figure ??), all the mass is put at either end of

the support. A smooth perturbation of the discrete model does not change its properties.

A numerical simulation of the case which satisfies (4.4) shows that a cascade occurs if

�(µ) = x
�n with n su�ciently high (n � 4 for a wide set of other parameters). In this

case, the distribution puts a high mass at the lower end of the support.

Right and wrong cascades

A cascade may arise with an incorrect action: for example, beliefs may be su�ciently low

that no agent invests while the state is good. However, agents learn rationally and the

probability of a wrong cascade is small if agents have a wide diversity of beliefs as measured

by the length of the support of the distribution.

Suppose that the initial distribution in LLR is symmetric around 0 with a support of length

2�. We compute the probability of a wrong cascade for an agent with initial belief 1/2. A

cascade with no investment arises if his LLR �t is smaller than � � �, i.e., if his belief in

level is such that

µt  ✏ = e
���

/(1 + e
���).

When the support of the distribution in LLR becomes arbitrarily large, � ! 1 and ✏ is

arbitrarily small. From Proposition ?? with µ1 = 1/2, we know that

P (µt  ✏|✓1)  2✏.

The argument is the same for the cascades where all agents invest. The probability of a

wrong cascade for a neutral observer (with initial belief 1/2) tends to zero if the support of

the distribution in LLR becomes arbitrarily large (or equivalently if the beliefs measured

as probabilities of ✓1 are intervals converging to (0, 1)).

PROPOSITION 4.7. If the support of the initial distribution of LLRs contains the

interval [��,+�], then for an observer with initial belief 1/2, the probability of a wrong

cascade is less than 4✏, with ✏ = e
��

c/
�
1� c+ e

��
c
�
.



65

4.3 The convergence of beliefs

When private beliefs are bounded, beliefs never converge to perfect knowledge. If the public

belief would converge to 1 for example, in finite time it would overwhelm any private belief

and a cascade would start thus making the convergence of the public belief to 1 impossible.

This argument does not hold if the private beliefs are unbounded because in any period

the probability of a “contrarian agent” is strictly positive.

4.3.1 Unbounded beliefs: convergence to the truth

From Proposition 4.7 (with � ! 1), we have immediately the next result.

PROPOSITION 4.8. Assume that the initial distribution of private beliefs is unbounded.

Then the belief of any agent converges to the truth: his probability assessment of the good

state converges to 1 in the good state and to 0 in the bad state.

Does convergence to the truth matter?

A bounded distribution of beliefs is necessary for a herd on an incorrect action, as em-

phasized by Smith and Sørensen (1999). Some have concluded that the properties of the

simple model of BHW are not very robust: cascades are not generic and do not occur for

sensible distributions of beliefs; the beliefs converge to the truth if there are agents with

su�ciently strong beliefs. In analyzing properties of social learning, the literature hasTo focus on whether
social learning converges
to the truth or not
can be misleading.

often focused on whether learning converges to the truth or not. This focus is legitimate for

theorists, but it is seriously misleading. What is the di↵erence between a slow convergence

to the truth and a fast convergence to an error? From a welfare point of view and for many

people, it is not clear.

The focus on the ultimate convergence has sometimes hidden the central message of studies

on social learning: the combination of history’s weight and of self-interest slows down the

learning from others. The beauty of the BHW model is that it is non generic in some sense

(cascades do not occur under some perturbation), but its properties are generic.

If beliefs converge to the truth, the speed of convergence is the central issue. This is why

the paper of Vives (1993) has been so useful in the previous chapter. We learned from that

model that an observation noise reduces the speed of the learning from others. Since the

discreteness of the action space is a particularly coarse filter, the slowing down of social

learning should also take place here. When private beliefs are bounded, the social learning

does not converge to the truth. When private beliefs are unbounded, we should observe a

slow rate of convergence.
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We saw that cascades do not occur for sensible distributions of beliefs because the signal

of the action (investment or no investment) is vanishingly weak when the public belief

tends to the cascade set corresponding to the action. This argument applies when the

distribution of beliefs is unbounded, since the mass of atoms at the extreme ends of the

distribution must be vanishingly small. Hence, there is an immediate presumption that

social learning must be slow asymptotically. The slow learning is first illustrated in an

example and then analyzed in detail.

A numerical example

The private signals are defined by s = ✓ + ✏ where ✏ is normally distributed with variance

�
2. An exercise shows that if µ tends to 0, the mass of agents with beliefs above 1 � µ

tends to zero faster than any power of µ. A numerical example of the evolution of beliefs is

presented in Figure ??. One observes immediately that the pattern is similar to a cascade

in the BHW model with the occurrence of “black sheeps”.
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The upper graph represents the evolution of the public belief. The lower graph represents
the sequence of individuals’ actions. It is distinct from the horizontal axis only if xt = 1.

For this example only, it is assumed that the true state is 1. The initial belief of the agent

is µ1 = 0.2689, (equivalent to a LLR of -1), and � = 1.5. The actions of individuals in each

period are presented by the lower schedule (equal to 0.1 if xt = 1 and to 0 otherwise). For

the first 135 periods, xt = 0 and µt decreases monotonically from around 0.27 to around

0.1. In period 136, the agent has a signal which is su�ciently strong to have a belief

µ̃136 > c = 0.5 and he invests. Following this action, the public belief is higher than 0.5
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(since 0.5 is a lower bound on the belief of agent 135), and µ137 > 0.5. In the example,

µ137 = 0.54. The next two agents also invest and µ139 = 0.7. However, agent 139 does not

invest and hence the public belief must fall below 0.5: µ140 = 0.42. Each time the sign of

µt+1 � µt changes, there is a large jump in µt.

The figure provides a nice illustration of the herding properties found by BHW in a model

with “black sheeps” which deviate from the herds. The figure exhibits two properties which

are standard in models of social learning with discrete decisions:

(i) when µt eventually converges monotonically to the true value of 1 (after period 300

here), the convergence is very slow;

(ii) when a herd stops, the public belief changes by a quantum jump.

The slow learning from others

Assume now a precision of the private signals such that �✏ = 4, and an initial public belief

µ1 = 0.2689 (with a LLR equal to -1). The true state is good. The model was simulated

for 500 periods and the public belief was computed for period 500. The simulation was

repeated 100 times. In 97 of the 100 simulations, no investment took place and the public

belief decreased by a small amount to a value µ500 = 0.2659. In only three cases did some

investment take place with µ500 equal to 0.2912, 0.7052 and 0.6984, respectively. Hardly a

fast convergence!

By contrast, consider the case where agents observe directly the private signals of others

and do not have to make inferences from the observations of private actions. From the

specification of the private signals and Bayes’ rule,

�t+1 = �1 + t(
✓1 � ✓0

�2
✏

)(
✓1 � ✓0

2
+ ⌘t), with ⌘t =

1

t

tX

k=1

✏k.

Given the initial belief µ1 = 0.2689, ✓0 = 0, ✓1 = 1, t = 499 and �✏ = 4,

�500 = �1 + (31.2)(0.5 + ⌘500),

where the variance of ⌘500 is 16/499 ⇡ (0.18)2. Hence, �500 is greater than 5.33 with

probability 0.95. Converting the LLR in probabilities, µ500 belongs to the interval (0.995, 1)

with probability 0.95. What a di↵erence with the case where agents observed private

actions! The example—which is not particularly convoluted—shows that the convergence

to the truth with unbounded private precisions may not mean much practically. Even when

the distribution of private signals is unbounded, the process of social learning can be very

slow when agents observe discrete actions. Cascades provide a better stylized description
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of the properties of social learning through discrete actions than the convergence result of

Proposition 4.8. The properties of the example are confirmed by the general analysis of

the convergence in Section ??.

4.4 Herds and the slow convergence of beliefs

4.4.1 Herds

The Martingale Convergence Theorem implies that the public belief converges almost

surely. Assume that the distribution of beliefs is bounded. At the limit, the support

of the distribution must be included in one of the two cascade sets. Suppose that on some

path the support of the distribution converges to the upper half of the cascade set where

all agents invest: µ
t
! c. We now prove by contradiction that the number of periods with

no investment is finite on this path.

Since there is a subsequence xn = 0, we may assume µ
n
< c. Following the observation of

xn = 0, Bayes’ rule implies

�n+1 = �n + ⌫n, with ⌫n = Log

⇣
F

1(�1 + zn)

F 0(�1 + zn)

⌘
, and zn = � � �n.

By the assumption of first order stochastic dominance, if zn ! 0, there exists ↵ < 0

such that ⌘n < ↵, which contradicts the convergence of �n: the jump down of the LLR

contradicts the convergence. The same argument can be used in the case of an unbounded

distribution of beliefs.
All paths with social
learning end with
a herd.

THEOREM 4.1. On any path {xt}t�1 with social learning, a herd begins in finite time.

If the distribution of beliefs is unbounded and ✓ = ✓1 (✓ = ✓0), there exists T such that if

t > T , xt = 1 (xt = 0), almost surely.

This result is due to Smith and Sørensen (2001). It shows that herds take place eventually

although, generically, not all agents are herding in any period!

4.4.2 The asymptotic rate of convergence is zero

When beliefs are bounded, they may converge to an incorrect value with a wrong herd. The

issue of convergence speed makes sense only if beliefs are unbounded. This section provides

a general analysis of the convergence in the binary model. Without loss of generality, we

assume that the cost of investment is c = 1/2.
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Suppose that the true state is ✓ = 0. The public belief µt converges to 0. However, as

µt ! 0, there are fewer and fewer agents with a su�ciently high belief who can go against

the public belief if called upon to act. Most agents do not invest. The probability that an

investing agent appears becomes vanishingly small if µ tends to 0 because the density of

beliefs near 1 is vanishingly small if the state is 0. It is because no agent acts contrary to

the herd, although there could be some, that the public belief tends to zero. But as the

probability of contrarian agents tends to zero, the social learning slows down.

Let f1 and f
0 be the density functions in states 1 and 0. From the proportional property

(Section ??), they satisfy

f
1(µ) = µ�(µ), f

0(µ) = (1� µ)�(µ), (4.5)

where �(µ) is a function. We will assume, without loss of generality, that this function is

continuous.

If ✓ = 0 and the public belief converges to 0, intuition suggests that the convergence is

fastest when a herd takes place with no investment. The next result which is proven in the

Appendix characterizes the convergence in this case.

PROPOSITION 4.9. Assume the distributions of private beliefs in the two states satisfy

(4.5) with �(0) > 0, and that ✓ = 0. Then, in a herd with xt = 0, if t ! 1, the public

belief µt satisfies asymptotically the relation

µt+1 � µt

µt
⇡ ��(0)µt,

and µt converges to 0 like 1/t: there exists ↵ > 0 such that if µt < ↵, then tµt ! a for

some a > 0.

If �(1) > 0, the same property applies to herds with investment, mutatis mutandis.

The previous result shows that in a herd, the asymptotic rate of convergence is equal to 0.

The domain in which �(µ) > 0 represents the support of the distribution of private beliefs.

Recall that the convergence of social learning is driven by the agents with extreme beliefs.

It is therefore important to consider the case where the densities of these agents are not

too small. This property is embodied in the inequalities �(0) > 0 and �(1) > 0. They

represent a property of a fat tail of the distribution of private beliefs. If �(0) = �(1), we

will say that the distributions of private beliefs have thin tails. The previous proposition

assumes the case of fat tails which is the most favorable for a fast convergence.
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We know from Theorem 4.1 that a herd eventually begins with probability 1. Proposition

4.9 characterized the rate of convergence in a herd and it can be used to prove the following

result10.

THEOREM 4.2. Assume the distributions of private beliefs satisfy (4.5) with �(0) > 0

and �(1) > 0. Then µt converges to the true value ✓ 2 {0, 1} like 1/t.

The benchmark: learning with observable private beliefs

When agents observe beliefs through actions, there is a loss of information which can be

compared with the case where private beliefs are directly observable. In Section ??, the

rate of convergence is shown to be exponential when agents have binary private signals. We

assume here the private belief of agent t is publicly observable. The property of exponential

convergence is generalized by the following result.

PROPOSITION 4.10. If the belief of any agent t is observable, there exists � > 0 such

that µt = e
��t

zt where zt tends to 0 almost surely.

The contrast between Theorem 4.2 and Proposition 4.10 shows that the social learning

through the observation of discrete actions is much slower, “exponentially slower11”, than

if private informations were publicly observable.

4.4.3 Why do herds occur?

Herds must eventually occur as shown in Theorem 4.1. The proof of that result rests on

the Martingale Convergence Theorem: the break of a herd induces a large change of the

beliefs which contradicts the convergence. Lones Smith has insisted, quite rightly, that

one should provide a direct proof that herds take place for sure eventually. This is done

by computing the probability that a herd is broken in some period after time t. Such a

probability tends to zero as shown in the next result.

THEOREM 4.3. Assume the distributions of private beliefs satisfy (4.5) with �(0) > 0

and �(1) > 0. Then the probability that a herd has not started by date t tends to 0 like 1/t.

10See Chamley (2002).

11Smith and Sørensen (2001) provide a technical result (Theorem 4) which states that the Markov
process defined in (4.3) exhibits exponential convergence of beliefs to the truth under some di↵erentiability
condition. Since the result is in a central position in a paper on social learning, and they provide no
discussion about the issue, the reader who is not very careful may believe that the convergence of beliefs is
exponential in models of social learning. Such a conclusion is the very opposite of the central conclusion of
all models of learning from others’ actions. The ambiguity of their paper on this core issue is remarkable.
Intuition shows that beliefs cannot converge exponentially to the truth in models of social learning. In all
these models, the di↵erentiability condition of their Theorem 4 is not satisfied (Exercise ??).
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4.4.4 Discrete actions and the slow convergence of beliefs

The assumption of a “fat tail” of the distribution of beliefs, �(0) > 0,�(1) > 0, is easy to

draw mathematically but it is not supported by any strong empirical evidence.

The thinner the tail of the distribution of private beliefs, the slower the convergence of

social learning. However, if private signals are observable, the convergence is exponential

for any distribution. The case of a thin tail provides a transition between a distribution

with a thick tail and a bounded distribution where the convergence stops completely in

finite time, almost surely (Chamley, 2002).

It is reasonable to consider the case where the density of beliefs is vanishingly small when

the belief approaches perfect knowledge. We make the following assumption. For some

b > 0, c > 0,

f
1(1) = 0, and Limµ!0

⇣
f
1(µ)/(1� µ)b

⌘
= c > 0. (4.6)

The higher is b, the thinner is the tail of the distribution near the truth. One can show

that the sequence of beliefs with the history of no investment tends to 0 like 1/t1/(1+b)

(Exercise ??).

The main assumption in this chapter is, as emphasized in BHW, that actions are discrete.

To simplify, we have assumed two actions, but the results could be generalized to a finite

set of actions. The discreteness of the set of actions imposes a filter which blurs more the

information conveyed by actions than the noise of the previous chapter where agents could

choose action in a continuum. Therefore, the reduction in social learning is much more

significant in the present chapter than in the previous one.

Recall that when private signals can be observed, the convergence of the public belief is

exponential like e
�↵t for some ↵ > 0. When agents choose an action in a continuum and

a noise blurs the observation, as in the previous chapter, the convergence is reduced to

a process like e
�↵t1/3 . When actions are discrete, the convergence is reduced, at best, to

a much slower process like 1/t. If the private signals are Gaussian, (as in the previous

chapter), the convergence is significantly slower as shown in the example of Figure ??.

The fundamental insight of BHW is robust.

4.6 Crashes and booms

The stylized pattern of a herd which is broken by a sudden event is emblematic of a pattern

of “business as usual” where at first beliefs change little, then some event generates a crash

or a boom, after which the new beliefs seem “obvious” in a “wisdom after the facts”. This
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sequence has been illustrated by Caplin and Leahy (1994). Their assumption of endogenous

timing is not necessary for the property.

In each period, there is a new population of agents which forms a continuum of mass one.

Each agent has a private information on ✓ in the form of a Gaussian signal st = ✓ + ✏t,

where ✏t has a normal distribution N (0,�2
✏ ) and is independent of other variables. Each

agent chooses a zero-one action x 2 {0, 1}.

In period t, agents know the history ht = {Y1, . . . , Yt�1} of the aggregate variable Yt =

Xt + ⌘t, where Xt is the mass of investments by the agents in period t and ⌘t is a noise

which is distributed N (0,�2
⌘).

If �t is the public LLR between states ✓1 and ✓0, an agent with private signal s has a LLR

equal to

�(s) = �t +
✓1 � ✓0

�2
✏

⇣
s� ✓0 + ✓1

2

⌘
.

Given the net payo↵s in the two states, the agent invests if and only if he believes state ✓1

to be more likely than state ✓0, hence if his LLR is positive. This is equivalent to a private

signal s such that

s > s
⇤(�t) =

✓0 + ✓1

2
� �

2
✏

✓1 � ✓0
�t.

Let F (·;�) be the c.d.f. of the Gaussian distribution N (0,�2). Since the mass of the

population in period t is one, the level of aggregate endogenous investment is

Xt = 1� F (s⇤(�t)� ✓;�✏).

The level of aggregate activity

Yt = 1� F (s⇤(�t)� ✓;�✏) + ⌘t.

is a noisy signal on ✓. The derivative of Yt with respect to ✓ is

@Yt

@✓
= (s⇤(�t)� ✓)exp

 
� (s⇤(�t)� ✓)2

2�2
✏

!
.

If the cut-o↵ point s⇤(�t) is far to the right or to the left, the multiplier of ✓ on Yt is small

and the impact of ✓ on Yt is dwarfed by the observation noise ⌘t, exactly as in the model

of Vives (1993). Hence, the information content of the observation Yt is small when most

agents invest (s⇤(�t) is low), or most do not invest (s⇤(�t) is high).

Crash and boom

Suppose that the true state is ✓0 and that the level of optimism, as measured by the

LLR, is high. Most agents invest and the aggregate activity is dominated by the noise.
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However, the beliefs of agents are unbounded and the public belief converges to the true

state. When the public belief decreases to the “middle range”, the di↵erence between the

mass of agents in the two states becomes larger and this di↵erence dominates the noise.

The level of aggregate activity is more informative. Since the true state is ✓0, the public

belief decreases rapidly and the aggregate activity falls drastically. A crash occurs.

This property is illustrated by a simulation. Two realizations of the observation shocks are

considered. In the first, all realizations of the shocks are set at zero, ⌘t ⌘ 0. The evolution

of the public belief15, measured in LLR, is represented in Part A of Figure 4. In Part B,

the evolution of the public belief is represented for random realizations ⌘t.
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Parameters: ✓0 = 0, ✓1 = 1,�⌘ = 0.5,�✏ = 2, c = 0.5, ✓ = ✓1, µ1 = 0.75.
The public belief is measured in LLR on the vertical axis. (Note that the belief is not
measured by the probability of state ✓1). The period is reported on the horizontal axis.

Figure 4.4: Examples of evolution of beliefs

In Part A, the public belief evolves slowly at first, then changes rapidly in a few periods

and evolves slowly after. The LLR tends to �1, but this convergence is obviously very

slow.

If agents could observe directly the signals of others, the curve in Part A would be replaced

by a straight line. The sudden change occurs here because of the non-linearity of the

15The update of the public belief from �t to �t+1 is given by Bayes’ rule:

�t+1 = �t + Log

✓f(xt �
⇣
1� F (s⇤(µt)� ✓1;�✏)

⌘
;�⌘)

f(xt �
⇣
1� F (s⇤(µt)� ✓0;�✏)

⌘
;�⌘)

◆
,

where f is the density function associated to the c.d.f. F .
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information content of individual actions.

In Part B, the changes �t are also sudden. Note that even if the public belief is pessimistic

(with �t < 0 at around t = 100), a string of positive shocks can induce a sudden upward

jump of the public belief.

The model generates symmetrically crashes and booms. If the initial level of pessimism is

low and the true state is high, eventually agents learn about it and the learning process

goes through a phase of rapid changes of beliefs.

4.7 Bibliographical notes

Social learning in a changing world

Throughout this chapter and the next, the state of nature is invariant. This assumption

is made to focus on the learning of a given state and it applies when the state does not

change much during the phase of learning. Assume now, following Moscarini, Ottaviani

and Smith (1998),that the value of ✓ switches between ✓0 and ✓1 according to a random

Markov process: the set of states of nature ⇥ = {✓0, ✓1} is fixed but between periods, ✓

switches to the other value with probability ⇡.

Suppose that all agents are herding in period t. Does the public belief stay constant as in

the previous sections of this chapter? Agents learn nothing from the observation of others,

but they know that ✓ evolves randomly. Ignoring the actions from others, the public belief

(probability of state ✓1) regresses to the mean, 1/2. Therefore, after a finite number of

periods, the public belief does not dominate the belief of some agents in which case not

all agents herd. The herding by all agents stops. This property is interesting only if ⇡ is

neither too small nor too high: if ⇡ is very small, the regression to the mean is slow and

the herding behavior may last a long time; if ⇡ is su�ciently large, the expectation of the

exogenous change between periods is so large that the learning from others’ actions which

is driven by their information about past values of ✓ bears no relation with the current

value of ✓. No cascade can occur.

Experiments

The BHW model has been experimented in the laboratory by Anderson and Holt (1996),

(1997). Such experiments raise the issues of the actual understanding of Bayesian inference

by people (Holt and Anderson, 1996), and of the power of the tests. A important di�culty

is to separate the rational Bayesian learning from ad hoc rules of decision making after the
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observations of others’ actions (such as counting the number of actions of a given type in

history, or taking into account the last observed action)16. Huck and Oechssler (1998) find

that the tests of Anderson and Holt are not powerful against simple rules. More recent

experimental studies include Çelen and Kariv (2002b), (2002c), or Holt (2001).

16This issue is raised again in empirical studies on the di↵usion of innovations (Section ??).
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EXERCISE 4.1. (Probability of a wrong cascade)

Consider the 2⇥ 2⇥ 2 model that we have seen in class (2 states 1 and 0, 2 actions and

symmetric binary signal), where µ1 is the prior probability of the state 1, c 2 (0, 1) the

cost of investment, and q the precision of the binary signal. There is a large number of

agents who make a decision in a fixed sequence and who observe the actions of past agents.

Assume that µ1 < c and that the di↵erence c � µ1 is small. Let xt 2 {0, } the action of

agent t. We assume that the true state (unknown by agents) is ✓ = 0.

1. Represent on a diagram with time (horizontal axis) and the probability of state 1 in

the public information (vertical axis), di↵erent examples of trajectories of the public

belief that end in a cascade with investment, which is a “wrong” cascade (since the

state is 0). We want to compute the probability of all these wrong cascades.

2. Assume that ✓ = 1. What is a wrong cascade?

3. Suppose that x1 = 0. At the end of period 1 and beginning in period 2, what is the

probability to have a wrong cascade?

4. Suppose that x1 = x2 = 1. What is the probability to have eventually a wrong

cascade (with action 0)?

5. Let ⇡0 and ⇡1 be the probabilities to have a wrong cascade before any observation

(at the beginning of period 1) and after the observation x1 = 1. Remember that all

this is conditional on ✓ = 1. Using the geometric figure in the first question and your

previous answers, show that after the observations x1 = 1 and x2 = 0, the probability

of to end with a wrong cascade is equal to ⇡0.

6. Using your previous answers, find two linear equations between ⇡0 and ⇡1, and solve

for ⇡0.

7. Comment on the relation between ⇡0 and µ.

EXERCISE 4.2. (The model of Banerjee, 1992)

Assume that the state of nature is a real number ✓ in the interval (0, 1), with a uniform

distribution. There is a countable set of agents, with private signals equal to ✓ with

probability � > 0, and to a number uniformly distributed on the interval (0, 1) with

probability 1 � � > 0. (In this case the signal is not informative). The agent observes

only the value of his private signal. Each agent t chooses in period t an action xt 2 (0, 1).

The payo↵ is 1 if xt = ✓, and 0 if xt 6= ✓. Agent t observes the history of past actions

and maximizes his expected payo↵. If there is more than one action which maximizes his

expected payo↵, he chooses one of these actions with equal probability.
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1. Analyze how herds occur in this model.

2. Can a herd arise on a wrong decision?

EXERCISE 4.3. (Action set is bounded below, Chari and Kehoe, 2000)

In the standard model of this chapter, assume that agent t chooses an investment level

xt which can be any real positive number. All agents have a binary private signal with

precision p > 1/2 and a payo↵ function

u(x, ✓) = 2(✓ � c)x� x
2
, with x � 0.

1. Can an informational cascade take place with positive investment? Can there be an

informational cascade with no investment?

2. Show that there is a strictly positive probability of under-investment.


