Ec717 Christophe Chamley

Problem 2

These exercises illustrate the fragility of social learning. They prepare for:

Frick, Mira, Ryota Iijima and Yuhta Ishii, (2020). "Misinterpreting Others and the Fragility of Social Learning," *Econometrica*, 88, 2281-2328.

A. Recall the Vives model. Agent t has a payoff function $-E[(\omega - x_t - \eta_t])2]$, where, to simplify here, ω has diffuse prior (infinite variance), and η_t are independent normally distributed r.v. with mean b and precision ρ_{ϵ} . Each agent has a signal $s_t = \omega + \epsilon_t$ with $\epsilon \sim \mathcal{N}(0, 1/\rho_{\epsilon})$ as in the standard model.

Assume that agents are mistaken about the distribution of η . They believe that b = 0 whereas the true value is positive.

- 1. Assume that agents optimize without looking at the history of past actions. Let μ_t be the expected value of ω for an outside observer, an econometrician, who knows the history of past actions, $h_t = (x_1, ..., x_{t-1})$. Comment on the case b small.
- 2. Assume now that any agent t observe the history h_t of past actions. Analyze the evolution of μ_t . Compare with the previous question. At some point, you may use the proposition of Vives (p. 8 of Notes 1).
- 3. (Optional). Simulate the evolution of μ_t at a function of t for the particular realization of all noise terms equal to 0. (You may normalize other parameters to 1). Plot on a diagram the values of μ_t and ρ_t (the precision of the estimate of ω at the beginning of period t. Comment. (You may anticipate the answer in the previous question).
- 4. In view of your answer in question 2, what is the "flaw" in the the assumption about b, in that question? Is the exercise nevertheless informative? Comment.
- B. Consider the model of social learning with two states, 0 and 1, two actions 0 and 1 with a cost of investment equal to c. The prior belief (probability of state 1) is μ_1 . Any agent t has a signal $s_t = \theta + \epsilon_t$, where $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$. Assume that the true state is 1.

- 1. Does the belief converge? If yes, what is the limit? Does the sequence of actions eventually become a herd?
- 2. Assume now that in each round, with probability π , the acting agent is a "noisy" agent who does not invest, because his cost is greater than 1. Rational agents know the model and the probability π . Answer the previous question.
- 3. Assume that now that rational agents are not aware of the existence of noisy agents. (They think that $\pi = 0$). To make the case interesting, assume that π is very small. Answer the previous question and comment on the case where π is very small. You may give an informal answer.