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Abstract

A continuum of agents with heterogenous private information have an option to delay a
fixed size investment that pays off only when the aggregate investment exceeds some imper-
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1 Introduction

This paper analyzes, in a theoretical model with a large number of agents, the coordination prob-

lem of making once a fixed size “investment,” with the option to delay, that pays off only if the

total mass of investment exceeds some imperfectly known level, called the fundamental. The de-

lay option enables the agents to observe a binary signal depending on whether the mass of early

actions surpasses a threshold. The process of learning from the observation of others generates a

strong non-linearity in the precision of the information that is provided by this public signal, i.e.,

in the signal-to-noise ratio.

To put the framework of the paper in context, one should expect that the quality of the infor-

mation revealed by others’ actions increases with their level of activity. (Trivially, if there is no

activity, ex ante, there is nothing to learn.) (Vives, 1993) was the first one to analyze this property

in a simple model with a signal-to-noise ratio that increases with the level of endogenous activ-

ity: the publicly observed signal is the sum of the endogenous activity, which depends on the

fundamental parameter, and of the exogenous noise with a fixed amplitude.

A stylized model of a business cycle that exhibits a similar mechanism has been presented

by Van Nieuwerburgh and Veldkamp (2006). The fundamental, which determines the payoff of

an individual’s action/investment, changes evolves between two different states according to a

Markov process. The recovery from a through in the business cycle is slow because, due to the

low level of activity, agents are slow to recognize a good state of the fundamental. On the contrary,

at the top of the cycle, a switch of the fundamental to the low state is recognized immediately

because of the high signal-to-noise ratio and the crash is sudden.

The activity that is subject to observation can also be the absence of investment. In the model

of Caplin and Leahy (1994a), where agents have an option to suspend their activity, a high level

of activity reveals no information for some time because agents with a negative information on

the fundamental are herding. Eventually, a sufficient mass of agents accumulate a string of neg-

ative signals have a private belief that is sufficiently strong to overcome the public belief. Their

withdrawal from activity breaks the herd and may precipitate a crash.

In the model of Chamley and Gale (1994), the individual signal is the option to make a fixed
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size investment. For delaying agents the observation of a high level of economic activity is good

news because the number of agents is an increasing function of the fundamental and therefore

of the expected payoff. In equilibrium, the cost of delay, which is an increasing function of the

expected payoff must be equal to the value of information through delay. When optimism rises,

the propensity to delay decreases, investment rises, and, by intertemporal arbitrage, the value of

the information that is obtained from observation also increases. In this model, as in the previous

one, the interaction between actions and information generates a strategic substitution between

agents in their willingness to invest. More investment by others increases the incentive for delays

and reduces one’s willingness to invest.

The model in (Chamley, 2004) is similar to the previous one with the difference that the mass

of players is fixed. All agents have an option to invest and they are differentiated by a private

signal which is good or bad. In that setting, no delay by all agents is an equilibrium, in addition

to the previous one, since it conveys no information and delay is costly. Therefore, information

externalities, in the absence of payoff externalities, may generate both strategic substitutability

and complementarity.

Strategic complementarities that are due to payoff externalities have been the subject of vast

number of analyses. From a theoretical point of view, the main issue is the multiplicity of equi-

libria. A “selection mechanism” seems to be indispensable for a policy analysis. In this respect,

a method that has been very popular for the last thirty years is the removal of the assumption of

common knowledge in a global game, (Carlsson and Van Damme, 1993), where individual obser-

vations are subject to independent idiosyncratic noise. So far, this method has been applicable only

in static games, with one period.1 In most multi-period models with strategic complementarity

and learning, the observation in the first period truncates the public distribution of the fundamen-

tal, removing an essential assumption in the global game method, after which there are multiple

equilibria (Angeletos, Hellwig and Pavan, 2007).

In the multi-period model of strategic complementarity with learning of Chamley (1999), there

is a unique equilibrium, which is rationalizable. The fundamental evolves over time, randomly

and by small steps, and agents observe at the end of each period the aggregate activity. There is no

delay and agents take a zero-one action. In the equilibrium, which is rationalizable and therefore

unique, the aggregate activity goes through random cycles and in most periods the mass of acting

agents is either small or large, and the observation of the aggregate provides a weak signal. There

1Of course, one can present a multi-period model as a sequence of one period model with a new public information
in each period.

2



is a strong non-linearity in the information mechanism which is similar to the one in (Vives, 1993).

That non-linearity arises because of a feature that is found in many observation settings. In a boom

or a trough, the aggregate activity is driven by the agents in the tail of the distribution of private

signals. For example, set the aggregate activity to be in the form of X(ŝ, θ) = F(θ − ŝ) + ϵ, where

θ is the fundamental, F the cdf of the private signals, and ϵ a small noise so that the observation of

Y does not provide perfect information on θ. In equilibrium, the agents with a signal greater than

ŝ take action 1, “invest”. The aggregate activity provides a signal on θ. In a boom, θ̂ is large. The

investing agents are in the upper tail of the distribution, and–this is the essence of the mechanism–

the value of the fundamental has a small impact on the mass of investing agents. In this case, the

aggregate variable X provide little information on the fundamental.

The previous mechanism arises in model where agents have an imperfect signal on the fun-

damental and where, in equilibrium, the margin between acting and non-acting agents is in the

tail of that distribution of the private signals. Such a property is likely to hold in most models of

strategic complementarity. Because of the payoff externality, in an equilibrium, the mass of acting

agent is either large or small. Payoff complementarity, when sufficiently large, generates strategic

complementarity and a non-linear response to the actions of others. (In a simple canonical model

with common knowledge, the response is either 1 or 0.) When there is learning from others, this

non-linear response in actions generates a strong non-linearity in the information that is obtained

through the observation of others. Such a non-linearity is a key mechanism in the present paper.

The non-linearity of the information from the observation of others is suppressed in the model

of Dasgupta (2007) because, using the previous notation, the public signal after the first period is

G(F(θ − ŝ)), where G is set explicitly to neutralize the non-linearity by choosing it to be the inverse

function of F. Such an inverse function multiplies the small variations of Y when the margin for

action is in the tail of the distribution. The impact of the function G ≡ F−1, is to transform the

activity in the first period, no matter how small it can be, into a linear signal on θ. An argument

for this choice of the function G is that the model makes also the assumption that the observation

of aggregate activity in the first period is nearly perfect. In this case, the transformation of the

actual activity through the function G, may not matter, asymptotically.

In this paper, the signal that transforms the aggregate action into information has the prop-

erty that it is equal to 0 if that aggregate is less than some threshold. This embodies the realistic

property that a small level of endogenous activity, which carries information, is drowned by noise

and measurement errors. We think that this non-linearity of the information process is critical

in models of delay and payoff strategic complementarity. In sharp contrast to the linear model
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of information, our study demonstrates the inability of delay option in promoting coordination,

when the discount rate is sufficiently small. This finding is largely consistent with experimental

evidence provided by Jin, Zhou and Brandenburger (2021).2

The properties of the model are also related to (Angeletos, Hellwig and Pavan, 2006). In their

model, there is no delay. In each period, a new game is played with learning from past periods’

outcomes about the fundamental and additional private signals. Agents cannot observe the level

of investment as long as coordination has not been successful, in which case the game ends. In

the model here, agents observe a zero-one signal Y that is equal to one if the mass of investment

is greater than the exogenous parameter γ. The outcome of the game in the first period truncates

the distribution of the fundamental in the public information and this leads to the possibility of

multiple equilibria after the first period. The model that is presented here is a special case that

model in which agent get no new private information after the first period and, most importantly,

play only one game with delay over multiple periods. A more detailed comparison is made in

the paper, but one can already point out two cases. First, when the discount rate is small, all

the uncertainty is resolved after the first period, with the success or the failure of coordination.

When the discount rate is sufficiently large and the degree of heterogeneity in private information

sufficiently small (a case where there are multiple equilibria in (Angeletos, Hellwig and Pavan,

2007)), there is no stable equilibrium with a non-random monotone strategy in the game with

delays.

Let us sketch the argument of the paper. Following related works, let us assume a continuum

of agents, of mass one, each with an option to make a fixed size investment, at a fixed cost c,

(0 < c < 1), in one of two periods. Coordination is successful when, at the end of the game, the

mass of investment, X, is greater than 1 − θ, where θ is the “fundamental”. When coordination is

successful, each agent who has ”invested” receives a gross payoff of 1. The payoff of investment

in the second period is reduced by a discount factor. In a one period setting, the multiplicity of

equilibria that arises under common knowledge when 0 < θ < 1, is resolved when the common

knowledge assumption is replaced by the imperfect information of individuals about the funda-

mental θ. As in these previous works, we will assume that this imperfect information takes the

form of individual signals si = θ + σϵi, where ϵi is a conditionally independent noise.

2Jin, Zhou and Brandenburger (2021) study the option of delay in a complete-information coordination game with no
delay cost. They provide experimental evidence to show that the delay option favors coordination on the reversible ac-
tion (no invest) but impairs coordination on the irreversible action, and a theory (with agents who hold other-regarding
preferences) built on iterated weak dominance to explain this finding. The experimental evidence is largely consistent
with our theory by taking the delay cost vanishingly small.
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Assume that the strategy in the first period is monotone: for some ŝ1, agents with a signal

si ≥ ŝ1 invest without delay. The opportunity cost of delay is the expected payoff multiplied by

the rate of discount. The benefit of delay arises from avoiding to pay the investment cost in the

first period when coordination eventually fails. For the marginal agent with signal ŝ1, the two

are equal. For an agent with a higher value of s, the opportunity cost is higher since he is more

confident that the fundamental θ has a high value, and that coordination will succeed.

The sub-game in period 2 depends on the observation of Y at the end of the first period. As-

sume that if Y = 0, which is bad news about the fundamental, there is no more investment (a

property that will be proven in the analysis). When Y = 1 more agents invest in period 2. There

are two possibilities.

When the parameter γ is higher than γ∗, the observation Y = 1 takes place only if aggregate

investment in the first period is high. Y = 1 is also a signal of a high value of the fundamental

(that is necessary to generate that investment). Since both investment and fundamental are high,

the first period investment is sufficient to generate coordination. The same property holds when

for given γ, the discount rate is sufficiently low. The cost of delay for information is low and given

the ex ante low propensity to invest in the first period, the realization Y = 1 the property of the

model occurs under the same condition as when γ is sufficiently large. All remaining players,

having learned that Y = 1 implies coordination, invest in the second period, but they are like free

riders on the early investors. Coordination is based only on the first period investors, who have

a signal higher than ŝ1, a value that is higher than the strategy of the one period game. Because

the set of signals for investment in the first period is smaller than in the static game, and agents

in the second period are irrelevant for achieving a successful coordination, that success requires a

higher value of the fundamental than in the static game. The option for delays makes the success

of coordination less likely.

The second case takes place when γ < γ∗, or, equivalently, when the discount rate is higher

than some threshold. Here, a successful coordination requires the contribution of some investors

in the second period, only after Y = 1 (as in the previous case), with a signal greater than ŝ2

(with, obviously, ŝ2 < ŝ1). That value is lower than the cutoff point in the one period model.

Consequently, the minimum value of the fundamentals with coordination is lower than in the one

period model. The option for delay facilitates coordination.

Since the financial market moves fast and speculative attacks take place in a relatively short

time, the discount rate can be very low in these applications.That strong impact of the option for
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delay can be illustrated by the application of the model to the stylized description of a speculative

attack that has been used by Morris and Shin. Assume that the cost of speculation is 10 percent of

the gross payoff after a successful attack. If the crisis takes two weeks, a long time for a crisis, and

the annual interest rate is 24 percent, a very high value (see the case of Sweden in 1992), γ∗ = 0.09.

Suppose now that agents notice the bank run when at least 10 percent of them run to the bank.

The case γ > γ∗ applies. We will see that in this example, the bank should keep a level of reserves

that is no more than 10 percent of the deposits (instead of the 90 percent ratio of the static case).

Applying our theory to the investment game, the dynamic model also provides a novel chan-

nel through which a policy of low interest rate can work against stimulating investment and eco-

nomic recovery. In a low interest rate environment, the discount rate is low and therefore the

investors have a higher incentive of waiting for more information. As discussed, the inaction in

the early period makes the “good news” Y = 1 more difficult to be generated and, therefore,

makes the coordination on investing more difficult to achieve.

Outline The remainder of the paper is organized as follows. Section 2 presents our model and

we solve the unique equilibrium for any given parameter choice in Section 2.2. In Section 3, we

discuss how the learning opportunity and the delay cost affects the impact of the delay option on

facilitating coordination. Equilibrium selection and policy implications are discussed in Section 4.

The model is extended to more than two periods in Section 5 and Section 6 concludes.

2 Baseline Model

2.1 Model Setup

We first consider a two-period setting (t = 1, 2) in which agents can delay their choices at t = 1,

and make more informed decisions after learning from others’ actions in the first period.

Players and Actions There is a unit mass of risk neutral agents, indexed by i ∈ [0, 1]. At the be-

ginning of the first period, each agent is endowed with one option to make a fixed size irreversible

investment, which is normalized to one, in one of the two periods. If an agent chooses to invest,

we write agent i’s time of investment as ti ∈ {1, 2}.
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Payoffs By a standard abuse of notation, the mass of agents who invest is the same as the mass

of investment. Formally, we write the mass of investment at t ∈ {1, 2} as Xt =
∫

i∈[0,1] 1{ti = t}di.

The payoff of investment depends on the total investment X := X1 + X2 at the end of period 2

and on a “fundamental” variable, θ. To model the strategic complementarity, the expected payoff

is an increasing function of the total investment X, and, by convention, an increasing function of

the fundamental θ. These properties are satisfied by the canonical representation that we take. If

there is no uncertainty on θ or the actions of agents, the payoff of an agent i who invests in period

ti is

U(ti, θ, X) = δti−1(Z − c) with Z =

1, if X ≥ 1 − θ,

0, if X < 1 − θ,
(1)

where c the fixed cost of investment, and δ < 1 is the discount factor between periods, which

generates a cost of delay.

This canonical representation could apply to an economy with agents make investments in an

economy with strength θ. In other applications, the action can be labelled as “speculative attack

against a currency” whereas 1 − θ represents the level of reserves of a central bank which has

to devalue if the speculative attack exceeds these reserves (Morris and Shin, 1999) or the reverse

a bank holds ; or “run on a bank” whereas 1 − θ measures the bank’s reserve holding (Rochet

and Vives, 2004); or “attack a political regime” whereas θ represents the weakness of the political

regime (Chamley, 1999).

When X ≥ 1 − θ, we say that coordination is successful. The investment return Z = 1 is

realized only when the coordination is successful, that is, when sufficiently many other investors

choose to invest and/or economic condition (i.e., fundamental θ) is sufficiently strong. The invest-

ment opportunity is profitable as the cost of investment c ∈ (0, 1). Delayed investment is costly

since if the coordination is successful, the payoff from investing earlier is strictly higher –i.e.,

1 − c > δ(1 − c). (This cost of delay could also be represented by a cost of investment increasing

with time.)

Exogenous Information As in many studies since Carlsson and Van Damme (1993), we assume

that agents have imperfect information on θ. Here, they have a common prior of θ, which is diffuse

(uniformly distributed) over the real line.3 In addition, each agent i is endowed at the beginning

3One can interpret this prior distribution as normal θ ∼ N(θ0, σ2
0 ), in which σ0 → ∞.
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of the first period with a private noisy signal si on the fundamental θ:

si = θ + σϵi,

where the noise terms ϵi have conditionally independent standard normal distribution N(0, 1),

and σ scales the noise.

It may be useful to recall that a high signal si is a “good” signal in the sense that it shifts the

subjective distribution of θ to the right and may be an indication that a successful coordination is

more likely.

With the diffused prior, an agent with private signal si has a subjective posterior distribution

on θ with a mean si and a cumulative distribution function F(θ − si), where F is the CDF of the

Gaussian distribution with mean zero and variance σ2. Most of the results of the paper do not

depend on σ. That property is not surprising. The model belongs to the class of global games,

where the equilibrium properties depend on the ratio between the precision of the individual

signals, on the fundamental, and the precision of the prior distribution. Here, because of the

diffuse prior, that ratio is equal to zero for any value of σ. If convenient, the reader may assume

that F is the CDF of the standardized distribution. The density associated to F(·) will be denoted

by f (·). Given the diffuse prior on θ, for any given θ, the mass of agents who have a private signal

lower than si is F(si − θ). By symmetry of the normal distribution, F(si − θ) = 1 − F(θ − si). This

property will simplify the technical analysis.

Endogenous Information Agents who delay and do not invest in the first period get some im-

perfect information on the aggregate investment in the first period, X1 in the form of a public

signal, Y, that depends on X1. Vives (1993) has emphasized that the precision of such a signal may

be poor when the activity X1 is small. For example, when Y is the sum of X1 and a noise, (the case

considered by Vives), small values of X1 are dwarfed by the noise. We incorporate this property

by assuming that if X1 is smaller than some parameter γ, there is no signal, that means, Y = 0.

When X1 > γ, then, by assumption, Y = 1. That signal Y is imprecise in both cases when X1 is in

a low range, which can be very low, and in the high range. The second property is not important

here, essentially because investment is irreversible.4 Following this discussion, it is assumed that

agents observe at the end of the first period a public signal Y ∈ {0, 1} which is equal to one if and

only if the mass of investment in the first period exceeds some threshold level γ ∈ (0, 1):

4In the model of Caplin and Leahy (1994b), the poor information when investment is high generates, for fixed
fundamental, a sudden crash.
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This step function can also be motivated by discrete policies, e.g., the raising of the Central

Bank’s discount rate to defend the currency, the minimum size of a demonstration to create a news

event. Aside from this public signal Y and private signal si, we assume agents cannot receive any

other information regarding the fundamental θ or the history X1.

Monotone Strategies Throughout the paper, we will restrict our attention to monotone strate-

gies and use the Perfect Bayesian Equilibrium in monotone strategies as our solution concept. Recall

that a high value of the fundamental θ facilitates a successful coordination and a positive payoff of

investment. Hence, a high value of the private signal si is good news for investment. Accordingly,

we focus on monotone strategies that are defined by q triplet (ŝ1, ŝ0
2, ŝ1

2). An agent who plays this

strategy invests at t = 1 if si ≥ ŝ1, and delays if si < ŝ1. The values of s0
2 and ŝ1

2 define the thresh-

olds for investment (by delaying agents) in period 2 after observing Y = 0 or 1, respectively. That

is, this agent invests after observing Y at t = 2 if and only if si ≥ ŝY
2 for Y = 0, 1. As investments

are irreversible, sY
2 ≤ ŝ1.

2.2 Preliminaries

The static model with no delay option is a special case with the discount factor δ = 0. It will

provide a benchmark to assess whether the option of delay facilitates coordination.

Static Benchmark

If agents play a monotone strategy and invest with a signal greater than ŝ, the aggregate invest-

ment is

X(θ, ŝ) = P[si ≥ ŝ|θ] = F(θ − ŝ). (2)

From the definition of the payoff in (1), coordination succeeds if and only if F(θ − ŝ) ≥ 1 − θ, or

equivalently, θ ≥ F(ŝ − θ). Define the function Θ(s) by the solution of the equation

Θ(s) = F(s − Θ(s)). (3)

The solution Θ(s) is unique for any s and the function Θ(s) is strictly increasing in s. Coordination

is successful if and only if θ ≥ Θ(ŝ).

We have seen that an agent with marginal signal ŝ has a subjective probability distribution

on θ with the CDF F(θ − ŝ). Therefore, if other agents are playing the monotone strategy ŝ, i.e.,
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investing if and only if si ≥ ŝ, then for agent ŝ, the probability of successful coordination (θ ≥ Θ(ŝ))

is equal to

P[θ ≥ Θ(ŝ)|ŝ] = F(ŝ − Θ(ŝ)) = 1 − F(Θ(ŝ)− ŝ) = Θ(ŝ).

Lemma 1. If agents play the strategy ŝ in the one-period model, for an agent with signal ŝ, the probability

of a successful coordination is equal to Θ(ŝ) = P[θ ≥ Θ(ŝ)|ŝ], solution of (3).

By Lemma 1, when agents follow the strategy ŝ, the function Θ(ŝ) has a double interpretation:

(1) it measures both the minimum value of θ for which coordination succeeds, and (2) for the

marginal agent with signal ŝ, the probability that coordination succeeds (or θ ≥ Θ(ŝ)). That

double interpretation will play an important role later.

The equilibrium is then characterized by the arbitrage condition for the marginal agent with

signal ŝ. For this agent, the expected payoff from investing is 0, the same as that from not investing;

P[θ ≥ Θ(ŝ)|ŝ]× 1 − c = Θ(ŝ)− c = 0.

The next lemma summarizes the unique equilibrium (s∗, θ∗) for the static game. It restates a well-

known result in the global game literature, to serve as a comparison benchmark.5

Lemma 2 (Static Benchmark). In the benchmark case with one period, the equilibrium strategy is unique,

to invest if s > s∗ with s∗ = Θ−1(c), and Θ(·) defined in (3). In this equilibrium, coordination is successful

if and only if θ ≥ θ∗ = c.

It is well known that the benchmark model belongs to class of models that have a strongly ra-

tionalizable equilibrium, and that the strategy s∗ is the unique strategy when there is no monotone

restriction on strategies. The purpose of the discussion before Lemma 1 was only to characterize

the equilibrium under the assumptions of Section 2.1.

We will see later that the coordination outcomes are different in the one-period setting and in

the two-period setting with a discount factor equal to 0.

5See, for example, among others, Morris and Shin (2003). A standard sufficient condition of the uniqueness of the
equilibrium is that the ratio between the variances of the private signal and of the prior should be lower than some
bound. Here, that ratio is zero and the case is technically equivalent to a vanishingly small variance of the private
signal in the standard global game framework.
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A property of the variable Y

Before the analysis of the equilibrium with two periods, we need to investigate the properties of

the signal Y that affects the agents’ choices. The information content of Y depends on the play of

the agents at t = 1. Recall that ŝ1 denotes the strategy in the first period. Y = 1 when the aggregate

investment in period 1 is greater than γ, which is equivalent to

X1(θ, ŝ1) = P[si ≥ ŝ1|θ] = Φ(
θ − ŝ1

σ
) ≥ γ,

or, equivalently, θ ≥ Θγ(ŝ1) where Θγ(·) is defined as

Θγ(ŝ) := ŝ + σΦ−1(γ). (4)

The observation Y = 1 reveals that θ ≥ Θγ(ŝ1): the distribution of the fundamental θ is truncated

on its left-hand side, below Θγ(ŝ1). Because of this, the posterior belief about θ is shifted to the

right, and agents become more optimistic on θ, and therefore on a successful coordination: Y = 1

is good news, whereas Y = 0, which truncates the right tail of the distribution and induces a shift

to the left, is bad news.6

In addition, for the marginal agent with private signal ŝ1, the probability that Y = 1 (i.e.,

θ ≥ Θγ(ŝ1)), is equal to

P [Y = 1|ŝ1] = P[θ ≥ Θγ(ŝ1)|ŝ1] = Φ(
ŝ1 − Θγ(ŝ1)

σ
),

which by the definition in (4), is equal to 1 − γ.7

Lemma 3. If all agents take the monotone strategy ŝ1 at t = 1, the public signal Y = 1 (Y = 0) is

generated when θ ≥ Θγ(ŝ1) (θ < Θγ(ŝ1)), where Θγ(ŝ1) is defined in (4) and is an increasing function of

ŝ1 and γ. In addition, for the marginal agent with private signal ŝ1, the probability of Y = 1 is 1 − γ.

Remark 1. If ŝ1 is higher, the realization Y = 1 requires a higher value of the fundamental θ. Therefore,

Y = 1 is less likely ex-ante but it generates a higher jump of optimism. Likewise if γ is higher for a fixed ŝ1.

6It is worth noting that, as θ ∈ (−∞,+∞), for any possible equilibrium threshold ŝ1, both signals Y = 1 and Y = 0
will be on path. Therefore, in any possible equilibrium, agents can always apply the Bayes rule to determine their
posterior beliefs about θ.

7This is often referred to as the Laplacian belief of the marginal agent about the aggregate action of others in the global
game literature (see, for example, Morris and Shin (2003)), which says that, if all others play the monotone strategy ŝ1,
for the marginal agent with ŝ1 believes, the aggregate action X1 is uniformly distribution over [0, 1].
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Thus far, we understand that Y = 0 is a bad signal, which makes agents less optimistic about

the coordination success. In view of this, it is intuitive that the observation Y = 0 has a negative

impact on investment in period 2. The next lemma shows that, after Y = 0, in an equilibrium,

there is no investment.

The game stops with no investment after the bad news Y = 0

Any delaying agent cannot invest at t = 2 both after the observations Y = 1 and Y = 0. Such a

strategy, which is equivalent to delaying with a commitment to invest in period 2, without regard

to the realization of Y, yields a payoff that is equal to the discounted value of the first period

investment. Because of the discounting, it is strictly dominated by no delay. Therefore, in an

equilibrium, at least one of the two values, ŝ1
2 and ŝ0

2 must be equal to ŝ1.

Lemma 4. In any equilibrium with monotone strategy ŝ1 in the first period, and ŝY
2 in the second period,

after the observation of Y, max{ŝ0
2, ŝ1

2} = ŝ1.

That argument is the same as in Chamley and Gale (1994) for an environment without payoff

externalities. In that model, the game stops when the news is not sufficiently good. In the present

model of dynamic coordination with payoff externalities, one cannot rule out a priori that the

observation Y = 0 could be a coordination device for more investment (i.e., ŝ0
2 < ŝ1). This case is

ruled out by the next Lemma.

Lemma 5. In any monotone equilibrium, ŝ0
2 = ŝ1: there is no investment after the bad news Y = 0.

The proof, in the appendix, proceeds by contradiction in two steps. First, the observation

Y = 0 shifts the distribution of the fundamental θ to the left and agents are less optimistic about

coordination success in the subgame following Y = 0 than they would be in a static game with

the initial beliefs. Thefore, they are less willing to invest: ŝ0
2 > s∗, and Θ(ŝ0

2) > Θ(s∗) = c.

Second, by Lemma 4, ŝ0
2 < ŝ1

2 = ŝ1, which, by the first step of the argument, means that ŝ1
2 > s∗.

But then if Y = 1 had occurred, the distribution of θ would have shifted to right,8 compared

to the one-period model, and agents with a signal in the neighborhood of ŝ1
2 would invest, a

contradiction of Lemma 4.
8More precisely, since Y = 1 implies θ ≥ Θγ(ŝ1) > Θ(ŝ0

2) > c, this public signal will generate sufficient optimism
and induce agent with ŝ−1 := limε↓0 ŝ1 − ε to invest. See the proof in the appendix for details.
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Following Lemma 5, we only need to consider monotone equilibrium with ŝ1
2 ≤ ŝ0

2 = ŝ1. For

that reason, we will abuse the notation and use ŝ2 to stand for ŝ1
2. Next, we proceed to solve for

the equilibrium strategy (ŝ1, ŝ2).

So far, the analysis has been independent of the discount factor, δ. It is intuitive that this

parameter will now play a critical role because affects the trade-off between the payoff of no delay

and the discounted payoff of delay. For the interpretation of some properties, it will also be useful

to use the discount rate, ρ, which is related to the discount factor by δ = 1/(1 + ρ).

2.3 A low discount rate, or high γ

The game goes on in period 2 only after Y = 1. When γ takes a high value, the event Y = 1 requires

a large mass of investment in the first period, which can take place only if the fundamental is

sufficiently high. In this case, with high investment and high fundamental is it possible that the

mass of investment in the first period is sufficient for a successful coordination?

The same question can be asked when for a given γ, the discount rate takes a sufficiently low

value. A low discount rate boosts the incentive for delay and reduces the investment in the first

period. In this situation, as in the previous paragraph, the first period investment is higher than

γ, only if θ is sufficiently high.

If Y = 1 implies that X1 > 1 − θ and first period investment is sufficient for successful coordi-

nation, an equilibrium is represented by Figure 1, where the key property is

ŝ1 > sγ, with Θ(sγ) = Θγ(sγ). (5)

Using the properties of the functions Θ(s) and Θγ(s), the value of sγ satisfies the following two

equations which are equivalent

Θ(sγ) = 1 − γ. (6)

sγ = 1 − γ − σΦ−1(γ). (7)
The next Lemma, which is proven in the Appendix, provides a sufficient condition for the rep-

resentation in Figure 1, and for a positive answer to the question that was raised at the beginning

of this section.

Lemma 6. Under the condition ρ(1 − c − γ) < cγ, an equilibrium strategy ŝ1 satisfies the condition

ŝ1 > sγ where sγ is defined in equation (7). In an equilibrium, Y = 1 implies that X1 > 1 − θ: the

investment in the first period is sufficient for a successful coordination:

13



Figure 1: A high discount factor
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For the equilibrium strategy ŝ1, Y = 1 reveals that investment in the first period is

sufficient for coordination. If Y = 0, there is no more investment in period 2 although

coordination will be achieved at the end of the game if θ is in the segment (θ̂, Θγ(ŝ1)).
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The condition ρ(1 − c − γ) < cγ is satisfied for any ρ if γ > 1 − c: the mechanism that is

described in the first paragraph of the section operates for any discount rate. When γ < 1 − c, the

mechanism operates as described in the second paragraph of this section.

Since, under the condition in Lemma 6, Y = 1 predicts coordination success, the net discounted

payoff of investment in the second period following Y = 1 is equal to δ(1 − c). Therefore, in an

equilibrium, the arbitrage equation for the marginal agent with signal ŝ1 is

P [θ ≥ Θ(ŝ1)|ŝ1]− c = δP [Y = 1|ŝ1] (1 − c). (8)

Another interpretation of this indifference condition is that

ρ(P [θ ≥ Θ(ŝ1)|ŝ1]− c) = P(Y = 0|ŝ1) (c − P [θ < Θ(ŝ1)|Y = 0, ŝ1]) .

The left-hand side of the above equation is equal to the cost of delay: it is equivalent to a return,

for one period, on the net value of the investment. The right-hand side measures the value of

delay. It is equal to the expected value of undoing the investment after the bad news Y = 0.

Using Lemmata 1 and 3, (8) is equivalent to

Θ(ŝ1) = c + δ(1 − γ)(1 − c). (9)

Using (6), the solution ŝ1 of this equation satisfies ŝ1 > sγ if and only if Θ(ŝ1) > 1 − γ. That

inequality is equivalent to the condition of Lemma 6. Under the condition of Lemma 6, an equi-

librium strategy must be defined by the equation (9).

After establishing the necessary conditions for an equilibrium, we now show that the arbitrage

equation (8) is also sufficient for the equilibrium. Let D(si) the payoff difference between no delay

and delay for an agent with a signal si when other agents play ŝ1. It is proven in the appendix that

any agent with signal s < ŝ1 (s > ŝ1) strictly prefers (not) to delay, that is , D(si) < 0 (D(si) > 0).

Therefore, ŝ1 solved in equation (9) and ŝ2 = −∞ can constitute a monotone equilibrium.

Proposition 1. Under the condition ρ(1 − c − γ) < cγ, there exists a unique equilibrium (ŝ1, ŝ1
2 = ∞),

with

Θ(ŝ1) = c + δ(1 − γ)(1 − c).

Coordination is successful if and only if θ ≥ Θ(ŝ1) > c. In equilibrium, the outcome of coordination is

achieved by the investment in the first period.

In equilibrium, the game proceeds as follows: if Y = 0 at the end of the first period, the game

stops; if Y = 1, all the delayers invest but they do not contribute to the success of coordination,

15



as it is achieved in the first period. Under the conditions of the proposition, Y = 1 only if the

fundamental θ takes a high value, and after observing Y = 1, agents learn that investment in the

first period is already sufficient for a successful coordination. This case should be expected when

γ takes a high value.

Comparing with the result in Lemma 2, there is less coordination than in the static case: Θ(ŝ1) >

θ∗ = c. This has a simple interpretation. The coordination outcome is only generated by invest-

ment in the first period, as in the one-period setting. But with two periods, some agents who

would invest in the one-period setting, are delaying. That makes a successful coordination less

likely. The delaying agents will invest after Y = 1 but they are useless for the success of coordina-

tion.

2.4 A high discount rate or low γ

Let us now assume that 0 < δ < δ∗ (defined in Proposition 1). If there is an equilibrium, following

the previous discussion, the observation Y = 1 takes place also for some values of θ for which the

first-period investment is not sufficient for coordination. We have the case of Figure 2 with the

first period strategy ŝ1 < sγ. This case is represented in Figure 2.

Figure 2: Low discount factor
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After the observation Y = 1, the support of the θ is truncated to (Θγ(ŝ1), ∞), (green segment in

the figure). The mass of first-period may be sufficient for a successful coordination, if θ > Θ(ŝ1).

But it may not be if the realization of θ is not sufficiently high, i.e., θ ∈ (Θγ(ŝ1), Θ(ŝ1)]. In this case,

because the realization Y = 1 has shifted the distribution of the fundamental to higher values,

agents did not invest at t = 1 become more optimistic after observing Y = 1. Because of this

learning effect, more agents are willing to invest. Of course, this additional investment has been

expected by agents who do not delay in the first period when they choose the strategy ŝ1, and the

coordination success is determined by these additional investments.

The equilibrium (ŝ1, ŝ2) is characterized by the two necessary arbitrage conditions for the

marginal agents in each of the two periods. Coordination is achieved if θ > Θ(ŝ2). In the sec-

ond period (after Y = 1), the marginal agent with signal ŝ2 who learns θ > Θγ(ŝ1) from the

observation of Y = 1 is indifferent between investing and not investing at t = 2:

P(θ > Θ(ŝ2)|θ > Θγ(ŝ1), ŝ2)− c = 0, (10)

which is equivalent to
Θ(ŝ2)

Φ(
ŝ2−Θγ(ŝ1)

σ )
= c. (11)

In the first period, a marginal agent, with signal ŝ1, is indifferent between no delay and delay with

a commitment to invest if and only if Y = 1:

P(θ > Θ(ŝ2)|ŝ1)− c = δ(P(θ > Θ(ŝ2)|ŝ1)− cP(θ > Θγ(ŝ1)|ŝ1)), (12)

which, by Lemma 3, is equivalent to

(1 − δ)P(θ > Θ(ŝ2)|ŝ1) = c(1 − δ(1 − γ)). (13)

In this arbitrage equation, the reduction of the gross payoff of investment for the marginal agent ŝ1

is equal to the difference in investment cost, which is paid in period 2 only if Y = 1. This equation

is equivalent to

Φ(
ŝ1 − Θ(ŝ2)

σ
) = c

1 − δ(1 − γ)

1 − δ
. (14)

Recalling θ̂ = Φ( ŝ2−θ̂
σ ),

ŝ2 = θ̂ + σΦ−1(θ̂), (15)

where θ̂ = Θ(ŝ2), to simplify the notation. Equations (11) and (14) can be rewritten

θ̂ = cΦ(
ŝ2 − ŝ1

σ
− Φ−1(γ)), ŝ1 = θ̂ + σΦ−1(c

1 − δ(1 − γ)

1 − δ
). (16)
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θ̂ = cΦ
(

Φ−1(θ̂) + a
)

, with a = −Φ−1(γ)− Φ−1(c
1 − δ(1 − γ)

1 − δ
). (17)

The condition δ < δ∗ is equivalent to a > 0. It is shown in the appendix that this equation has a

unique solution in θ̂ = Θ(ŝ2).

Proposition 2. If γ < 1 − c and δ ∈ (0, δ∗), there is a unique monotone equilibrium characterized by two

values ŝ1 and ŝ2 < ŝ1 that solve (11) and (14). In equilibrium, an agent with signal si > ŝ1 does not delay,

an agent with si ∈ (ŝ2, ŝ1) invest in period 2 after the observation Y = 1, and an agent with signal si < ŝ2

never invests.

In contrast to Proposition 1, because of the smaller discount factor there is less incentive to

delay. When Y = 1, agents in the second period know that the worst values of the fundamental

(below Θγ(ŝ1)), are ruled out and some investment takes place in the second period. In the first

period, the probability of more action in the second period stimulates investment. One can verify

in (11) that Θ(ŝ2) < c. Therefore, coordination is more likely to be succeed than in the static case.

This property will be discussed later.

2.5 A special/marginal case

Next, we will end this section by discussing a special case in which δ = δ∗, which connects the

two different cases with δ > δ∗ and δ < δ∗ and gives a complete picture of the equilibrium

characterization. As discussed above, this case only arises when γ < 1 − c.

Recall that when δ > δ∗, coordination success is guaranteed following Y = 1 but it can also

occur after Y = 0; and when δ < δ∗, coordination success occurs only after Y = 1 but that is not

guaranteed. As shown in the following proposition, in the special case where δ = δ∗, there is a

continuum of equilibria and in any possible equilibrium, coordination success is guaranteed and

only occurs after Y = 1.

Proposition 3. If γ = γ∗ (or δ = δ∗), any ŝ1 ∈ [σΦ−1(1 − γ∗), sγ∗ ] and ŝ2 = −∞ can constitute an

equilibrium. In any equilibrium, coordination is successful if and only if θ > Θγ(ŝ1).

To understand this result, suppose that Y = 1 perfectly predicts the coordination success; that

is, θ ≥ Θγ(ŝ1) is not only the condition for Y = 1 but it also presents the condition for coordination

success. We already know that this happens when ŝ1 = sγ and accordingly, Θ(ŝ1) = Θγ(ŝ1).
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However, when δ = δ∗, it is also possible under other first period strategy ŝ1. To see this, the

payoff difference of the marginal agent with ŝ1 is

P(θ ≥ Θγ(ŝ1)|ŝ1)− c − δ∗P(θ ≥ Θγ(ŝ1)|ŝ1)(1 − c) = (1 − γ)− c − δ∗(1 − γ)(1 − c) = 0. (18)

Interestingly, regardless of the value of ŝ1, when δ = δ∗, the marginal agent is always indifferent.

To understand the underlying reason for the multiplicity of equilibrium, first note that, if coordi-

nation always succeeds after Y = 1, it must be that all delaying agents will invest after Y = 1,

i.e., ŝ2 = −∞. More importantly, it is possible that coordination is not successful purely driven

by first-period investment (i.e., ŝ1 < sγ and Θ(ŝ1) > Θγ(ŝ1)), but it is induced by the subsequent

investment at t = 2 after Y = 1, which happens as long as Θγ(ŝ1) ≥ Θ(ŝ2 = −∞) = 0. In other

words, the fact that all delaying agents will invest at t = 2 following Y = 1 makes Y = 1 a perfect

predictor of coordination success, which, in turn, justifies the choice of ŝ2 = −∞.9 For that reason,

it is an equilibrium as long as ŝ1 satisfies Θ(ŝ1) ≥ Θγ(ŝ1) ≥ 0.

3 Does the delay option facilitate coordination?

Facilitating coordination means expanding the range of the fundamental’s values for which coor-

dination takes place. Here, coordination takes place if the fundamental θ is in an open interval

with a lower-bound θ̂ that is determined by the equilibrium. The delay option facilitates coordi-

nation θ̂ is lower than the lower-bound θ∗ in the one-period setting. Whether more coordination

is good or bad depends on the interpretation of the model and will be seen in the next section. We

have already seen that the answer to the question in this section depends on the discount factor,

δ, and on the minimum mass, γ for the public signal Y = 1.

Proposition 4. There is less coordination with two periods than with one period, i.e., θ̂ > θ∗, when

δ(1 − c)(1 − γ) > 1 − c − γ. When this inequality is reversed, there is more coordination: θ̂ < θ∗.

The inequality in the proposition depends on the relative positions of the critical mass param-

eter, γ, and on the discount factor. We consider them in turn.

9 One may wonder why this cannot happen in the case where δ < δ∗. As in the subgame following Y = 1, agents
learn that θ ≥ Θγ(ŝ1). If Θγ(ŝ1) ≥ 0, in that subgame, it is an equilibrium where all delaying agent choose to invest,
i.e., ŝ2 = −∞. However, that cannot constitute an equilibrium for the entire two-period game because the marginal
agent with any ŝ1 always strictly prefers to act earlier. This can be seen by replacing δ∗ by any δ < δ∗ in (18).
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3.1 Coordination and the critical mass for Y = 1

The expression of the lower-bound θ̂ a function of the critical mass γ is relevant when this parame-

ter is affected by policy or some interpretations of the model (see below). An example is illustrated

by Figure 3, for two values of the discount factor, δ = 0.5 and δ = 0.9, respectively.

Figure 3: Lower-bound of θ for coordination as a function of γ
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The lower-bound for coordination is a decreasing function of γ in both cases when γ is greater

and smaller than γ∗, with a sharp discontinuity at γ∗. To see this, assume first that γ > γ∗. When

γ increases, the probability of the good news Y = 1 for the marginal agent with ŝ1 decreases, as

it is equal to 1 − γ (Lemma 3). The content of good news (Y = 1) does not change: it is that the

payoff of investment in the second period is one. The value of delay decreases as the likelihood

of receiving good news (Y = 1) decreases. When γ tends to one, the incentive for delay becomes

vanishingly small. At the limit, the model is the same as the one-period model and θ̂ = c.

For the case γ < γ∗, assume first that γ is close to 0. The probability of Y = 1 is close to 1, which

reveals very little information. There is little incentive to delay. At the limit, all agents invest in

the first period and the model is equivalent to the one-period model with the same lower-bound

for coordination, c.

When γ increases, the observation of Y = 1 becomes more informative. In Figure 2, the line
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that represents the function Θγ(·) is shifted upwards. The value Θγ(ŝ1), which is extremely low

when γ is near zero, increases. When γ increases, more values are truncated away in the distri-

bution of θ. That stimulates investment in period 2 and lowers ŝ2. Therefore, Θ(ŝ2) decreases and

there is more coordination.

These properties are summarized in the following proposition, which is proven in the Ap-

pendix.

Proposition 5. For given parameters of the model, the lower-bound θ̂ for coordination is a decreasing

function of γ. When γ tends to γ∗−, the lower-bound for coordination tends to 0, which is the lower-bound

in the first-best when the objective is to achieve coordination whenever possible.

In the proposition, when γ → γ∗−, the realization Y = 1 reveals, asymptotically that the val-

ues θ < 0, under which no coordination is possible, have a vanishingly small probability. The

threshold for investment in the second period, ŝ2 tends to −∞. Asymptotically, all remaining

agents invest in the second period. The outcome of coordination, success or failure, is, asymp-

totically the same as in the first-best in the sense of the proposition. However, the investment

allocation does not converge to the first-best allocation when γ tends to γ∗− because that a signif-

icant amount of agents choose to delay.10 In addition, investing agents in the first period take the

risk that Y = 0, which asymptotically, means θ < 0.

Figure 4 also illustrates the non-continuous variation of θ̂ around γ = γ∗. The fundamental

cutoff θ̂ “jumps” from 0 (when γ = γ∗−) to Θ(sγ∗) (when γ = γ∗+). It is worth noting that, as

shown in Proposition 3, any point within the range of [0, Θ(sγ∗)] represents an equilibrium for the

special case of γ = γ∗.

3.2 Coordination and the discount factor

The lower-bound θ̂ for a successful coordination is represented as a function of the discount factor

δ in Figure 4.

Proposition 6. For given γ and c with γ < 1 − c, the lower-bound θ̂ for coordination is a decreasing

function of δ if δ < δ∗ and an increasing function of δ if δ > δ∗. When δ tends to δ∗−, the lower-

bound for coordination tends to 0, which is the lower-bound in the first-best when the objective is to achieve

10When γ → γ∗−, the equilibrium threshold ŝ1 is determined by the arbitrage condition (14) which, asymptotically
is equivalent to F(ŝ1) = c/(1 − δ(1 − c)).
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Figure 4: Lower-bound of θ for coordination as a function of δ
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coordination whenever possible.

When the discount rate greater than δ∗, there is less coordination than in the static case (Propo-

sition 1). Furthermore, the lower-bound θ̂ is increasing with the discount factor δ. The argument

can be put in terms of the discount rate ρ = 1/δ− 1. A lower discount rate, by reducing the cost of

delay and increasing the incentive for delay, reduces the level of investment in the first period and

therefore the probability that time-1 investment triggers the realization Y = 1, which in this case

(δ > δ∗), is a necessary condition for a successful coordination. (Recall that whether coordination

is successful or not is determined only by the mass of investment in the first period.) Therefore,

when the threshold for investment, ŝ1, increases, a successful coordination requires a higher value

of the fundamental.

When δ < δ∗, the threshold value of θ̂ for coordination success is equal to Θ(ŝ2), which de-

pends on the strategy of the delaying agents in the second period. Conditional on Y = 1, these

delaying agents are more optimistic than in the belief before the game starts, which is the same

belief of the one-period setting. Therefore, they have more invest more than in the one-period

setting. Θ(ŝ2) < c. The option for delay facilitates coordination as it expands the range of values

of θ for which coordination is successful.
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It is interesting to observe what happens when the discount factor tends to 0. At the limit, the

future has a value of approximately zero. However, not all of them invest, obviously. At the end

of the first period, the good news, Y = 1, arrives with a strictly positive probability. When Y = 1,

beliefs are upgraded for the agents who did not invest in the first period and some of them will

invest in the second period. That investment is taken into account by the agents in the first period

when they optimize. They do not weigh the future payoffs for their optimization, but they take

into account the future actions for the payoff from coordination. This property can be observed in

Figure 4, in which the limit of lower-bound θ̂ is strictly below θ∗ = c, when δ → 0. Therefore, the

static model is not the limit of a two-period model with vanishingly small discount factor.

The figure shows the remarkable property that if δ → δ∗−, then θ̂ → 0, which means that

coordination takes place if and only if it would take place in the first-best. This is identical to the

case with γ → γ∗−.

Recall that in the region of δ > δ∗, θ̂ is determined by the cutoff ŝ1 in the first period when

agents play as if they ignored the play in the second period. On the right of δ∗, agents in the first

period do take into account the possibility of more investment in the second period. As shown

in Figure 4, the threshold θ̂, above which coordination is successful, is greater than θ∗, indicating

that delay option impairs coordination.

To summarize, in the case δ > δ∗, with a strong delay incentive, the delaying agents wait for

very good news: the signal Y = 1 reveals that it is perfectly safe to invest; while, in the case δ < δ∗,

with a weak incentive to delay, the delaying agents wait to avoid the bad news Y = 0.

4 Discussions

4.1 Equilibrium Selection and Public Information

It is well known that introducing public information into the global game homogenizes agents’

beliefs, and is likely to result in multiplicity of equilibrium.11 In particular, Hellwig (2002) and

Morris and Shin (2003) show that the uniqueness of equilibrium persists only when the private

signal is significantly precise, relative to the public signal. Basak and Zhou (2020) find that, in a

static game, when agents receive public signal that truncates their beliefs about the fundamental

11See, for example, Hellwig (2002) and Angeletos, Hellwig and Pavan (2007).
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θ, unique equilibrium occurs only when the private signal is sufficiently imprecise. In our dy-

namic model, we find generically unique monotone equilibrium as shown in Proposition 1 and

2. Interestingly, the fundamental threshold θ̂ above which coordination succeeds is invariant to σ,

the dispersion of agents’ private signals.

Corollary 1. The generically unique equilibrium in Proposition 1 and 2 has the following properties.

1. when γ > γ∗, the lower-bound for coordination, Θ(ŝ1), does not depend on σ;

2. when γ < γ∗, the lower-bound for coordination, Θ(ŝ2) does not depend on σ, while the lower-bound

of the distribution of θ after the realization Y = 1, Θγ(ŝ1), is a decreasing function of σ, which tends

to Θ(ŝ2) if σ tends to zero and is negative if and only if σ > σ∗ for some σ∗.

In the case with γ > γ∗ (or, equivalently, δ > δ∗), recall that

ŝ1 = θ̂ + σΦ−1(θ̂), with θ̂ = Θ(ŝ1) = c + δ(1 − γ)(1 − c). (19)

Consider that the individual signals are less precise, that is, σ increases. In that case, for any given

θ, the mass of investing agents must stay constant. Therefore, the distribution of individual signals

is more dispersed but with the linear relation 19). That is why in Proposition 1, the lower-bound

for of θ for coordination, Θ(ŝ1) does not depend on σ.

In the case with γ < γ∗ (or, equivalently, δ < δ∗), the invariant property is based on equation

(17), which is independent of σ. Based on (16), the threshold Θγ(ŝ1) can be written as

Θγ(ŝ1) = Θ(ŝ2)− σb. (20)

Recall that b is a strictly positive number under γ < γ∗ (see (17)). As θ̂ = Θ(ŝ2) ∈ [0, c) is

independent of σ, it is easy to check that Θγ(ŝ1) obtains a positive value only when σ is sufficiently

small, that is, private signals are sufficiently precise.

Let us now consider the case in which both γ < γ∗ and σ ≤ σ∗ holds. Based on the unique

equilibrium (ŝ1, ŝ2) solved in Proposition 2, we know that the corresponding Θγ(ŝ1) ≥ 0 according

to Corollary 1. As it is publicly known that θγ ≥ 0, all agents invest following Y = 1 at t = 2 is

obviously a sub-game equilibrium. However, given δ < δ∗, all delaying agents invest after Y = 1

(i.e., ŝ2 = −∞) cannot constitute an equilibrium for the entire game since, if that is the case, the

marginal agents with ŝ1 always strictly prefers to invest earlier. See footnote 9 for the details.

Next, we will show that when the binary public information Y is not an endogenous signal, but

rather an exogenous one purely depends on θ, this can constitute an equilibrium.
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A Comparison with Exogenous Information

Next, to see why the endogenous learning is a critical feature of the model, let us consider an

alternative information generating process with Y′ = 0, 1: the value of Y′ is equal to 1 if and only

if θ ≥ θY but this value of θY is set as fixed, which does not depend on the strategy of agents in the

first period.

In this new setup, there exists an equilibrium that is characterized by the next result.

Proposition 7. For any θY ∈ [0, c
1−δ(1−c) ], there exists one monotone equilibrium such that all remaining

players invest at t = 2 after Y′ = 1 (i.e., ŝ2 = −∞), no one invests after Y = 0, and, in the first period, the

investment set is si ∈ (−∞, ŝY
1 ) with

F(ŝY
1 − θY) =

c
1 − δ(1 − c)

. (21)

Proposition 7 presents one equilibrium in which all delaying agents will coordinate and invest

following Y′ = 1. The condition θY ≥ 0 guarantees that successful coordination after all agents

invest at t = 2 following Y′ = 1 and the condition θY ≤ c
1−δ(1−c) ensures that, in equilibrium,

coordination never succeeds beyond Y′ = 1.

P(θ ≥ θY|ŝ1)− c − δP(θ ≥ θY|ŝ1)(1 − c) = 0

The equilibrium condition (21) is derived from this arbitrage condition, which ensures the exis-

tence of such an equilibrium.

Recall that, under γ < γ∗ and σ < σ∗, the unique equilibrium (ŝ1, ŝ2) solved in Proposition

2 features Θγ(ŝ1) ≥ 0. If we set θY = Θγ(ŝ1), then, based on Proposition 7, all delaying agents

investing following Y′ = 1 is in fact an equilibrium.12 Obviously, the equilibrium presented in

Proposition 2 will remain as an equilibrium given that θY = Θγ(ŝ1). This clearly demonstrates

that endogenous learning is an essential feature accounting for the uniqueness of equilibrium. To

understand this, note that when the public signal Y is endogenously generated, the investment

strategy ŝ1 at t = 1 determines the meaning of Y = 1 at t = 2 (or Θγ(ŝ1)), while, at the same time,

the marginal agent with ŝ1 must be indifferent between investing and waiting for Y = 1 (with the

endogenous meaning).

However, if we only consider the sub-game starting from t = 2, as Θγ(ŝ2) ≥ 0, investing for

12Note that when γ < γ∗, Θγ(ŝ1) < Θ(ŝ2) < c. Therefore, θY = Θγ(ŝ1) must satisfy the condition θY ∈ [0, 1
1−δ(1−c) ].
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any signal (ŝ2 = −∞) is always a sub-game equilibrium. This raises the issue of the stability of the

equilibrium with strategy ŝ2.

Stability in period 2

Here, let us define stability in the following way. Assume that all agents play the strategy s2 in

the second period. Then one can define the reaction function R(s2) which satisfied the arbitrage

condition for a deviating agent. This reaction function is determined by

F(R(s2)− Θ(s2))

F(R(s2)− Θγ(ŝ1))
= c. (22)

ŝ2 is a fixed point of R: R(ŝ2) = ŝ2. An equilibrium is unstable when R′(ŝ2) > 1.13 When there are

multiple fixed points (equilibria), by geometry, stable and unstable equilibria alternate. The equi-

librium where all remaining agents invest is (locally stable) because agents with a signal greater

than s̄ invest, when s̄ is sufficiently small, the reaction is to invest whatever the signal, R(s̄) = −∞.

The following proposition demonstrates that under γ < γ∗, the equilibrium strategy of ŝ2 in

Proposition 2 is not stable if the private signals are sufficiently precise.

Proposition 8. For any γ < γ∗ and δ < δ∗, there always exists σ0 > 0 such that the equilibrium strategy

ŝ2 given in Proposition 2 cannot constitute an stable (sub-game) equilibrium.

In the “real world” with, say, small exogenous shocks to the technologies (whose realization

can be common knowledge before the decision in period 2), or some uncertainty about the ra-

tionality of other agents, or their information, it seems to us that under the conditions where ŝ2

is unstable, the realization Y = 1 could provide a strong signal (than the previous expectation,

which is not a commitment) to coordinate on the equilibrium where remaining agents invest. Of

course, the expectation of such a coordination is not compatible with the equilibrium strategy ŝ1

in the first period: under that expectations, agents would delay more.

4.2 Application to the Financial Market

To understand how the dynamic setting and the resulting equilibrium selection can make a differ-

ence, let us consider the example of coordination in financial market, in which market participants
13Under this condition, the equilibrium would also be unstable under the criterion of eductive stability, (Guesnerie

(1992), Guesnerie (2005)).
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and, especially, financial institutions react quickly. That implies, the period length of waiting for

the public information or τ, is short, thereby inducing a high discount factor δ. The present model

highlights that short periods, or fast reactions, can stabilize a financial institution that faces multi-

ple equilibria.14

When parameter values are plugged into a static model, the implication for policy is not plau-

sible. Consider that agents are choosing whether or not to attack a financial institution (instead of

invest). Attacking is irreversible and it succeeds if and only if the bank’s reserve 1 − θ < X.

The payoff from coordination corresponds to the rate of a devaluation, say, more than 10 per-

cent. The cost is the interest rate of the speculators during the crisis. If the crisis takes two weeks,

a long time for a crisis, and the annual interest rate (as the borrowing cost) is 24 percent(example

of Sweden**), the cost of speculation is 10 percent of the potential gain. For the present model,

with a payoff normalized at 1, c = 0.1. As predicted by the static coordination, for any value of

θ > θ∗ = c = 0.1, agents will coordinate on attacking and, as a result, the bank fails. In other

terms, the bank, in order to defend any attack, has to keep 90 percent of its deposits in cash.

The present model shows that when agents have the choice of not running and waiting for

the observation that there is a run (with Y = 1), the bank may keep a much smaller amount of

reserves to be safe. Suppose that agents notice the bank run when at least 10 percent of them

run on the bank early, i.e., γ = 0.1, and the discount factor δ = 0.99. Taking the same numerical

values as in the above example of the static game (c = 0.1), we have γ∗ = 0.0826 < γ. (The

value of γ∗ is not very sensitive to the plausible values of the discount rate δ as δ is very close

to 1). The amount of reserves that the bank should keep is given by equation by Proposition 1:

θ∗ = c + δ(1 − γ)(1 − c) = 0.911. Therefore, a reserve of only less than 10 percent of the deposits

can make a bank safe (instead of 90 percent in the static case).

In what follows, we discuss the policy implication of our theory. In our discussion, we consider

a policy maker who either only cares about the ex-ante probability of successful coordination, or

only cares about the welfare of agents but only focuses on the abovementioned limiting case. In

either case, the policy maker judges this economy by the fundamental cutoff θ∗. Moreover, the

policy maker cannot observe the true realization of θ, and, thus, the adopted policy (no matter it

is about the interest rate r or the information threshold γ) cannot signal the true fundamental θ.

14It is worth noting that the following discussion does not rely on the assumption δ → 0. As shown in Proposition 1
and 2, the fundamental cutoff θ∗ does not rely on parameter σ.
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4.3 Inaction and Interest Rate r

Consider an economy experiencing a recession and the policy maker wants to stimulate invest-

ments for the economic recovery. However, the investment game features strategic complemen-

tarity; that is, whether investment will be successful or not depend on how many other investor

opt in. Naturally, during the economic turmoil, the investors are uncertain about the fundamental

of the economy, which also matter for the investment return. Another important feature that is

highlighted in our model is that investors can always choose to wait for more information before

pledging their capital. This economic environment can be perfectly mapped to our model. In real-

ity, we often observe policy makers to reduce the interest rate r as a way to promote investments

and boost recovery. To fulfill this goal, the nominal interest rate was even reduced to zero after the

great recession and in recent years. How does such monetary policy affect the incentive of waiting

and inaction, as well as the coordination on investment?

Our model is well suited to address these questions. Recall that, given any period length of

waiting τ, the discount factor in our model δ = e−rτ increases when the interest rate r decreases.

When r → 0, δ converges to 1. Recall that when γ ≥ 1 − c, the condition γ > γ∗ holds true

regardless of δ (or r). Therefore, the equilibrium is specified in Proposition 1, and delay option

always hurts coordination on investment. Given γ ≥ 1 − c and taking everything else the same,

any decrease in the interest rate r create extra incentive for waiting, thereby increasing ŝ1 and

making coordination success less likely to occur.

Now consider the cases in which γ < 1 − c. Given this condition, whether or not the delay

option can be helpful in promoting coordination depends on whether δ < δ∗, which, in turn,

depends on whether r > r∗ := − 1
τ ln δ∗. Suppose the interest rate is reduced significantly from

above r∗ to a value below r∗. This essentially makes δ > δ∗, and based on Proposition 4, this

change in r makes the delay option counterproductive in promoting coordination on investment,

and, therefore, such a policy is ineffective in stimulating the economy.

Interestingly, no matter γ ≥ 1 − c or not, when r decreases from a relative low value and

becomes sufficiently close to 0, such a policy results in more inaction (or waiting) at t = 1, thereby

reducing the chance of having the positive news Y = 1 and impairing aggregate investment. In

fact, the worst case scenario arises at the zero lower bound when r → 0, where the fundamental

cutoff θ∗ reaches its maximum. Figure ??(b) clearly demonstrates how the change in r affect the

fundamental cutoff θ∗ when γ < 1 − c.
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Admittedly, lowering the interest rate may directly reduce the cost of investment c and this, in

turn, helps boost investment. However, we are interested in how changes in interest rate would

affect the incentive of waiting in our dynamic coordination model, and, in this way, changes the

investment outcome. Notably, our model identifies a clean channel through which a lower interest

rate may promote more inaction in the economic recovery, which makes such a monetary policy

ineffective in stimulating the economic recovery. We believe this channel is important to be taken

into account given that the macroeconomy always features strong complementarity, a dynamic

structure with delay options and a low interest rate environment.

4.4 Waiting for the fall of the regime

Theoretical models of coordination have been related to the sustainability of an oppressive regime

facing demonstrations. Lohmann (1994) has taken the example of the Leipzig demonstrations

that preceded the fall of the Berlin Wall. Kuran applies the concept of strategic complementarity

to the the sudden, and apparently unexpected, change of public opinion (see Kuran (1987) and

Kuran (1995)). Similar references were in Chamley (1999) and Angeletos, Hellwig and Pavan

(2007). In the latter model, agents play a multi-period game where they do not observe the mass

of investment (or “demonstration”) as long as the regime survives, that is, as long as coordination

has not been achieved. If we assume that agents do not get additional private information after the

first period, that model is reduced to the present model in which Y = 1 if coordination succeeds,

which means that γ is endogenous. The arbitrage equation (8) is replaced by the following

Θ(ŝ1)− c = δ(1 − c)Θ(ŝ1), (23)

and the lower-bound for coordination is given by

Θ(ŝ1) =
c

1 − δ(1 − c)
. (24)

This value is greater than the value in Proposition 1 if and only if γ > γ∗, which is a condition

for that proposition. The mechanism is simple. The expected payoff of delay, on the right-hand

side of (23) is greater than in the case of Proposition 1, where coordination may take place even

if Y = 0. The higher value of the expected payoff in delaying implies, by arbitrage, a higher

expected payoff for the marginal agent who invests in the first period. There is less “attack” of the

regime in the present case.

If the objective function is to keep the regime in place, the policy implication is straightforward:

one should repress any manifestation however small, or at least the news about such manifesta-
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tion, and also, which is no less important, any news about the repression of such manifestation.

Such news would be equivalent to the trigger of a variable Y = 1 in the present model.

4.5 Accessibility of Information γ

Consider the cases in which the policy maker can influence the accessibility of information, which

captures the minimum size of a demonstration to generate a news event and is governed by the

parameter γ. When γ is close to 0, then the agents can easily easily observe Y = 1 as long as a small

amount of (irreversible) actions occurs. Therefore, information is easily accessible. Otherwise, if γ

is relatively large and close to 1, then by design, observing past actions become very difficult and,

therefore, information is not accessible. Moreover, we consider the case in which the policy maker

does not know θ so her policy that influences the accessibility of news event would not signal any

information about θ.15

In some applications, for example, coordination on investment, the policy maker wants to

promote the taking of the irreversible action. Therefore, she would influence accessibility of infor-

mation, trying to reduce the fundamental cutoff θ∗. In this case, she would make the good news

Y = 1 very easy to be generated; that is, it appears as long as a very small number of agents invest

early (or γ < γ∗). It is worth noting that when the good news is easily accessible, it may not pre-

dict the ultimate success. However, only with high accessibility of information, the delay option

together with the news Y can operate to make coordination success on investing more likely.

In other application (e.g., bank runs), the policy maker would prevent the agents from tak-

ing the irreversible actions (or running on a bank). Recall that, in such applications, the adverse

outcome occurs (or bank fails) as long as 1 − θ > 1 − θ∗. Therefore, the policy maker wants to

influence γ so as to increase θ∗. Based on our theory, this requires the ”bad” news Y = 1 occurs

only if a significant share of agents have attacked (or ran on a bank). Such a bad news, only it is

generated, perfectly predicts the policy maker’s unfavorable outcome. 16

15An alternative and possibly more plausible assumption is that, although the policy maker understands θ much
better than the agents, any policy or institution concerning the accessibility of information is designed ex-ante before θ

is realized. Such policy and institution, e.g., enacted by law, cannot be modified easily and thus lasts for long periods
of time.

16It is worth pointing out that since the dynamic model is reduced to a static one in the limiting cases with γ → 0
and γ → 1. In those cases, the information Y = 1 is produced with probability 1 and 0, and, thus, is useless. As such,
the optimal choice for the policy maker, if we take the model seriously, is γ → γ∗− in the former case where the policy
maker wants to minimize θ∗, and γ → γ∗+ if the policy maker wants to maximize θ∗.
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This finding is largely close to what we observe in reality. Any little progress in a collective

investment project (e.g., a fundraising event) will be reported, although such small progress can-

not predict the success of the project. In contrast, the vulnerability of financial institutions or

occurrence of existent attacks will not be revealed publicly until the failure of these institutions

are doomed. By building a dynamic coordination model, out study provides some rationale for

such design of information revelation. In more detail, from an ex-ante perspective, such design

help increases the incidence of investment success as well as strengthen the resilience of financial

institutions.

5 Extension: Dynamic Model with T ≥ 3 Periods

A standard context for a coordination game is a bank run (Diamond and Dybvig, 1983) or a central

bank (Obstfeld, 1986). With regard to these applications, we believe that these crises do not take

place in a unique period, on which, and this is an important coordination requirement, agents

coordinate. Multiple periods is a necessary assumption for the analysis of such crises (Cham-

ley, 2003). From this perspective, our model, building on the heterogeneous private information

setting which follows the global game approach, presents an interesting observation of dynamic

coordination. In this section, we extend our two-period model to a full dynamic model. To map

our model to the fast-moving financial markets, we primarily focus on case of the high discount

factor δ > δ∗.

The coordination game lasts for some fixed period of time, which is normalized from time 0

to 1. We consider the case in which agents can learn a binary signal over a fixed time intervals 1
T ,

where T is a positive integral. T is greater if the market moves faster and thus information arrives

more frequently. As in the benchmark model, agents get private information si about θ at time 0.

The game starts from period t = 0. If agents choose to wait at t = 0, then they learn the binary

public signal yt at time t
T for period t = 1, . . . , T − 1, in which

Yt =

1 if ∑t−1
u=1 Xu ≥ γ

0 if ∑t−1
u=1 Xu < γ

Recall that Xt stands for the new investment at period t. In other words, in this dynamic set-

ting, the binary signal Yt switches from 0 to 1 at the beginning of the period t if the cumulative

investments reaches γ by last period. One can interpret this information generating process as

following: there is some news media that monitoring the evolution of the dynamic investment

31



(or bank run), and a news event will be triggered as soon as the cumulative action reaches some

critical threshold. Given this information generating process, since the investment is irreversible,

if Yt = 1, then Yt′ = 1 for all t′ > t.

As there is no investment or speculative attack at a time without new information arrival,

agents can invest at t = 0, or wait until period t and invest at that time after observing Yt (t =

1, 2, . . . , T − 1). It is worth noting that the arrival of information and decision making of agents

end at period T − 1 (or time T−1
T ), whereas the coordination outcome is determined afterwards

at period T (or time 1). Coordination is successful if and only if ∑T−1
u=0 Xu + θ ≥ 1. Clearly, the

2-period benchmark model is a special case of this general model with T = 2.

This setup helps us to better understand how the coordinating behavior changes with the

multiple delay options and future information arrivals. In particular, it enables us to study the

impact of speed of information flows ( 1
T ). The speed of information flow governs how fast agents

can can respond to others’ actions. In this way, it also determines the discount rate across periods,

i.e, δ = e−r 1
T . With a higher speed of learning (a greater T), the discount factor becomes closer to

1 so that delay becomes less costly. In the limiting case where T → ∞, the model converges to a

continuous time setting in which the observation of cumulative past actions is instantaneous.

5.1 The case of T = 3

Before we dive into the full dynamic model, let us consider a simple example with T = 3. The

possible history for this example is that (1) Y1 = 1, Y2 = 1; (2) Y1 = 0, Y2 = 0 and (3) Y1 = 0, Y2 = 1.

Therefore, we can write the monotone strategy as (ŝ0, ŝ0
1, ŝ1

1, ŝ0
2, ŝ1

2). That is, (1) agents with si ≥ ŝ0

invest at t = 0; (2) following Y1 = 1 (then Y2 = Y1 = 1), agents with si ≥ ŝ1
1 will invest at t = 1,

and no one invests at t = 2; and (3) following Y1 = 0, the agent with si ≥ ŝ0
1 will invest at t = 1,

then, if Y2 = 1, the agent with si ≥ ŝ1
2 will invest at t = 2, and, if Y2 = 0, the agent will invest at

t = 2 iff si ≥ ŝ0
2.

It is important to note that no one will invests after Y2 = 1 at t = 2 if Y1 = 1, since Y2 = 1

does not generate any new information given Y1 = 1. However, it is theoretically possible that

some agents who refuse to invest at t = 1 after Y1 = 0, would switch to investing at t = 2 after

observing Y2 = 1. By definition, ŝY1
1 ≤ ŝ0 and ŝY2

2 ≤ ŝ0
1.

Our goal is to show that ŝ0
2 = ŝ0

1 = ŝ0; that is, no one would invest after Y1 = 0 at t = 1,
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and no one invests after Y2 = 0 at t = 2. If this holds true, then as no one invests after Y1 = 0,

Y1 = 0 implies Y2 = 0. Moreover, since Y1 = 1 always implies Y2 = 1, in any possible monotone

equilibrium, Y2 does not provide any additional information on top of Y1. As such, we only need

to solve for ŝ0 and ŝ1
1 since ŝ1

1 ≤ ŝ0 = ŝ0
1 = ŝY2

2 . In other words, the game degenerates to a 2-period

model as we have studied.

Lemma 7. In the case with T = 3, under γ > γ∗ (or, equivalently, δ > δ∗), the game degenerates to a two

period model with no one waits and then invests at t = 3. The unique cutoff equilibrium is characterized in

Proposition 1.

Lemma 7 demonstrates that under the condition δ > δ∗, one agents will invest after Y1 = 0,

so that Y2 will not provide any additional information and no one will wait to the last period, and

then invest. As such, the 3-period model degenerates to our benchmark model with two periods.

5.2 Full Dynamic Model

The model is then extended to a full dynamic model with T > 3 periods. We begin with a formal

description of the dynamic model, focusing on the history and monotone strategies definitions.

Full History Fix any T and consider the dynamic game in its strategic form. The possible histo-

ries can be written as hT−1 = (Y0, Y1, . . . , YT−1). Recall that, if Yt = 1, then Yt′ = 1 for all t′ > t

regardless of what agents do after period t. Therefore, for any history hT−1 with YT−1 = 1, we

can define t1(hT−1) := min{t|Yt = 1} as the first time when Yt switches from 0 to 1. Therefore, all

possible histories can be characterized as t1(hT−1) ∈ {1, 2, . . . , T − 1} and (Yt = 0)T−1
t=1 .

Monotone Strategy Given that, we can simply characterize the monotone strategy as (ŝ0, (ŝYt
t )T−1

t=1 )

with ŝYt
t ≤ ŝYt−1=0

t−1 for all t ∈ {1, 2, . . . , T − 1}. For history hT−1 with YT−1 = 0, the agent playing

monotone strategy (ŝ0, (ŝYt
t )t≥1) invests at period 0 if and only if si ≥ ŝ0; and invests at period t

if and only if si ≥ ŝYt=0
t . For any other history ht that admits t1(ht) ≤ T − 1, the agents playing

monotone strategy (ŝ0, (ŝYt
t )t≥1) invests at period 0 iff si ≥ ŝ0; invests at period t ∈ [1, t1(ht)) iff

si ≥ ŝYt=0
t ; and invests at t = t1(hT−1) iff si ≥ ŝYt=1

t . Recall that, for any t > t1(hT−1), by design,

Yt = 1 regardless of the agents’ play. Therefore, there is no unnecessary delay so that no one

invests after t1(hT−1).
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Based on the insight gained from Lemma 7, we can show that in a dynamic model with mul-

tiple periods, T, under the binary signal Y we consider, agents, if waiting at t = 0, invest only at

the first period t = 1 after Y1 = 1; otherwise, the delaying agents never invest. As such, the game

reduces to our benchmark model. Under the condition that market moves fast and the the waiting

period is sufficiently short, coordinating on the irreversible action (e.g., run on a bank) becomes

more difficult than that in the static model.

Proposition 9. In any monotone equilibrium with T ≥ r
ln (1−c)(1−γ)

1−c−γ

, no one will wait and then invest at

period t = 1 when Y1 = 0, and no one will wait and then invest at period t ≥ 1 regardless of Yt.

6 Conclusion

Coordination usually happens in a dynamic fashion and agents always have the option of de-

lay for more information. In this paper, we construct a dynamic model of coordination with an

option for delay. A binary public signal arises depending on the history of action. Interestingly,

the good news — sufficiently many other agents have already pledged to this action — is more

likely to be generated ex-ante only when it is less informative ex-post. (Both the availability and

informativeness depend on Θγ(s∗1), and, in turn, on equilibrium strategy ŝ1.) We solve for the

unique equilibrium in monotone strategies and observe that the option of delay may not facilitate

coordination. When agents are inclined to wait for the good news instead of acting earlier, this

makes the good news difficult to be produced, which, in turn, hinders successful coordination.

This always happen if the delay cost is sufficiently low, either because of a small waiting period

or a low interest rate.

Theoretically, this study offers a simple and tractable dynamic model, which features option

of delay (dynamic structure), privately informed agents with public learning about history (in-

formation environment), and strategic complementarity (payoff interaction). When the public

information is generated by the past actions, our model proves the uniqueness of equilibrium

holds true generically. Compared with static models, we construct some numerical example to

demonstrate that this equilibrium selection provides a more plausible description of coordination

problems in reality. With regard to policy implications, our dynamic model identifies a channel

through which lowering the interest rate may encourage the inaction (or waiting) and slow the

economic recovery.

Throughout the paper, we take the information generating process of the public signal Y ex-
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ogenous. It can be thought of as the agent naturally have such learning opportunities. We briefly

discuss the case in which a policy maker can influence the accessibility of information (or γ). It

would be interesting to study how to provide additional information to facilitate coordination

(given the exogenous source of public information).17 In addition, we restrict our attention to

monotone strategies throughout the paper, and the uniqueness of equilibrium relies on that re-

striction. The standard iterated elimination idea in global game literature cannot be applied to

the dynamic setting with endogenous timing because of the lack of complementarity in the sense

that if more agents choose to attack early, the incentive of attacking early might be reduced when

the delay option is available. It will be interesting, although challenging, to study under what

conditions, the equilibrium monotone strategies is uniquely rationalizable. We believe these are

promising areas for future studies.
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Appendix

Proof of Lemma 5. Suppose there exists an equilibrium strategy (ŝ1, ŝ0
2, ŝ1

2) in which ŝ0
2 < ŝ1. Then,

based on Lemma 4, ŝ1
2 = ŝ1 must holds, meaning that no one will choose to invest after Y = 1

but some agents with si ∈ (ŝ0
2, ŝ1) would wait and then invest after Y = 0, which is equivalent

to θ < Θγ(ŝ1). Successful coordination requires that θ > Θ(ŝ0
2). Therefore Θ(ŝ0

2) < Θγ(ŝ1).

Another condition that must hold is Θγ(ŝ1) < Θ(ŝ1). Otherwise, if Θ(ŝ1) ≤ Θγ(ŝ1), then Y = 1

reveals that the mass of investment in the first period is sufficient for a successful coordination

and investment is a dominating strategy in the second period, thus contradicting our assumption

ŝ1
2 = ŝ1 To summarize,

Θ(ŝ0
2) < Θγ(ŝ1) < Θ(ŝ1). (A.1)

We now prove the Lemma by contraction in the two steps that were described heuristically in the

text. First, agents in the one-period subgame, after the bad news Y = 0 invest less than in the static

game. In the subgame with strategy ŝ0
2, the agent with signal ŝ0

2 is indifferent between investing

and not investing, i.e.,

P
(
θ ∈ [Θ(ŝ0

2), Θγ(ŝ1))
∣∣θ < Θγ(ŝ1), ŝ0

2
)
=

F(Θγ(ŝ1)− ŝ0
2)− F(Θ(ŝ0

2)− ŝ0
2)

F(Θγ(ŝ1)− ŝ0
2)

= c.

Therefore, we have

F(Θ(ŝ0
2)− ŝ0

2) = (1 − c)F(Θγ(ŝ1)− ŝ0
2).

By definition of Θ(·) (see (3)), we have18

Θ(ŝ0
2) = 1 − F(Θ(ŝ0

2)− ŝ0
2) = 1 − (1 − c)F(Θγ(ŝ1)− ŝ0

2) > c.

Since c = Θ(s∗), and Θ(·) is an increasing function, this inequality shows that s∗ < s0
1: the invest-

ment set is smaller than in the one-period game. Therefore,

c < Θ(ŝ0
2) < Θγ(ŝ1) < Θ(ŝ1). (A.2)

In the second step, we consider an agent with si = ŝ−1 := limε↓0 ŝ1 − ε. To have such an

equilibrium, in the sub-game starting from Y = 1, this agent does not invest. However, the ex-

ante payoff from investing after Y = 1 for agent with ŝ1 is

P(θ ≥ Θ(ŝ1)|ŝ1) · 1 − P(θ ≥ Θγ(ŝ1)|ŝ1) · c = Θ(ŝ1)− (1 − γ)c.

18The inequality is strict because, obviously, ŝ0
2 > −∞ and Θγ(ŝ1) < +∞. As such, ŝ0

2 > s∗ must hold.

38



This payoff is strictly positive as Θ(ŝ1) > c (see (A.1)). By continuity, this implies that the agent

with si = ŝ−1 would strictly prefer to investing following Y = 1, which contradicts with the condi-

tion that ŝ1
2 = ŝ1. Thus, there does not exist any equilibrium with ŝ0

2 < ŝ1
2 = ŝ1.

Proof of Lemma 6. We prove that under the condition of the Lemma, there does not exist any equi-

librium with ŝ1 ≤ sγ. Consider any ŝ1 ≤ sγ as an candidate equilibrium time-1 investment

strategy and suppose the equilibrium fundamental cutoff is θ̂. Under the condition ŝ1 ≤ sγ,

Θ(ŝ1) ≥ Θγ(ŝ1). As there must be no investment after Y = 0, coordination cannot be success-

ful for any θ < Θγ(ŝ1). Therefore, regardless of the equilibrium ŝ2, we know that the equilibrium

fundamental cutoff is such that θ̂ ≥ Θγ(ŝ1). In this case, the expected payoff difference for the

marginal agent is

P(θ ≥ θ̂|ŝ1)− c − δ
(
P(θ ≥ θ̂|ŝ1)× 1 − P(Y = 1|ŝ1)c

)
=(1 − δ)P(θ ≥ θ̂|ŝ1)− c + δcP(θ ≥ Θγ(ŝ1)|ŝ1)

≤(1 − δ)P(θ ≥ Θγ(ŝ1)|ŝ1)− c + δcP(θ ≥ Θγ(ŝ1)|ŝ1)

=(1 − δ)(1 − γ)− c + δ(1 − γ)c < 0 (given γ > γ∗).

This implies that, for any ŝ1 ≤ sγ, the marginal agent always prefers to wait.

Proof of Proposition 1. We have shown the indifferent condition of ŝ1 in the main text. Now, we

proceed to show that for any si > ŝ1 (or si < ŝ1), the agent would prefer invest at t = 1 (or delay

the investment). Denote the expected payoff difference as

D(s, θγ, θ̂) := P(θ ≥ θ̂|s)− c − δ(1 − c)P(θ ≥ θγ|s) = Φ(
s − θ̂

σ
)− c − δ(1 − c)Φ(

s − θγ

σ
),

in which, θ̂ = Θ(ŝ1) and θγ = Θγ(ŝ1) for any given ŝ1. Recall that θ̂ < θγ. Next, observe that

D(ŝ1, θγ, θ̂) = 0 and

lim
s→∞

D(s, θγ, θ̂) = (1 − δ)(1 − c) > 0, lim
s→−∞

D(s, θγ, θ̂) = −c < 0

Furthermore,

Ds(s, θγ, θ̂) =
1
σ

(
ϕ(

s − θ̂

σ
)− δ(1 − c)ϕ(

s − θγ

σ
)

)
=

1
σ

ϕ(
s − θγ

σ
)
(

e
1

2σ2 (θ̂−θγ)(2s−θ̂−θγ) − δ(1 − c)
)

Therefore, Ds(s, θγ, θ̂) = 0 when s = sD ≡ σ2

θ̂−θγ
ln(δ(1 − c)) + θγ+θ̂

2 . Moreover, Ds(s, θγ, θ̂) > 0

if and only if s < sD(θγ, θ̂). Therefore, we know that D increases with s from s = −∞, crossing
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0 at ŝ1, reaches its maximum at sD(θγ, θ̂), then decreases with s, and ultimately converging to

(1 − δ)(1 − c). As such, it is clear that for any s < ŝ1 (s > ŝ1), D(s, θγ, θ̂) < 0 (D(s, θγ, θ̂) > 0).

Proof of Proposition 2. The equilibrium is solution of the system of equations (11), (14), which is

repeated here
Θ(ŝ2)

F(ŝ2 − Θγ(ŝ1))
= c, F(ŝ1 − Θ(ŝ2)) = c

1 − δ(1 − γ)

1 − δ
.

Substituting in the first equation Θγ(ŝ1) = ŝ1 + F−1(γ), eliminating ŝ1 that is given in the second

equation, and using F(ŝ2 − Θ(ŝ2)) = Θ(ŝ2), the system is reduced to

G(x; a) = c, x = Θ(ŝ2), (A.3)

with

G(x; a) =
x

F(F−1(x) + a)
, a = −F−1(c

1 − δ(1 − γ)

1 − δ
)− F−1(γ).

Using the symmetry property of F, γ < γ∗ is equivalent to a > 0.

Next, we prove the existence and uniqueness of x = Θ(ŝ2) as a solution to (A.3). Recall that

F presents a normal CDF with mean 0 and variance σ2. Therefore, as normal distribution is log-

concave, it is easy to show that G(x; a) is strictly increasing in x ∈ (0, 1). For the limiting cases, we

have Limx→1G(x; a) = 1, and

lim
x→0

G(x; a) = lim
x→0

x
Φ (Φ−1(x) + a)

= lim
x→0

1
ϕ(Φ−1(x) + a) 1

ϕ(Φ−1(x))

= lim
x→0

e
1

2σ2 (2aΦ−1(x)+a2) = 0.

Therefore, for any c ∈ (0, 1), the equation (A.3) has a unique solution.19 Accordingly, there is a

unique solution for x̂. In addition, since Θ(·) is monotone increasing, there is a unique solution

ŝ2 = Θ−1(x). The unique solution for ŝ1 is given by (14).

As the function G is independent of σ, the standard deviation in the cdf F, so is the equilibrium

cutoff Θ(ŝ2). However, the cutoff strategy does depend on σ as ŝ2 = x̂ + σΦ−1(x̂).

19The proposition is true for a class of distributions that is wider than the normal distribution. It is sufficient that
G(0) = 0, and for that, the left tail of the distribution of F cannot be “thick”, which is equivalent to a sufficiently strong
concavity of Log(F). If, for example, F(x) is asymptotically equivalent to x − 1/x when x → −∞ (asymptotically Log-
linear), G(x) tends to a strictly positive limit when x → −∞, and if that limit is strictly greater than c, the proof does
not apply.
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As G(x; a) is strictly decreasing in a and a is strictly decreasing in γ (or δ), the solution lower

bound of coordination Θ(ŝ2) and, accordingly, the information cutoff ŝ2 is decreasing in γ for

γ < γ∗ (or δ for δ < δ∗).

Next, we go beyond the indifference conditions to prove that (ŝ1, ŝ2) is indeed an equilibrium.

We begin by verifying the sufficient conditions.

Sufficient Condition for ŝ1 For agent i with si, given other agents’ strategy (ŝ1, ŝ2), the expected

payoff difference between investing early and waiting and then investing (after Y = 1) is

P(θ ≥ Θ(ŝ2)|si)− c − δ [P(θ ≥ Θ(ŝ2)|si)− P(θ ≥ Θγ(ŝ1)|si)c]

=(1 − δ)Φ(
si − Θ(ŝ2)

σ
) + δcΦ(

si − Θγ(ŝ1)

σ
)− c

Let us define a function

β(si, θ̂, θγ) ≡ (1 − δ)Φ(
si − θ̂

σ
) + δcΦ(

si − θγ

σ
)− c

Recall that the equilibrium (ŝ1, ŝ2) satisfy (1) Θ(ŝ2) = θ̂ > Θγ(ŝ1) = θγ, and (2) β(ŝ1, θ̂, θγ) = 0. It

is easy to check that the payoff difference β(si, θ̂, θγ) is strictly increasing in si. Further, we know

that

lim
si→−∞

β(si, θ̂, θγ) = −c and lim
si→+∞

β(si, θ̂, θγ) = (1 − δ)(1 − c) > 0.

Therefore, this payoff difference is strictly positive (negative) for si > ŝ1 (si < ŝ1), thereby com-

pleting the proof that agents with si > ŝ1 strictly prefer to investing early.

Sufficient Condition for ŝ2 Next, consider the expected payoff from waiting and then investing

after Y = 1:

δ [P(θ ≥ Θ(ŝ2)|si)− P(θ ≥ Θγ(ŝ1)|si)c] = δΦ(
si − Θγ(ŝ1)

σ
)

[
Φ( si−Θ(ŝ2)

σ )

Φ(
si−Θγ(ŝ1)

σ )
− c

]
. (A.4)

An agent would strictly prefer to taking this strategy if the following payoff is strictly positive.

Based on the log-concavity of Φ and the fact that Θ(ŝ2) > Θγ(ŝ1), it is easy to check that

Φ( si−Θ(ŝ2)
σ )

Φ(
si−Θγ(ŝ1)

σ )
− c
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is strictly increasing in si. Recall that when si = ŝ2, the above expression obtains a value of 0.

Therefore, this expression and accordingly the expected payoff in (A.4) is strictly positive (nega-

tive) if and only if si > ŝ2 (si < ŝ2). This confirms that agents with signal si < ŝ2 strictly prefer not

to invest.

Note that under the condition γ < γ∗ (or δ < δ∗), there does not exist equilibrium with ŝ1 > sγ

and ŝ2 = −∞. This is because, under this parameter condition, the indifference condition cannot

hold for the marginal agent with ŝ1 for any ŝ1 > sγ, which can be seen from condition (??).

Proof of Proposition 3. We first prove that, in any possible equilibrium, the lower-bound of coor-

dination θ̂ = Θγ(ŝ1). Or equivalently, Y = 1 perfectly predicts the coordination success, which

requires Θ(ŝ2) ≤ Θγ(ŝ1) ≤ Θ(ŝ1).

To show this, suppose the fundamental cutoff θ̂ > Θγ∗(ŝ1) for some equilibrium ŝ1. Then, for

the marginal agent with ŝ1, the expected payoff difference between investing early and waiting

and then investing after Y = 1 is strictly negative when γ = γ∗, regardless of the value of ŝ1; that

is,

P(θ ≥ θ̂|ŝ1)− c − δ
(
P(θ ≥ θ̂|ŝ1)− P(θ ≥ Θγ∗(ŝ1)|ŝ1)c

)
<(1 − δ)P(θ ≥ Θγ∗(ŝ1)|ŝ1)− c + δP(θ ≥ Θγ∗(ŝ1)|ŝ1)c

=(1 − δ)(1 − γ∗)− c + δ(1 − γ∗)c = 0.

Therefore, no such equilibrium can exist. Similarly, suppose θ̂ < Θγ∗(ŝ1), this expected payoff

difference for the marginal agent is always positive regardless of ŝ1; that is,

P(θ ≥ θ̂|ŝ1)− c − δP(θ ≥ Θγ∗(ŝ1)|ŝ1) (1 − c)

>P(θ ≥ Θγ∗(ŝ1)|ŝ1)− c − δP(θ ≥ Θγ∗(ŝ1)|ŝ1) (1 − c)

=(1 − γ∗)− c − δ(1 − γ∗)(1 − c) = 0.

Therefore, θ̂ must be equal to Θγ∗(ŝ1) in equilibrium. It is then easy to check that, under γ = γ∗,

when θ̂ = Θγ∗(ŝ1), the expected payoff difference is always 0 regardless of ŝ1.

Next, as θ̂ = Θγ∗(ŝ1), Y = 1 predicts coordination success and thus, ŝ2 = −∞. We need to find

the time-1 cutoff ŝ1 which makes the condition Θ(ŝ2) = 0 ≤ Θγ∗(ŝ1) ≤ Θ(ŝ1) holds true. (Only

under this condition, θ̂ = Θγ∗(ŝ1). ) Recall that ŝ1 ≤ sγ∗ is the sufficient and necessary condition

for Θγ∗(ŝ1) ≤ Θ(ŝ1) (see (??) and (??)). In addition, as Θγ∗(ŝ1) = ŝ1 + σΦ−1(γ∗), Θ(ŝ1 = −∞) ≤
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Θγ∗(ŝ1) requires ŝ1 ≥ σΦ−1(1 − γ∗). Therefore, s∗1 can be any number between σF−1(1 − γ∗) and

sγ∗ and s∗2 = −∞. In equilibrium, θ∗ = Θγ(s∗1).

We then check the sufficient conditions to confirm that any ŝ1 ∈ [σΦ−1(1 − γ), sγ∗ ] and ŝ2 =

−∞ can constitute an equilibrium. Given that all other agents take the strategy of any ŝ1 ∈
[σΦ−1(1 − γ∗), sγ∗ ], and ŝ2 = −∞, it is easy to check that the expected payoff difference between

investing early and delaying and then only investing after Y = 1

P(θ ≥ Θγ(ŝ1)|si)− c − δP(θ ≥ Θγ(ŝ1)|si)(1 − c) = (1 − δ(1 − c))Φ(
si − Θγ(ŝ1)

σ
)− c

is strictly increasing in si, and, as we have shown, the difference obtains 0 when si = ŝ1. As such,

for any si > ŝ1, the agent strictly prefers to investing at t = 1; and for si < ŝ1, the agent strictly

prefers to waiting and then investing (after Y = 1). This completes the proof.

Proof of Proposition 8. Following (22),

R′(ŝ2) =
Θ′(ŝ2)ϕ(

R(ŝ2)−Θ(ŝ2)
σ )

ϕ(R(ŝ2)−Θ(ŝ2)
σ )− cϕ(

R(ŝ2)−Θγ(ŝ1)
σ )

By definition of Θ(·), we know (recall that R(ŝ2) = ŝ2)

R(ŝ2)− Θ(ŝ2)

σ
= Φ−1(Θ(ŝ2)) and Φ′(ŝ2) =

ϕ(Φ−1(Θ(ŝ2))

σ + ϕ(Φ−1(Θ(ŝ2)))
∈ (0, 1)

Therefore,

R′(ŝ2) = Θ′(ŝ2)
ϕ(Φ−1(Θ(ŝ2)))

ϕ(Φ−1(Θ(ŝ2)))− cϕ(
ŝ2−Θ(ŝ2)+Θ(ŝ2)−Θγ(ŝ1)

σ )

=
ϕ(Φ−1(Θ(ŝ2))

σ + ϕ(Φ−1(Θ(ŝ2)))

ϕ(Φ−1(Θ(ŝ2)))

ϕ(Φ−1(Θ(ŝ2)))− cϕ(Φ−1(Θ(ŝ2)) +
Θ(ŝ2)−Θγ(ŝ1)

σ )

=
ϕ(Φ−1(Θ(ŝ2))

σ + ϕ(Φ−1(Θ(ŝ2)))

ϕ(Φ−1(Θ(ŝ2)))

ϕ(Φ−1(Θ(ŝ2)))− cϕ(Φ−1(Θ(ŝ2)) + b)
.

Recall that we defined b =
Θ(ŝ2)−Θγ(ŝ1)

σ = −Φ−1
(

c 1−δ(1−γ)
1−δ

)
− Φ−1(γ) > 0. Obviously, R′(ŝ2)

decreases with σ. When σ → 0, R′(ŝ2) > 1 and when σ → +∞, R′(ŝ2) → 0. By continuity, we

can find σ∗′ > 0 such that when σ < σ∗′ , R′(ŝ2) > 1. Let σ0 = min{σ∗′ , σ∗}. By definition, for

any σ < σ0, as Θ(ŝ1) ≥ 0, all investing at t = 2 is a sub-game equilibrium, which the equilibrium

ŝ2 > −∞ cannot constitute a stable sub-game equilibrium.

Proof of Lemma 7. First of all, consider any monotone equilibrium with ŝ1
1 < ŝ0. In this case, fol-

lowing the option value argument (Lemma xxx), we know that ŝ0
1 = ŝ0. (That is, it is not possible
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that an agent with si = ŝ0 − ϵ will invest at t = 1 regardless of Y1 since delay is costly.) Therefore,

if ŝ1
1 < ŝ0, no one invests following Y1 = 0 at t = 1 (ŝ0

1 = ŝ0), and, because of that, it is certain that

Y2 = 0 and no one will wait and then invest at t = 2. That said, a necessary condition for having

investment after Yt = 0 (t = 1, 2) is ŝ1
1 = ŝ0 and ŝ0

1 < ŝ0; that is, no one invests at t = 1 following

Y1 = 1 but some one chooses to invest at t = 1 following Y1 = 0.

Therefore, to show that ŝ0
2 = ŝ0

1 = ŝ0, it is sufficient to show that no monotone equilibrium with

ŝ1
1 = ŝ0 and ŝ0

1 < ŝ0 exists. Next, we prove that such equilibrium cannot exist under the condition

γ > γ∗.

First, the condition ŝ1
1 = ŝ0 and ŝ0

1 < ŝ0 implies that an agent with si = ŝ0 − ϵ will not invest at

t = 0 or invest at t = 1 after Y1 = 1; rather, he would invest at t = 1 after Y1 = 0. Therefore, the

expected payoff from investing at t = 1 following Y1 = 1 cannot be strictly positive for agent with

si = ŝ1, i.e.,

P(θ ≥ Θ(ŝ0)|Y1 = 1, ŝ1)− c = P(θ ≥ Θ(ŝ0)|θ ≥ Θγ(ŝ0), ŝ1)− c ≤ 0.

That implies Θ(ŝ0) ≤ (1 − γ)c.

Recall that Θ(s) > Θγ(s) if and only if Θ(s) < 1 − γ. Therefore, Θγ(ŝ0) < Θ(ŝ0) must hold.

Moreover, since ŝ0
1 ≤ ŝ0, we must have Θγ(ŝ0

1) < Θ(ŝ0
1).

Next, we prove that, under the condition ŝ0
1 < ŝ0, in the last period (t = 2), it is not possible to

have ŝ0
2 < ŝ0

1. Suppose that ŝ0
2 < ŝ0

1. Then, by the option value argument, we have ŝ1
2 = ŝ0

1. Y2 = 0

implies that θ < Θγ(ŝ0
1) < (1 − γ)c. Following the same argument as in Lemma XXX, we cannot

find such ŝ0
2. That is because, since Θ(ŝ0

1) > Θγ(ŝ0
1), the threshold ŝ0

2 has to satisfy

P(θ ≥ Θ(ŝ0
2)|θ < Θγ(s0

1), ŝ0
2)− c ≥ 0,

which implies that

Θ(ŝ0
2) ≥ 1 − (1 − c)F(Θγ(ŝ0)− ŝ0

2) ≥ c > Θ(ŝ0).

Therefore, the possible monotone equilibrium with ŝ0
1 < ŝ0 and ŝ1

1 = ŝ0 must feature ŝ0
2 = ŝ0;

that is, no one invests following Y2 = 0.

Then, we show that the necessary condition for ŝ0
1 < ŝ0 is that (1) ŝ1

2 < ŝ0
1 and (2) the success

following Y1 = 0 is determined by θ ≥ Θ(ŝ1
2). To see this, consider the case in which the success

range is [Θ(ŝ0
1), Θγ(ŝ0)) (i.e., coordination success is achieved purely by investment at t = 2 fol-
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lowing Y1 = 0). If that is the case, following the same reasoning for ŝ0
2 as well as the proof for

2-period model, we need to have Θ(ŝ0
1) > c, which contradicts with ŝ0

1 ≤ ŝ0.

In the last step, we show that it is not possible to construct a monotone equilibrium in which

(1) ŝ1
2 < ŝ0

1 < ŝ0 and (2) the success range is [Θ(ŝ0),+∞) following Y1 = 1 and [Θ(ŝ1
2), Θγ(ŝ0))

following Y1 = 0.

Note that, in such an equilibrium, the marginal agent with ŝ0
1 is indifferent between investing

at t = 1 after Y1 = 0 and investing at t = 2 following Y2 = 1. That is,

P
(

θ ∈ [Θ(ŝ1
2), Θγ(ŝ0))|ŝ0

1, θ < Θγ(ŝ0)
)
− c − δ

[
P(θ ∈ [Θ(ŝ1

2), Θγ(ŝ0))− cP(θ ∈ [Θγ(ŝ0
1), Θγ(ŝ0))

]
= 0

Multiplying the above equation by P(θ < Θγ(ŝ0)|ŝ0
1) = F(Θγ(ŝ0)− ŝ0

1) and reorganizing, we have

(1 − δ)(1 − c)F(Θγ(ŝ0)− ŝ0
1)− (1 − δ)F(Θ(ŝ1

2)− ŝ0
1)− δcF(Θγ(ŝ0

1)− ŝ0
1) = 0 (A.5)

The LHS of the above equation is less than (since Θ(ŝ1
2) ≥ Θγ(ŝ0

1))

(1 − δ)(1 − c)F(Θγ(ŝ0)− ŝ0
1)− (1 − δ)F(Θ(ŝ1

2)− ŝ0
1)− δcF(Θγ(ŝ0

1)− ŝ0
1)

<(1 − δ)(1 − c)− (1 − δ)F(Θγ(ŝ0
1)− ŝ0

1)− δcγ

=(1 − δ)(1 − c)− (1 − δ + δc)γ = (1 − δ)(1 − c)(γ∗ − γ)

Therefore, as long as γ ≥ γ∗, then the equation (A.5) cannot hold.

Thus, under the condition that γ ≥ γ∗ (or equivalently, δ ≥ δ∗ = 1−c−γ
(1−c)(1−γ)

), any monotone

equilibrium cannot have ŝ0
1 < ŝ0 and ŝ1

1 = ŝ0. As such, all monotone equilibrium must satisfy

that ŝ0
1 = ŝ0 and ŝ1

1 ≤ ŝ0. As ŝ0
1 = ŝ0 (that is, no one invests after Y1 = 0), the history (Y1 =

0, Y2 = 1) is not on path in any possible monotone equilibrium, and therefore, ŝ1
2 is irrelevant for

the equilibrium outcome and Y2 does not provide any relevant information and therefore, no one

will wait for that information and X2 = 0. For convenience, we write ŝY2
2 = ŝ0 for Y2 = 0, 1. As

such, the 3-period model degenerates to the 2-period model we have studied before.

Proof of Proposition 9. Essentially, we want to prove that, in any monotone equilibrium, ŝYT−1=0
T−1 =

ŝYT−2=0
T−2 = . . . = ŝY1=0

1 = ŝ0. Under this, as long as Y1 = 0, all subsequent Yt = 0 for all t ≥ 2. The

agent may only wait and then invest at t = 1 after Y1 = 1 (i.e., s1
1 ≤ ŝ0).

The proof follows the one for T = 3 and the condition T ≥ r
ln 1

δ∗
ensures that δ = e−

r
T ≥ δ∗.

First of all, if ŝ1
1 < ŝ0, then ŝ0

1 = ŝ0. Given that, conditional on Y1 = 0, Y2 = 0 and therefore, as

no one invests following Y1 = 0, no one waits and then invests following Y2 = 0. This argument

can go forward to show that ŝYT−1=0
T−1 = ŝYT−2=0

T−2 = . . . = ŝY1=0
1 = ŝ0. As such, in order to have
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investments following Yt = 0 for t ≥ 1 in an equilibrium, we must need ŝ1
1 = ŝ0. That implies,

again,

Θ(ŝ0) ≤ (1 − γ)c.

Next, since, by definition, ŝ0
T−2 ≤ ŝ0, Θγ(ŝ0

T−2) ≤ Θ(ŝ0) ≤ (1 − γ)c. For the last period, if

YT−1 = 0, or equivalently, θ < Θγ(ŝ0
T−2) ≤ (1 − γ)c, following the same argument as for the last

period in the example of T = 3, in any monotone equilibrium, we must have ŝ0
T−1 = ŝ0

T−2.

As we have shown in the case with T = 3, in order to have ŝ0
T−2 < ŝ0

T−3, we must need

s1
T−1 < ŝ0

T−2. However, that is impossible to since under δ ≥ δ∗, the indifference condition for ŝ0
T−2

(between investing at t = T − 2 following YT−2 = 0 and waiting and then investing at t = T − 1

after YT−1 = 1, YT−2 = 0) cannot hold true. As such, in any monotone equilibrium, ŝ0
T−2 = ŝ0

T−3,

and therefore, YT−2 = 0 implies YT−1 = 0 (no one invests at t = T − 2). For that reason, YT−1 is

redundant since YT−1 = YT−2 regardless of YT−2 = 0 or 1, and ŝ1
T−1 is irrelevant.

Given that, in any monotone equilibrium, ŝYT−1
T−1 = ŝ0

T−2 for YT−1 = 0, 1, T − 2 is essentially the

last period for the dynamic game. Applying the same arguments inductively, we can prove that

ŝYT−1=0
T−1 = ŝYT−2=0

T−2 = . . . = ŝY1=0
1 = ŝ0.
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