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Social learning in a canonical model

State of nature ω ∈ Ω with a prior distribution that is CK.

N (or countable) individuals, each with a signal si with a prob. dist. that depends on ω.

In round i, individual chooses action ai ∈ A to maximize U = Ei[u(ai, ω)], where the
expectation is taken with respect to the information of i.

Public information in round t: history ht = {a1, . . . , at−1}, with h0 = ∅.

To summarize, at the beginning of period t (before agent t makes a decision), the knowledge
which is common to all agents is defined by

the distribution of θ at the beginning of time,

the distributions of private signals and the payoff functions of all agents,

the history ht of previous actions.
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Efficient learning in the quadratic model

Nature’s parameter ω fixed for all periods before the first period according to N (ω̄, 1/ρω).

Each individual t has one private signal st = ω + εt, with εt ∼ N (0, 1/ρε).

All individuals have the same payoff function U(x) = −E[(x− ω)2]. Individual t chooses
his action xt ∈ R, in period t: exogenous order.

Payoff function very convenient because the optimal action is the expected value of ω. The decision rule is

the same when the payoff is u(x, ω) = 2ωx− x2, where x can stand for the scale of an investment.

The public information at the beginning of period t is made of the initial distribution
N (ω̄, 1/ρω) and of the history of previous actions ht = (x1, ..., xt−1).
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Steps in the quadratic model

1 The belief of agent t Using the standard Bayesian formulae for Gaussian distributions, the
belief of agent t is N (µ̃t, 1/ρ̃t) with{

µ̃t = (1− αt)µt + αtst, with αt =
ρε

ρε + ρt
,

ρ̃t = ρt + ρε.
(1)

2 Agent t action: xt = µ̃t = (1− αt)µt + αtst. (2)

3 Social learning {
µt+1 = (1− αt)µt + αtst, with αt =

ρε
ρε + ρt

,

ρt+1 = ρt + ρε.
(3)

4 The history of actions ht = (a1, . . . , xt−1) is informationally equivalent to the sequence of
signals (s1, . . . , st−1).
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Remarks on the quadratic model

1 The weight of history and imitation

Agent t chooses an action which is a weighted average of the public information µt from
history and his private signal st (equation (2)). The expression of the weight of history,
1− αt, increases and tends to 1 when t increases to infinity.
Imitation increases with the weight of history, but does not slow down social learning if
actions reveal private informations. The weight of the private signal tends to zero. Hence,
agents tend to “imitate” each other more as time goes on. This is a very simple, natural
and general property: a longer history carries more information. Although the differences
between individuals’ actions become vanishingly small as time goes on, the social learning
is not affected because these actions are perfectly observable: no matter how small these
variations, observers have a magnifying glass which enables them to see the differences
perfectly. In the next section, this assumption will be removed. An observer will not“see”
well the small variations. This imperfection will slow down significantly the social learning.
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Imperfect knowledge on other payoffs

In the previous section, an agent’s action conveyed perfectly his private information. An
individual’s action can reflect the slightest nuances of his information because: (i) it is
chosen in a sufficiently rich menu; (ii) it is perfectly observable; (iii) the decision model of
each agent is perfectly known to others.

A simple representation

U(x, ηt) = −Et[(xt − ω − ηt)2], where ηt is private to agent t.

The optimal action is xt = Et[ω] + ηt. Since the private parameter ηt is not observable,
the action of agent i conveys a noisy signal on his information Eitθ].

Imperfect information on an agent’s private characteristics is operationally equivalent to a
noise on the observation of the actions of an agent whose characteristics are perfectly
known.
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One action per period

Individual action xt = (1− αt)µt + αtst + ηt, with αt =
ρε

ρt + ρε
. (4)

The evolution of beliefs xt = (1− αt)µt + αtω + αtεt + ηt.︸ ︷︷ ︸
noise term

(5)

Normalization
xt − (1− αt)µt

αt
= yt = ω + εt +

ηt
αt
. (6)



µt+1 = (1− βt)µt + βt

(xt − (1− αt)µt
αt

)
, with

βt =
σ2
t

σ2
t + σ2

ε + σ2
η/α

2
t

, with σ2
t = 1

ρt ,

ρt+1 = ρt + 1

σ2
ε + σ2

η/α
2
t

= ρt +
1

σ2
ε + σ2

η(1 + ρtσ
2
ε )2

.

(7)
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Slow learning

o When there is no observation noise, the precision of the public belief ρt increases by a
constant value ρε in each period, and it is a linear function of the number of observations.

o When there is an observation noise, equation (7) shows that as ρt →∞, the increments of
the precision, ρt+1 − ρt, converge to zero. The precision converges to infinity at a rate
slower than a linear rate. The convergence of the variance σ2

t to 0 takes place at a rate
slower than 1/t.
The next result measures this rate1.

Proposition (Vives, 1993) In the Gaussian-quadratic model with an observation noise of
variance σ2

η and private signals of variance σ2
ε , the variance of the public belief on θ, σ2

t ,
converges to zero as t→∞ and

σ2
t(σ2

ησ
4
ε

3t

) 1
3

→ 1. (8)

1The analysis of a vanishingly small variance is simpler than that of a precision which tends to infinity.
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Large number of agents (1)

At the end of period t, agents observe the aggregate action Yt which is the sum of the
individuals’ actions and of an aggregate noise ηt:

Yt = Xt + ηt, with Xt =

∫
xt(i)di, and ηt ∼ N (0, 1/ρη).

At the beginning of any period t, the public belief on θ is N (µt, 1/ρt), and an agent with
signal si chooses the action

xt(i) = E[θ|si, ht] = µt(i) = (1− αt)µt + αtsi, with αt =
ρε

ρt + ρε
.

By the law of large numbers2,
∫
εidi = 0. Therefore, αt

∫
sidi = αtω. The level of

endogenous aggregate activity is

Xt = (1− αt)µt + αtω,

and the observed aggregate action is

Yt = (1− αt)µt + αtθ + ηt. (9)
2A continuum of agents of mass one with independent signals is the limit case of n agents each of mass 1/n

where n→∞. The variance of each individual action is proportional to 1/n2 and the variance of the aggregate
decision is proportional to 1/n which is asymptotically equal to zero.
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Large number of agents (2)

Using a normalization , this signal is informationally equivalent to

Yt − (1− αt)µt
αt

= θ +
ηt
αt

= θ +
(

1 +
ρt
ρε

)
ηt. (10)

The observation noise has to be an aggregate noise. If the noises affected actions at the
individual level, for example through individuals’ characteristics, they would be “averaged
out” by aggregation, and the law of large numbers would reveal perfectly the state of
nature. An aggregate noise is a very plausible assumption in the gathering of aggregate
data.

This equation is similar to (6) in the model with one agent per period. (The variances of
the noise terms in the two equations are asymptotically equivalent). Proposition ??
applies. The asymptotic evolutions of the public beliefs are the same in the two models.

10/13



Learning with a cost of information

Each agent can purchase a signal s of precision q which is defined by costly signal

s = ω + ε, with ε ∼ N (0, 1/q).

Cost of precision q is an increasing function, c(q). (Example of n observations). No
observation noise. The payoff function of each agent is quadratic: U(x) = E[−(x− ω)2].

Gain of the signal is the difference between the ex ante and ex post variances of the
subjective distribution on ω:

V = σ2
ω −

σ2
ω

σ2
ωq + 1

=
σ4
ωq

σ2
ωq + 1

.

If there is an interior solution, the first order condition for q is
σ4
ω

(σ2
ωq + 1)2

= c′(q).

Proposition
Suppose that c′(q) is continuous and c(0) = 0. If the marginal cost of precision c′(q) is
bounded away from 0, (for any q ≥ 0, c′(q) ≥ γ > 0), no agent purchases a signal after
some finite period T and social learning stops in that period.

Note that the case of a fixed cost of information with c(0) > 0 is trivial. Other cases with
c(0) = 0 are left as exercises. 11/13



Policy (1)

Social planner WF

W =
∑
t≥0

βt
(
−Et[(xt − ω)2]

)
,

The function W is interpreted as a loss function as long as ω is not revealed by a random
exogenous process. In any period t, conditional on no previous revelation, ω is revealed
perfectly with probability 1− π ≥ 0. Assuming a discount factor δ < 1, the value of β is
β = πδ. If the value of ω is revealed, there is no more loss.

With no policy, the perception of an individual’s action is hampered by the observation
noise. A policy, which is based on public information, may amplify the individual response
to his private signal and thus create a benefit for other agents. The policy is to pay agent
t a bonus (γ/2)(xt − µt)2. µt is publicly known. The policy amplifies the moves away
from the expected value of ω in the public information.

xt = µt +
ρε

ρt + ρε
(1 + β)(st − µt), with β =

γ

1− γ
.
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Policy (2)

Observation of others: yt = (1 + β)αtst + ηt, with αt =
ρε

ρt + ρε
.

The precision of that message is ρy = (1 + β)2α2
tρη.

When β small, first-order impact on welfare of others, second-order on agent t.

For γ small, the impact on W is strictly positive.
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