Ec717 Christophe Chamley

Problem 1

- 1. Assume that an agent undertakes a project which succeeds (fails) with probability $\omega (1 \omega)$ where ω is drawn from a uniform distribution on (0, 1).
 - (a) Determine the *ex post* distribution of ω for the agent after the failure of the project.
 - (b) Assume that the project is repeated and fails n consecutive times. The outcomes are independent with the same probability ω. Determine an algebraic expression for the density of ω of this agent. Discuss intuitively the property of this density.
- 2. In the model in Section 5.1 of Notes 1, assume that $c(q) = q^{\gamma}$ with $\gamma > 0$.
 - (a) Analyze qualitatively the convergence of social learning, depending on γ .
 - (b) (Optional). Analyze the rate of convergence.
- 3. (a) Consider the model in Section 3 of Notes 1. Assume that any agent t observes only the action of agent x_{t-1} (instead of the history h_t of all past actions). Analyze the convergence of social learning.
 - (b) Consider now the model in Section 4.1. Answer the previous question.
- 4. There is a state of nature ω that is fixed by the realization a uniform prior density on (0, 1). There are N agents, N large who know the distribution but cannot observe ω directly.. Each agent t has a *private* signal $s_t \in \{0, 1\}$ such that $P(s_t = \omega | \omega) = q > 1/2$. Agent t takes the action x_t in period t to maximize the payoff $E[-(x_t - \omega)^2)]$.
 - (a) Each agent observe the history $h_t = \{x_1, ..., x_{t-1}\}$ of past actions. Is the history of actions is informationally equivalent to the history of signals $\{s_1, ..., s_{t-1}\}$? Analyze the convergence of beliefs.
 - (b) Each agent observes t only the actions of the two previous agents, $\{x_{t-2}, x_{t-1}\}$. (Agent 2 observes x_1 .) Answer the previous question.
 - (c) Each agent t observes only the previous action x_{t-1} . Answer the previous question. (You are not asked to solve the model).