#### **Cascades and Herds**

Ec 717

October 28, 2024

# The 2x2x2 Model

- Recall the fundamental model of social learning:
  - Agents learn about a state of nature  $\omega$ .
  - They have private information, which is modeled as private signals  $s_i$  depending on  $\omega$ .
  - They take payoff maximizing actions which reveal some information about  $s_i$ .

# The 2x2x2 Model

- Recall the fundamental model of social learning:
  - Agents learn about a state of nature  $\omega$ .
  - They have private information, which is modeled as private signals  $s_i$  depending on  $\omega$ .
  - They take payoff maximizing actions which reveal some information about  $s_i$ .
  - What is the minimum number of states needed for a SL model ?
    - What is the minimum number of signal values in the canonical SL model?
    - What is the minimum number of possible actions?

# The 2x2x2 Model

- Recall the fundamental model of social learning:
  - Agents learn about a state of nature  $\omega$ .
  - They have private information, which is modeled as private signals  $s_i$  depending on  $\omega$ .
  - They take payoff maximizing actions which reveal some information about  $s_i$ .
  - What is the minimum number of states needed for a SL model ?
    - What is the minimum number of signal values in the canonical SL model?
    - What is the minimum number of possible actions?
- The model

- 2 states  $\omega \in \{0,1\}.$
- 2 signal values  $P(s=\omega)=q\in(0,1).$  (symmetric binary signal, SBS)

- 
$$x \in 0, 1$$
, payoff  $U = x(\omega - c)$ ,  $c \in (0, 1.)$ 

# Social learning in the 2x2x2 Model

- $\mu_t = P(\omega = 1|h_t), \quad \tilde{\mu}_t = P(\omega = 1|h_t, s_t).$  (*h*<sub>t</sub> history of past actions– CK).
- Bayes' rule is unwieldy. If possible, use the Log-likelihood ratio LR : For an agent with private signal  $s_t = 1$ ,

$$\tilde{\ell}_t = \frac{\tilde{\mu}_t}{1 - \tilde{\mu}_t} = \frac{P(\omega_1 | s = 1)}{P(\omega_0 | s = 1)} = \frac{\frac{P(s = 1 | \omega_1) P(\omega_1)}{P(s)}}{\frac{P(s = 1 | \omega_0) P(\omega_0)}{P(s)}} = \ell_t \frac{P(s = 1 | \omega_1)}{P(s = 1 | \omega_0)} = \ell_t \frac{q}{1 - q}$$

## Social learning in the 2x2x2 Model

- $\mu_t = P(\omega = 1|h_t), \quad \tilde{\mu}_t = P(\omega = 1|h_t, s_t).$  (*h*<sub>t</sub> history of past actions– CK).
- Bayes' rule is unwieldy. If possible, use the Log-likelihood ratio LR : For an agent with private signal  $s_t = 1$ ,

$$\tilde{\ell}_t = \frac{\tilde{\mu}_t}{1 - \tilde{\mu}_t} = \frac{P(\omega_1 | s = 1)}{P(\omega_0 | s = 1)} = \frac{\frac{P(s = 1 | \omega_1) P(\omega_1)}{P(s)}}{\frac{P(s = 1 | \omega_0) P(\omega_0)}{P(s)}} = \ell_t \frac{P(s = 1 | \omega_1)}{P(s = 1 | \omega_0)} = \ell_t \frac{q}{1 - q}.$$

• To have a linear formulation of Bayes' rule, use the Log-likelihood ratio LLR:  $\lambda_t = Log(\frac{\mu_t}{1-\mu_t}): \quad \tilde{\lambda}_t = \lambda_t \begin{cases} +a \text{ if } s_t = 1, \\ -a \text{ if } s_t = 0. \end{cases}, \text{ with } a = Log\frac{q}{1-q}.$ 

# Social learning in the 2x2x2 Model

- $\mu_t = P(\omega = 1|h_t), \quad \tilde{\mu}_t = P(\omega = 1|h_t, s_t).$  (*h*<sub>t</sub> history of past actions– CK).
- Bayes' rule is unwieldy. If possible, use the Log-likelihood ratio LR : For an agent with private signal  $s_t = 1$ ,

$$\tilde{\ell}_t = \frac{\tilde{\mu}_t}{1 - \tilde{\mu}_t} = \frac{P(\omega_1 | s = 1)}{P(\omega_0 | s = 1)} = \frac{\frac{P(s = 1 | \omega_1) P(\omega_1)}{P(s)}}{\frac{P(s = 1 | \omega_0) P(\omega_0)}{P(s)}} = \ell_t \frac{P(s = 1 | \omega_1)}{P(s = 1 | \omega_0)} = \ell_t \frac{q}{1 - q}.$$

• To have a linear formulation of Bayes' rule, use the Log-likelihood ratio LLR:  $\lambda_t = Log(\frac{\mu_t}{1-\mu_t}): \quad \tilde{\lambda}_t = \lambda_t \begin{cases} +a \text{ if } s_t = 1, \\ -a \text{ if } s_t = 0. \end{cases}, \text{ with } a = Log\frac{q}{1-q}.$ 

• Optimal action:  $x_t = 1$  iff  $\tilde{\mu}_t > c$ , equivalent to  $\tilde{\lambda}_t > \gamma = Log(c/(1-c))$ .

# **Cascade representation**



- Fast convergence.
- Limit belief can be wrong

# **Continuum of beliefs**

Individual beliefs (instead of signals) are distributed according to the *c.d.f.*  $F^{\omega}(\mu)$ First order stochastic dominance: if  $\omega_1 > \omega_0$ ,  $F^{\omega_0}(s) > F^{\omega_1}(s)$ 

Observations

|                     |                     | $x_t = 1$                  | $x_t = 0$                |                                           |
|---------------------|---------------------|----------------------------|--------------------------|-------------------------------------------|
| States of<br>Nature | $\omega = \omega_1$ | $1-F_t^{\omega_1}(\gamma)$ | $F_t^{\omega_1}(\gamma)$ |                                           |
|                     | $\omega = \omega_0$ | $1-F_t^{\omega_0}(\gamma)$ | $F_t^{\omega_0}(\gamma)$ | with $\gamma = Log\Big(rac{c}{1-c}\Big)$ |

Social learning

$$\lambda_{t+1} = \lambda_t + \nu_t, \text{ with } \nu_t = Log\Big(\frac{P(x_t|\omega_1)}{P(x_t|\omega_0)}\Big). \tag{1}$$

# Signals and private beliefs

- 2 states  $\{\omega_0, \omega_1\}$  with equal probabilities. Private signals with distributions, cdf  $F^{\omega}(s)$ .
- Call p the probability of  $\omega_1$  for an agent with signal s. When an agent receives the signal s, by Bayes' rule, the likelihood ratio between the two states is

$$\frac{F^{\prime\omega_1}(s)}{F^{\prime\omega_0}(s)} = \frac{p}{1-p}.$$
(2)

In state  $\omega$ ,  $F^{\omega}$  generates a distribution of signals, for which the belief is given by the previous equation.

The reverse applies: belief is a signal. The distribution of this signals must satisfy the previous equation.

## Representation of social learning with bounded private beliefs

• 
$$x_t = 1$$
 iff  $\lambda_t + Log(\frac{s_t}{1-s_t}) > \gamma$ , or  $s_t > s_t^*$ .

• After the observation of 
$$x_t$$
,  $\lambda_{t+1} = \lambda_t + Log(\frac{1 - F^1(s^*t)}{1 - F^0(s^*t)})$ .

#### Representation of social learning with bounded private beliefs

• 
$$x_t = 1$$
 iff  $\lambda_t + Log(\frac{s_t}{1-s_t}) > \gamma$ , or  $s_t > s_t^*$ .

• After the observation of 
$$x_t$$
,  $\lambda_{t+1} = \lambda_t + Log(\frac{1 - F^1(s^*t)}{1 - F^0(s^*t)})$ .



# Representation of social learning with bounded private beliefs



- $\blacksquare$  A cascade takes place only when the interior of the support of private beliefs does not contain  $\gamma$
- If the support is infinite, there is no cascade.

# Cascades and bounded private beliefs

- Previous model: distribution of private beliefs with cdf  $F^{\omega}(s)$  and density  $f^{\omega}(s)$ .
- Assume that f(s) > 0 for  $s \in (a, b)$  with 0 < a < b < 1 and f(s) = 0 otherwise. Private beliefs are bounded.
- Payoff: agent choose the state that is more likely (equivalent to c = 1/2).

• Update: 
$$\frac{\tilde{\mu}}{1-\tilde{\mu}} = \frac{\mu}{1-\mu} \frac{1}{1-s}$$
. Invest  $(x=1)$  if  $s > 1-\mu$ .

- Cascade set with investment  $a > 1 \mu$  which is equivalent to  $\mu > 1 a$ .
- Cascade set with no investment  $\mu < 1 b$ .

• MCT  $\Longrightarrow \mu_t \to \mu^*$ .

- The limit  $\mu^*$  cannot be in the interval (1-b, 1-a).
- A cascade occurs with probability one.

# Unbounded support of private beliefs

- There is no cascade.
- The belief converges to the truth: if  $LimP_t(\omega|\omega) = 1$ .
- Argument:  $LimP_t(\omega|\omega) \neq 0$ .

$$\frac{P(\omega_1|h_t)}{P(\omega_0|h_t)} = \frac{P(h_t|\omega_1)}{P(h_t|\omega_0)}$$

# Rational learning cannot be totally wrong, asymptotically

#### Proposition

Let  $\Omega = \{\omega, \ldots, \omega_K\}$  be the finite set of states of nature,  $\mu_t = \{\mu_t^1, \ldots, \mu_t^K\}$  the probability assessment of a Bayesian agent in period t, and  $\mu_1^1 > 0$  where  $\omega_1$  is the true state. Then for any  $\epsilon > 0$ ,

$$P(\mu_t < \epsilon) < \epsilon/\mu_1^1.$$

If  $\bar{\mu}^1$  is the limit value of  $\mu^1_t$ ,  $P(\bar{\mu}^1 = 0) = 0$ .

Under Bayesian learning, if the subjective distribution on  $\omega$  converges to a point, it must converge to the truth.

#### Proof

For any history  $h_t$ ,  $P(h_t|\omega = \omega_1) = P(\omega = \omega_1|h_t) \frac{P(h_t)}{P(\omega = \omega_1)}$ .

Let  $H_t$  be the set of histories  $h_t$  such that  $\mu_t^1 < \epsilon$ . By definition,

$$P(h_t \in H_t | \omega = \omega_1) < \epsilon \frac{P(h_t \in H_t)}{P(\omega = \omega_1)} \le \epsilon \frac{1}{P(\omega = \omega_1)}$$

Q.E.D.

#### **Crashes and booms**

- Model: Two states  $\omega_0$  and  $\omega_1$ ,  $s_t = \omega + \epsilon_t$  with  $\omega$  and  $\epsilon$  Gaussian;  $x_t \in \{0, 1\}$ .
- Belief (LLR) of agent with signal s  $\lambda(s) = \lambda_t + \frac{\omega_1 \omega_0}{\sigma_{\epsilon}^2} \left(s \frac{\omega_0 + \omega_1}{2}\right).$
- Cutoff for investment  $(x_t = 1)$ :  $s > s^*(\lambda_t) = \frac{\omega_0 + \omega_1}{2} \frac{\sigma_{\epsilon}^2}{\omega_1 \omega_0} \lambda_t$ .
- Model with one agent. Discussion
- Model with a continuum of agent in each period:  $X_t = 1 F(s^*(\lambda_t) \theta; \sigma_{\epsilon})$ .
- Observed aggregate activity  $Y_t = 1 F(s^*(\lambda_t) \theta; \sigma_\epsilon) + \eta_t.$

## Crashes and booms with a continuum of agents

• Observed aggregate activity  $Y_t = 1 - F(s^*(\lambda_t) - \theta; \sigma_{\epsilon}) + \eta_t$ .