
Chapter 1

Bayesian Inference

(11/11/24 - minor edits)

A witness with no historical knowledge

There is a town where taxis come in two colors, yellow and red.1 Ninety percent of the

taxis are yellow. One night, a taxi hits a pedestrian and leaves the scene without stopping.

The skill and ethics of the driver are not dependent on the color of the cab. An out-of-town

witness claims that the color of the cab was red. The out-of-town witness does not out-of-

town witness does not know the proportion of yellow and red cabs in the city and makes

a report based solely on what he thinks he saw. Since the accident occurred at night, the

witness is not completely reliable, but it has been estimated that such a witness makes

a correct statement four out of five times (whether the true color of the taxi is yellow or

red). How should we use the information from the witness? Because of the uncertainty, we

should formulate our conclusion in terms of probabilities. Is it more likely that a red taxi

was involved in the accident? Even though the witness says red and is correct 80 percent

of the time, the answer is no.

Remember that there are many more yellow cabs. The red sighting can be explained

either by a yellow cab hitting the pedestrian (a high prior event) being misidentified (a

low probability event), or a red taxi (low probability) being correctly identified (high

probability). Both the prior probability of the event and the precision of the signal must

be used in evaluating the signal. Bayes’ rule provides the method for computing probability

updates. Let R be the event “a red taxi is involved” and Y be the event “a yellow taxi is

involved”. Similarly, let r (y) be the report “I saw a red (yellow) cab”. The probability of

1The example is adapted from Salop (1987).
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2 Bayesian tools

the event R conditional on the report r is denoted by P (R|r). By Bayes’ rule,2

P (R|r) =
P (r|R)P (R)

P (r)
=

P (r|R)P (R)

P (r|R)P (R) + P (r|Y)(1− P (R))
. (1.1)

The probability that a red taxi is involved before hearing the testimony is P (R) = 0.10.

P (r|R) is the probability of a correct identification and is 0.8. P (r|Y) is the probability of

an incorrect identification and is equal to 0.2. Hence,

P (R|r) =
0.8× 0.1

0.8× 0.1 + 0.2× 0.9
=

4

13
<

1

2
.

This probability is less than half because the probability of a false “red” report (in the

denominator, 0.2×0.9) is less than that of a correct sighting (0.8 times0.1). This is because

there are so many yellow cabs (90 percent), and the observer makes a false report with a

probability 0.2 that is not small.

A witness with historical knowledge

Now suppose the witness is a resident of the city who knows that only 10 percent of the

taxis are red. In his testimony, he states the color that is most likely according to his

rational inference. If he applies the Bayesian rule and knows his probability of making a

mistake, he knows that it is more likely to be a yellow cab. He will report “yellow” even if

he thinks he saw a red cab. If he thinks he has seen a yellow one, he will also say “yellow”.

His private information (the color he thinks he saw) is ignored in his report.

The omission of the witness’ information in his report does not matter if he is the only

witness and if the receiver of the is trying to judge the most likely event: the witness and

the receiver of the report come to the same conclusion. But suppose there is a second

witness with the same sighting skill (correct 80 percent of the time) who also thinks he saw

a red taxi. This witness, trying to report the most likely event, also says “yellow”. The

receiver of the two reports learns nothing from them. For him, the accident was caused by

a yellow cab with a probability of 90 percent.

Remember that when the first witness came from out of town, he was not informed of

the local history and gave an informative report, “red. This report may be inaccurate,

but it provides information. It also triggers more information from the second witness.

After the first witness’ report, the probability of R increased from 0.1 to 4/13. When this

probability of 4/13 is communicated to the second witness, he thinks that a red car is more

likely. likely.3 So he reports “red”. The probability of the inspector who hears the reports

of the two witnesses is now raised to the level of the last (second) witness.

2Using the definition of conditional probabilities, P (R|r)P (r) = P (R and r) = P (r|R)P (R).
3Exercise: prove it.
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1.1 Remarks on the Bayesian model of learniingl

The main issue is to learn about something. In the Bayesian framework, the “something”

is a possible fact, which can be called a state of nature. That fact may take place in the

future or it may already have taken place with an uncertain knowledge about it. Actually,

in a Bayesian framework, there is no difference between a future event and a past event

that are both uncertain. The future event may be “rain” or “shine”, to occur tomorrow.

For a Bayesian, nature chooses the weather today (with some probability, to be described

below), and that weather is realized tomorrow.

The list of possible states is fixed in Bayesian learning. There is no room for learning about

states that are not on the list of possible states before the learning process. That is an

important limitation of Bayesian learning. There is no ”unknown unknown”, to use the

famous characterization of secretary of state Rumsfeld, only “known unknown”. In other

words, one knows what is unknown.

The Bayesian process begins by putting weights on the unknowns, probabilities on the

possible states of nature. These probabilities may be objective, such as the probability of

“tail” or “face” in throwing a coin, but that is not important. What matters is that these

probabilities are the ones that the learner uses at the learning process. These probabilities

will be called belief. A “belief” will be a distribution of probabilities over the possible

states. By an abuse of language, a belief will sometimes be the probability of a particular

state, especially in the case of two possible states: the “belief” in one state will obviously

define the probability of the other state. The belief before the reception of information is

called the prior belief.

Learning is the processing of information that comes about the state. This information

comes in the form of a signal. Examples are the witness report of the previous section, a

weather forecast, an advice by a financial advisor, the action of some “other” individual,

etc... In order to be informative, that signal must depend on the state. But that signal is

imperfect and does not reveal exactly the state (otherwise the learning problem would be

trivial). An informative signal can be defined as a random variable that can take different

values with some probabilities and the distribution of these probabilities depend on the

actual state. The processing of the information of the signal is the use of the signal to

update the prior belief into the posterior belief. That step is the core of the Bayesian

learning process and its mechanics are driven by Bayes’ rule. In that process, the learner

knows the mechanics of the signal, i.e., the probability of receiving a particular signal

value conditional on the true state. Bayes’ rule combines that knowledge with the prior

distribution of the state to compute the posterior distribution.
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We focus here on two types of Bayesian models. In the first, both the number of states

and the number of signal values is finite. The model is discrete. For example

Examples

1. The binary model

• States of nature θ ∈ Θ = {0, 1}

• Signal s ∈ {0, 1} with P (s = θ|θ) = qθ.

2. Financial advising (i.e., Value Line):

• States of nature: a stock will go up 10% or go down 10% (two states).,

• Advice {Strong Sell, Sell, Hold, Buy, Strong Buy}.

3. Gaussian signal:

• Two states of nature θ ∈ Θ = {0, 1}

• Signal s = θ+ ε, where s has a normal distribution with mean zero and variance

σ2.

4. Gaussian model:

• The state θ has a normal distribution with mean θ̄ and variance σ2
θ .

• Signal s = θ+ ε, where s has a normal distribution with mean zero and variance

σ2
ε .

Note how in all cases, the (probability) distribution of the signal depends on the state.

These are just examples and we will see later how each of them is a useful tool to address

specific issues. We begin with the simplest model, the binary model.

1.2 The binary model

In all models of rational learning that are considered here, there is a state of nature (or

just “state”) that is an element of a set. We will use the notation θ for this state. In the

previous story, the states R and Y can be defined by θ ∈ {0, 1} or θ ∈ {θ0, θ1}.

The report by the witness is equivalent to the reception of a signal s that can be 0 or 1.

A signal that takes one of two value is called a binary signal. The uncertainty about the
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States of
Nature

Observation (signal)

s = 1 s = 0

θ = θ1 q1 1− q1

θ = θ0 1− q0 q0

Table 1.2.1: Binary signal

sighting is represented by the assumption that s is the realization of a random variable

that depends on the true state. One possible dependence is given by Table 1.

Using the definition of conditional probability,

P (θ = 1|s = 1) =
P (θ = 1 ∩ s = 1)

P (s = 1)
=
P (s = 1|θ = 1)P (θ = 1)

P (s = 1)
,

which yields Bayes’ rule

P (θ = 1|s = 1) =
q1P (θ = 1)

q1P (θ = 1) + (1− q1)(1− P (θ = 1)
. (1.2)

The signal 1 is “good news” about the state 1 (it increases the belief in state 1), if and

only if q1 > 1− q0, or

q1 + q0 > 1.

A signal can be informative about a state because it is likely to occur in that state, with

q1. But one should be aware that it may be even more informative when it is very unlikely

to occur in the other state, when 1− q0 is low. If one is looking for piece of metal, a good

detector responds to an actual piece. But a better detector may be one that does not

respond at all when there is no metal in front of it.

When q1 = q0 = q, the signal is a symmetric binary signal (SBS) and in this case, we will

call q the precision of the signal. (The precision will have a different definition when the

signal is not a SBS). Note that q could be less than 1/2, in which case we could switch the

roles of s = 1 and s = 0. The inequality q > 1/2 is just a convention, which will be kept

here for any SBS.

Useful expressions of Bayes’ rule

The formula in (1.2) is unwieldy. When the space state is discrete, it is often more useful

to express Bayes’ rule in terms of likelihood ratio, i.e., the ratio between the probabilities
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of two states, hereafter LR. (There can be more than two states in the set of states). Here

we have only two states, but LR is also useful for any finite number of states, as will be

seen in the search application below.

P (θ = 1|s = 1)

P (θ = 0|s = 1)︸ ︷︷ ︸ =
(P (s = 1|θ = 1)

P (s = 1|θ = 0)

)
︸ ︷︷ ︸×

(P (θ = 1)

P (θ = 0)

)
︸ ︷︷ ︸ . (1.3)

posterior LR signal factor prior LR

The signal factor depends only on the properties of the signal. With the specification of

Table 1,
P (θ = 1|s = 1)

P (θ = 0|s = 1)
=

q1
1− q0

× P (θ = 1)

P (θ = 0)
. (1.4)

The expression of Bayes’ rule in (1.3) is much simpler than the original formula because it

takes a multiplicative form that has a symmetrical look.

State one is more likely when the LR is greater than 1. In the previous example of the

car incident, say that “1” is “red”. The prior for red cab is 1/10. The signal factor

P (s = 1|θ = 1)/P (s = 1|θ = 0) (correct / mistake) is .8/0.2=4. It is not sufficient to

reverse the belief that yellow is more likely.

For some applications of rational learning, it will be convenient to transform the product

in the the previous equation into a sum, which is performed by the logarithmic function.

Denote by λ the prior Log likelihood ratio between the two states, and by λ′ is posterior,

after receiving the signal s. Bayes’ rule now takes the form

λ′ = λ+ Log(q1/(1− q0)). (1.5)

Both the multiplicative form in (1.3) and the additive form in (1.5) are especially when

there is a sequence of signal. For example, with two signals s1 and s2,

P (θ = 1|s1, s2)

P (θ = 0|s1, s2)
=
(P (s2|θ = 1)

P (s2|θ = 0)

)
×
(P (s1|θ = 1)

P (s1|θ = 0)

)
×
(P (θ = 1)

P (θ = 0)

)
.

One can repeat the updating for any number of signal observations. It is also obvious that

the final update does not depend on the order of the signal observations.

Bounded signals and belief updates

The signal takes here only two values and is therefore bounded. The same is true if the

number of signal values is more than two but finite. The implication is that values of the
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posterior probabilities cannot be arbitrarily close to one or zero. They are bounded away

from zero and one. This will have profound implications later one. At this stage, one can

just state that the binary signal (or any signal with finite values) is bounded.

1.3 Multiple binary signals: searches on the sea floor

Some objects that have been lost at sea are extremely valuable and have stimulated many

efforts for their recovery: submarines, nuclear bombs dropped of the coast of Spain, airline

wrecks. In searching for the object under the surface of the sea, different informations

have been used: last sight of the object, surface debris, surveys of the area by detecting

instruments. The combination of these informations through Bayesian analysis led to the

findings of the USS Scorpion submarine (2009), the USS Central America with its treasure

(1857-1988), the wreck of AF 447 (2009-2011).

Assume that the search area is divided in N cells. The prior probability distribution is

such that wi is equal to the probability that the object is in cell i. Using previous notation,

wi = P (θ = θi). If the detector is passed over cell i, the probability of finding the object

is pi, which may depend on the cell because of variations in the conditions for detection

(depth, type of soil, etc..). The question is how after a fruitless search over an area, the

probability distribution is updated from w to w′. Let θi be the state that the wreck is in

cell i, and Z the event that no detection was made.

P (θ = θi|Z) =
1

P (Z)
P (Z|θ = θi)P (θ = θi).

P (Z|θ = θi) =

{
1− pi, if there if the detector is passed over cell i,

1, if the detector is not passed over cell i.

Defining pi = 0 if there is no search in cell I (a search may not be over all the cells), the

posterior distribution is given by

w′i = A(1− pi)wi, with A =
1∑N

i=1(1− pi)wi
. (1.6)

An example: the search for AF447

In the early hours of June 1, 2009, with 228 passengers and crew, Air France Flight 447

disappeared in the celebrated “pot au noir”.4 No message had been sent by the crew but

4This part of the Intertropical Convergence Zone (ITCZ) between Brazil and Africa is well known to
aviators. It has been a special challenge for all sailboats, merchant ships in the 19th century and racers
today.
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both “black boxes”–they are red– were retrieved after a two years. They have provided a

gripping transcript of a failure of social learning in the cockpit during the last ten minutes

of the flight. We focus here on the learning process during the search for the wreck, 3000

meters below the surface of the ocean. It provides a fascinating example of information

gathering and learning.

First, a prior probability distribution (PD) has to be established. At each stage the proba-

bility distribution should orient the next search effort the result of which should be used to

update the PD, and so on. That at least is the theory. 5 It will turn out that the search for

AF447 did not follow the theory. Following Keller (2015), the search which lasted almost

two years before a complete success, proceeded in stages.

1. The aircraft had issued an automated signal on its position at regular time intervals.

From this, it was established that the object should be in a circle of 40 nautical

miles6 (nmi) centered at the last known position (LKP). That disk was endowed

with a probability distribution, hereafter PD, that was chosen to be uniform.

2. Previous studies on crashes for similar conditions showed a normal distribution

around the LKP with standard deviation of 8 nmi.

3. Five days after the crash, began a period during which debris were found, the first of

them about 40 nmi from the LKP. A numerical model was used for “back drifting”

to correct for currents and wind. That process, which is technical and beyond the

scope of this analysis, led to another PD.

4. The three previous probability distributions were averaged with weights of 0.35, 0.35

and 0.3, respectively. These weights are guesses and so far, the updating is not

Bayesian. It’s not clear how a Bayesian updating could have been done at this stage.

The PD is now the prior distribution represented in the panel A of Figure 1.1. The

Bayesian use of that PD will come only after Step 5.

5. Three different searches were conducted, with no result, between June and the end

of 2010.

(a) First, the black boxes of the aircraft are supposed to emit an audible sound for

forty days. That search for a beacon is represented in the panel B of Figure 1.1.

It produced nothing. There has been no Bayesian analysis at this stage, but all

the steps in the search are carefully recorded and this data will be used later.

(b) One had to turn to other methods. In August 2009, a sonar was towed in

a rectangular area SE of the LKP because of a relatively flat bottom. Still

nothing.

5See L. Stone **.
6One nautical mile =1.15 miles (one minute arc on a grand circle of the Earth).
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(A) (B) (C)
Prior probabilities Search for pings Posterior probabilities

after Stage 5

Wreckage

(D)
Posterior assuming beacons failed

Source: Keller (2015).

Figure 1.1: Probability distributions in Bayesian search

(c) Two US ships from the Woods Hole Oceanographic Institute and from the US

Navy searched an area that was a little wider than the NW quadrant of the 40

nmi disk. By the end of 2010, there were still no results.

6. Enters now Bayesian analysis. Each of the previous three steps, was used to update

the prior PD (which, your recall, was an average of the first three PDs). The disc

was divided in 7500 cells. Each search step is equivalent to 7500 binary signals si

equal to 0 or 1 that turn out to be 0. The probabilities go according to the color

spectrum, from high (red) to low (blue).

(a) In step (a), the probability of survival for each bacon was set at 0.8. (More about

this later). Conditional of survival, the probability of detection was estimated at
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0.9. The probability of detection in that step was therefore 0.92. The updating

is described in Exercise 1.2.

(b) In step (b), the probability of detection was estimated at 0.9 and the no find

led to another Bayesian update of the PD.

(c) In step (c), the searches that were conducted in 2010 had another estimated

probability of detection equal to 0.9 that was used in the third Bayesian update.

The result of these three updates is represented in the panel C of Figure 1.1.

The areas that have been searched have a low probability (in blue).

7. At this point, the results may have been puzzling. It was then decided, to assume

that both the beacons in the black boxes had failed. The search in Panel B of the

Figure was ignored and the distribution goes from Panel C to Panel D. See how the

density of probability in the center part of the disc is now restored to a high level.

The search was resumed in the most likely area and the wreck was found in little

time (April 3, 2011).

In conclusion, the search relied on a mixture of educated guesses and Bayesian analysis. In

particular, the failure of the search for pings should have led to a Bayesian increase of the

probability of the failure of both beacons. The jump of the probability of failure from 0.1

to 1 in the final stage of the search seems to have been somewhat subjective, but it turned

out to be correct.

1.4 The Gaussian model

The distributions of the prior θ and of the signal s (conditional on θ) are normal (“Gaus-

sian”, from Carl Friedrich Gauss). In this model, the learning process has nice properties.

Using standard notation,

• θ ∼ N (θ̄, σ2).

• s = θ + ε, with ε ∼ N (0, σ2
ε ).

The first remarkable property of a normal distribution is that it is characterized by two

parameters only, the mean and the variance. The inverse of the variance of a normal

distribution is called the precision, for obvious reasons. Here the notation is such that

ρθ = 1/σ2 and ρε = 1/σ2
ε .

These learning rules

will be used repeatedly.

The joint distribution of two normal distribution is also normal (with a density propor-

tional to the exponential of the a quadratic form). Hence, the posterior distribution (the

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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distribution of θ conditional on s) is also normal and the learning rule will be on two

parameters only. First, the variance :

σ′2 =
σ2σ2

ε

σ2 + σ2
ε

.

This equation is much simpler when we use the precision, which is updated from ρ to ρ′

according to

ρ′ = ρ+ ρε.

Admire the simple rule: to find the precision of the posterior we just add the precision of

the signal to the precision of the prior.

Using the precisions, the updating rule for the mean is also very intuitive:

m′ = αs+ (1− α)m, with α =
ρε
ρ
.

The posterior’s mean is an average between the signal and the mean of the prior, each

weighted by the precision of their distribution! It could not be more intuitive. And that

rule is linear, which will be very useful.
ρ′ = ρ+ ρε,

m′ = αs+ (1− α)m, with α =
ρε
ρ
.

(1.7)

The Gaussian model is very popular because of the simplicity of this learning rule which

which is recalled: (i) after the observation of a signal of precision ρε, the precision of

the subjective distribution is augmented by the same amount; (ii) the posterior mean is

a weighted average of the signal and the prior mean, with weights proportional to the

respective precisions. Since the ex post distribution is normal, the learning rule with a

sequence of Gaussian signals which are independent conditional on θ is an iteration of

(1.7).

The learning rule in the Gaussian model makes precise some general principles. These

principles hold for a wider class of models, but only the Gaussian model provides such a

simple formulation.

1. The normal distribution is summarized by the two most intuitive parameters of a

distribution, the mean and the variance (or its inverse, the precision).

2. The weight of the private signal s depends on the noise to signal ratio in the most

intuitive way. When the variance of the noise term σ2
ε tends to zero, or equivalently
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its precision tends to infinity, the signal’s weight α tends to one and the weight

of the ex ante expected value of θ tends to zero. The expression of α provides a

quantitative formulation of the trivial principle according to which one relies more

on a more precise signal.

3. The signal s contributes to the information on θ which is measured by the increase in

the precision on θ. According to the previous result, the increment is exactly equal to

the precision of the signal (the inverse of the variance of its noise). The contribution of

a set of independent signals is the sum of their precisions. This property is plausible,

but it rules out situations where new information makes an agent less certain about

θ, a point which is discussed further below.

4. More importantly, the increase in the precision on θ is independent of the realization

of the signal s, and can be computed ex ante. This is handy for the measurement

of the information gain which can be expected from a signal. Such a measurement

is essential in deciding whether to receive the signal, either by purchasing it, or by

delaying a profitable investment to wait for the signal.

5. The Gaussian model will fit particularly well with the quadratic payoff function and

the decision problem which will be studied later.

1.5 Comparison of the two models

In the binary model, the distinction good/bad state is appealing. The probability distri-

bution is given by one number. The learning rule with the binary signal is simple. These

properties are convenient when solving exercises. The Gaussian model is convenient for

other reasons which were enumerated previously. It is important to realize that each of

the two models embodies some deep properties.

The evolution of confidence

When there are two states, the probability distribution is characterized by the probability

µ of the good state. This value determines an index of confidence: if the two states are 0

and 1, the variance of the distribution is µ(1− µ). Suppose that µ is near 1 and that new

information arrives which reduces the value of µ. This information increases the variance

of the estimate, i.e., it reduces the confidence of the estimate. In the Gaussian model, new

signals cannot reduce the precision of the subjective distribution. They always reduce the

variance of this distribution.
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Bounded and unbounded private informations

Another major difference between the two models is the strength of the private information.

In the binary model, a signal has a bounded strength. In the updating formula (??),

the multiplier is bounded. (It is either p/(1 − p′) or (1 − p)/p′). When the signal is

symmetric, the parameter p defines its precision. In the Gaussian model, the private signal

is unbounded and the changes of the expected value of θ are unbounded. The boundedness

of a private signal will play an important role in social learning: a bounded private signal

is overwhelmed by a strong prior. (See the example at the beginning of the chapter).

Binary states and Gaussian signals

If we want to represent a situation where confidence may decrease and the private signal

is unbounded, we may turn to a combination of the two previous models.

Assume that the state space Θ has two elements, Θ = {θ0, θ1}, and the private signal is

Gaussian:

s = θ + ε, with ε ∼ N (0, 1/ρ2ε). (1.8)

The LLR is updated according to

λ′ = λ+ ρε(θ1 − θ0)(s− θ1 + θ0
2

). (1.9)

Since s is unbounded, the private signal has an unbounded impact on the subjective prob-

ability of a state. There are values of s such that the likelihood ratio after receiving s is

arbitrarily large.

1.6 Learning may lead to opposite beliefs: polarization

(to be. revised)

Different people have often different priors. The same information may lead to a conver-

gence or a divergence of their beliefs. Assume first that there are only two states. In this

case, without loss of generality, we can assume that the information takes the form of a

binary signal as in Table 1. If two individuals observe the same signal s, their LR are

multiplied by the same ratio P (s|θ1)/P (s|θ0) that they move in the same direction.

In order to observe diverging updates, there must be more than two states. Consider the

example with three states. these could be that the economy needs a reform to the left

(state 1), to the center (state 2) or to the right (state 3). A signal s is produced either by

a study or the implementation of a particular policy and provides an information on the
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state that is represented by the next table. (The signal s = 1 is a strong indication that

the center policy is not working).

s = 0 s = 1
θ = 1 0.3 0.7
θ = 2 0.9 0.1
θ = 3 0.3 0.7

Two individuals, Alice and Bob, have their own prior on the states. Alice thinks that a

policy on the right will not work and Bob thinks that a policy on the left will not work.

Both have equal priors between the center and the right or the left. An example is presented

in the next table.

Alice Bob
1 0.47 0.06
2 0.47 0.47
3 0.06 0.47

Alice Bob
1 0.79 0.1
2 0.11 0.11
3 0.1 0.79

Priors Posteriors

After the signal s = 1, Alice leans more on the left and Bob more on the right. The signal

generates a polarization For Alice and Bob, the belief in the center decreases and for both

of them, the beliefs in states 1 and 3 increase, but the increase is much higher for the state

that has a higher prior, state 1 for Alice and state 2 for Bob. When θ is measured by a

number, Alice and Bob draw opposite conclusions from the expected value of θ.

1.7 Learning with a sequence of information and per-
fect memory

Suppose that A is a subset of the set Θ of all possible states. An example is one of two

states, but there could be more than two states. There could also be a continuum of states

and A could be, for example, an interval of real numbers. Let m1 be the probability of

A. There are N rounds, or periods, of information and N can be infinite. In each round,

a signal st is received. That signal may be, but does not have to be, a binary signal. It’s

probability distribution depends on the state. It therefore provides information on the

state. The history, ht, at the beginning of period t is defined as the sequence of signal

before t:

History in period t: ht = {s1, . . . , st−1}. (1.10)

We assume here perfect memory of the past signals.

After the reception of each signal st, the probability of A is revised from mt to mt+1. In
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formal notation,

mt+1 = P (A|st, ht).

In many cases, the information of history ht will be summarized in mt which is the proba-

bility of A given the history ht. However, in some cases past history cannot be summarized

in the current belief, in particular when the signals st are not independent (Exercise ??).

Stochastic path representations in probabilities

There are two states θ is equal to 1 or 0. There is a sequence of symmetric binary signals

st, (t ≥ 1) as defined in Table 1 with a symmetric signal, q0 = q1. For a given state, the

signals are independent. In each period t, the signal st is a random variable. Hence, the

sequence of values mt is a random sequence, a stochastic process. It can be represented

by a trajectory, which is random, as on Figure 1.2. In the figure, we assume that the

realization of the signals is the sequence {1, 0, 1, 1, 0, 1, 1, ...}. After each signal equal to 1,

the belief increases and it decreases after each 0 signal. The signals 1 and 0 cancel each

other and m1 = m3, mm2 = m4 = m6, m5 = m7. Note that the belief increase is smaller

at m4 than m3. That is because at m4, the belief from history is higher and the impact of

a good signal is smaller. (All the beliefs on the figure are greater than 1/2).

The probabilities of the branches are presented in blue under the assumption that the true

state is 1. We could have other trajectories with different probabilities for their branches.

Stochastic path representations in LLR

Bayes’ rule in LR is simpler than the standard formula. For some applications, we can do

even better with the Log Likelihood ratio (LLR). Define the prior LLR by

λ =
P (θ = 1)

P (θ = 0)
,

and, likewise, the posterior LLR, λ′. Equation (1.2) becomes

λ′ = λ+ a, with the signal term a =
P (s = 1|θ = 1)

P (s = 1|θ = 0)
. (1.11)

This expression has two useful properties: first the updating is additive; second the updat-

ing term is independent of the prior LLR. After some new information, agents with different

prior LLRs have the same updating of their LLR. In the process of receiving information,

different LLRs move in parallel!
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Figure 1.2: The evolution of belief as a stochastic process

In some cases, it will be useful to measure a belief by the Log likelihood (LLR). Recall that

Θ is the space of all possible states. It has a probability equal to 1. Let λ1 be the LLR of

the subset of states A with respect to Θ:

λ1 = Log
(P (θ ∈ A)

P (θ ∈ Θ)

)
= Log(P (θ ∈ A)).

We have seen (equation 1.11) that the Bayesian updating after some signal st is such that

λt+1 = λt + at, (1.12)

where at depends on the properties of the signal st and on the signal value that was

received in round t. Using the parallel updating of the LLRs, we have an elegant geometric

representation of the beliefs for a population of agents with different prior beliefs. Suppose

for example, that there are two agents, one with a higher private belief than the other, the

“optimist” and the “pessimist”, and that they receive the same sequence of informative

signals. The evolution of their LLRs is illustrated in Figure 1.3.

Note that upwards and downwards moves have the same magnitude. The LLR is obviously

not bounded. In the figure a LLR of 0 means equal probabilities for the two states. If the

LLR is negative, the state 0 is more likely.
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We can generalize this to a model with a continuum of agents, of total mass that can

be taken equal to 1, each characterized by a prior belief. The distribution of prior beliefs

(measured in LLR) is characterized by a density function with support **, which is assumed

here to be a bounded interval of real numbers. When new information is received, the

evolution of the beliefs of the population is represented by (random) translations of the

support. For each of these supports, the density of the beliefs is the same as in the prior

distribution.

Bounded and unbounded private informations

Definition: When there exists M such that in the equation (1.12) for the updating of the

LLR, |at| ≤M for any t, the signal is bounded.

When there is no such upper-bound, the signal is unbounded.

Examples:

• In the binary model, a signal has a bounded strength. In the updating formula (1.2),
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the multiplier is bounded. (It is either p/(1− p′) or (1− p)/p′).

• Assume that the state space Θ has two elements, Θ = {θ0, θ1}, and the private signal

is Gaussian:

s = θ + ε, with ε ∼ N (0, 1/ρ2ε). (1.13)

Bayes’ rule in log likelihood ratio (LLR) takes the form:

λ′ = λ+ ρε(θ1 − θ0)(s− θ1 + θ0
2

). (1.14)

Since s is unbounded, the private signal has an unbounded impact on the subjective

probability of a state. There are values of s such that the likelihood ratio after

receiving s is arbitrarily large.
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EXERCISE 1.1. (The MLRP)

Construct a signal that does not satisfy the MLRP.

EXERCISE 1.2. (Simple probability computation, searching for a wreck)

An airplane carrying “two blackboxes” crashes into the sea. It is estimated that each box

survives (emits a detectable signal) with probability s. After the crash, a detector is passed

over the area of the crash. (We assume that we are sure that the wreck is in the area).

Previous tests have shown that if a box survives, its signal is captured by the detector with

probability q.

1. Determine algebraically he probability pD that the detector gets a signal. What is

the numerical value of pD for s = 0.8 and q = 0.9?

2. Assume that there are two distinct spots, A and B, where the wreck could be.

Each has a prior probability of 1/2. A detector is flown over the areas. Because of

conditions on the sea floor, it is estimated that if the wreck is in A, the detector finds

it with probability 0.9 while if the wreck is in B, the probability of detection is only

0.5. The search actually produces no detection. What are the ex post probabilities

that the wreck is in A and B?

EXERCISE 1.3. (non symmetric binary signal)

There are two states of nature, θ0 and θ1 and a binary signal such that P (s = θi|θi) = qi.

Note that q1 and q0 are not equal.

1. Let q1 = 3/4 and q0 = 1/4. Does the signal provide information? In general what is

the condition for the signal to be informative?

2. Find the condition on q1 and q0 such that s = 1 is good news about the state θ1.

EXERCISE 1.4. (Bayes’ rule with a continuum of states)

Assume that an agent undertakes a project which succeeds with probability θ, (fails with

probability 1− θ), where θ is drawn from a uniform distribution on (0, 1).

1. Determine the ex post distribution of θ for the agent after the failure of the project.

2. Assume that the project is repeated and fails n consecutive times. The outcomes are

independent with the same probability θ. Determine an algebraic expression for the

density of θ of this agent. Discuss intuitively the property of this density.



Chapter 2

Bayesian Learning and
Martingales

Bayesian learning is an application of the calculus of conditional probabilities and it gen-

erates often but not always, the remarkable property of a martingale (Proposition 1): an

agent knows that he may change his belief after an observation, but the expected value of

the change is nil: if that value were different from zero, the agent would change his belief

right away, before getting the signal.

The previous argument applies to an agent who receives some signal about the state of

nature and updates his information. In the context of social learning, if the observer shares

the same information as the agent, before the private signal is revealed to the agent, for

example the history of past actions, then the public belief (from the public information) will

also be a martingale. However, if the observer does not know the pre-signal information of

the agent, for example when the agent observes a random sample of previous actions, then

the public belief will not be a martingale. This will be a source of significant difficulties.

The martingale property is similar to the efficient market equation in finance (and for good

reasons). This simple property has a very powerful implication: in the process of Bayesian

learning from a history ht, the belief of a state of nature must converge, which does not

mean that it converges to the truth.

The Martingale Convergence Theorem (MCT) is one of the most beautiful theorems in

probability theory and very important in Bayesian learning. The theorem implies that

unending fluctuations of individual beliefs cannot be compatible with rational learning.

21
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The contradiction with unending cycles is actually at the core of its original proof which

is due to Doob. (There have been others since). This proof is based on the fact that one

cannot make a profit in an efficient market. Economists should have discovered and proven

the theorem (as they should not have left the invention of optimal control to Pontryagin).

2.0.1 Martingales

Assume that information comes as a sequence of signals st, one signal per period, and

that these signals have a distribution which depends on ω. They may or may not be

independent, conditional on ω, and their distribution is known.

The expected value of ω, conditional on ht is denoted by µt = E[ω|ht]. Because the history

ht is random, µt is a stochastic process, a sequence of random variables.

DEFINITION 2.1. The sequence of random variables Xt is a martingale1 with respect

to the history ht = (s1, . . . , st−1) if and only if

Xt = E[Xt+1|ht]. (2.1)

Suppose that an agent has a distribution on ω with mean E[ω] and receives a signal

s with a distribution which depends on ω. By the rules for conditional expectations,

E
[
E[ω|s]

]
= E[ω], and the next result follows

PROPOSITION 2.1. Let ω ∈ Ω with a probability distribution and ht the history at

time t defined as a sequence of signals {s1, ..., st−1}, each with a probability distribution

that depends on ω. For any A ⊂ Ω, µt = P (ω ∈ A|ht) is a martingale.

These results depend on the assumption that ω and the signals belong to the same prob-

ability space. (ω and the signals belong to one σ-algebra with a probability measure). In

the above proof for the discrete case, the joint values of ω and the signals determine a

partition of their space in subsets that each have a probability.

2.1 Convergence of beliefs

Probabilities will be equivalent to “beliefs”. When more information comes in, does a belief

(the probability estimate of a particular state) converge to some value. (We postpone the

question whether it converges to the truth). We first need a definition of convergence. In

1Useful references: Grimmet and Stirzaker (1992), Omer Tamuz: Notes on Probability Theory.

http://tamuz.caltech.edu/teaching/ma144a/lectures.pdf


23

this book, any convergence of a random variable (for example, a belief) is a convergence

in probabiity2:

DEFINITION 2.2. A sequence of random variables {Xt} converges in probability to X∗

if for any α > 0, Limt→∞P (|Xt −X∗| > α) = 0.

Note that the limit X∗ is a random variable. For example, Xt may be a belief at history

ht. The sequence of beliefs converges but we don’t know to which value it will converge.

The martingale property is a wonderful tool in Bayesian learning because of the Martingale

Convergence Theorem (MCT). Consider a Bayesian rational agent who receives a sequence

of signals. Let his belief be his subjective probability assessment of an event, {ω ∈ A}, for

some fixed A ⊂ ω. Can the agent keep changing his belief in endless random fluctuations?

Or does this belief converge to some value (possibly incorrect)? The answer is simple: it

must converge.

The belief must converge because the probability assessment is a bounded martingale. The

convergence of a bounded martingale is intuitive. This intuition can take two forms, each

of which leads to a proof of the theorem. First, the martingale property is equivalent to

the efficient market property for an Arrow-Debreu security. Therefore a strategy of “buy

low and sell high” (in a sense to be defined), cannot make money. In the second intuition,

the essence of the martingale is that its changes cannot be predicted, like the walk of a

drunkard in a straight alley. The sides of the alley are the bounds of the martingale. If the

changes of direction of the drunkard cannot be predicted, the only possibility is that these

changes gradually taper off. The drunkard cannot bounce against the side of the alley!

THEOREM 2.1. (Martingale Convergence Theorem) If Xt is a martingale with |Xt| <
M < ∞ for some M and all t, then there exists a random variable X∞ such that Xt

converges to X∞.

The convergence holds under conditions that are weaker than in the previous statement.

E|X|] < M is sufficient, the theorem applies to supermartingales, (E[Xt+1|ht ≤ Xt), and

the convergence is almost surely.

headiIntuition of Doob’s proof The martingale property is the same as the efficient market

condition with a zero interest rate. Therefore one should not be able to expect a profit

2There are other criteria of convergence, for example the convergence almost sure (on a set of measure
one in Ω, or convergences of the expected value of |Xn|r, r ≥ 1), but these are not useful at this stage for
the analysis of the convergence of beliefs in a learning process. At this stage, there is no study of social
learning with an example of convergence in probability and no convergence almost surely.
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from trading. (If there were cycles, even random cycles, one may hope to expect a profit).

The first proof of MCT, by Doob in the early 50s, was based on an efficient market

argument.3 There have been other proofs since. (See the next result). Suppose that the

martingale Xt is the price of an Arrow-Debreu security that delivers 1 if a specific state

of nature is realized (after the trading). The number of trading periods, T , is arbitrarily

large. WLOG, Xt is in [0, 1]. You are the manager of a fund and you have n agents in your

firm. Agent i has the following instructions: buy one unit of the security at the market

price when this price is less than (i− 1)/n and hold it until the first period when the price

is higher than i/n. Then wait and buy again one unit in the first period when the price

is below i − 1. In period T , if you hold the asset, sell it. The process is illustrated in the

next figure. Figure 2.1.

  Τ0

Μ

p	

Buy	

Sell	

Hold	

Buy	

Sell	

Buy	

Sell	

1 2 Round	

Hold	

The agent holds one unit of the asset on the red segments.

Figure 2.1: A strategy of “buy low, sell high”

Define by NT the number of times you buy the security until round T , that is the number

of upwards crossings of the band ((i − 1)/n, i/n) in the trajectory of the price, pt. The

maximum loss is 1 (if he has a stock that he sells in the last period). The net profit is not

smaller than

V = NT /n− 1.

Because of the martingale property, the expected gain from the trading strategy cannot be

3For a rigorous exposition, see the excellent notes of Omer Tamuz: Notes on Probability Theory.

http://tamuz.caltech.edu/teaching/ma144a/lectures.pdf
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positive. Hence, for any T ,

E[NT ] ≤ n.

For a given n, the expectation of the number of upward crossing of a band ((i − 1)/i/n)

is bounded. Since n is finite, the same applies to the set of all the bands. From this, one

can show that the probability that Xt stays within the same band for t > R tends to 1

when T → ∞. Since n can be taken arbitrarily large, Xt converges to some value X∗ in

probabiiity.4

A heuristic remark on another proof of the Martingale Convergence Theorem

(To be edited)The main intuition of the proof is important for our understanding of

Bayesian learning. It is a formalization6 of the metaphor of the drunkard. In words,

the definition of a martingale states that agents do not anticipate systematic errors. This

implies that the updating difference µt+1− µt is uncorrelated with µt. The same property

holds for more distant periods: conditional on the information in period t, the random

variables µt+k+1 − µt+k are uncorrelated for k ≥ 0.

Conditional on ht, V ar(µt+n−µt) = V ar(

n∑
k=1

µt+k −µt+k−1, ) =

n∑
k=1

V ar(µt+k −µt+k−1).

Since E[µ2
t+n] is bounded, V ar(µt+n) is bounded: there exists A such that

for any n,

n∑
k=1

V ar(µt+k − µt+k−1) ≤ A.

Since the sum is bounded, truncated sums after date T must converge to zero as T →∞:

for any ε > 0, there exists T such that for all n > T ,

V ar(µT+n − µT ) =

n∑
k=1

V ar(µT+k − µT+k−1) < ε.

The amplitudes of all the variations of µt beyond any period T become vanishingly small

as t→ 0. Therefore µt converges7 to some value µ∞. The limit value is in general random

and depends on the history.

4See Williams (1991).

6The proof is given in Grimmet and Stirzaker (1992). The different notions of convergence of a random
variable are recalled in the Appendix.

7The convergence of µt is similar to the Cauchy property in a compact set for a sequence {xt}: if
Supk(|xt+k − xt|)→ 0 when t→∞, then there is x∗ such that xt → x∗. The main task of the proof is to

analyze carefully the convergence of µt.
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Rational (Bayesian) beliefs cannot cycle forever

Another way to look at the convergence of rational beliefs is to ask why they cannot have

random cycles. If such cycles take place, there are random peaks and troughs, since the

beliefs are between 0 and 1. But then how can the belief evolve when, say, it is close to 1.

There is not much “room” to move up. Hence there cannot be much room to move down.

If the belief could move down by a large amount, then, since it cannot move up by much,

it should be have been adjusted right now. Of course, all this is in a probabilistic sense.

The belief may move down by a large amount, but the larger the jump down, the smaller

its probability. From this, we see that if the belief is close to 1, or to 0, it does not move

up or down very much between periods.

One could also comment that if a belief, which has been generated by history is close to

1 , that means that history has provided convincing information that the event is highly

probable. Any new information is rationally combined with history but the “weight” of

this “convincing” history is such that new information can generate only a small change

of belief.

This deep property distinguishes rational Bayesian learning from other forms of learning.Rational beliefs

converge while non

rational beliefs

may not.

Many adaptative (mechanical) rules of learning with fixed weights from past signals are not

Bayesian and do not lead to convergence. In Kirman (1993), agents follow a mechanical

rule which can be compared to ants searching for sources of food, and their beliefs fluctuate

randomly and endlessly.

The evolution of confidence

When there are two states, the probability distribution is characterized by the probability

µ of the good state. This value determines an index of confidence: if the two states are 0

and 1, the variance of the distribution is µ(1− µ). Suppose that µ is near 1 and that new

information arrives which reduces the value of µ. This information increases the variance

of the estimate, i.e., it reduces the confidence of the estimate.

PROPOSITION 2.5. (Learning cannot be totally wrong, asymptotically)

Let Ω = {ω, . . . , ωK} be the finite set of states of nature, µt = {µ1
t , . . . , µ

K
t } the probability

assessment of a Bayesian agent in period t, and µ1
1 > 0 where ω1 is the true state. Then

for any ε > 0,

P (µt < ε) < ε/µ1
1.

If µ̄1 is the limit value of µ1
t , P (µ̄1 = 0) = 0.
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Under Bayesian learning, if the subjective distribution on ω converges to a point, it must

converge to the truth.

Proof

For any history ht, P (ht|ω = ω1) = P (ω = ω1|ht)
P (ht)

P (ω = ω1)
.

Let Ht be the set of histories ht such that µ1
t < ε. By definition,

P (ht ∈ Ht|ω = ω1) < ε
P (ht ∈ Ht)

P (ω = ω1)
≤ ε 1

P (ω = ω1)

Q.E.D.

The likelihood ratio between two states ω1 and ω0 cannot be a martingale given the infor-

mation of an agent. However, if the state is assumed to take a particular value, then the

likelihood ratio may be a martingale. Proving it is a good exercise.

PROPOSITION 2.6. Conditional on ω = ω0, the likelihood ratio

P (ω = ω1|ht)
P (ω = ω0|ht)

is a martingale.
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Chapter 3

Social learning

Why learn from others’ actions? Because these actions reflect something about their in-

formation. Why don’t we exchange information directly using words? People may not be

able to express their information well. They may not speak the same language. They may

even try to deceive us. What are we trying to find? A good restaurant, a good movie,

a tip on the stock market, whether to delay an investment or not,... Other people know

something about it, and their knowledge affects their behavior which, we can trust, must

be self-serving. By looking at their behavior, we will infer something about what they

know. This chain of arguments will be introduced here and developed in other chapters.

We will see how the transmission of information may or may not be efficient and may lead

to herd behavior, to sudden changes of widely believed opinions, etc...

For actions to speak and to speak well, they must have a sufficient vocabulary and be

intelligible. In the first model of this chapter, individuals are able to fine tune their

action in a sufficiently rich set and their decision process is perfectly known. In such

a setting, actions reflect perfectly the information of each acting individual. This case is a

benchmark in which social learning is equivalent to the direct observation of others’ private

information. Social learning is efficient in the sense that private actions convey perfectly

private informations.

Actions can reveal perfectly private informations only if the individuals’ decision processes

are known. But surely private decisions depend on private informations and on personal

parameters which are not observable. When private decisions depend on unobservable

idiosyncracies, or equivalently when their observation by others is garbled by some noise,

the process of social learning can be much slower than in the efficient case (Vives, 1993).
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3.1 A canonical model of social learning

3.1.1 Structure

The purpose of a canonical model is to present a structure which is sufficiently simple and

flexible to be a tool of analysis for a number of issues. Many models of rational social

learning are built with the following three blocks:

1. The information endowments: The state of nature is what the information is about.

It is denoted by θ and is randomly chosen by nature before the learning process in a

set Θ that can be finite or in a continuum. The probability distribution of nature is

the prior distribution and is known to all agents.

2. The private information of an agent i, i = 1, . . . , N , where N can be infinite, is what

provides a value to others when they observe his action. That private information is

modeled here by a random signal si. That signal has a probability distribution that

is known by others in most cases (to make some inference possible), but by definition

of private, the realization of the signal si cannot be observed by others. The signal

provide some information on the state θ because its distribution depends on the true

value of the state of nature θ. Any agent updates the prior on θ with the signal si

to form a private distribution of probability of θ.

3. The action xi of agent i is taken in round i, (i ≥ 1) and belongs to a set Ξ. (Without

loss of generality, Ξ is the same set for all agents. The action will be the “message”.

We can assume here that this action is such that

x∗i = Ei[θ], (3.1)

where Ei is the expectation of agent i when the action is taken.

One can explain the decision rule in (3.1) by the optimization of the agent.

For example, it is the decision rule if the agent maximizes the expected value

of the payoff function −(x − θ)2 or the function θx − x2/2, which both have

a simple intuitive interpretation. However, this “structural foundation” of the

behavioral rule is not required here for the analysis of the social learning. Note

that for these two functions, the optimal payoff is equal to minus the variance

of θ (up to a constant). That may be convenient in evaluating the benefit of

information.

What is essential at this stage, is that agents other than i know that (3.1) is the

decision rule. We will deal later with the important case of an imperfect or imperfectly

known decision rule. One can also have other payoff functions but they may lead to

a more complex inference problem without additional insight.



31

Since agents “speak” through their actions, the definition of the action set Ξ is critical.

A language with many words may convey more possibilities for communication than a

language with few words. Individuals will learn more from each other about a parameter

θ when the actions are in an interval of real numbers than when the actions are restricted

to be either zero or one.

3.1.2 The process

In this chapter and the next, agents are ordered in an exogenous sequence. Agent t, t ≥ 1,

chooses his action in period t. We define the history of the economy in period t as the

sequence

ht = {x1, . . . , xt−1}, with h0 = ∅.

Agent t knows the history of past actions ht before making a decision.

To summarize, at the beginning of period t (before agent t makes a decision), the knowledge

which is common to all agents is defined by

• the distribution of θ at the beginning of time,

• the distributions of private signals and the payoff functions of all agents,

• the history ht of previous actions.

We will assume that agents cannot observe the payoff of the actions of others. Whether

this assumption is justified or not depends on the context. It is relevant for investment

over the business cycle: given the lags between investment expenditures and their returns,

one can assume that investment decisions carry the sole information. Later in the book,

we will analyze other mechanisms of social learning. For the sake of clarity, it is best to

focus on each one of them separately.

Agent t combines the public belief on θ with his private information (the signal st) to form

his belief which has a c.d.f. F (θ|ht, st). He then chooses the action xt to maximize his

payoff E[u(θ, xt)], conditional on his belief.

All remaining agents know the payoff function of agent t (but not the realization of the

payoff), and the decision model of agent t. They use the observation of xt as a signal on

the information of agent t, i.e., his private signal st. The action of an agent is a message

on his information. The social learning depends critically on how this message conveys

information on the private belief. The other agents update the public belief on θ once

the observation xt is added to the history ht: ht+1 = (ht, xt). The distribution F (θ|ht) is

updated to F (θ|ht+1).
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3.2 The Gaussian model

Social learning is efficient when an individual’s action reveals completely his private infor-

mation. This occurs when the action set which defines the vocabulary of social learning is

sufficiently large. We begin with the Gaussian model (Section ??) that provides a simple

and precise case for discussion.

The prior distribution on θ is normal, N (m1, 1/ρ1), with mean m1 and precision ρ1. Since

we focus on the social learning of a given state of nature, the value of θ does not change

once it is set.

There is a countable number of individuals, indexed by i ≥ 1, and each individual i has

one private signal si such that

si = θ + εi, with εi ∼ N (0, 1/ρε).

Individual t chooses his action xt ∈ R once and for all in period t: the order of the

individual actions is set exogenously.

The public information at the beginning of period t is made of the initial distribution

N (θ̄, 1/ρθ) and of the history of previous actions ht = (x1, . . . , xt−1).

Suppose that the public belief on θ in period t is given by the normal distributionN (µt, 1/ρt).

This assumption is obviously true for t = 1. By induction, we now show that it is true in

every period.

(i) The belief of agent t

The belief is obtained from the Bayesian updating of the public belief N (µt, 1/ρt) with

the private information st = θ + εt. Using the standard Bayesian formulae with Gaussian

distributions, the belief of agent t is N (µ̃t, 1/ρ̃t) with µ̃t = (1− αt)µt + αtst, with αt =
ρε

ρε + ρt
,

ρ̃t = ρt + ρε.

(3.3)

(ii) The private decision

From the specification of µ̃t in (3.3),

xt = (1− αt)µt + αtst. (3.4)
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(iii) Social learning

The decision rule of agent t and the variables αt, µt are known to all agents. From equationSocial learning is

efficient when actions

reveal perfectly

private informations.

(3.4), the observation of the action xt reveals perfectly the private signal st. This is a key

property. The public information at the end of period t is identical to the information of

agent t: µt+1 = µ̃t, and ρt+1 = ρ̃t. Hence,µt+1 = (1− αt)µt + αtst, with αt =
ρε

ρε + ρt
,

ρt+1 = ρt + ρε.

(3.5)

In period t+ 1, the belief is still normally distributed N (µt+1, 1/ρt+1) and the process can

be iterated as long as there is an agent remaining in the game. The history of actions

ht = (x1, . . . , xt−1) is informationally equivalent to the sequence of signals (s1, . . . , st−1).

Convergence

The precision of the public belief increases linearly with time:

ρt = ρθ + (t− 1)ρε, (3.6)

and the variance of the estimate on θ is σ2
t = 1/(ρθ + tρε), which converges to zero like

1/t. This is the rate of the efficient convergence.

The weight of history and imitation

Agent t chooses an action which is a weighted average of the public information µt from

history and his private signal st (equation (3.4)). The expression of the weight of history,

1 − αt, increases and tends to 1 when t increases to infinity. The weight of the privateImitation increases

with the weight of

history, but does

not slow down social

learning if actions

reveal private informations.

signal tends to zero. Hence, agents tend to “imitate” each other more as time goes on. This

is a very simple, natural and general property: a longer history carries more information.

Although the differences between individuals’ actions become vanishingly small as time

goes on, the social learning is not affected because these actions are perfectly observable:

no matter how small these variations, observers have a magnifying glass which enables

them to see the differences perfectly. In the next section, this assumption will be removed.

An observer will not“see” well the small variations. This imperfection will slow down

significantly the social learning.

3.3 Observation noise

In the previous section, an agent’s action conveyed perfectly his private information. An

individual’s action can reflect the slightest nuances of his information because: (i) it is
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chosen in a sufficiently rich menu; (ii) it is perfectly observable; (iii) the decision model of

each agent is perfectly known to others.

The extraction of information from an individual’s action relies critically on the assumption

that the decision model is perfectly known, an assumption which is obviously very strong.

In general, individuals’ actions depend on a common parameter but also on private char-

acteristics. It is the essence of these private characteristics that they cannot be observed

perfectly (exactly as the private information is not observed by others). To simplify, assume

that the observation of the action of agent i is given by

xi = Ei[θ] + ηi, with ηi ∼ N (0, 1/ρη). (3.7)

The noise ηi is independent of other random variables and it can arise either because

there is an observation noise or because the payoff function of the agent is subject to an

idiosyncratic variable.1

Since the private parameter ηi is not observable, the action of agent i conveys a noisy

signal on his information Ei[θ]. Imperfect information on an agent’s private characteristics

is operationally equivalent to a noise on the observation of the actions of an agent whose

characteristics are perfectly known.

The model of the previous section is now extended to incorporate an observation noise,

along the idea of Vives (1993)2. We begin with a direct extension of the model where there

is one action per agent in each period. The model with many agents is relevant in the case

of a market and will be presented in Section 3.2.

An intuitive description of the critical mechanism

Period t brings to the public information the observation

xt = (1− αt)µt + αtst + ηt, with αt =
ρε

ρt + ρε
. (3.8)

The observation of xt does not reveal perfectly the private signal st because of a noise

ηt ∼ N (0, σ2
η). This simple equation is sufficient to outline the critical argument. As

time goes on, the learning process increases the precision of the public belief on θ, ρt,

which tends to infinity. Rational agents imitate more and reduce the weight αt which they

put on their private signal as they get more information through history. Hence, they

reduce the multiplier of st on their action. As t → ∞, the impact of the private signal

st on xt becomes vanishingly small. The variance of the noise ηt remains constant over

1For example if the payoff is −(xi − θ − ηi)2.
2Vives assumes directly an observation noise and a continuum of agents. His work is discussed below.
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time, however. Asymptotically, the impact of the private information on the level of action

becomes vanishingly small relative to that of the unobservable idiosyncracy. This effect

reduces the information content of each observation and slows down the process of social

learning.

Imitation increases

with the weight of

history and reduces

the signal to noise

ratio of private

actions.
The impact of the noise cannot prevent the convergence of the precision ρt to infinity.

By contradiction, suppose that ρt is bounded. Then αt does not converge to zero and

the precision ρt increases linearly, asymptotically (contradicting the boundedness of the

precision). The analysis now confirms the intuition and measures accurately the impact of

the noise on the rate of convergence of learning.

The evolution of beliefs

Since the private signal is st = θ + εt with εt ∼ N (0, σ2
ε ), equation (3.8) can be rewritten

xt = (1− αt)µt + αtθ + αtεt + ηt.︸ ︷︷ ︸
noise term

(3.9)

The observation of the action xt provides a signal on θ, αtθ, with a noise αtεt + ηt. We

will encounter in this book many similar expressions of noisy signals on θ. We use a

simple procedure to simplify the learning rule (3.9): the signal is normalized by aA standard normalization

will be used for

most Gaussian signals.
linear transformation such that the right-hand side is the sum of θ (the parameter to be

estimated), and a noise:

xt − (1− αt)µt
αt

= zt = θ + εt +
ηt
αt
. (3.10)

The variable xt is informationally equivalent to the variable zt. We will use similar equiva-

lences for most Gaussian signals. The learning rules for the public belief follow immediately

from the standard formulae with Gaussian signals (3.3). Using (3.8), the distribution of θ

at the end of period t is N (µt+1, 1/ρ
2
t+1) with

µt+1 = (1− βt)µt + βt

(xt − (1− αt)µt
αt

)
, with

βt =
σ2
t

σ2
t + σ2

ε + σ2
η/α

2
t

,

ρt+1 = ρt + 1

σ2
ε + σ2

η/α
2
t

= ρt +
1

σ2
ε + σ2

η(1 + ρtσ
2
ε )2

.

(3.11)

Convergence

When there is no observation noise, the precision of the public belief ρt increases by a

constant value ρε in each period, and it is a linear function of the number of observations

(equation (3.6)). When there is an observation noise, equation (3.11) shows that as ρt →∞,
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the increments of the precision, ρt+1 − ρt, becomes smaller and smaller and tend to zero.

The precision converges to infinity at a rate slower than a linear rate. The convergence of

the variance σ2
t to 0 takes place at a rate slower than 1/t.

The slowing down of the convergence when actions are observed through a noise has been

formally analyzed by Vives (1993). In a remarkable result (Proposition 3.1 in the Ap-

pendix), he showed that the precision of the public information, ρt increases only like the

cubic root of the number of observations, At1/3. The value of the constant A depends on

the observation noise, but the rate 1/3 is independent of that variance. Recall that with

no noise, the precision increases linearly with t.

When the number of observations is large, 1000 additional observations with noise generate

the same increase of precision as 10 observations when there is no observation noise.

Proposition 3.1 shows that the standard model of social learning where agents observe

perfectly others’ actions and know their decision process is not robust. When observations

are subject to a noise, the process of social learning is slowed down, possibly drastically,

because of the weight of history. That weight reduces the signal to noise ratio of individual

actions. The mechanism by which the weight of history reduces social learning will be

shown to be robust and will be one of the important themes in the book.

3.3.1 Large number of agents

The previous model is modified to allow for a continuum of agents. Each agent is indexed

by i ∈ [0, 1] (with a uniform distribution) and receives one private signal once at the

beginning of the first period3, si = θ + εi, with εi ∼ N (0, σ2
ε ). Each agent takes an action

xt(i) in each period4 t to maximize the expected quadratic payoff in (??). At the end of

period t, agents observe the aggregate action Yt which is the sum of the individuals’ actions

and of an aggregate noise ηt:

Yt = Xt + ηt, with Xt =

∫
xt(i)di, and ηt ∼ N (0, 1/ρη).

At the beginning of any period t, the public belief on θ is N (µt, 1/ρt), and an agent with

signal si chooses the action

xt(i) = E[θ|si, ht] = µt(i) = (1− αt)µt + αtsi, with αt =
ρε

ρt + ρε
.

3If agents were to receive more than one signal, the precision of their private information would increase

over time.

4One could also assume that there is a new set of agents in each period and that these agents act only
once.
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By the law of large numbers5,
∫
εidi = 0. Therefore, αt

∫
sidi = αtθ. The level of

endogenous aggregate activity is

Xt = (1− αt)µt + αtθ,

and the observed aggregate action is

Yt = (1− αt)µt + αtθ + ηt. (3.12)

Using the normalization introduced in Section ??, this signal is informationally equivalent

to
Yt − (1− αt)µt

αt
= θ +

ηt
αt

= θ +
(

1 +
ρt
ρε

)
ηt. (3.13)

This equation is similar to (3.10) in the model with one agent per period. (The variances

of the noise terms in the two equations are asymptotically equivalent). Proposition 3.1

applies. The asymptotic evolutions of the public beliefs are the same in the two models.

Note that the observation noise has to be an aggregate noise. If the noises affected actions

at the individual level, for example through individuals’ characteristics, they would be

“averaged out” by aggregation, and the law of large numbers would reveal perfectly the

state of nature. An aggregate noise is a very plausible assumption in the gathering of

aggregate data.

3.3.2 Application: a market equilibrium

This setting is the original model of Vives (1993). A good is supplied by a continuum of

identical firms indexed by i which has a uniform density on [0, 1]. Firm i supplies xi and

the total supply is X =
∫
xidi. The demand for the good is linear:

p = a+ η − bX. (3.14)

Each firm (agent) i is a price taker and has a profit function

ui = (p− θ)xi −
c

2
x2i ,

where the last term is a cost of production and θ is an unknown parameter. Vives views

this parameter as a pollution cost which is assessed and charged after the end of the game.

As in the canonical model, nature’s distribution on θ is N (µ, 1/ρθ) and each agent i has a

private signal si = θ + εi with εi ∼ N (0, 1/ρε). The expected value of θ for firm i is

Ei[θ] = (1− α)µ+ α(θ + εi), with α =
ρε

ρθ + ρε
. (3.15)

5A continuum of agents of mass one with independent signals is the limit case of n agents each of mass
1/n where n→∞. The variance of each individual action is proportional to 1/n2 and the variance of the
aggregate decision is proportional to 1/n which is asymptotically equal to zero.
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The optimal decision of each firm is such that the marginal profit is equal to the marginal

cost:

p− Ei[θ] = cxi.

Integrating this equation over all firms and using the market equilibrium condition (3.14)

gives

p−
∫
Ei[θ]di = cX =

c

b
(a+ η − p),

which, using (3.15), is equivalent to

(b+ c)p− ac− (1− α)µ = αθ + cη.

Dividing both sides of this equation to normalize the signal, the observation of the market

price is equivalent to the observation of the signal

Z = θ + c
η

α
, where α =

ρε
ρθ + ρε

.

The model is isomorphic to the canonical model of the previous section.

3.4 Extensions

Endogenous private information

See exercise 3.2.

Policy against mimetism

A selfish agent who maximizes his own welfare ignores that his action generates informa-

tional benefits to others. If the action is observed without noise, it conveys all the private

information without any loss. But if there is an observation noise, the information con-

veyed by the action is reduced when the response of the action is smaller. When time goes

on, the amplitude of the noise is constant and the agent rationally reduces the multiplier

of his signal on his action. Hence, the action of the agent conveys less information about

his signal when t increases. A social planner may require that agents overstate the impact

of their private signal on their action in order to be “heard” over the observation noise.

Vives (1997) assumes that the social welfare function is the sum of the discounted payoffs

of the agents

W =
∑
t≥0

βt
(
−Et[(xt − θ)2]

)
,

where xt is the action of agent t. All agents observe the action plus a noise, yt = xt + εt.

The function W is interpreted as a loss function as long as θ is not revealed by a random

exogenous process. In any period t, conditional on no previous revelation, θ is revealed
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perfectly with probability 1 − π ≥ 0. Assuming a discount factor δ < 1, the value of β is

β = πδ. If the value of θ is revealed, there is no more loss.

As we have seen in (3.3) and (3.4), a selfish agent with signal st has a decision rule of the

form

xt − µt = (1 + γ)
ρε

ρt + ρε
(st − µt), (3.16)

with γ = 0. Vives assumes that a social planner can enforce an arbitrary value for γ.

When γ > 0, the action to noise ratio is higher and the observers of the action receive

more information.

Assume that a selfish agent is constrained to the decision rule (3.16) and optimizes over γ:

he chooses γ = 0. By the envelope theorem, a small first order deviation of the agent from

his optimal value γ = 0 has a second order effect on his welfare. We now show that it has

a first order effect on the welfare of any other individual who make a decision. The action

of the agent is informationally equivalent to the message

y = (1 + γ)αs+ ε, with α =
ρε

ρt + ρε
.

The precision of that message is ρy = (1 + γ)2α2ρε.

Another individual’s welfare is minus the variance after the observation of y. The obser-

vation of y adds an amount ρy to the precision of his belief. If γ increases from an initial

value of 0, the variation of ρy is of the order of 2γα2ρε, i.e., of the first order with respect to

γ. Since the variance is the inverse of the precision, the impact on the variance of others is

also of the first order and dwarfs the second order impact on the agent. There is a positive

value of γ which induces a higher social welfare level.
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EXERCISES

EXERCISE 3.1. (history cannot be summarized by a number)

Assume that (i) the distribution of the state of nature θ has a support in the set of real

numbers (which does not have to be bounded); (ii) there is an infinite sequence of agents

each with a private signal that is binary and symmetric such that P (s = 1) = q with

q = φ(θ) for some monotone function φ which maps the set of real numbers to the open

interval (1/2, 1). You may take the example φ(θ) =
1

4

(
3 +

θ

1 + |θ|

)
; (iii) each agent t

knows the history of the actions of the previous t− 1 agents and chooses the real number

xt to maximize his payoff function −E[(θ − xt)2].

1. Show, using words and no algebra that the action of an agent reveals perfectly his

private signal.

2. Can the history ht be summarized by
∑
i≤t−1 xi?

EXERCISE 3.2. (Endogenous private information)

In the standard Gaussian model of social learning, each agent has to pay of fixed cost c

to get a signal with precision ρ which is

s = θ + ε, with ε ∼ N (0, 1/ρ).

The cost c is assumed to be small. Agent t makes a decision in period t (both on the signal

and on the action), and his action is assumed to be perfectly observable by others. The

payoff function of each agent is quadratic: U(x) = E[−(x− θ)2].

1. Show using words and no algebra, that there is a date T after which no agent buys

a private signal. What happens to information and actions after that date T?

2. Provide now a formal proof of the the previous statement. For this compute the

welfare gain that an agent gets by buying a signal.

3. Assume now that the cost of a signal with precision ρ is an increasing function,6 c(ρ).

Prove the following result:

6Suppose for example that the signal is generated by a sample of n independent observations and that
each observation has a constant cost c0. Since the precision of the sample is a linear function of n, the
cost of the signal is a step function. For the sake of exposition, we assume that ρ can be any real number.
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• Suppose that c′(ρ) is continuous and c(0) = 0. If the marginal cost of precision

c′(ρ) is bounded away from 0, (for any ρ ≥ 0, c′(ρ) ≥ γ > 0), no agent purchases

a signal after some finite period T and social learning stops in that period.

4. Assume now that c(q) = qβ with β > 0. Analyze the rate of convergence of social

learning.
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3.5 APPENDIX

PROPOSITION 3.1. (Vives, 1993) In the Gaussian-quadratic model with an obser-

vation noise of variance σ2
η and private signals of variance σ2

ε , the variance of the public

belief on θ, σ2
t , converges to zero as t→∞ and

σ2
t(σ2

ησ
4
ε

3t

) 1
3

→ 1. (3.17)

Proof

Since we analyze a rate of convergence, it is more convenient to consider a variable which

converges to zero than a variable which converges to infinity. (We will use Taylor expan-

sions). Let zt = σ2
t = 1/ρt. The third equation in (3.11) is of the form

zt+1 = G(zt). (3.18)

A standard exercise shows that G(0) = 0, and for z > 0, 0 < G(z) < z and G′(z) > 0.

This implies that as t→∞, then zt → 0 which is a fixed point of F . The rest of the proof

is an exercise on the approximation of (3.18) with the particular form (3.11) near the fixed

point 0. Equation (3.11) can be rewritten:

zt+1 =
zt

(
(σ2
ε + σ2

η)z2t + 2σ2
ησ

2
ε zt + σ2

ησ
4
ε

)
σ6
t + (σ2

ε + σ2
η)z2t + 2σ2

ησ
2
ε zt + σ2

ησ
4
ε

,

or

zt+1 = zt −
z4t

z3t + (σ2
ε + σ2

η)z2t + 2σ2
ησ

2
ε zt + σ2

ησ
4
ε

.

Since zt → 0, zt+1 = zt −
z4t
A

(1 +O(zt)), with A = σ2
ησ

4
ε ,

where O(zt) is a term of order smaller than or equal to 1: there is B > 0 such that if

zt → 0, then O(zt) < Bzt. Let bt be such that zt = bt/(t
1/3). By substitution in the

previous equation,

bt+1

(1 + t

t

)− 1
3

= bt −
b4t
At

(
1 +O

( bt
t
1
3

))
,

or

bt+1

(
1− 1

3t
+O

( 1

t2

))
= bt −

b4t
At

(
1 +O

( bt
t
1
3

))
. (3.19)

This equation is used to prove that bt converges to a non zero limit. The proof is in two

steps: (i) the sequence is bounded; (ii) any subsequence converges to the same limit.

(i) The boundedness of bt:

First, from the previous equation, there exists T1 such that if t > T1, then

bt+1 < bt

(
1 +

1

2t

)
. (3.20)
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Using (3.19) again, there exists T > T1 such that for t > T ,

bt+1 < bt

(
1 +

1

t

)(
1− b3t

2At

)
.

From this inequality, there is some value M such that if bt > M and t > T , then

bt+1 < bt

(
1− 1

t

)
. (3.21)

We use (3.20) and (3.21) to show that if t > T , then bt < 2M . Consider a value of t > T .

If bt−1 < M , then by (3.20),

bt+1 < M
(

1 +
1

t

)
< 2M.

If bt−1 > M , then by (3.21), bt+1 < bt. It follows that bt is bounded by the maximum of

bT and 2M :

for t > T, bt < Max(bT , 2M). (3.22)

(ii) To show the convergence of bt, one can extract a subsequence of bt which converges to

some limit `1. Then one can extract from this subsequence another subsequence such that

bt+1 (defined by the previous equation) converges to a limit `2. Taking the limit,

`2

(
1− 1

3t
+O

( 1

t2

))
= `1 −

`41
At

(
1 +O

( `1
t
1
3

))
.

We must have

`1 = `2, and
`2
3

=
`41
A
.

Therefore,

`1 = `2 = ` =

(
A

3

) 1
3

.

The result follows from the definition of A.

�
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Chapter 4

Cascades and herds

To be pruned (11/11/24)

Each agent observes what others do and takes a zero-one decision in
a pre-ordered sequence. In a cascade, all agents herd on a sufficiently
strong public belief and there is no learning. In a herd, all agents turn
out to take the same decision. A cascade generates a herd but the
converse is not true. Cascades are non generic for atomless distributions
of beliefs while a herd always takes place, eventually! Since a herd does
take place eventually, the probability that it is broken must converge to
zero. Hence, there is some learning in a herd (it is not broken), but the
learning is very slow. The stylization of that property is the cascade.

Beliefs converge to the truth only if the distribution of private beliefs
is unbounded, but the self-defeating principle in social learning implies
that the convergence is slow. Since the filter imposed by discrete actions
is coarse, the slowdown of social learning is much more significant than
in the previous chapter. Applications for welfare properties and pricing
policies by a monopoly are discussed.

A tale of two restaurants

Two restaurants face each other on the main street of a charming alsatian village. There is

no menu outside. It is 6pm. Both restaurants are empty. A tourist comes down the street,

looks at each of the restaurants and goes into one of them. After a while, another tourist

shows up, evaluates how many patrons are already inside by looking through the stained

glass windows—these are alsatian winstube—and chooses one of them. The scene repeats

itself with new tourists checking on the popularity of each restaurant before entering one

of them. After a while, all newcomers choose the same restaurant: they choose the more

45
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popular one irrespective of their own information. This tale illustrates how rational people

may herd and choose one action because it is chosen by others. Among the many similar

stories, two are particularly enlightening.

High sales promote high sales

In 1995, management gurus Michael Reacy and Fred Wiersema secretly purchased 50,000

copies of their business strategy book The Discipline of Market Leaders from stores which

were monitored for the bestseller list of the New York Times1. The authors must have

been motivated by the following argument: people observe the sales, but not the payoffs of

the purchases (assuming they have few opportunities to meet other readers). Of course, if

the manipulation had been known it would have had no effect, but people rationally expect

that for any given book, the probability of manipulation is small, and that the high sales

must be driven by some informed buyers.

The previous story illustrates one possible motivation for using the herding effect but it

is only indicative. For an actual measurement, we turn to Hanson and Putler (1996)

who conducted a nice experiment which combines the control of a laboratory with a “real

situation”. They manipulated a service provided by America Online (AOL) in the summer

of 1995. Customers of the service could download games from a bulletin board. The games

were free, but the download entailed some cost linked to the time spent in trying out the

game. Some games were downloaded more than others.

The service of AOL is summarized by the window available to subscribers which is repro-

duced in

??: column 1 shows the first date the product was available; column 2 the name of the

product, which is informative; column 4 the most recent date the file was downloaded.

Column 3 is the most important and shows the number of customers who have downloaded

the file so far. It presents an index of the “popularity” of the product. The main goal of

the study is to investigate whether a high popularity increases the demand ceteris paribus.

The impact of a treatment is measured by the increase in the number of downloads per day,

after the treatment, as a fraction of the average daily download (for the same product)

before the treatment. The results are reported in Figure ??. All treatments have an

impact and the impact of the heavy treatment (100 percent) is particularly remarkable.

The experiment has an obvious implication for the general manipulation of demand through

1See Bikhchandani, Hirshleifer and Welch (1998), and Business Week, August 7, 1995. Additional
examples are given in Bikhchandani, Hirshleifer and Welch, (1992).
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Figure 4.1: Applications for downloads

advertisements.

To ensure ceteris paribus, Hanson and Putler selected pairs of similar files which were

offered by AOL. Similarity was measured by characteristics and “popularity” at a specific

date. Once a pair was selected, one of the files was kept as the “control”, the other

was the “treatment”. The authors boosted the popularity index of the treatment file by

downloading it repeatedly. The popularity indexed was thus increased in a short session

by percentage increments of 25, 50 and 100. Customers of the service were not aware that

they were manipulated.

The essential issue and the framework of analysis

The previous examples share a common feature which is essential: individuals observe the

actions of others and the space of actions is discrete. The actions are the words for the

communication of information between agents. In the previous chapter, agents chose an

action in a rich set made of all the real numbers. Here the finite number of actions exerts

a strong restriction on the vocabulary of social communication.
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If there is a seminal study on social learning, it is the paper by Bikchandani, Hirshleifer and

Welch (1992), hereafter BHW2. They introduced the definition of informational cascades

in models of Bayesian learning. In a cascade, the public belief, which is gathered from the

history of observations, dominates the private signal of any individual: the action of any

agent does not depend on his private information. In a cascade, all agents are herding.

Since actions do not convey private informations, nothing is learned and the cascade goes

on forever, possibly with an incorrect action. The failure of social learning is spectacular.

A cascade generates a herd, but the concepts of cascade and herd are distinct. A herdThere is an essential

difference between

a cascade and a herd.
is defined as an outcome where all agents take the same action after some period. Which

period is a random event and it is unknown at the start of the learning process. Actually,

we we will see that it may never be known. In a herd not all agents may be herding. It is

**
precisely because not all agents are herding in a herd that some learning takes place. The

probability that the herd could be broken generates some information. But this probability

must be vanishingly small for the herd to be sustained. Hence, the amount of social learning

in a herd is very small.

Cascades do not occur, except in very special models which are not generic, while herds

always take place eventually. The reader may think that cascades are therefore not impor-

tant. Wrong: cascades are good approximations for the properties of the generic models

of learning from others’ actions when these actions are discrete.

Suppose that the set of states is finite. The support of a distribution of probabilities

**
(beliefs) is the set of states that have a strictly positive belief (probability). If the set of

the states is a continuum, for example a continuum of real numbers and the distribution

of probabilities has a continuous distribution, the support of the the distribution is the

subset where the density function is strictly positive. We will see that the process of social

learning depends on whether the probability distributions, of the state or or a signal on

the state, are bounded or not.

The general model is built on the models with bounded private beliefs which have been

presented in Section ??. (The reader is advised to review that section if necessary). The

evolution of the beliefs is presented in a diagram which will be used later in the book.

When the support is bounded, private beliefs become dominated by a public belief which is

either optimistic or pessimistic, as the number of observations increases. Such a situation

actually never occurs when private beliefs have a distribution without points of positive

2Banerjee (1992) presented at the same time another paper on herding, but its structure is more
idiosyncratic and one cannot analyze the robustness of its properties.
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mass (which is not just a perturbation of a distribution with such points). However, the

limit behavior of the model is closely approximated by cascades.

Beliefs converge to the truth, almost surely, only if the support of the distribution of

beliefs is unbounded. In this respect, the results of BHW have been criticized as not

robust. Such theoretical focus on the limit beliefs is misleading. What matters is the

speed of convergence.

Section 4 presents a detailed analysis of herds and the convergence of beliefs3. Herds always

take place eventually, as a consequence of the Martingale Convergence Theorem. There is

in general some learning in a herd, but that learning is very slow. The conclusions of the

simple model of BHW are shown to be extraordinarily robust. They reinforce the central

message of the models of learning from others which is the self-defeating property of social

learning when individuals use rationally the public information.

The social optimum

In an equilibrium, no agent takes into account the externality created by his action for the

information of others. In a social optimum, this externality is taken into account (as in the

model with actions in a continuum, Section 3.4). A social optimum is constrained in the

sense that each agent “speaks” to others only through his action. An agent has a decision

rule according to which his action depends on his private belief and the public belief. He

can reveal his private belief only through his action. He departs from the selfish rule of

using history for his own payoff only if the externality provided to others outweighs the

personal loss.

In Section ??, it is shown that the social optimal rule is to forget history if the belief from

history—the public belief—is in some interval of values, and to herd otherwise. If the belief

is outside of that “interval of experimentation”, there is no social learning anymore. The

socially optimal rule may be implemented by setting a price of investment contingent on

the public belief.

Monopoly pricing of a new good

A monopoly who captures some consumer surplus will take into account the benefit of

experimentation for the future. This problem is considered in Section ??. A monopoly

introduces on the market a new good of imperfectly known quality. The optimal strategy

is divided in two phases. The first is the “elitist phase”: the price of the good is relatively

3For this section, I have greatly benefited from the insights of Lones Smith and I am very grateful to
him.
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high. Only the agents with a good signal on the good buy and the volume of sales raises

the estimate of the other agents. When this estimate is sufficiently high, the monopoly

lowers the price to reach all customers.

The incentive to learn is inversely related to the discount rate. If the discount rate is

vanishingly small, the difference between the level of social welfare and the monopoly

profit converges to zero. At the limit, the monopoly follows a strategy which is socially

optimal. (Monopoly profits are redistributed).

4.1 The basic model of herding

Students sometimes wonder how to build a model. Bikhchandani, Hirshleifer and WelshA textbook case on

how to build a model (1992), hereafter BHW, provide an excellent lesson of methodology: (i) a good story sim-

plifies the complex reality and keeps the main elements; (ii) this story is translated into

a set of assumptions about the structure of a model (information of agents, payoff func-

tions); (iii) the equilibrium behavior of rational agents is analyzed; (iv) the robustness of

the model is examined through extensions of the initial assumptions.

We begin here with the tale of two restaurants, or a similar story where agents have to

decide whether to make a fixed size investment. We construct a model with two states

(defining which restaurant is better), two signal values (which generate different beliefs),

and two possible actions (eating at one of two restaurants)4.

4.1.1 The 2 by 2 by 2 model

1. The state of nature θ has two possible values, θ ∈ Θ = {0, 1}, and is set randomly once

and for all at the beginning of the first period5 with a probability µ1 for the “good” state

θ = 1.

2. N or a countable number of agents are indexed by the integer t. Each agent’s private

information takes the form of a SBS (symmetric binary signal) with precision q > 1/2:

P (st = θ | θ) = q.

4The example of the restaurants at the beginning of this chapter is found in Banerjee (1992). The model

in this section is constructed on this story. It is somewhat mistifying that Banerjee after introducing herding

through this example, develops an unrelated model which is somewhat idiosyncratic. A simplified version
is presented in Exercise ??.

5The value of θ does not change because we want to analyze the changes in beliefs which are caused
only by endogenous behavior. Changes of θ can be analyzed in a separate study (see the bibliographical
notes).
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3. Agents take an action in an exogenous order as in the previous models of social learning.

The notation can be chosen such that agent t can make a decision in period t and in period

t only. An agent chooses his action x in the discrete set X = {0, 1}. The action x = 1 may

represent entering a restaurant, hiring an employee, or in general making an investment of

a fixed size. The yield of the action x depends on the state of nature and is defined by

u(x, θ) =

{
0, if x = 0,

θ − c, if x = 1, with 0 < c < 1.

Since x = 0 or 1, another representation of the payoff is u(x, θ) = (θ − c)x. The cost of

the investment c is fixed.6 The yield of the investment is positive in the good state and

negative in the bad state. Under uncertainty, the payoff of the agent is the expected value

of u(x, θ) conditional on the information of the agent. By convention, if the payoff of x = 1

is zero, the agent chooses x = 0.

4. As in the previous models of social learning, the information of agent t is his private

signal and the history ht = (x1, . . . , xt−1) of the actions of the agents who precede him in

the exogenous sequence. The public belief at the beginning of period t is the probability of

the good state conditional on the history ht which is public information. It is denoted by

µt:

µt = P (θ = 1|ht).

Without loss of generality, µ1 is the same as nature’s probability of choosing θ = 1.

4.1.2 Informational cascades

Agents with a good signal s = 1 will be called optimists and agents with a bad signal s = 0

will be called pessimists. An agent combines the public belief with his private signal to

form his belief. If µ is the public belief in some arbitrary period, the belief of an optimist

is higher than µ and the belief of a pessimist is lower. Let µ+ and µ− be the beliefs of the

optimists and the pessimists7: µ− < µ < µ+.

A pessimist invests if and only if his belief µ− is greater than the cost c, i.e. if the public

belief is greater than some value µ∗∗ > c. (If c = 1/2, µ∗∗ = q). If the public belief is

such that a pessimist invests, then a fortiori, it induces an optimist to invest. Therefore,

if µt > µ∗∗ agent t invests whatever his signal. If µt ≤ µ∗∗, he does not invest if his signal

is bad.

6In the tale of two restaurants, c is the opportunity cost of not eating at the other restaurant.

7By Bayes’ rule,

µ− =
µ(1− q)

µ(1− q) + (1− µ)q
< µ <

µq

µq + (1− µ)(1− q)
= µ+.
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Likewise, let µ∗ be the value of the public belief such that µ+ = c. If µt ≤ µ∗, agent t does

not invest no matter the value of his private signal. If µt > µ∗ he invests if he has a good

signal. The cases are summarized in the next result.

PROPOSITION 4.1. In any period t, given the public belief µt:

if µ∗ < µt ≤ µ∗∗, agent t invests if and only if his signal is good (st = 1);

if µt > µ∗∗, agent t invests independently of his signal;

if µt ≤ µ∗, agent t does not invest independently of his signal.

Cascades and herds

Proposition 4.1 shows that if the public belief, µt, is above µ∗∗, agent t invests and ignores

his private signal. His action conveys no information on this signal. Likewise, if the public

belief is smaller than µ∗, then the agent does not invest. This important situation deserves

a definition.

DEFINITION 4.1. An agent herds on the public belief when his action is independent

of his private signal.

The herding of an agent describes a decision process. The agent takes into account only

the public belief; his private signal is too weak to matter. If all agents herd, no private

information is revealed. The public belief is unchanged at the beginning of the next period

and the situation is identical: the agent acts according to the public belief whatever his

private signal. The behavior of each agent is repeated period after period. This situation

has been described by BHW as an informational cascade. The metaphor was used first by

Tarde at the end of the nineteenth century.

DEFINITION 4.2. If all agents herd (Definition 4.1), there is an informational cascade.

We now have to make an important distinction between the herding of all agents in an

informational cascade and the definition of a herd.

DEFINITION 4.3. A herd takes place at date T if all actions after date T are identical:

for all t > T , xt = xT .

In a cascade, all agents are herding and make the same decision which depends only on

the public belief (which stays invariant over time). Hence, all actions are identical.
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PROPOSITION 4.2. If there is an informational cascade in period t, there is a herd in

the same period.

The converse of Proposition 4.2 is not true. Herds and cascades are not equivalent. InAn important distinction:

an informational

cascade is sufficient

for a herd, but a

herd may occur without

a cascade.

a herd, all agents turn out to choose the same action—in all periods— although some of

them could have chosen a different action. We will see later that generically, cascades do

not occur, but herds eventually begin with probability one! Why do we consider cascades

then? Because their properties are stylized representations of models of social learning.

In the present model, an informational cascade takes place if µt > µ∗∗ or µt ≤ µ∗. There

is social learning only if µ∗ < µt ≤ µ∗∗. Then xt = st and the action reveals perfectly

the signal st. The public belief in period t + 1 is the same as that of agent t as long as

a cascade has not started. The history of actions ht = (x1, . . . , xt−1) is equivalent to the

history of signals (s1, . . . , st−1).

Assume that there is no cascade in periods 1 and 2 and that s1 = 1 and s2 = 1. Suppose

that agent 3 is a pessimist. Because all signals have the same precision, his bad signal

“cancels” one good signal. He therefore has the same belief as agent 1 and should invest.

There is a cascade in period 3.

Likewise, two consecutive bad signals (s = 0) start a cascade with no investment, if no

cascade has started before. If the public belief µ1 is greater than c and agent 1 has a good

signal, a cascade with investment begins in period 2. If µ1 < c and the first agent has a

bad signal, he does not invest and a cascade with no investment begins in period 2.

In order not to have a cascade, a necessary condition is that the signals alternate consec-

utively between 1 and 0. We infer that

• the probability that a cascade has not started by period t converges to zero expo-

nentially, like βt for some parameter β < 1;

• there is a positive probability that the cascade is wrong: in the bad states all agents

may invest after some period, and investment may stop after some period in the good

state;

• beliefs do not change once a herd has started; rational agents do not become more

confident in a cascade.

PROPOSITION 4.3. When agents have a binary signal, an informational cascade occurs

after some finite date, almost surely. The probability that the informational cascade has
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not started by date t converges to 0 like βt for some βt with 0 < β < 1.

A geometric representation

The evolution of the beliefs is represented in Figure ??. In each period, a segment represents

the distribution of beliefs: the top of the segment represents the belief of an optimist, the

bottom the belief of a pessimist and the mid-point the public belief. The segments evolve

randomly over time according to the observations.

In the first period, the belief of an optimist, µ+
1 , is above c while the belief of a pessimist,

µ−1 , is below c. The action is equal to the signal of the agent and thus reveals that signal.

In the figure, s1 = 0, and the first agent does not invest. His information is incorporated

in the public information: the public belief in the second period, µ2, is identical to the

belief of the first agent: µ2 = µ−1 . The sequence of the signal endowments is indicated in

the figure. When there is social learning, the signal of agent t is integrated in the public

information of period t+ 1. Using the notation of the previous chapter, µt+1 = µ̃t.

Consider now period 5 in the figure: agent 5 is an optimist, invests and reveals his signal

since he could have been a pessimist who does not invest. His information is incorporated

in the public belief of the next period and µ6 = µ+
5 . The belief of a pessimist in period 6 is

now higher than the cost c (here, it is equal to the public belief µ5). In period 6, the belief

of an agent is higher than the cost of investment, whatever his signal. He invests, nothing

is learned and the public belief is the same in period 7: a cascade begins in period 6. The

cascade takes place because all the beliefs are above the cut-off level c. This condition is

met here because the public belief µ6 is strictly higher than µ∗∗. Since µ6 is identical to

the belief of an optimist in period 5, the cascade occurs because the beliefs of all investing

agents are strictly higher than µ∗∗ in period 5. A cascade takes place because of the high

belief of the last agent who triggers the cascade. Since this property is essential for the

occurrence of an informational cascade, it is important and will be discussed later in more

details.

In this simple model, the public belief µt = P (θ = 1|ht) converges to one of two values

(depending on the cascade). From the Martingale Convergence Theorem, we knew µt would

necessarily converge in probability. The exponential convergence is particularly fast. The

informational cascade may be incorrect however: all agents may take the wrong decision.

Black sheeps

Assume there is a cascade in some period T in which agents invest whatever their signal.
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In each period, the middle of the vertical segment is the public belief, while the top and the
bottom of the segment are the beliefs of an optimist (with a private signal s = 1) and of a
pessimist (with signal s = 0). The private signals are s1 = 0, s2 = 1, s3 = 0, s4 = 1, s5 = 1.

Figure 4.2: Cascade representation

Extend now the previous setting and assume that agent T may be of one of two types.

Either he has a signal of precision q like the previous agents, or his precision is q′ > q and

q′ is sufficiently high with respect to the public belief that if he has a bad signal (sT = 0),

he does not invest. The type of the agent is private and therefore not observable, but the

possibility that agent T has a higher precision is known to all agents.

Suppose that agent T does not invest: xT = 0. What inference is drawn by others? The

only possible explanation is that agent T has a signal of high precision q′ and that his

signal is bad: the information of agent T is conveyed exactly by his action.

If agent T invests, his action is like that of others. Does it mean that the public belief

does not change? No! The absence of a black sheep in period T (who would not invest)

increases the confidence that the state is good. Social learning takes place as long as not all

agents herd. The learning may slow down however as agents with a relatively low precision

begin to herd. The inference problem with heterogeneous precisions requires a model which

incorporates the random endowment of signals with different precisions. A model with two

types of precision is presented in the appendix.

The simple model has served two useful purposes: (i) it is a lesson on how to begin to
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think formally about a stylized fact and the essence of a mechanism; (ii) it strengthens the

intuition about the mechanism of learning and its possible failures. These steps need to

be as simple as possible. But the simplicity of the model could generate the criticism that

its properties are not robust. The model is now generalized and we will see that its basic

properties are indeed robust.

4.2 The standard model with bounded beliefs

We now extend the previous model to admit any distribution of private beliefs as described

in Section ??. Such a distribution is characterized by the c.d.f. F θ(µ) which depends on

the state θ. Recall that the c.d.f.s satisfy the Proportional Property (??) and therefore the

assumption of first order stochastic dominance: for any µ in the interior of the support of

the distribution, F θ0(µ) > F θ1(µ). By an abuse of notation, F θ(µ) will represent the c.d.f.

of a distribution of the beliefs measured as the probability of θ1, and F θ(λ) will represent

the c.d.f. of a distribution of the LLR between θ1 and θ0.

We keep the following structure: two states θ ∈ {θ0, θ1}, two actions x ∈ {0, 1}, with a

payoff (E[θ]− c)x, θ0 < c < θ1. The states θ1 and θ0 will be called “good” and “bad”. We

may take θ0 = 1 and θ0 = 0, but the notation may be clearer if we keep the symbols θ1

and θ0 rather than using numerical values.

4.2.1 Social learning

At the end of each period, agents observe the action xt. Any belief λ is updated using

Bayes’ rule. This rule is particularly convenient when expressed in LLR as in equation

(??) which is repeated here.

λt+1 = λt + νt, with νt = Log
(P (xt|θ1)

P (xt|θ0)

)
. (4.1)

The updating term νt is independent of the belief λt. Therefore, the distribution of beliefs

is translated by a random term νt from period t to period t+1. Agent t invests if and only

if his probability of the good state is greater than his cost, i.e. if his LLR, λ, is greater

than γ = Log(c/(1− c)). The probability that agent t invests depends on the state and is

equal to πt(θ) = 1− F θt (γ).
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States of

Nature

Observations

xt = 1 xt = 0

θ = θ1 1− F θ1t (γ) F θ1t (γ)

θ = θ0 1− F θ0t (γ) F θ0t (γ)
with γ = Log

( c

1− c

)
.

The action in period t, xt ∈ {0, 1}, provides a binary random signal on θ with probabilities

described in Table ??. Since the c.d.f. F θ1 dominates F θ0 in the sense of first order

stochastic dominance (Proposition ??), there are more optimistic agents in the good than

in the bad state on average. Hence, the probability of investment is higher in the good

state, and the observation xt = 1 raises the beliefs of all agents.

Following the observation of xt, the updating equation (??) takes the particular form

λt+1 = λt + νt, with νt =


Log

(1− F θ1t (γ)

1− F θ0t (γ)

)
, if xt = 1,

Log
(F θ1t (γ)

F θ0t (γ)

)
, if xt = 0.

(4.2)

In this equation, νt ≥ 0 if xt = 1 and νt ≤ 0 if xt = 0. The observation of xt conveys

some information on the state as long as F θ1t (γ) 6= F θ0t (γ).

Since the distribution of LLRs is invariant up to a translation, it is sufficient to keep track

of one of the beliefs. If the support of beliefs is bounded, we choose the mid-point of the

support, called by an abuse of notation the public belief. If the support is not bounded,

the definition of the public belief will depend on the particular case.

The Markov process

The previous process has an abstract formulation which may provide some perspective on

the process of social learning. We have seen that the position of the distribution in any

period can be characterized by one point λt. Let µt be the belief of an agent with LLR

equal to λt. The Bayesian formula (4.2) takes the general form µt+1 = B(xt, µt) and xt is

a random variable which takes the value 1 or 0 according to Table ??. These values depend

only on λt and therefore µt depends on θ. The process of social learning is summarized by
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the equations µt+1 = B(µt, xt),

P (xt = 1) = π(µt, θ).
(4.3)

The combination of the two equations defines a Markov process for µt. Such a definition is

natural and serves two purposes. It provides a synthetic formulation of the social learning.

It is essential for the analysis of convergence properties. However, such a formulation

can be applied to a wide class of processes and does not highlight specific features of the

structural model of social learning with discrete actions.

4.2.2 Bounded beliefs

Assume the initial distribution of private beliefs is bounded. Its support is restricted to a

finite interval (λ1, λ1). This case is represented in Figure ??. Let λt be the public belief

in period t, i.e., the mid-point of the support: λt = (λt + λ̄t)/2 and let σ = (λ̄t − λt)/2,

a constant. If λt is greater than the value λ∗∗ = γ + σ, the support of the distribution is

above γ and agent t invests, whatever his belief. Likewise, if λ ≤ λ∗ = γ − σ, no agent

invests. In either case, there is an informational cascade. There is no informational cascade

as long as the public belief stays in the interval (λ∗, λ∗∗) = (γ−σ, γ+σ). The complement

of that interval will be called the cascade set.

Figure ?? is drawn under the assumption of an atomless distribution of beliefs but it can

also be drawn with atoms as in Figure ??.

i We know from the Martingale Convergence Theorem that the probability of the good

state, µt = eλt/(1 + eλt), converges in probability. Hence, λt must converge to some value.

Suppose that the limit is not in the cascade set. Then, asymptotically, the probability that

xt = 1 remains different in states θ1 and θ0. Hence, with strictly positive probability, the

common belief is updated by some non vanishing amount, thus contradicting the conver-

gence of the martingale. This argument is used in the Appendix to prove that λt must

converge to a value in the cascade set.

PROPOSITION 4.4. Assume that the support of the initial distribution of private beliefs

is I = [λ1−σ, λ1 +σ]. Then λt converges almost surely to a limit λ∞ /∈ (γ−σ, γ+σ) with

γ = Log(c/(1− c)).

Is the occurrence of a cascade generic?
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In each period, the support of the distribution of beliefs (LLR) is represented by a segment.
The action is xt = 1 if and only if the belief (LLR) of the agent is above γ. If agent t
happens to have a belief above (below) γ, the distribution moves up (down) in the next
period t+ 1. If the entire support is above (below) γ, the action is equal to 1 (0) and the
distribution stays constant.

Figure 4.3: Cascade representation

The previous result shows that the beliefs tend to the cascade set. But for an arbitrary

distribution of initial beliefs, is this convergence as fast as with the discrete beliefs of

Figure ??, or is it slow? It turns out that, for most distributions which are “smooth”, the

convergence is slow and cascades do not occur.
Generically, cascades

do not occur!

The mechanism can be explained simply. Suppose that the beliefs converge to the upper

part of Figure ?? where agents invest. The probability that agent t invests is lower in

the bad than in the good state, but as the beliefs move upwards, these two probabilities

converge to each other with a common limit equal to one. The observation of an investment

conveys a vanishingly small amount of information and the upward shift of the beliefs is

also vanishingly small8.

Assume the distribution of initial beliefs has a density fθ(µ) in state θ such that

f1(µ) = µφ(µ), and f0(µ) = (1− µ)φ(µ), (4.4)

8The argument does not apply when beliefs are high and there is no investment in the period. In that
case, the probability of no investment is low in both states, but the ratio between these probabilities is not

small.
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for some function φ(µ) with a support in [a, 1−a], a > 0. This distribution is “natural” in

the sense that it is generated by a two-step process in which agents draw a SBS of precision

µ with a density proportional to φ(µ). A simple case is provided by a uniform distribution

of precisions where φ is constant. The proof of the following result is left to the reader.

PROPOSITION 4.5. Assume that the density of initial beliefs are proportional to µ and

to 1− µ in the two states. If there is no cascade in the first period, there is no cascade in

any period.

The result applies if φ(µ) does not put too much mass at either end of its support. This is

intuitive: in the model with discrete beliefs (Figure ??), all the mass is put at either end of

the support. A smooth perturbation of the discrete model does not change its properties.

A numerical simulation of the case which satisfies (4.4) shows that a cascade occurs if

φ(µ) = x−n with n sufficiently high (n ≥ 4 for a wide set of other parameters). In this

case, the distribution puts a high mass at the lower end of the support.

Right and wrong cascades

A cascade may arise with an incorrect action: for example, beliefs may be sufficiently low

that no agent invests while the state is good. However, agents learn rationally and the

probability of a wrong cascade is small if agents have a wide diversity of beliefs as measured

by the length of the support of the distribution.

Suppose that the initial distribution in LLR is symmetric around 0 with a support of length

2σ. We compute the probability of a wrong cascade for an agent with initial belief 1/2. A

cascade with no investment arises if his LLR λt is smaller than γ − σ, i.e., if his belief in

level is such that

µt ≤ ε = eγ−σ/(1 + eγ−σ).

When the support of the distribution in LLR becomes arbitrarily large, σ → ∞ and ε is

arbitrarily small. From Proposition ?? with µ1 = 1/2, we know that

P (µt ≤ ε|θ1) ≤ 2ε.

The argument is the same for the cascades where all agents invest. The probability of a

wrong cascade for a neutral observer (with initial belief 1/2) tends to zero if the support of

the distribution in LLR becomes arbitrarily large (or equivalently if the beliefs measured

as probabilities of θ1 are intervals converging to (0, 1)).

PROPOSITION 4.7. If the support of the initial distribution of LLRs contains the

interval [−σ,+σ], then for an observer with initial belief 1/2, the probability of a wrong

cascade is less than 4ε, with ε = e−σc/
(
1− c+ e−σc

)
.
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4.3 The convergence of beliefs

When private beliefs are bounded, beliefs never converge to perfect knowledge. If the public

belief would converge to 1 for example, in finite time it would overwhelm any private belief

and a cascade would start thus making the convergence of the public belief to 1 impossible.

This argument does not hold if the private beliefs are unbounded because in any period

the probability of a “contrarian agent” is strictly positive.

4.3.1 Unbounded beliefs: convergence to the truth

From Proposition 4.7 (with σ →∞), we have immediately the next result.

PROPOSITION 4.8. Assume that the initial distribution of private beliefs is unbounded.

Then the belief of any agent converges to the truth: his probability assessment of the good

state converges to 1 in the good state and to 0 in the bad state.

Does convergence to the truth matter?

A bounded distribution of beliefs is necessary for a herd on an incorrect action, as em-

phasized by Smith and Sørensen (1999). Some have concluded that the properties of the

simple model of BHW are not very robust: cascades are not generic and do not occur for

sensible distributions of beliefs; the beliefs converge to the truth if there are agents with

sufficiently strong beliefs. In analyzing properties of social learning, the literature hasTo focus on whether

social learning converges

to the truth or not

can be misleading.

often focused on whether learning converges to the truth or not. This focus is legitimate for

theorists, but it is seriously misleading. What is the difference between a slow convergence

to the truth and a fast convergence to an error? From a welfare point of view and for many

people, it is not clear.

The focus on the ultimate convergence has sometimes hidden the central message of studies

on social learning: the combination of history’s weight and of self-interest slows down the

learning from others. The beauty of the BHW model is that it is non generic in some sense

(cascades do not occur under some perturbation), but its properties are generic.

If beliefs converge to the truth, the speed of convergence is the central issue. This is why

the paper of Vives (1993) has been so useful in the previous chapter. We learned from that

model that an observation noise reduces the speed of the learning from others. Since the

discreteness of the action space is a particularly coarse filter, the slowing down of social

learning should also take place here. When private beliefs are bounded, the social learning

does not converge to the truth. When private beliefs are unbounded, we should observe a

slow rate of convergence.
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We saw that cascades do not occur for sensible distributions of beliefs because the signal

of the action (investment or no investment) is vanishingly weak when the public belief

tends to the cascade set corresponding to the action. This argument applies when the

distribution of beliefs is unbounded, since the mass of atoms at the extreme ends of the

distribution must be vanishingly small. Hence, there is an immediate presumption that

social learning must be slow asymptotically. The slow learning is first illustrated in an

example and then analyzed in detail.

A numerical example

The private signals are defined by s = θ + ε where ε is normally distributed with variance

σ2. An exercise shows that if µ tends to 0, the mass of agents with beliefs above 1 − µ
tends to zero faster than any power of µ. A numerical example of the evolution of beliefs is

presented in Figure ??. One observes immediately that the pattern is similar to a cascade

in the BHW model with the occurrence of “black sheeps”.
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The upper graph represents the evolution of the public belief. The lower graph represents
the sequence of individuals’ actions. It is distinct from the horizontal axis only if xt = 1.

For this example only, it is assumed that the true state is 1. The initial belief of the agent

is µ1 = 0.2689, (equivalent to a LLR of -1), and σ = 1.5. The actions of individuals in each

period are presented by the lower schedule (equal to 0.1 if xt = 1 and to 0 otherwise). For

the first 135 periods, xt = 0 and µt decreases monotonically from around 0.27 to around

0.1. In period 136, the agent has a signal which is sufficiently strong to have a belief

µ̃136 > c = 0.5 and he invests. Following this action, the public belief is higher than 0.5
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(since 0.5 is a lower bound on the belief of agent 135), and µ137 > 0.5. In the example,

µ137 = 0.54. The next two agents also invest and µ139 = 0.7. However, agent 139 does not

invest and hence the public belief must fall below 0.5: µ140 = 0.42. Each time the sign of

µt+1 − µt changes, there is a large jump in µt.

The figure provides a nice illustration of the herding properties found by BHW in a model

with “black sheeps” which deviate from the herds. The figure exhibits two properties which

are standard in models of social learning with discrete decisions:

(i) when µt eventually converges monotonically to the true value of 1 (after period 300

here), the convergence is very slow;

(ii) when a herd stops, the public belief changes by a quantum jump.

The slow learning from others

Assume now a precision of the private signals such that σε = 4, and an initial public belief

µ1 = 0.2689 (with a LLR equal to -1). The true state is good. The model was simulated

for 500 periods and the public belief was computed for period 500. The simulation was

repeated 100 times. In 97 of the 100 simulations, no investment took place and the public

belief decreased by a small amount to a value µ500 = 0.2659. In only three cases did some

investment take place with µ500 equal to 0.2912, 0.7052 and 0.6984, respectively. Hardly a

fast convergence!

By contrast, consider the case where agents observe directly the private signals of others

and do not have to make inferences from the observations of private actions. From the

specification of the private signals and Bayes’ rule,

λt+1 = λ1 + t(
θ1 − θ0
σ2
ε

)(
θ1 − θ0

2
+ ηt), with ηt =

1

t

t∑
k=1

εk.

Given the initial belief µ1 = 0.2689, θ0 = 0, θ1 = 1, t = 499 and σε = 4,

λ500 = −1 + (31.2)(0.5 + η500),

where the variance of η500 is 16/499 ≈ (0.18)2. Hence, λ500 is greater than 5.33 with

probability 0.95. Converting the LLR in probabilities, µ500 belongs to the interval (0.995, 1)

with probability 0.95. What a difference with the case where agents observed private

actions! The example—which is not particularly convoluted—shows that the convergence

to the truth with unbounded private precisions may not mean much practically. Even when

the distribution of private signals is unbounded, the process of social learning can be very

slow when agents observe discrete actions. Cascades provide a better stylized description
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of the properties of social learning through discrete actions than the convergence result of

Proposition 4.8. The properties of the example are confirmed by the general analysis of

the convergence in Section ??.

4.4 Herds and the slow convergence of beliefs

4.4.1 Herds

The Martingale Convergence Theorem implies that the public belief converges almost

surely. Assume that the distribution of beliefs is bounded. At the limit, the support

of the distribution must be included in one of the two cascade sets. Suppose that on some

path the support of the distribution converges to the upper half of the cascade set where

all agents invest: µ
t
→ c. We now prove by contradiction that the number of periods with

no investment is finite on this path.

Since there is a subsequence xn = 0, we may assume µ
n
< c. Following the observation of

xn = 0, Bayes’ rule implies

λn+1 = λn + νn, with νn = Log
(F 1(λ1 + zn)

F 0(λ1 + zn)

)
, and zn = γ − λn.

By the assumption of first order stochastic dominance, if zn → 0, there exists α < 0

such that ηn < α, which contradicts the convergence of λn: the jump down of the LLR

contradicts the convergence. The same argument can be used in the case of an unbounded

distribution of beliefs.
All paths with social

learning end with

a herd.

THEOREM 4.1. On any path {xt}t≥1 with social learning, a herd begins in finite time.

If the distribution of beliefs is unbounded and θ = θ1 (θ = θ0), there exists T such that if

t > T , xt = 1 (xt = 0), almost surely.

This result is due to Smith and Sørensen (2001). It shows that herds take place eventually

although, generically, not all agents are herding in any period!

4.4.2 The asymptotic rate of convergence is zero

When beliefs are bounded, they may converge to an incorrect value with a wrong herd. The

issue of convergence speed makes sense only if beliefs are unbounded. This section provides

a general analysis of the convergence in the binary model. Without loss of generality, we

assume that the cost of investment is c = 1/2.
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Suppose that the true state is θ = 0. The public belief µt converges to 0. However, as

µt → 0, there are fewer and fewer agents with a sufficiently high belief who can go against

the public belief if called upon to act. Most agents do not invest. The probability that an

investing agent appears becomes vanishingly small if µ tends to 0 because the density of

beliefs near 1 is vanishingly small if the state is 0. It is because no agent acts contrary to

the herd, although there could be some, that the public belief tends to zero. But as the

probability of contrarian agents tends to zero, the social learning slows down.

Let f1 and f0 be the density functions in states 1 and 0. From the proportional property

(Section ??), they satisfy

f1(µ) = µφ(µ), f0(µ) = (1− µ)φ(µ), (4.5)

where φ(µ) is a function. We will assume, without loss of generality, that this function is

continuous.

If θ = 0 and the public belief converges to 0, intuition suggests that the convergence is

fastest when a herd takes place with no investment. The next result which is proven in the

Appendix characterizes the convergence in this case.

PROPOSITION 4.9. Assume the distributions of private beliefs in the two states satisfy

(4.5) with φ(0) > 0, and that θ = 0. Then, in a herd with xt = 0, if t → ∞, the public

belief µt satisfies asymptotically the relation

µt+1 − µt
µt

≈ −φ(0)µt,

and µt converges to 0 like 1/t: there exists α > 0 such that if µt < α, then tµt → a for

some a > 0.

If φ(1) > 0, the same property applies to herds with investment, mutatis mutandis.

The previous result shows that in a herd, the asymptotic rate of convergence is equal to 0.

The domain in which φ(µ) > 0 represents the support of the distribution of private beliefs.

Recall that the convergence of social learning is driven by the agents with extreme beliefs.

It is therefore important to consider the case where the densities of these agents are not

too small. This property is embodied in the inequalities φ(0) > 0 and φ(1) > 0. They

represent a property of a fat tail of the distribution of private beliefs. If φ(0) = φ(1), we

will say that the distributions of private beliefs have thin tails. The previous proposition

assumes the case of fat tails which is the most favorable for a fast convergence.
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We know from Theorem 4.1 that a herd eventually begins with probability 1. Proposition

4.9 characterized the rate of convergence in a herd and it can be used to prove the following

result10.

THEOREM 4.2. Assume the distributions of private beliefs satisfy (4.5) with φ(0) > 0

and φ(1) > 0. Then µt converges to the true value θ ∈ {0, 1} like 1/t.

The benchmark: learning with observable private beliefs

When agents observe beliefs through actions, there is a loss of information which can be

compared with the case where private beliefs are directly observable. In Section ??, the

rate of convergence is shown to be exponential when agents have binary private signals. We

assume here the private belief of agent t is publicly observable. The property of exponential

convergence is generalized by the following result.

PROPOSITION 4.10. If the belief of any agent t is observable, there exists γ > 0 such

that µt = e−γtzt where zt tends to 0 almost surely.

The contrast between Theorem 4.2 and Proposition 4.10 shows that the social learning

through the observation of discrete actions is much slower, “exponentially slower11”, than

if private informations were publicly observable.

4.4.3 Why do herds occur?

Herds must eventually occur as shown in Theorem 4.1. The proof of that result rests on

the Martingale Convergence Theorem: the break of a herd induces a large change of the

beliefs which contradicts the convergence. Lones Smith has insisted, quite rightly, that

one should provide a direct proof that herds take place for sure eventually. This is done

by computing the probability that a herd is broken in some period after time t. Such a

probability tends to zero as shown in the next result.

THEOREM 4.3. Assume the distributions of private beliefs satisfy (4.5) with φ(0) > 0

and φ(1) > 0. Then the probability that a herd has not started by date t tends to 0 like 1/t.

10See Chamley (2002).

11Smith and Sørensen (2001) provide a technical result (Theorem 4) which states that the Markov

process defined in (4.3) exhibits exponential convergence of beliefs to the truth under some differentiability

condition. Since the result is in a central position in a paper on social learning, and they provide no
discussion about the issue, the reader who is not very careful may believe that the convergence of beliefs is

exponential in models of social learning. Such a conclusion is the very opposite of the central conclusion of

all models of learning from others’ actions. The ambiguity of their paper on this core issue is remarkable.
Intuition shows that beliefs cannot converge exponentially to the truth in models of social learning. In all

these models, the differentiability condition of their Theorem 4 is not satisfied (Exercise ??).
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4.4.4 Discrete actions and the slow convergence of beliefs

The assumption of a “fat tail” of the distribution of beliefs, φ(0) > 0, φ(1) > 0, is easy to

draw mathematically but it is not supported by any strong empirical evidence.

The thinner the tail of the distribution of private beliefs, the slower the convergence of

social learning. However, if private signals are observable, the convergence is exponential

for any distribution. The case of a thin tail provides a transition between a distribution

with a thick tail and a bounded distribution where the convergence stops completely in

finite time, almost surely (Chamley, 2002).

It is reasonable to consider the case where the density of beliefs is vanishingly small when

the belief approaches perfect knowledge. We make the following assumption. For some

b > 0, c > 0,

f1(1) = 0, and Limµ→0

(
f1(µ)/(1− µ)b

)
= c > 0. (4.6)

The higher is b, the thinner is the tail of the distribution near the truth. One can show

that the sequence of beliefs with the history of no investment tends to 0 like 1/t1/(1+b)

(Exercise ??).

The main assumption in this chapter is, as emphasized in BHW, that actions are discrete.

To simplify, we have assumed two actions, but the results could be generalized to a finite

set of actions. The discreteness of the set of actions imposes a filter which blurs more the

information conveyed by actions than the noise of the previous chapter where agents could

choose action in a continuum. Therefore, the reduction in social learning is much more

significant in the present chapter than in the previous one.

Recall that when private signals can be observed, the convergence of the public belief is

exponential like e−αt for some α > 0. When agents choose an action in a continuum and

a noise blurs the observation, as in the previous chapter, the convergence is reduced to

a process like e−αt
1/3

. When actions are discrete, the convergence is reduced, at best, to

a much slower process like 1/t. If the private signals are Gaussian, (as in the previous

chapter), the convergence is significantly slower as shown in the example of Figure ??.

The fundamental insight of BHW is robust.

4.6 Crashes and booms

The stylized pattern of a herd which is broken by a sudden event is emblematic of a pattern

of “business as usual” where at first beliefs change little, then some event generates a crash

or a boom, after which the new beliefs seem “obvious” in a “wisdom after the facts”. This
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sequence has been illustrated by Caplin and Leahy (1994). Their assumption of endogenous

timing is not necessary for the property.

In each period, there is a new population of agents which forms a continuum of mass one.

Each agent has a private information on θ in the form of a Gaussian signal st = θ + εt,

where εt has a normal distribution N (0, σ2
ε ) and is independent of other variables. Each

agent chooses a zero-one action x ∈ {0, 1}.

In period t, agents know the history ht = {Y1, . . . , Yt−1} of the aggregate variable Yt =

Xt + ηt, where Xt is the mass of investments by the agents in period t and ηt is a noise

which is distributed N (0, σ2
η).

If λt is the public LLR between states θ1 and θ0, an agent with private signal s has a LLR

equal to

λ(s) = λt +
θ1 − θ0
σ2
ε

(
s− θ0 + θ1

2

)
.

Given the net payoffs in the two states, the agent invests if and only if he believes state θ1

to be more likely than state θ0, hence if his LLR is positive. This is equivalent to a private

signal s such that

s > s∗(λt) =
θ0 + θ1

2
− σ2

ε

θ1 − θ0
λt.

Let F (·;σ) be the c.d.f. of the Gaussian distribution N (0, σ2). Since the mass of the

population in period t is one, the level of aggregate endogenous investment is

Xt = 1− F (s∗(λt)− θ;σε).

The level of aggregate activity

Yt = 1− F (s∗(λt)− θ;σε) + ηt.

is a noisy signal on θ. The derivative of Yt with respect to θ is

∂Yt
∂θ

= (s∗(λt)− θ)exp

(
− (s∗(λt)− θ)2

2σ2
ε

)
.

If the cut-off point s∗(λt) is far to the right or to the left, the multiplier of θ on Yt is small

and the impact of θ on Yt is dwarfed by the observation noise ηt, exactly as in the model

of Vives (1993). Hence, the information content of the observation Yt is small when most

agents invest (s∗(λt) is low), or most do not invest (s∗(λt) is high).

Crash and boom

Suppose that the true state is θ0 and that the level of optimism, as measured by the

LLR, is high. Most agents invest and the aggregate activity is dominated by the noise.
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However, the beliefs of agents are unbounded and the public belief converges to the true

state. When the public belief decreases to the “middle range”, the difference between the

mass of agents in the two states becomes larger and this difference dominates the noise.

The level of aggregate activity is more informative. Since the true state is θ0, the public

belief decreases rapidly and the aggregate activity falls drastically. A crash occurs.

This property is illustrated by a simulation. Two realizations of the observation shocks are

considered. In the first, all realizations of the shocks are set at zero, ηt ≡ 0. The evolution

of the public belief15, measured in LLR, is represented in Part A of Figure 4. In Part B,

the evolution of the public belief is represented for random realizations ηt.
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Parameters: θ0 = 0, θ1 = 1, ση = 0.5, σε = 2, c = 0.5, θ = θ1, µ1 = 0.75.
The public belief is measured in LLR on the vertical axis. (Note that the belief is not
measured by the probability of state θ1). The period is reported on the horizontal axis.

Figure 4.4: Examples of evolution of beliefs

In Part A, the public belief evolves slowly at first, then changes rapidly in a few periods

and evolves slowly after. The LLR tends to −∞, but this convergence is obviously very

slow.

If agents could observe directly the signals of others, the curve in Part A would be replaced

by a straight line. The sudden change occurs here because of the non-linearity of the

15The update of the public belief from λt to λt+1 is given by Bayes’ rule:

λt+1 = λt + Log

(f(xt −
(

1− F (s∗(µt)− θ1;σε)
)

;ση)

f(xt −
(

1− F (s∗(µt)− θ0;σε)
)

;ση)

)
,

where f is the density function associated to the c.d.f. F .
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information content of individual actions.

In Part B, the changes λt are also sudden. Note that even if the public belief is pessimistic

(with λt < 0 at around t = 100), a string of positive shocks can induce a sudden upward

jump of the public belief.

The model generates symmetrically crashes and booms. If the initial level of pessimism is

low and the true state is high, eventually agents learn about it and the learning process

goes through a phase of rapid changes of beliefs.

4.7 Bibliographical notes

Social learning in a changing world

Throughout this chapter and the next, the state of nature is invariant. This assumption

is made to focus on the learning of a given state and it applies when the state does not

change much during the phase of learning. Assume now, following Moscarini, Ottaviani

and Smith (1998),that the value of θ switches between θ0 and θ1 according to a random

Markov process: the set of states of nature Θ = {θ0, θ1} is fixed but between periods, θ

switches to the other value with probability π.

Suppose that all agents are herding in period t. Does the public belief stay constant as in

the previous sections of this chapter? Agents learn nothing from the observation of others,

but they know that θ evolves randomly. Ignoring the actions from others, the public belief

(probability of state θ1) regresses to the mean, 1/2. Therefore, after a finite number of

periods, the public belief does not dominate the belief of some agents in which case not

all agents herd. The herding by all agents stops. This property is interesting only if π is

neither too small nor too high: if π is very small, the regression to the mean is slow and

the herding behavior may last a long time; if π is sufficiently large, the expectation of the

exogenous change between periods is so large that the learning from others’ actions which

is driven by their information about past values of θ bears no relation with the current

value of θ. No cascade can occur.

Experiments

The BHW model has been experimented in the laboratory by Anderson and Holt (1996),

(1997). Such experiments raise the issues of the actual understanding of Bayesian inference

by people (Holt and Anderson, 1996), and of the power of the tests. A important difficulty

is to separate the rational Bayesian learning from ad hoc rules of decision making after the
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observations of others’ actions (such as counting the number of actions of a given type in

history, or taking into account the last observed action)16. Huck and Oechssler (1998) find

that the tests of Anderson and Holt are not powerful against simple rules. More recent

experimental studies include Çelen and Kariv (2002b), (2002c), or Holt (2001).

16This issue is raised again in empirical studies on the diffusion of innovations (Section ??).
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EXERCISE 4.1. (Probability of a wrong cascade)

Consider the 2× 2× 2 model that we have seen in class (2 states 1 and 0, 2 actions and

symmetric binary signal), where µ1 is the prior probability of the state 1, c ∈ (0, 1) the

cost of investment, and q the precision of the binary signal. There is a large number of

agents who make a decision in a fixed sequence and who observe the actions of past agents.

Assume that µ1 < c and that the difference c − µ1 is small. Let xt ∈ {0, } the action of

agent t. We assume that the true state (unknown by agents) is θ = 0.

1. Represent on a diagram with time (horizontal axis) and the probability of state 1 in

the public information (vertical axis), different examples of trajectories of the public

belief that end in a cascade with investment, which is a “wrong” cascade (since the

state is 0). We want to compute the probability of all these wrong cascades.

2. Assume that θ = 1. What is a wrong cascade?

3. Suppose that x1 = 0. At the end of period 1 and beginning in period 2, what is the

probability to have a wrong cascade?

4. Suppose that x1 = x2 = 1. What is the probability to have eventually a wrong

cascade (with action 0)?

5. Let π0 and π1 be the probabilities to have a wrong cascade before any observation

(at the beginning of period 1) and after the observation x1 = 1. Remember that all

this is conditional on θ = 1. Using the geometric figure in the first question and your

previous answers, show that after the observations x1 = 1 and x2 = 0, the probability

of to end with a wrong cascade is equal to π0.

6. Using your previous answers, find two linear equations between π0 and π1, and solve

for π0.

7. Comment on the relation between π0 and µ.

EXERCISE 4.2. (The model of Banerjee, 1992)

Assume that the state of nature is a real number θ in the interval (0, 1), with a uniform

distribution. There is a countable set of agents, with private signals equal to θ with

probability β > 0, and to a number uniformly distributed on the interval (0, 1) with

probability 1 − β > 0. (In this case the signal is not informative). The agent observes

only the value of his private signal. Each agent t chooses in period t an action xt ∈ (0, 1).

The payoff is 1 if xt = θ, and 0 if xt 6= θ. Agent t observes the history of past actions

and maximizes his expected payoff. If there is more than one action which maximizes his

expected payoff, he chooses one of these actions with equal probability.
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1. Analyze how herds occur in this model.

2. Can a herd arise on a wrong decision?

EXERCISE 4.3. (Action set is bounded below, Chari and Kehoe, 2000)

In the standard model of this chapter, assume that agent t chooses an investment level

xt which can be any real positive number. All agents have a binary private signal with

precision p > 1/2 and a payoff function

u(x, θ) = 2(θ − c)x− x2, with x ≥ 0.

1. Can an informational cascade take place with positive investment? Can there be an

informational cascade with no investment?

2. Show that there is a strictly positive probability of under-investment.

EXERCISE 4.4. (Confounded learning, Smith and Sørensen, 2001)

There is a countable population of agents. A fraction α of this population is of type A

and the others are of type B. In period t, agent t chooses between action 1 and action 0.

There are two states of nature, 1 and 0. The actions’ payoffs are specified in the following

table.

Each agent has a SBS with precision p (on the state θ) which is independent of his type.

Let µ be the belief of an agent about state 1: µ = P (θ = 1).

1. Show that an agent of type A takes action 1 if and only if he has a belief µ such that

µ > (1− µ)uA. When does a type B take action 1?

2. Let λ be the public LLR between state 1 and state 0. Use a figure similar to Figure

?? to represent the evolution of the public belief.

3. Using the figure, illustrate the following cases:

(i) an informational cascade where all agents take action 1.

(ii) an informational cascade where all agents take action 0.

(iii) an informational cascade where agents A take action 1 and agents B take action

0.
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Type A

x = 1 x = 0

θ = 1 1 0

θ = 0 0 uA

Type B

x = 1 x = 0

θ = 1 0 uB

θ = 0 1 0

EXERCISE 4.5. (Discontinuity of the Markov process of social learning)

Take the standard model of Section 4 where the investment cost is 1/2 (with payoff

(E[θ]−1/2)x), and each agent has a SBS with precision drawn from the uniform distribution

on (1/2, 1). Each agent knows his precision, but that precision is not observable by others.

1. Determine explicitly the Markov process defined by (4.3) when θ = 0.

2. Show that 0 is the unique fixed point in µ if θ = 0.

3. Show that B(·, 1) is not continuous in the first argument at the fixed point µ = 0,

and that therefore the partial derivative of B with respect to the second argument

does not exist at the fixed point.

4. From the previous question, show that the condition of Theorem 4 in Smith and

Sørensen (2001) does not apply to the standard model of social learning with discrete

actions.

5. Assume that in each period, with probability α > 0, the agent is a noise agent who

invests with probability 1/2. With probability 1−α, the agent is of the rational type

described before. The type of the agent is not publicly observable. Is your answer to

Question 3 modified?

EXERCISE 4.6. (“Hot Money”, Chari and Kehoe, 2001)

The exercise shows how the BHW model can be applied to a case where the payoff of

investment depends on the actions of others and on the state of nature.

Consider a small open economy in which a government borrows from foreign lenders to

fund a project. There are M risk-neutral agents who are ordered in an exogenous sequence.

Agent i can make in period i a loan of size 1. The project is funded if there are N agents

who make the investment. There are two states for the developing country, θ = 0 or 1.

Each loan pays a return R if the project is funded, after M periods, and the state of the

economy is good (θ = 1). Each agent has a symmetric binary signal with precision q about
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θ. If an agent does not make a loan he earns the market return r. Each agent i observes

the actions of agents j with j < i.

Define µ∗ = r/R. Nature’s probability of state 1 is µ0. By assumption,

1− q
q

µ0

1− µ0
<

µ∗

1− µ∗
<

µ0

1− µ0
.

1. Assume N = 3 and M = 5. Analyze the equilibrium. (Show that if there is no

herding, agents with a good signal invest and that agents with a bad signal do not

invest. Note that the sequence (0, 1, 0, 1, 0) does not lead to funding).

2. Show the same property for N = 2M − 1 for any M .
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4.8 Appendix (proofs)
Proposition 4.4

Let µ and µ̄ be the lower and upper bounds of the distribution of beliefs in period 1. We

assume that if µ < µ < µ̄, then F θ11 (µ) < F θ01 (µ). This property holds for any period. By

the Martingale Convergence Theorem, λt converges to some value λ∞ almost surely. By

contradiction, assume λ∞ ∈ (γ − δ, γ + δ). Since F θ1t (λ∞) < F θ0t (λ∞), there exist ε > 0

and α > 0 such that if |λ− λ∞| < ε, then

Log
(1− F θ1t (λ)

1− F θ0t (λ)

)
> α, and Log

(F θ1t (λ)

F θ0t (λ)

)
< α.

Since λt → λ∞, there is T such that if t > T , |λt − λ∞| < α/3. Take t > T . If xt = 1,

then by Bayes’ rule in (4.2), λt+1 > λt +α, which is impossible since λt − λt+1 < 2α/3. A

similar contradiction arises if xt = 0. �

Proposition 4.9

An agent chooses action 0 (he does not invest) if and only if his belief µ̃ is smaller than

1/2, i.e. if his private belief is smaller than 1 − µ, where µ is the public belief. In state

θ, the probability of the event x = 0 is F θ(1 − µ). Since F 1(µ) < F 0(µ), the observation

x = 0 is more likely in state 0. It is “bad news” and induces the lowest possible public

belief at the end of the period. The sequence of public beliefs in a herd with no investment

satisfies

µt+1 =

(
1−

∫ 1

1−µt
f1(ν)dν

)
µt(

1−
∫ 1

1−µt
f1(ν)dν

)
µt +

(
1−

∫ 1

1−µt
f0(ν)dν

)
(1− µt)

. (4.9)

Taking an approximation for small µt,

µt+1 ≈

(
1− f1(1)µt

)
µt(

1− f1(1)µt

)
µt +

(
1− f0(1)µt

)
(1− µt)

.

Using the condition of the proposition for the initial beliefs,

µt+1 − µt
µt

≈ (f0(1)− f1(1))µt = −φ(0)µt.

For the second part of the result, we use the previous approximation and consider the

sequence {zk} defined by

zk+1 = zk − az2k. (4.10)

This sequence tends to 0 like 1/k. Let yk be such that zk = (1 + yk)/(ak). By substitution

in (4.10),

1 + yk+1 = (k + 1)
(1 + yk

k
− (1 + yk)2

k2

)
.
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A straightforward manipulation18 shows that yk+1 < yk. Hence zk tends to 0 like 1/k when

k →∞.�

Proposition 4.10

The evolution of the public belief is determined by Bayes’ rule in LLR:

λt+1 = λt + ζt, with ζt = Log(µ̂t/(1− µ̂t)) (4.11)

Since θ = 0, the random variable ζt has a bounded variance and a strictly negative mean,

−γ̄, such that

γ̄ = −
∫ 1

0

Log
( ν

1− ν

)
f0(ν)dν > 0. (4.12)

Choose γ such that 0 < γ < γ̄. Let νt = λt + γt. We have νt+1 = νt + ζ ′t with E[ζ ′t] =

−(γ̄ − γ) < 0. Therefore, νt = ν0 +
∑t−1
k=1 ζ

′
k where

∑n
k=1 ζ

′
k/n tends to −(γ̄ − γ) < 0

almost surely. Hence,
∑t−1
k=1 ζ

′
k tends to −∞ almost surely. Therefore, νt tends to −∞ and

eνt tends to 0, almost surely. By definition of νt, µt ≤ e−γteνt .

�

Theorem 4.3

A herd takes place after period t if xt+k = 0 for any k ≥ 1. The complement of this event

is contained in the union of the events Ak where Ak is defined as the herd’s stop in period

t+ k with the history (xt+1 = 0, . . . , xt+k−1 = 0, xt+k = 1). The probability of that event,

conditional on the state θ = 0, is

P (Ak) = (1− πt) . . . (1− πt+k−1)πt+k ≤ πt+k,

with πt+k =

∫ 1

1−µ
t+k

f0(ν)dν,

and where µ
t+k

is the path of beliefs generated in a herd with no investment (Proposition

4.9). Using the proportional property (??), f0(ν) ≈ νf1(1) for ν ≈ 0. Therefore, when µt

is near 0,

πt+k ≈
f1(1)

2
µ2
t+k
≈ a

(t+ k)2
for some constant a.

The probability of the union of the Ak is smaller than the sum of the probabilities P (Ak)

which is of the order of
∑
k≥0 1/(t + k)2, i.e., of the order of 1/t. Hence, the probability

that a herd is broken once after date t tends to 0 like 1/t.

18

1 + yk+1 = 1 +
1

k
−

1

k
−

1

k2
+ yk +

yk

k
− 2yk

k + 1

k2
− y2k

k + 1

k2
< 1 + yk.



79

The key step here is not that the belief µt tends to zero at a constant (strictly positive)

rate, as alleged in Smith and Sørensen (2001), but that the probability that a contrarian

agent shows up at date t tends to 0 like 1/t2. The square term arises because of condition

(4.5): the integral of beliefs above 1−µ is of the order of the area of a triangle proportional

to µ if µ→ 0.

Let C be the set of histories in which the public belief µt tends to zero. The complement of

C is the intersection of the sets Am = ∪k≥mAk for all m. From the previous computation,

P (Am) tends to zero like 1/m and the sequence Am is monotone decreasing. It follows

that a herd begins almost surely. Furthermore, the probability that µt is different from

the sequence of most pessimistic beliefs after date t, µ
t

= B(µ
t−1, 0), tends to 0 like 1/t.

�

4.8.1 A model of learning with two types of agents

In each period, agent t receives his signal st in a sequence of two independent steps. First,

the precision qt of his private signal takes either the value q̄ with probability π, or the value

q with probability 1− π. By convention, q̄ > q. Second, the value of the signal is realized

randomly and such that P (st = 1 | θ = j) = qt. Each agent t observes the realization

(qt, st) which is not observable by others. The parameters q, q̄ and π and the signaling

process are known by all agents. In order to facilitate the discussion, the fraction π of the

agents endowed with a signal of high precision is assumed to be small. In any period, the

model is in one of three possible regimes which depend on the public belief λ.

i A. In the first regime, regime A, no agent herds. Define the values λ∗A and λ∗∗A such that
λ∗A = γ − Log

( q
1− q

)
,

λ∗∗A = γ + Log
( q

1− q
)
,

with γ = Log
( c

1− c

)
.

If λ∗A < λt ≤ λ∗∗A , any agent with low precision invests if and only if the signal is good.

An agent with high precision follows the same strategy a fortiori. Since no one herds, the

observation of xt is equivalent to the observation of an agent who does not herd and has

a signal with precision equal to the average precision of signals in the population. The

updating of the public belief is therefore19

λt+1 =

{
λt + α, if xt = 1,

λt − α, if xt = 0,
with α = Log

( (1− π)q + πq̄

(1− π)(1− q) + π(1− q̄)

)
.

19To find these expressions, note that
P (θ = 1|x = 1)

P (θ = 0|x = 1)
=
P (θ = 1)

P (θ = 0)

P (x = 1|θ = 1)

P (x = 1|θ = 0)
.
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i B. In the second regime, regime B, only the agents with a higher precision do not herd.

The regime is bounded by the critical values λ∗B and λ∗∗B with
λ∗B = γ − Log

(
q

1− q
)
,

λ∗∗B = γ + Log
(

q
1− q

)
.

Since q < q̄, one verifies that λ∗B < λ∗A < γ < λ∗∗A < λ∗∗B .

i This regime is divided in two sub-cases.

1. If λ∗∗A < µt ≤ λ∗∗B , the agents with lower precision herd and invest. Agents with high

precision do not herd and reveal their signal only if that signal is bad. Bayes’ rule takes

the form

λt+1 =


λt + β, with β = Log

(
1− π + πq̄

1− π + π(1− q̄)
)

if xt = 1,

λt − Log
(

q̄
1− q̄

)
, if xt = 0.

The LLR changes by a larger amount when the action x = 0 is taken.

2. If λ∗B < λt ≤ λ∗A, the low precision agents do not invest and Bayes’ rule is the symmetric

of 1.:

λt+1 =

λt + Log
(

q̄
1− q̄

)
, if xt = 1,

λt − β, if xt = 0.

One verifies that the change of the belief is much stronger when the action against the

herd is taken.

i C. In the third regime, regime C, all agents herd. Either λ ≤ λ∗B or λ > λ∗∗B .

An example of evolution of the public belief is represented in Figure 4 which is a special

case of Figure ??. It illustrates some properties of the social learning with heterogeneous

agents.

In the regime with moderate optimism where λt ∈ (λ∗∗A , λ
∗∗
B ], investment generates a rel-

atively small increase of the belief. On the other hand, a zero investment generates a

significant jump down of the belief. No matter how high λt may be, after an observation

of no investment (xt = 0), λt+1 must be smaller than Log(c/(1− c)). Following such “bad

news”, the new regime may be of type A or B. Note also that the continuation of the

learning phase does not depend on alternating private signals as in the simple model with

identical agents.
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There are two precisions of the binary signals. If the public LLR is outside of the band
[λ∗A, λ

∗∗
A ], the agent with the lower precision herds. Since there are fewer agents with higher

precision, who do not herd, the evolution of the belief in the herd is slow. If the herd is
broken by a black sheep, the public belief jumps.
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Chapter 5

Delays

Does the waiting game end with a bang or a whimper?

Each agent chooses when to invest (if at all) and observes the number of

investments by others in each period. That number provides a signal on

the private information of other agents about the state of nature. In an

equilibrium individual strategies are determined by the trade-off between

the opportunity cost of delay and the value of the informationthat is gained

from more observations. The informational externality may generate strate-

gic substitutabilities and complementarities. Multiple equilibria may ap-

pear which exhibit a rush of activity or delays, and generate a low or high

amount of information. The convergence of beliefs and the occurrence of

herds are analyzed under a variety of assumptions about the boundedness

of the distribution of private beliefs, the number of agents, the existence

of an observation noise, the length of the periods, and the discreteness of

investment decisions. The framework extends the standard cascade model

of BHW.

In 1993, the US economy was in a shaky recovery from the previous recession. The optimism

after some good news was dampened by a few bad news, raised again by other news, and so

on. In the trough of the business cycle, each agent is waiting for some “good news” about

an upswing. What kind of news? Some count occupancy rates in the first class section

of airplanes. Others weigh the newspapers to evaluate the volume of ads. Housing starts,

83
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expenditures on durables are standard indicators to watch. The news are the actions of

other agents. Everyone could be waiting because everyone is waiting in an “economics of

wait and see” (Sylvia Nasar, 1993).

In order to focus on the problem of how a recession may be protracted by the waiting game

for more information, we have to take a step back from the intricacies of the real world and

the numerous channels of information. In this chapter, agents learn from the observation

of the choices of action taken by others but not from the payoffs of these actions. This

assumption is made to simplify the analysis. It is also justified in the context of the business

cycle where lags between the initiation of an investment process and its payoff can be long

(at least a year or two). The structure of the model is thus the same as in Chapter 3 but

each agent can make his investment in any period: he has one option to make a fixed size

investment. The central issue is when to exercise the option, if at all.

When the value of the investment is strictly positive, delay is costly because the present

value of the payoff is reduced by the discount factor. The opportunity cost of delay for

one period is the product of the net payoff of investment and the discount rate. Delay

enables an agent to observe others’ actions and infer some information on the state of

nature. These observations may generate good or bad news. Define the bad news as an

event such that the agent regrets ex post an irreversible investment which he has made,

and would pay a price to undo it (if it were possible). The expected value of this payment

in the next period after observing the current period’s aggregate investment, is the option

value of delay. The key issue which commands all results in this chapter is the trade-off,

in equilibrium, between the opportunity cost and the option value of delay.

Consider the model of Chapter *** with two states of nature and assume that agents can

choose the timing of their investment. If all beliefs (probability of the good state) are

below the cost of investment, the only equilibrium is with no investment and there is a

herd as in the BHW model. If all beliefs are higher than the cost of investment, there

is an equilibrium in which all agents invest with no delay. This behavior is like a herd

with investment in the BHW model and it is an equilibrium since nothing is learned by

delaying. The herds in the BHW model with exogenous timing are equilibria in the model

with endogenous timing.

However, the model with endogenous timing may have other equilibria with an arbitrage

between the option value and the opportunity cost of delay. For a general distribution

of private beliefs, the margin of arbitrage may occur at different points of the distribu-

tion. Generically, there are at least two equilibrium points, one in the upper tail of the

distribution and another in the lower tail. In the first equilibrium, only the most opti-
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mistic agents invest; in the second, only the most pessimistic delay. The two equilibria in

which most agents delay or rush, respectively, are not symmetric because of the arbitrage

mechanism. In the first, the information conveyed by the aggregate activity must be large

in order to keep the agents at the high margin of beliefs (with a high opportunity cost)

from investing. In the second, both the opportunity cost of relatively pessimistic agents

and the information conveyed by the aggregate activity are low. In the particular case of

a bounded distribution, the rush where few agents delay may be replaced by the corner

solution where no agent delays.

Multiple equilibria are evidence of strategic complementarities (Cooper and John, 1988).

These complementarities arise here only because of informational externalities. There is no

payoff externality. As in other models with strategic complementarities, multiple equilibria

may provide a support for sudden switches of regime with large fluctuations of economic

activity (Chamley, 1999).

The main ideas of the chapter are presented in Section 5 with a simple two-agent model

based on Chamley and Gale (1994). The unique equilibrium is computed explicitly.

The general model with heterogeneous beliefs is presented in Section 5. It is the full

extension of the BHW model to endogenous timing. Heterogeneous beliefs is a plausible

assumption per se and it generates non random strategies. The model has a number of

players independent of the state of nature and generalizes Chamley and Gale (1994) who

assume identical beliefs. In the model with identical beliefs, the endowment of an option

is the private signal and the number of players thus depends on the state of nature. This

case is particularly relevant when the number of players is large.

When private beliefs are not identical, the analysis of the symmetric sub-game perfect

Bayesian equilibria (PBE) turns out to be simple due to an intuitive property which is

related to the arbitrage condition: an agent never invests before another who is more

optimistic. Therefore, the agent with the highest belief among those who delay must be

the “first” to invest in the next period if there is any investment in that period (since he

has the highest belief then). All equilibria where the arbitrage condition applies can be

described as sequences of two-period equilibria.

Some properties of the model are presented in Section ??. Extensions will be discussed in

the next chapter. When the public belief is a range (µ∗, µ∗∗), the level of investment in

each period is a random variable and the probability of no investment is strictly positive.

If there is no investment, the game stops with a herd and no investment takes place in any

subsequent period. Hence the game lasts a number of periods which is at most equal to
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the number of players in the game. If the period length tends to zero, the game ends in

a vanishingly short time. Since an agent can always delay until the end of the game, and

the cost of delay tends to zero with the length of the period, the information generated by

the game also tends to zero with the period length: another effect of arbitrage.

The game is illustrated in Section ?? by an example with two agents with normally dis-

tributed private signals (unbounded), which highlights the mechanism of strategic comple-

mentarity. When the time period is sufficiently short, there cannot be multiple equilibria,

under some specific conditions. The presence of time lags between observation and action

is thus necessary for the existence of multiple equilibria.

The case of a large number of agents (Section ??) is interesting and illustrates the power

of the arbitrage argument. When the number of agents tends to infinity, the distribution

of the levels of investment tends to a Poisson distribution with a parameter which depends

on the public belief, and on the discount rate. This implies that as long as the public belief

µ is in the interval (µ∗, µ∗∗), the level of investment is a random variable which is small

compared to the number of agents. The public belief evolves randomly until it exits the

interval: if µ < µ∗, investment goes from a small random amount to nil forever; if µ > µ∗∗,

all remaining agents invest with no further delay. The game ends with a whimper or a

bang.

The Appendix presents two extensions of the model which show the robustness of the

results: (i) with a very large number of agents (a continuum) and an observation noise,

there are multiple equilibria as in the model with two agents; the equilibrium with high

aggregate activity generates an amount of information which is significantly smaller than

the equilibrium with low activity and delays; (ii) multiple equilibria also appear when

individual investments are non-discrete.

5.1 The simplest model

There are two players and time is divided in periods. There are two states of nature,

The simple model

is another example

of how to start the

analysis of general

issues as presented

in the introduction.

One should stylize

as much as possible.

The investigation

of robustness and

extensions will be

easier once the base

model is firmly understood.

θ ∈ {0, 1}. In state 0, only one of two players (chosen randomly with equal probability)

has one option to make an investment of a fixed size in any period. In state 1, both players

have one option. To have an option is private information and is not observable by the

other agent. Here, the private signal of the agent is the option. The number of players

in the game depends on the state of nature1. As an illustration, the opportunities for

1One could also think that the cost of investment is very high for one or zero agent thus preventing the
investment. Recall that in the BHW model, the number of players does not depend on the state of nature.
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productive investment may be more numerous when the state of the economy is good.

For an agent with an option, the payoff of investment in period t is

U = δt−1(E[θ]− c), with 0 < c < 1,

where E is the expectation conditional on the information of the agent and δ is the discount

factor, 0 < δ < 1.

All agents in the game have the same private information (their own option), and observe

the same history. They have the same belief (probability of state θ = 1). Let µt be the

belief of an agent at the beginning of period t. The belief in the first period is given2 and

satisfies the next assumption in order to avoid trivialities.

Assumption5.1. 0 < µ− c < δµ(1− c).

Agents play a game in each period and the strategy of an agent is his probability of

investment. We look for a symmetric perfect Bayesian equilibrium (PBE): each agent

knows the strategy z of the other agent (it is the same as his own); he anticipates rationally

to receive a random amount of information at the end of each period and that the subgame

which begins next period with a belief updated by Bayes’ rule has an equilibrium.

Let z be the probability of investment in the first period by an agent with an option. Such

an agent will be called a player. We prove that there is a unique symmetric equilibrium

with 0 < z < 1.

• z = 1 cannot be an equilibrium. If z = 1, both agents “come out” with probability

one, the number of players and therefore the state is revealed perfectly at the end of

the period. If an agent deviates from the strategy z = 1 and delays (with z = 0), he

can invest in the second period if and only if the true state is good. The expected

payoff of this delay strategy is δµ(1−c): in the first period, the good state is revealed

with probability µ in which case he earns 1−c. The discount factor is applied because

the investment is made in the second period. The payoff of no delay is µ−c, and it is

smaller by Assumption 5.1. The strategy z = 1 cannot define a PBE. Note that the

interpretation of the right-hand side inequality is now clear: the payoff of investment,

µ− c, should be smaller than the payoff of delay with perfect information in the next

period.

2One could assume that agents know that nature chooses state θ = 1 with probability µ0. In this case,
by Bayes’ rule, µ = 2µ0/(1 + µ0).
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• z = 0 cannot be an equilibrium either. The argument is a bit more involved and

proceeds by contradiction. If z = 0, there is no investment in the first period for

any state, no information and therefore the same game holds at the beginning of

period 2, with the same belief µ. Indefinite delay cannot be an equilibrium strategy

because it would generate a zero payoff which is strictly smaller than the payoff of

no delay, µ − c > 0 (Assumption 5.1). Let T be the first period in which there is

some investment with positive probability. Since z = 0, T ≥ 2. In period T , the

current value of the payoff of investment is µ − c > 0 because nothing has been

learned before. The present value of this payoff is strictly smaller than the payoff of

immediate investment, µ − c. Hence, T ≥ 2 is impossible and z = 0 cannot be an

equilibrium strategy.

The necessity of investment in every period

We have shown that in an equilibrium, agents randomize with 0 < z < 1. The level of total

investment is a random variable. We will see that the higher the level of investment, the

higher the updated belief after the observation of the investment. In this simple model,

one investment is sufficient to reveal to the other player (if there is one), that the state is

good. No investment in the first period is bad news. Would anyone invest in the second

period after this bad news? The answer is no, and the argument is interesting.

If anyone delays in the first period and expects to invest in the second period after the

worst possible news (zero investment), his payoff in the subgame of period 2 is the same

as that of investing for sure in period 2. (He invests if he observes one investment). That

payoff, δ(µ− c), is inferior to the payoff of immediate investment because of the discount.

The player cannot invest after observing no investment. Hence, if there is no investment

in the first period, there is no investment in any period after. We will see in this chapter

that this property applies in more general models. The argument shows that: (i) if there is

no investment, the ex post belief of any agent must be smaller than the cost of investment

c; (ii) since agents randomize in the first period, the event of no investment has a positive

probability. There is a positive probability of an incorrect herd.

Using the previous argument, we can compute the payoff of delay. If an agent delays,

he invests in period 2 if and only if he sees an investment (by the other agent) in period

1, in which case he is sure that the state is good and his second period payoff is 1 − c.
The probability of observing an investment in the first period is µz, (the product of the

probability that there is another agent and that he invests). The payoff of delay (computed

at the time of the decision) is therefore δµz(1− c).

Arbitrage and the existence of a unique PBE
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Since 0 < z < 1, agents randomize their investment in the first period and are indifferent

between no delay and delay. This arbitrage condition between the value of investment and

the value of the option to invest is essential in this chapter and is defined by

µ− c = δµz(1− c). (5.1)

By Assumption 5.1, this equation in z has a unique solution in the interval (0, 1). The

analysis of the solution may be summarized as follows: first, the arbitrage condition is

necessary if a PBE exists; second, the existence of a unique PBE follows from the arbitrage

condition by construction of the equilibrium strategy. This method will be used in the

general model.

Interpretation of the arbitrage condition

A simple manipulation shows that the arbitrage equation can be restated as

1− δ
δ

(µ− c) =
(
µz(1− c)− (µ− c)

)
= P (x = 0|µ)

(
c− P (θ1|x = 0, µ)

) (5.2)

where P (x = 0|µ) is the probability for an agent with belief µ that the other agent does not

invest in period 1, i.e. the probability of bad news. The term µ− c has the dimension of a

stock, as the net present value of an investment. The left-hand side is the opportunity cost

of delay: it is the value of investment multiplied by the interest rate between consecutive

periods. (If δ = 1/(1 + r), then (1 − δ)/δ = r). The right-hand side will be called

the information value of delay. It provides the measurement of the value of information

obtained from a delay. To interpret it, note that the term P (θ1|x = 0, µ) is the value of an

investment after the bad news in the first period. If an agent could reverse his decision to

invest in the first period (and get the cost back), the associated value of this action would

be c− P (θ1|x = 0, µ). The option value of delay is the expected “regret value” of undoing

the investment when the agent wishes he could do so. The next properties follow from the

arbitrage condition.

In an equilibrium,

the cost of delay

is equal to the information

value of delay---the

expected regret value.

This arbitrage is

the linchpin of all

equilibria in this

chapter.

Information and time discount

The power of the signal which is obtained by delay increases with the probability of in-

vestment z in the strategy. If z = 0, there is no information. If z = 1, there is perfect

information.

The discount factor is related to the length of the period, τ , by δ = e−ρτ , with ρ the

discount rate per unit of time. If δ varies, the arbitrage equation (5.1) shows that the

product δz is constant. A shorter period (higher δ) means that the equilibrium must
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generate less information at the end of the first period: the opportunity cost of delay is

smaller and by arbitrage, the information value of delay decreases. Since this information

varies with z, the value of z decreases. From Assumption 5.1, 0 < z < 1 only if δ is in the

interval [δ∗, 1), with δ∗ = (µ− c)/(µ(1− c)).

If δ → δ∗, then z → 1. If δ ≤ δ∗, then z = 1 and the state is revealed at the end of the

first period. Because this information comes late (with a low δ), agents do not wait for it.

If δ → 1 and the period length is vanishingly short, information comes in quickly but there

is a positive probability that it is wrong. The equilibrium strategy z tends to δ∗. If the

state is good, with probability (1−δ∗)2 > 0 both agents delay and end up thinking that the

probability of the good state is smaller than c and that investment is not profitable. There

is a trade-off between the period length and the quality of information which is revealed

by the observation of others. This trade-off is generated by the arbitrage condition. The

opportunity cost of delay is smaller if the period length is smaller. Hence the value of the

information gained by delay must also be smaller.

A remarkable property is that the waiting game lasts one period, independently of the

discount factor. If the period is vanishingly short, the game ends in a vanishingly short time,

but the amount of information which is released is also vanishingly short. In this simple

model with identical players, the value of the game does not depend on the endogenous

information which is generated in the game since it is equal to the payoff of immediate

investment. However, when agents have different private informations, the length of the

period affects welfare (as shown in the next chapter).

Investment level and optimism

In the arbitrage equation (5.1), the probability of investment and the expected value of

investment are increasing functions of the belief µ: a higher µ entails a higher opportunity

cost and by arbitrage a higher option value of delay. The higher information requires that

players “come out of the wood” with a higher probability z. This mechanism is different

from the arbitrage mechanism in the q-theory of Tobin which operates on the margin

between the financial value µ and an adjustment cost.

Observation noise and investment

Suppose that the investment of an agent is observed with a noise: if an investment is made,

the other agent sees it with probability 1−γ and sees nothing with probability γ, (γ small).

The arbitrage operates beautifully: the information for a delaying agent is unaffected by

the noise because it must be equal to the opportunity cost which is independent of the
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noise. Agents compensate for the noise in the equilibrium by increasing the probability of

investment (Exercise 5.2).

Large number of agents

Suppose that in the good state there are N agents with an option to invest and that in

the bad state there is only one agent with such an option. These values are chosen to

simplify the game: one investment reveals that the state is good and no investment stops

the game. For any N which can be arbitrarily large, the game lasts only one period, in

equilibrium, and the probability of investment of each agent in the first period tends to zero

if N →∞. Furthermore, the probability of no investment, conditional on the good state,

tends to a positive number. The intuition is simple. If the probability of investment by a

player remains higher than some value α > 0, its action (investment or no investment) is

an signal on the state with a non vanishing precision. If N →∞, delay provides a sample

of observations of arbitrarily large size and perfect information asymptotically. This is

impossible because it would contradict the arbitrage with the opportunity cost of delay

which is independent of N . The equilibrium is analyzed in Exercise 5.4.

Strategic substitutability

Suppose an agent increases his probability of investment from an equilibrium value z. The

option value (in the right-hand side of (5.1) or (5.2)) increases. Delay becomes strictly

better and the optimal response is to reduce the probability of investment to zero: there

is strategic substitutability between agents. In a more general model (next section) this

property is not satisfied and multiple equilibria may arise.

Non symmetric equilibrium

Assume there are two agents, A and B, who can see each other but cannot see whether

the other has an option to invest. It is common knowledge that agent B always delays in

the first period and does not invest ever if he sees no investment in the first period.

Agent A does not get any information by delaying: his optimal strategy is to invest with no

delay, if he has an option. Given this strategy of agent A, agent B gets perfect information

at the end of period 1 and his strategy is optimal. The equilibrium generates perfect

information after one period. Furthermore, if the state is good, both agents invest. If the

period length is vanishingly short, the value of the game is µ− c for agent A, and µ(1− c)
for agent B which is strictly higher than in the symmetric equilibrium. If agents could

“allocate the asymmetry” randomly before knowing whether they have an option, they

would be better off ex ante.
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5.2 A general model with heterogeneous beliefs

There are N agents each with one option to make one irreversible investment of a fixed size.

Time is divided in periods and the payoff of exercising an option in period t is δt−1(θ− c)
with δ the discount factor, 0 < δ ≤ 1, and c the cost of investment, 0 < c < 1. The payoff

from never investing is zero. Investment can be interpreted as an irreversible switch from

one activity to another3.

The rest of the model is the same as in the beginning of Section 4. The productivity

parameter θ which is not observable is set randomly by nature once and for all before the

first period and takes one of two values: θ0 < θ1. Without loss of generality, these values

are normalized at θ1 = 1 for the “good” state, and θ0 = 0 for the “bad” state. As in Section

??, each agent is endowed at the beginning of time with a private belief which is drawn

from a distribution with c.d.f. F θ1 (µ) depending on the state of nature θ. For simplicity

and without loss of generality, it will be assumed that the cumulative distribution functions

have derivatives4. The support of the distribution of beliefs is an interval (µ
1
, µ̄1) where

the bounds may be infinite and are independent of θ. The densities of private beliefs satisfy

the Proportional Property (??). Hence, the cumulative distribution functions satisfy the

property of first order stochastic dominance: for any µ ∈ (µ
1
, µ̄1), F 1

1 (µ) < F 0
1 (µ).

After the beginning of time, learning is endogenous. In period t, an agent knows his private

belief and the history ht = (x1, . . . , xt−1), where xk is the number of investments in period

k.

The only decision variable of an agent is the period in which he invests. (This period is

postponed to infinity if he never invests). We will consider only symmetric equilibria. A

strategy in period t is defined by the investment set It(ht) of beliefs of all investing agents:

an agent with belief µt in period t invests in that period (assuming he still has an option)

if and only if µt ∈ It(ht). In an equilibrium, the set of agents which are indifferent between

investment and delay will be of measure zero and is ignored. Agents will not use random

strategies.

As in the previous chapters, Bayesian agents use the observation of the number of invest-

ments, xt, to update the distribution of beliefs F θt into the distribution in the next period

F θt+1. Each agent (who has an option) chooses a strategy which maximizes his expected

payoff, given his information and the equilibrium strategy of all agents for any future date

3The case where the switch involves the termination of an investment process (as in Caplin and Leahy,

1994) is isomorphic.

4The characterization of equilibria with atomistic distributions is more technical since equilibrium strate-
gies may be random (e.g., Chamley and Gale, 1994).



93

and future history. For any period t and history ht, each agent computes the value of

his option if he delays and plays in the subgame which begins in the next period t + 1.

Delaying is optimal if and only if that value is at least equal5 to the payoff of investing in

period t. All equilibria analyzed here are symmetric subgame perfect Bayesian equilibria

(PBE).

As in the model with exogenous timing (Section ??), a belief can be expressed by the

Log likelihood ratio (LLR) between the two states, λ = Log(µ/(1 − µ)) which is updated

between periods t and t+ 1 by Bayes’ rule

λt+1 = λt + ζt, where ζt = Log
(P (xt | It, θ1)

P (xt | It, θ0)

)
,

and P (xt | It, θ) =
nt!

xt!(nt − xt)!
πxt

θ (1− πθ)nt−xt , πθ = P (λt ∈ It | θ).
(5.3)

All agents update their individual LLR by adding the same value ζt. Given a state θ, the

distribution of beliefs measured in LLRs in period t is generated by a translation of the

initial distribution by a random variable ζt.

5.2.1 Characterization and existence of equilibria

The incentive for delay is to get more information from the observation of others. Agents

who are relatively more optimistic have more to loose and less to gain from delaying: the

discount factor applies to a relatively high expected payoff while the probability of bad news

to be learned after a delay is relatively small. This fundamental property of the model

restricts the equilibrium strategies to the class of monotone strategies. By definition, an

agent with a monotone strategy in period t invests if and only if his belief µt is greater than

some value µ∗t . The next result, which is proven in the appendix, shows that equilibrium

strategies must be monotone.

LEMMA 5.1. (monotone strategies) In any arbitrary period t of a PBE, if the payoff

of delay for an agent with belief µt is at least equal to the payoff of no delay, any agent with

belief µ′t < µt strictly prefers to delay. Equilibrium strategies are monotone and defined by

a value µ∗t : agents who delay in period t have a belief µt ≤ µ∗t .

Until the end of the chapter, strategies will be defined by their minimum belief for invest-

ment, µ∗t . Since no agent would invest with a negative payoff, µ∗t ≥ c. The support of the

distribution of µ in period t is denoted by (µ
t
, µ̄t). If all agents delay in period t, one can

define the equilibrium strategy as µ∗t = µ̄t.

5By assumption, an indifferent agent delays. This tie breaking rule applies with probability zero and is
inconsequential.
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The existence of a non trivial equilibrium in the subgame which begins in period t depends

on the payoff of the most optimistic agent6, µ̄t− c. First, if µ̄t ≤ c, no agent has a positive

payoff and there is no investment whatever the state θ. Nothing is learned in period t (with

probability one), or in any period after. The game stops. Second, if µ̄t > c, the next result

(which parallels a property for identical beliefs in Chamley and Gale, 1994) shows that in

a PBE, the probability of some investment is strictly positive. The intuition of the proof,

which is given in the appendix, begins with the remark that a permanent delay is not

optimal for agents with beliefs strictly greater than c (since it would yield a payoff of zero).

Let T be the first period after t in which some agents invest with positive probability. If

T > t, the current value of their payoff would be the same as in period t (nothing is learned

between t and T ). Because of the discount factor δ < 1, the present value of delay would

be strictly smaller than immediate investment which is a contradiction.

LEMMA 5.2. (condition for positive investment) In any period t of a PBE:

(i) if c < µ̄t (the cost of investment is below the upper-bound of beliefs), then

any equilibrium strategy µ∗t is such that c ≤ µ∗t < µ̄t; if there is at least

one remaining player, the probability of at least one investment in period t is

strictly positive;

(ii) if µ̄t ≤ c (the cost of investment is above the upper-bound of beliefs), then

with probability one there is no investment for any period τ ≥ t.

The decision to invest is a decision whether to delay or not. In evaluating the payoff of

delay, an agent should take into account the strategies of the other agents in all future

periods. This could be in general a very difficult exercise. Fortunately, the property of

monotone strategies simplifies greatly the structure of equilibria. A key step is the next

result which shows that any equilibrium is a sequence of two-period equilibria each of which

can be determined separately.

LEMMA 5.3. (one-step property ) If the equilibrium strategy µ∗t of a PBE in period

t is an interior solution (µ
t
< µ∗t < µ̄t), then an agent with belief µ∗t is indifferent between

investing in period t and delaying to make a final decision (investing or not) in period t+1.

Proof Since the Bayesian updating rules are continuous in µ, the payoffs of immediate

investment and of delay for any agent are continuous functions of his belief µ. Therefore, an

agent with belief µ∗t in period t is indifferent between investment and delay. By definition

6Recall that such an agent may not actually exist in the realized distribution of beliefs.
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of µ∗t , if he delays he has the highest level of belief among all players remaining in the

game in period t+ 1, i.e., his belief is µ̄t+1. In period t+ 1 there are two possibilities: (i)

if µ̄t+1 > c, then from Lemma 5.2, µ∗t+1 < µ̄t+1 and a player with belief µ̄t+1 invests in

period t + 1; (ii) if µ̄t+1 ≤ c, then from Lemma 5.2 again, nothing is learned after period

t; a player with belief µ̄t+1 may invest (if µ̄t+1 = c), but his payoff is the same as that of

delaying for ever. �

In an equilibrium, an agent with belief µ compares the payoff of immediate investment, µ−c,
with that of delay for exactly one period, W (µ, µ∗), where µ∗ is the strategy of others. (For

simplicity we omit the time subscript and other arguments such as the number of players

and the c.d.f. F θ). From Lemma 5.3 and the Bayesian formulae (5.3) with πθ = 1−F θ(µ∗),
the function W is well defined. An interior equilibrium strategy must be solution of the

arbitrage equation between the payoff of immediate investment and of delay:

µ∗ − c = W (µ∗, µ∗).

The next result shows that this equation has a solution if the cost c is interior to the

support of the distribution of beliefs.

LEMMA 5.4. In any period, if the cost c is in the support of the distribution of beliefs,

i.e., µ < c < µ̄, then there exists µ∗ > c such that µ∗− c = W (µ∗, µ∗): an agent with belief

µ∗ is indifferent between investment and delay.

Proof Choose µ∗ = µ̄: there is no investment and therefore no learning during the period.

Hence, W (µ̄, µ̄) = (1 − δ)(µ̄ − c) < µ̄ − c. Choose now µ∗ = c. With strictly positive

probability, an agent with belief c observes n − 1 investments in which case his belief is

higher (n is the number of remaining players). Hence, W (c, c) > 0. Since the function W

is continuous, the equation µ∗ − c = W (µ∗, µ∗) has at least one solution in the interval

(c, µ̄). �

The previous lemmata provide characterizations of equilibria (PBE). These characteriza-

tions enable us to construct all PBE by forward induction and to show existence.

THEOREM 5.1. In any period t where the support of private beliefs is the interval

(µ
t
, µ̄t):

(i) if µ̄t ≤ c, then there is a unique PBE with no agent investing in period t or after;

(ii) if µ
t
< c < µ̄t, then there is at least one PBE with strategy µ∗t ∈ (c, µ̄t);

(iii) if c ≤ µ
t
, then there is a PBE with µ∗t = µ

t
in which all remaining players invest in

period t.
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In case (ii) and (iii) there may be multiple equilibria. The equilibrium strategies µ∗t ∈
(µ
t
, µ̄t) are identical to the solutions of the arbitrage equation

µ∗ − c = W (µ∗, µ∗), (5.4)

where W (µ, µ∗) is the payoff of an agent with belief µ who delays for one period exactly

while other agents use the strategy µ∗.

The only part which needs a comment is (ii). From Lemma 5.4, there exists µ∗t such that

c < µ∗t and µ∗ − c = W (µ∗, µ∗). From Lemma 5.1, any agent with belief µt > µ∗t strictly

prefers not to delay and any agent with belief µt < µ∗t strictly prefers to delay. (Otherwise,

by Lemma 5.1 an agent with belief µ∗t would strictly prefer to delay which contradicts the

definition of µ∗t ). The strategy µ∗t determines the random outcome xt in period t and the

distributions F θt+1 for the next period, and so on.

5.3 Properties
5.3.1 Arbitrage

Let us reconsider the trade-off between investment and delay. For the sake of simplicity,

we omit the time subscript whenever there is no ambiguity. If an agent with belief µ delays

for one period, he foregoes the implicit one-period rent on his investment which is the

difference between investing for sure now and investing for sure next period, (1− δ)(µ− c);
he gains the possibility of “undoing” the investment after bad news at the end of the

current period (the possibility of not investing). The expected value of this possibility is

the option value of delay. The following result, proven in the appendix, shows that the

belief µ∗ of a marginal agent is defined by the equality between the opportunity cost and

the option value of delay.

PROPOSITION 5.1. (arbitrage) Let µ∗ be an equilibrium strategy in a game with

n ≥ 2 remaining players, µ < µ∗ < µ̄. Then µ∗ is solution of the arbitrage equation

between the opportunity cost and the option value of delay

(1− δ)(µ∗ − c) = δQ(µ∗, µ∗), with

Q(µ, µ∗) =
n−1∑
k=0

P (x = k|µ, µ∗, F θ, n)Max
(
c− P (θ = θ1|x = k;µ, µ∗, F θ, n), 0

)
,

(5.5)

where x is the number of investments by other agents in the period.
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The function Q(µ, µ∗) is a “regret function” which applies to an agent with belief µ. It

depends on the strategy µ∗ of the other agents and on the c.d.f.s F θ at the beginning of the

period. Since the gain of “undoing” an investment is c minus the value of the investment

after the bad news, the regret function Q(µ, µ∗) is the expected value of the amount the

agent would be prepared to pay to undo his investment at the beginning of next period.

At the end of that period, each agent updates his LLR according to the Bayesian formula

(5.3) with πθ = 1−F θ(µ∗t ). A simple exercise shows that the updated LLR is an increasing

function of the level of investment in period t and that the lowest value of investment xt = 0

generates the lowest level of belief at the end of the period. Can the game go on after the

worst news of no investment? From Proposition 5.1, we can deduce immediately that the

answer is no. If the agent would invest after the worst news, the value of Q(µ∗, µ∗) would

be equal to zero and would therefore be strictly smaller than µ∗ − c which contradicts the

arbitrage equation (5.5).

PROPOSITION 5.2. (the case of worst news) In any period t of a PBE for which

the equilibrium strategy µ∗t is interior to the support (µ
t
, µ̄t), if xt = 0, then µ̄t+1 ≤ c and

the game stops at the end of period t with no further investment in any subsequent period.

The result shows that a game with N players lasts at most N periods. If the period length

τ is vanishingly short, the game ends in a vanishingly short time. This case is analyzed in

Section ??.

5.3.2 Representation of beliefs

An example of the evolution of beliefs is illustrated in Figure 5.1. The reader may compare

with the equivalent Figure ?? in the case of exogenous timing. Beliefs are measured by the

LLR and are bounded, by assumption. The support of their distribution at the beginning

of a period is represented by a segment. Suppose that the state is bad: θ = 0. At

the beginning of period 1, the private beliefs of the N players are the realizations of N

independent drawings from a distribution with density f0(·) which is represented by a

continuous curve. (The density in state θ = 1 is represented by a dotted curve).

In period 1, agents with a belief above λ∗1 exercise their option to invest. The number of

investments, x1, is the number of agents with belief above λ∗1, which is random according

to the process described in the previous paragraph.

Each agent who delays knows that x1 is generated by the sum of N−1 independent binary
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The number of investments in a period t depends on the number of agents with a belief
higher than λ∗t . At the end of a period, the updated distributions in the two states are
truncated, translated and rescaled. Period 3 (in which the representation of the densities
is omitted) corresponds to a case with three equilibria. In period 4, there is no investment
since all beliefs are smaller than the cost of investment.

Figure 5.1: An example of evolution of beliefs

variables equal to 1 with a probability πθ that depends on θ: πθ = 1 − F θ(λ∗1). The

probability is represented in Figure 5.1 by the lightly shaded area if θ = 0 and the darker

area if θ = 1.

From the updating rule (5.3), the distribution of LLRs in period 2 is a translation of the

distribution of the LLRs in period 1, truncated at λ∗1, and rescaled (to have a total measure

of one): λ∗1 − λ1 = λ̄2 − λ2. An agent with LLR equal to λ∗1 in period 1 and who delays

has the highest belief in period 2. The news at the end of period 1 depend on the random

number of agents with beliefs above λ1. In Figure 5.1, the observation of the number of

investments in period 1 is bad news: the agent with highest belief has a lower belief in

period 2 compared to period 1.

There are two critical values for the LLR in each period: (i) an agent who has a LLR below

the break-even value γ = Log(c/(1 − c)) does not invest; (ii) no agent who has an LLR
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above some value λ∗∗ delays. The value λ∗∗ is defined such that if λ > λ∗∗, the payoff of

no delay is higher than that of delay with perfect information one period later. Since the

latter yields δµ(1− c) to an agent with belief µ, we have

λ∗∗ = Log
( µ∗∗

1− µ∗∗
)
, with µ∗∗ − c = δµ∗∗(1− c). (5.6)

Note that λ∗∗ (or µ∗∗) depends essentially on the discount rate. If the discount rate is

vanishingly small, the opportunity cost of delay is vanishingly small and only the super-

optimists should invest: if δ → 1, then λ∗∗ →∞.

5.3.3 Herds: a comparison with exogenous sequences

Case (iii) in Theorem 5.1 is represented in period 3 of Figure 5.1. The lower bound of the

distribution of beliefs is higher than the cost of investment, with λ3 > γ = Log(c/(1− c)).
There is an equilibrium called a rush, in which no agent delays. In that equilibrium, nothing

is learned by delay since the number of investments is equal to the number of remaining

players, whatever the state of nature. This outcome occurs here with endogenous delay

under the same condition as the “cascade” or herd of BHW, in which all agents invest,

regardless of their private signal7.

For the distribution of beliefs in period 3, there may be another equilibrium with an interior

solution λ∗3 to the arbitrage equation (5.4). Since agents with the lowest LLR λ3 strictly

prefer to invest if all others do, there may be multiple equilibria with arbitrage, some of

them unstable. This issue is reexamined in the next subsection.

For the case of period 4, all beliefs are below the break-even point: λ̄4 < γ. No investment

takes place in period 4 or after. This equilibrium appears also in the BHW model with

exogenous timing, as a cascade with no investment. From Proposition 5.2, this equilibrium

occurs with positive probability if agents coordinate on the equilibrium λ∗3 in period 3.

The present model integrates the findings of the BHW model in the setting with endogenous

timing. We could anticipate that the herds of the BHW model with exogenous timing

are also equilibria when timing is endogenous because they generate no information and

therefore no incentive for delay.

The cascades of the

BHW model are also

equilibria when timing

is endogenous.

A rush where all agents invest with no delay can take place only if the distribution of beliefs

7In the BHW model, distributions are atomistic, but the argument is identical.
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(LLR) is bounded below. However, if beliefs are unbounded, the structure of equilibria is

very similar to that in Figure 5.1. In a generic sense, there are multiple equilibria and one

of them may be similar to a rush. This issue is examined in an example with two agents

and Gaussian signals. The Gaussian property is a standard representation of unbounded

beliefs.
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EXERCISES

EXERCISE 5.1. (Vanishingly small period)

Consider the model of Section 5. Determine the limit of the belief (probability of he good

state) after the bad news of no investment, µ−, when δ → 1, without computing this value.

Explain the result. Do agents learn something, asymptotically. Show that you can also

compute µ−.

EXERCISE 5.2. (Observation noise)

Consider the simple model of delay in this chapter with two agents and two possible states.

We now introduce an observation noise. Assume that if a person invests, she is seen as

investing with probability 1 − γ and not investing with probability γ, where γ is small.

Determine the equilibrium strategy. Show that for some interval γ ∈ [0, γ∗) with γ∗ > 0,

the probability of the revelation of the good state and the probability of an incorrect herd

are independent of γ.

EXERCISE 5.3. (An investment subsidy)

Consider the simple model of delay in Section 5 where there are two possible states 1 and

0. In state 1, there are two agents each with an option to make an investment equal to 1

at the cost c < 1. In state 0, there is only one such agent. The gross payoff of investment

is θ = 1. The discount factor is δ < 1 and the initial probability of state 1 is µ such that

0 < µ− c < µδ(1− c).

1. A government proposes a policy which lowers the cost of investment, through a

subsidy τ which is assumed to be small. Unfortunately, due to lags, the policy lowers

the cost of investment by a small amount in the second period, and only in the second

period. This policy is fully anticipated in the first period. Analyze the impact of this

policy on the equilibrium and the welfare of agents.

2. Suppose that in addition (in each state) one more agent with an option to invest

(and discount factor δ), and a belief (probability of the good state) µ < c. How is

your previous answer modified?

EXERCISE 5.4. (delay with a large number of agents)

Consider the simple model of this chapter with N players in the good state and one player

in the bad state. Solve for the symmetric equilibrium. Show that the probability of a herd

with no investment converges to π∗ > 0 if N →∞. Analyze the probability of investment

by any agent as N →∞.
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Chapter 6

Words

If we all think alike, it means we do not think anymore.

Trust but verify.

Communication with words is the subject of a vast literature. In previous chapters, people

sent messages to others through their actions. In this chapter, the messages are words.

One critical issue will be whether “talking” is credible. We will see that herding on actions

and herding on words occur under similar conditions. For example, herding may arise in

financial markets because of the observation of others’ actions or because of the behavior

of financial advisors who are influenced by others’ predictions.

In the generic setting, an agent is an expert with private information on the state of

nature and his action takes the form of a message that is sent to a receiver. How can he

transmit credibly his information by mere words? The key is that the receiver has some

independent information on the true state, an information that he gets after, or even before,

the advice from the expert. The receiver thus can verify the expert’s message against his

independent information. (The precision of the independent information of the receiver

does not matter). The payoff of the expert depends on his message (his advice) and on the

independent information of the receiver.

The vocabulary for advices is often limited. In financial advising, a well respected agency,

Value Line, uses a dictionary with only five words. The restriction of a small number of

words parallels that of the discrete actions in the basic model of informational cascades

and leads to similar results. The example of financial advising justifies the basic model

of advising that is presented here in the first section: there are two states of nature, the

expert has binary information and speaks with two words. The state is revealed to the
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receiver after the advice of the expert (as an investor who experiences the fluctuations of

the stock market after receiving an advice). Three types of payoff functions are considered.

(i) The payoff of the expert is a function that depends on his message and the state as

verified by the receiver. The goal of the expert is to conform as much as possible to the

verified state. His belief is formed from the public belief and his private signal. If the

public belief in one of the two states is high, the probability of that state is high even with

a private signal favoring the other state. In that case, the expert predicts the same state as

the public belief: he herds on the public belief and his message is ignored by the receiver.

The expert tells the truth (sends a prediction according to his private signal) only if the

public belief is not too strong on one of the two states. The condition for truth telling by

the expert turns out to be identical to the condition for no herding in the BHW model of

Chapter 2. In this first case, the payoff of the expert is set arbitrarily by the receiver.

(ii) The payoff based on reputation to be a good (versus a bad) expert. Reputation may be

valuable because of future business for the expert, or his capability to have influence in the

future. This setting may be more relevant but it puts restrictions on the payoff function

and on the type of equilibrium. Two types of reputation will be considered.

In this first case, a good expert has private information of a higher precision than a bad

expert. There are two types of private signals for the expert, one more informed than

the other. First, assume that the expert does not know the quality of his signal. A key

difference with (i) is that the value of reputation, and therefore the payoff of the expert,

depends on an equilibrium. If the expert sends an irrelevant message, he babbles, then

the receiver may ignore his message. But if the receiver ignores his message, the expert

has no incentive to tell the truth. There is always a babbling equilibrium. We focus on

the condition for the existence of a truthtelling equilibrium. It is similar to the condition

in case (i): the public belief, as expressed by the probability of one of the two states,

must be neither too high nor too low. Second, if expert knows the quality of his private

information, the analysis is similar but the expert with low precision herds for a wider set

of public belief than the highly informed expert.

(iii) In the second case, a good expert does not manipulate the receiver. All experts

have private information of the same precision, but some experts would like the agent to

take a specific action. As an example, some people would like to systematically increase or

decrease welfare programs. An unbiased agent may be in a position to support a particular

program, but he does not want to be identified with these people. In order to enhance his

reputation, he may act as a contrarian and advise against the program that is recommended

by the biased expert even if he thinks that this is the better program.
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In all the models considered so far, the expert does not know the independent information

used by the receiver for the verification and the reward of the expert. This assumption

is can be relaxed. For example, the expert may know the financial literature read by

the receiver, or the consultant may know the prejudice of the boss. It is essential that

the eceiver does not know what the expert knows about him, or how the expert uses that

information. If the receiver knows what the expert knows about him, he can simply “factor

out” the expert’s information on him from the advice and still get to know the information

of the expert.

The analysis of one expert provides the ground for considering the sequence of advices,

say in a committee, where each expert before speaking, hears the advices of the previous

speakers. How does the opinion issued by the first have an impact on the saying of the

second, and so on? People influence each other in jury trials (i.e., Twelve Angry Men),

financial advising or economic forecasting.

This setting reproduces the basic model of BHW where any acting agent observes the

previous actions. The public belief evolves after each expert’s message and there is a herd

by all remaining experts if the public belief favors sufficiently strongly one of the two states.

The model is isomorphic in assumptions and properties to the BHW model.

In the Talmud, the older speaks after the young. Presumably the older is wiser and his

advice could intimidate the young to assent instead of conveying truthfully the information.

In a setting with two agents where the older’s information is more precise than that of the

younger, this proposition is shown to be false here (Section 6.2.1). The older should speak

first. When we compare the two sequences where the older speaks first or second, the first

sequence is never inferior to the second and is strictly better when the older is a contrarian

and speaks against a strong prior consensus: the young would herd on the consensus and

his advice is ignored, but if the older speaks shakes the consensus, then the young advice

will have some information value and he will be listened to.

6.1 Advice by one expert

Suppose you are asking an expert for advice about the future direction of the market. Say

there are two possible future events, up or down; in mathematical language, the state of the

world, to be realized later is θ ∈ {0, 1}. Suppose that there is some general opinion about

the future, from the press and other news, which is quantified by the prior probability

of the event “up” (θ = 1), to be µ, between 0 and 1. Your expert has some additional

information (that is why he is called “expert”). The quality of this information is that
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the expert’s prediction is correct with a probability q (1/2 < q < 1). This information is

equivalent to a signal s that is equal to the state with probability q: P (s = θ|θ) = q).1

What you would like to know is the information of the expert, his signal value. e incentive

to reveal it truthfully depends on his reward.

In all this section, we assume that the receiver of the advice compares the advice with the

observation of the state of the world, which occurs later. The expert knows the evaluation

process and has some information on the probabilities of the states in the future. If his

rewarded for being correct, his objective is to match his message with the most probable

state in the future, and truth telling may not be the best strategy. If the “general consen-

sus” is that the market will go up, the expert may follow the consensus even if his private

information points the other way.

6.1.1 Evaluation payoff after verification

Here, we analyze on the incentive problem of the expert and, as usual, we consider the

simplest model that focuses on this issue. There is only one type of expert and his reward,

noted vm,θ depends on his message m and the true state θ that is revealed after the advice.

Later, we will consider heterogenous experts and the rewards will be endogenous to the

evaluation of the quality of the expert.

The expert sends to a receiver a message m which is a (possibly random) function of his

signal, m(s). The expert cannot communicate more than his information which is in the set

of values {0, 1}. Without loss of generality, the message takes values in the set {0, 1}. The

truth telling strategy is defined2 by m(s) = s. The expert, who has a signal s, maximizes

his expected payoff computes his payoff

V (s,m) = P (θ = 1|s, µ)vm1 + P (θ = θ0|s, µ)vm0, (6.1)

where his belief P (θ = 1|s, µ) depends on both his private signal and the (prior) public

belief µ according to Bayes’ rule. We make the common sense assumption that the reward

is higher when correct:

vii > vij if i 6= j. (6.2)

The truthtelling strategy is optimal if it yields to the expert a payoff which is not strictly

smaller than that obtained from deviating. For each signal value of the expert, there is an

incentive compatibility constraint to tell the truth (mi = si):

V (1, 1) ≥ V (1, 0), and V (0, 0) ≥ V (0, 1). (6.3)

1One could of course consider a non symmetric signal.

2My son Sebastian has frequently reminded me that m(s) = 1− s is also a truth telling strategy.
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Using the expression of V (s,m) in (6.1), these constraints are equivalent to

P (θ = 1|s = 0, µ) ≤ c ≤ P (θ = 1|s = 1, µ), with

c =
v00 − v10

v11 + v00 − v01 − v10
.

(6.4)

Since the probabilities P (θ|s, µ) are the beliefs of the expert, the incentive compatibility

constraints are the same as the condition for no herding in the BHW model where agents

have a cost of investment c. If the public belief µ is higher than some value µ∗∗, an expert

with signal s0 has a belief (based on his signal and µ) that is higher than c and he sends

the message s1. He is herding. Likewise when the public belief is below some threshold µ∗.

Without loss of generality, assume that there are only two reward values for being right

and wrong, respectively:

v00 = v11 > v10 = v01. (6.5)

The value of c is now 1/2. The situation of the expert is the same as that of an agent in

the BHW model with an investment cost of 1/2. He will say “1′′ (“invest” in the BHW

model) if and only if he thinks that given all his information (public and private), the

state 1 is more likely. If the public belief is sufficiently high (low), he will say “1′′ (“0′′)

regardless of his private information. We know from the analysis of the BHW model that

the expert will tell the truth if and only if the public belief is in some intermediate range

that is defined by

1− q < µ < q.

The range of values of the public belief with truthtelling by the expert obviously increases

with the precision of his information. A “poorly informed” expert herds more easily.

If the receiver can choose the reward function, he may always get the private information

of the expert by choosing vmθ such that the value of c in (6.4) falls between the beliefs of

an optimistic and a pessimistic expert (with signal 1 and 0). The receiver may not be able

to write a contract that specifies the values of the rewards. We now turn to rewards based

on reputation.

6.1.2 Equilibrium with an evaluation based on reputation

There are some good and some bad experts, that is, with high and low precisions in their

private information. To improve one’s reputation may be a powerful incentive to send a

message which gives the best possible prediction. To analyze the issue, let us build on

the previous model. The symmetric binary signal of an expert is correct with high or low

probability, qH > qL. The prior probability of a good expert is α. As usual in all Bayesian
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models, the receiver of the advice knows the structure and the parameters of the model

but does not know the private information, i.e., the value of the signal of the expert. After

the observation of the state of nature, the Bayesian receiver updates the probability that

the expert is good from α to a new value vm,θ. The rewards is now endogenous to the

behavior of the expert. Do we have to justify why an expert would value his reputation?3

The evaluation by the receiver depends on the strategy of the expert, and the strategy of

the expert depends on the evaluation function which can be defined as the strategy of the

receiver. Both strategies have to be determined simultaneously in a game. The situation

is thus different from the previous case with an exogenous payoff vmθ.

The babbling equilibrium

The endogenous property of the reward function is highlighted by the existence of the

When the expert’s

payoff is based on

reputation against

some other agents

in the game, there

is always a babbling

equilibrium.

babbling equilibrium. If the agent sends a message which is independent of his signal,

he cannot be evaluated. His message is ignored by the receiver and his reputation stays

constant at α. But if the receiver does not listen, the expert has no incentive to speak the

truth. No strategy can strictly improve his reputation. He can claim to be good as much

as he wants. The receiver has no way to discriminate him from other experts who babble.

Therefore, in a setting where reward is based on the reputation to have more accurate

information, for any value of the public belief, there is a babbling equilibrium where an

expert is not listened to and has no incentive to speak the truth.

The truthtelling equilibrium

Let us first make the assumption that the expert has no better information than the

receiver about his own type. That may be strange, but it turns out that this assumption

is not restrictive. We will remove it later. We have seen (Exercise ***) that such an agent

treats his signal as having the precision (probability to be correct)

q = αqH + (1− α)qL. (6.6)

Let H and L be the events that his signal has high or low precision. Suppose that the

expert tells the truth. m(s) = s). By Bayes’ rule, the ex post reputation is

vsθ = P (H|s, θ) =
P (s|H, θ)α

P (s|H, θ)α+ P (s|L, θ)(1− α)
. (6.7)

The terms P (s|H, θ) and P (s|L, θ) are the probabilities of the realization of the expert’s

signal given the type of the signal and the state of nature. They depend only on the

3For an example where the expert would like the receiver to make the best decision according to the
expert, see Exercise 6.2 that is based on Morris (2001).
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structure of the agent’s signals. Since the signal is symmetric,

v11 = v00 > v10 = v01. (6.8)

The truth telling condition is the same as in the case where the payoffs are fixed. Propo-

sition 6.1 summarizes the previous discussion and introduces an additional result.

PROPOSITION 6.1. For any value of the public belief µ = P (θ = 1), there is a babbling

equilibrium where the expert conveys no information.

Assuming equal prior probabilities for the two states, if 1− q < µ < q = αqH + (1− α)qL,

there is a truth telling equilibrium.

When the prior belief is strong, either high or low and µ is outside of the middle range

[µ∗, µ∗∗], babbling is the only equilibrium. Is this bad for the receiver? Not necessarily:

if he would know the signal of the expert and choose the most likely state, as a rational

Bayesian, he would ignore that signal.

The type of the expert is known

Consider first the case where the expert almost knows his type. The value of α is vanishingly

close to one. For simplicity assume that the signal of low precision is not informative at all:

qL = 1/2. From the revious section, the agent tells the truth if the public belief is in the

interval (1− q, q) with q = qHα+ 0.5(1−α). When α is vanishingly small, asymptotically,

the expert gives his best possible advice given his precision qH .

PROPOSITION 6.2. If the type of the expert is known with a probability vanishingly

close to one, there is a truthtelling equilibrium in which the expert speaks against the public

belief if and only if he believes his advice is more likely to be true.

The key assumption for a truth telling equilibrium is that there must be some experts

of lower quality. In the proposition, a vanishingly small probability of a bad expert is

sufficient when all experts have the same prior information about their own quality. But

the same mechanism for truth telling is a work when experts are of two types and know

their own type. In order to improve their reputation, all experts, good and bad, will try to

predict the most likely state on the basis of their information. If there are two types with

precision qH > qL > 1/2, respectively, the low (high) quality expert will send a message

equal to his signal if the prior public belief is in the range (1− qL, qH), ((1− qL, qH)). For

example, when the public belief is between the low and the high precision, the low quality
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expert herds on the public belief and the high quality expect tells the truth. But note

that the low quality expert herds on the public belief because the high quality expert tells

the truth and does not babble: he sends a message to conform as much as possible to the

behavior of the high quality expert.

What have we learned so far?

In all the cases we have seen, the reputation updating rewards experts not for giving goodTO BE DISCUSSED IN

CLASS advice, but for giving advice that is different from the advice of the low quality experts. In

the previous cases, the low quality experts predicted less well the state of nature. Therefore,

the incentive was to try to predict as well as possible. But the low quality experts may

have some characteristic that is different from a low predicting accuracy. In this situation,

there is no reason that the good expert should attempt to predict accurately. We now

consider such a case.

A contrarian facing biased experts

There are two types of experts, the good and the bad. The good are the same as in the

previous model. The bad expert always send the message 1. One may say he is biased

toward action 1. So what should the good expert do? If he cares only about his reputation,

then whatever his signal, he should send the message 0! This limit case may illustrate how

an expert may want to give bad advice just to be seen as a “contrarian” that does not

follow some biased purpose. These few lines may be a little short for a publication in a top

5 journal, but the construction of a more elaborate model does not really bring additional

insight about the mechanism for contrarian advice.

In the previous paragraph, the good expert achieves is perfectly identified when he sends

the message 0. To reduce the increase of reputation, assume that the bad expert always

says 1 when his signal is 1 and lies with probability ν when his signal is 0. Using the same

Bayesian computation as before, the evaluation function is now defined by

v1,1 =
λq

λq + (1− λ)(q + (1− q)ν)
, v1,0 =

λ(1− q)
λ(1− q) + (1− λ)(1− q(1− ν))

,

v0,0 = v0,1 =
λ

λ+ (1− λ)(1− ν)
.

(6.10)

Note that

v00 = v0,1 > λ > v1,1 > v1,0

where the inequality are strict if and only the bad expert lies with some probability ν > 0.

The inequality between v1,1 and v1,0 appears because the probability of a lie in the message
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1 is higher when the true state is 0 compared to the state 0. When the message is 0, the

probability of lying is the same in both states.

In the introductory paragraph, the values of v0,0 and v0,1 where equal to 1 because the

bad expert with a signal 0 was always lying (ν = 1). Now these values are smaller than 1

but we obviously keep the inequality v0,1 > λ > v1,1 and the incentive effect for the good

expert to lie when his signal is 1 in order to increase his reputation of being unbiased.

Assume that any good expert with a signal 1 lies and sends the message 0 with probability

ζ. We can recompute the expressions of the reputation (6.10) which now depend on the

probability ζ that the good expert lies by sending the message 0 while having the signal 1.

One can show that for ν > 0, 4

v00(ζ) > v01(ζ) > λ > v11(ζ) ≥ v10(ζ). (6.12)

Consider a (good) expert with a signal 1. After he sends his message, the state will be

revealed to be equal to 1, with probability q, and with probability 1− q, equal to 0.

• Should the state be 0, it is always better to have lied all the time with a message 0

that turns out to be equal with the state.

• Should the state to be 1, we see from the inequality in (6.12) that his reputation is

higher if he gives the wrong message 0 instead of 1.

If other good experts with signal 1 have a strategy to lie with probability ζ, then a good

expert with such signal should deviate and lie all the time.

PROPOSITION 6.3. Assume that there is some probability that the expert is bad in

which case he gives with probability ν > 0 the advice m = 1 while having the signal s = 0,

4

v00 =
λ(q + (1− q)ζ)

λ(q + (1− q)ζ) + (1− λ)q(1− ν)

v11 =
λq(1− ζ)

λq(1− ζ) + (1− λ)(q + (1− q)ν)

v10 =
λ(1− q)(1− ζ)

λ(1− q)(1− ζ) + (1− α)(1− q + qν)

v01 =
λ((1− q) + qζ)

λ((1− q) + qζ) + (1− λ)(1− q)(1− ν)

Note that  v00(ζ) and v01(ζ) are increasing in ζ ,

v10(ζ) and v11(ζ) are decreasing in ζ .
(6.11)
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then a good expert with a signal 1 who cares only about this reputation to be good should

lie all the time and give the message 0.

So what could prevent an expert from lie all the time when his signal is 1? The cost of

sending the message 0 is on the receiver and if the good expert cares about the receiver of

that particular message in the same way as the receiver does, he bears the same cost.

Let C(ζ) be the cost for the expert of lying by sending the message 0 while having the

signal 1. That cost function could take any shape, depending on the context. It could be

a function of the distance between the action of the receiver and the true state, a function

that would be perfectly known by the expert (as assumed by Morris, 2001). But the

algebraic formulation is here only an exercise in algebra and does not provide additional

insight. Let us just assume that cost function of lying C(ζ) for the expert. And by the

way, this cost function could include the psychological cost of lying for the expert.

Likewise, the valuation by the expert of his reputation may depend on a number of factors

which could include sheer pride of oneself. Let us denote this valuation by A(U(ζ)), where

U(ζ) is the expected evaluation of the type of the expert when he lies with probability ζ

while having the signal 1.5 The objective function of an expert with signal 1 is

V (ζ) = U(ζ)− C(ζ).

Depending on the shape of the functions U and C, anything is possible, with corner solu-

tions at 0 or 1, or on the interval (0, 1) or even multiple solutions. But these are trivialities

and ground for algebraic exercises. They are irrelevant for the main message that is pre-

sented in Proposition 6.3.

6.2 Panel of experts

When the advice is given by a panel of experts (a committee, a jury in a trial), members of

the panel hear the advices given by other members and influence each other. Financial or

medical advisors, economic forecasters, discussants of papers, are aware of the predictions

of others and do take them into account. We first analyze a simple model in which each

expert “speaks” once in a pre-established order. We will then compare the quality of the

panel’s advice for different sequences in which members speak.

5

U(ζ) = q(v1,1(1− ζ) + v0,1ζ) + (1− q)(v1,0(1− ζ) + v0,0ζ) (6.13)
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6.2.1 A sequence of experts with a pre-established order

The model is the same as in Section 6.1. We add a sequence of experts with independent

types and signals on the state θ ∈ {0, 1}. Each expert cares for his reputation as described

as in the previous section and has a symmetric binary signal of precision ρH with probability

α and of precision ρL otherwise, ρH > ρL. The precision is not observable directly. The

value of α is vanishingly close to 1. We could also assume that the reward for advice is an

exogenous symmetric reward function.

Each expert speaks once and knows the messages of the experts who have spoken before

him. Once all the experts have spoken, the receiver learns the true state and updates his

estimate of the precision of each expert. Since the evaluation of each expert depends only

on his message and the true state, each expert has no incentive to manipulate the messages

of other experts. Each expert in the panel is exactly in the same situation as the unique

expert in Section 6.1. An expert who speaks in round t formulates his message according

to the public belief µt, (which depends on the history of messages ht = {m1, . . . ,mt−1}),
and his own signal st. Recall that in any round, babbling is an equilibrium. We will

assume that whenever there is another equilibrium with no babbling (herding), both the

expert and the receiver (through the evaluation function) coordinate on this equilibrium.

Following the analysis in the previous section, an expert herds if and only if the public

belief is outside the band (1−ρ, ρ) where ρ = αρH +(1−α)ρL is the average precision. We

assume of course that the public belief in the first period, µ1, is in the interval (1− ρ, ρ).

Given the condition 1 − ρ < µ1 < ρ, the first expert reveals his signal. Because of the

equivalence with the BHW model with a cost of investment c equal to 1/2, the analysis of

Chapter 4 applies. Suppose that µ1 > 1/2 (state θ1 is more likely), and that the signal of

the first expert is bad: s(1) = 0. He tells the truth and sends the message m(1) = s(1) = 0.

His information is incorporated in the public belief µ2. When two consecutive experts in

the sequence have the same signal, the truthtelling condition is not met. At that point,

the babbling equilibrium is the only equilibrium. Since nothing is learned, the truthtelling

condition is not met in the following period, and so on. The babbling equilibrium is the

only equilibrium for all subsequent periods. Learning from experts stops. One might as

well assume that all experts give the same advice. The expression “herding” is appropriate

here. Given the equivalence between herding and babbling, the model is isomorphic to

the BHW model. The probability that a herd has not occurred by round T converges to

zero at an exponential rate. Note that the behavior of the agents does not depend on the

probability α of a signal with high precision.

Scharfstein and Stein (1990), in the first analysis of herding by experts, assume that the

signals of experts are correlated in the following sense: if the signals of both experts are
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informative, they are identical. Scharfstein and Stein seem to support the following story:

the first expert has no incentive to lie and he tells the truth. The second expert who learns

the signal of the first expert could say: if I have a signal of high precision, it is more likely

that my signal is the same as that of the first expert because signals of high precision are

identical. As emphasized by Ottaviani and Sørensen (2000), such an argument is irrelevant

and confuses the issue. This case is left as an exercise for the reader. The condition for

babbling is modified when the experts’ signal are correlated. This modification is the same

as in the BHW model where agents’ actions are observed.

6.2.2 Who should speak first: the strongly or weakly informed?

In a deliberating group, the order in which people voice their opinion may be critical for

the outcome. The less experienced expert often speaks first while the old and wise8 waits

and speaks last. Presumably, this rule of anti-seniority (to use an expression of Ottaviani

and Sørensen, 1999b)9, enables the less experienced to express their opinion free of the

influence by the more experienced. Can the anti-seniority rule be validated by the analysis

of this chapter? The answer will be negative.

Assume N experts, indexed by i ∈ {1, . . . , N}, each with a SBS of precision almost equal to

qi. (Each private signal is uninformative with arbitrarily small probability). By convention,

qi is strictly increasing in i. (Expert N is the most informed, or the senior). The values

of qi are publicly known and the receiver, before receiving any message, can choose the

order in which experts speak. Each expert knows which experts have spoken before him

and their messages.

The goal of the receiver is to choose the state which is most likely once he has listened to

each expert. This objective is equivalent to the maximization of the payoff E[θ]x− c with

c = 1/2 where the action x is taken in the set {0, 1}. Once all the experts on the panel

have spoken, the state is revealed and each expert is evaluated by comparing his message

with the true state, as shown in the first section. In round t, expert t “speaks”: he sends

a message which maximizes his expected evaluation as in the model of Section 6.1. His

message depends on the evaluation function and his belief which depends, in a Bayesian

fashion, on the public belief in round t, µt, and on his private message st. We begin with

the case of two experts.

The two-expert panel (N = 2)

8This expression is used as a convenient picture for the analysis.

9The presentation in this section is complementary to that of Ottaviani and Sørensen (1999b).
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The two experts are called Junior (with a signal of precision q1) and Senior (with a signal

of precision q2 > q1). The ex ante public belief as expressed by the LLR between the good

and the bad states is denoted by λ. Let γi = Log(qi/(1− qi)).

Without loss of generality, it is assumed that λ ≥ 0 and that γ2 − γ1 > γ1. (The case

γ2 − γ1 < γ1 is similar and it is left as an exercise). There are four possible cases which

depend on the value of λ, as represented the following figure.

Possible cases with a panel of two experts

-

0 γ1 γ2 − γ1 γ2

λ
A B C D

1. Suppose first that λ is in the interval A: 0 ≤ λ < γ1. If Junior speaks first, his signal is

stronger than the public belief (γ1 > λ) and he speaks the truth10. But since λ+ γ1 < γ2,

the public belief once he has spoken is smaller (“weaker”) than the strength of the signal of

Senior. For any signal of Senior, Junior is overruled and has no impact on the decision of

the receiver. If Junior speaks after Senior, the only equilibrium is the babbling equilibrium.

Whatever his message, he is not listened to.

2. Suppose that λ is in the interval B: γ1 < λ < γ2
11. If Junior speaks first, he babbles.

(His signal is weaker than the public belief). If Junior speaks second, he also babbles (as

can be verified). Junior is irrelevant. In region B, the receiver never gets to observe the

signal of Junior whatever the rule.

3. Suppose that λ is in the interval C. If Junior speaks first, he babbles as in region B.

Suppose that Senior (who does not babble) speaks first a message s2 = 0. The public

belief LLR for Junior is λ − γ2 < 0. Since λ − γ2 − γ1 < 0 < λ − γ2 + γ1, Junior reveals

his signal. Junior has an impact on the decision of the receiver. The anti-seniority rule

strictly dominates the seniority rule.

4. In region D, all experts babble whatever the order in which they speak and the panel

10Recall that if there is a truthtelling equilibrium, this equilibrium is chosen by the expert and the
receiver.

11The case of λ = γ1 can be ignored because its ex ante probability is zero.
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can be ignored.

PROPOSITION 6.4. (Dominance of the seniority rule) Assume that a receiver

chooses x ∈ {0, 1} to maximize the payoff function E[θ]x − 1/2, with θ ∈ {0, 1}, and gets

advice from a “junior” and a “senior” expert who have private signals with precision q1

and q1 < q2, respectively. For any prior µ on state θ = 1, the seniority rule (where the

senior agent with higher precision speaks first) dominates the anti-seniority rule. For some

values of µ ∈ (β1, β2) where 1/2 < β1 < β2 < 1, the payoff with the seniority rule is strictly

higher than that with the anti-seniority rule. For other values of µ, both rules generate the

same outcome.

6.3 Bibliographical notes

In Section 6.1, the case where experts know their precision corresponds to the model of

Trueman (1994). This model is presented in Exercise ??. Proposition 6.2 applies.

In Section ??, the fundamental paper on manipulative experts is by Crawford and Sobel

(1982). They assume that θ is on an interval of real numbers and that the expert has

a systematic bias towards a higher (or lower) level of action by the receiver. They show

that the message of the expert takes discrete values: the expert lies, but not too much.

Very nice papers about the transmission of information, which unfortunately cannot be

discussed here, have been written by Benabou and Laroque (1992) and Brandenburger

and Polak (1996). Zwiebel (1995) analyzes how agents choose similar actions in order to

be able to be evaluated by a manager.

In relation to Section 6.2, Ottaviani and Sørensen (1999b) analyze an extension of the model

in which the sets of values for θ, s and m is the interval [−1, 1]. An expert is endowed

with a type t and a signal s with a density f(s, t, θ) = (1 + stθ)/2. (A higher type t means

a higher precision of the signal s). They show that there is no truthtelling equilibrium.

Glazer and Rubinstein (1996) propose a mechanism to prevent herding between referees.

Welch (2000) develops in a remarkable study an econometric methodology to estimate im-

itation when choices are discrete12. He analyzes how the probabilities of analysts’ revisions

of the recommendations (which take place in a set of 5 values from “strong buy” to “strong

sell”), depend on the established consensus. His results indicate that some herding takes

12The estimation software is downloadable from his web site. The data comes from Zacks’ Historical
Recommendations Database (which is used by the Wall Street Journal to review the major brokerage

houses).
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place, especially in a bull market. A next step in this research could be the construction of

a structural model with both an exogenous process of information diffusion and learning

from others, and the analysis of its empirical properties. (See also Grinblatt, Titman and

Wermers, 1995).
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EXERCISES

EXERCISE 6.1. Imperfect verification of the expert’s message

Consider the model of Section 6.1 where both states 1 and 0 have equal priors and the

expert has a SBS with precision ρ. The receiver does not observe the state ex post but has

a private symmetric binary signal y with precision q ∈ (1/2, 1]. The timing of that signal

is not important if its value is not observed by the expert.

1. Using the notation of Section 6.1 for the reward function vmy, determine the payoff

function V (s,m).

2. Establish the condition for truthtelling by the expert.

3. Show that if the reward function is such that v00 = v11 and v10 = v01, the condition

for truthtelling is independent of q ∈ (1/2, 1]. Provide an intuitive interpretation.

EXERCISE 6.2. The value of reputation

Following Morris (2001), assume that an expert gives an advice in a second period (with a

new signal of the same precision) to a receiver who has a payoff function −E[(x− θ)2] and

that the expert’s payoff is the same as that of the receiver. Both states are equally likely.

1. Determine the action taken by the receiver in the next period as a function of the ex

post reputation of the expert, β.

2. Determine the value of β for the expert.

EXERCISE 6.3. Computation of the reputation function

In the model of Section 6.1, assume that with probability α, the agent has a binary signal

of precision ρ > 1/2, and with probability 1− α a binary signal of precision 1/2 (which is

not informative). Determine the algebraic expression of vsθ in (6.7). Show (6.8).

EXERCISE 6.4. (Partial truth telling)

Assume that 1/2 < µ < ρ, (1− ρ < µ < 1/2). Show that there is an equilibrium in which

the agent tells the truth if he has a good (bad) signal and lies with some probability if he

has a bad (good) signal, and that this equilibrium is unstable in the same sense of stability

as in Proposition 6.1.
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EXERCISE 6.5. A continuum of beliefs

Assume that the private belief of the agent takes a value in the bounded interval [µ, µ̄],

0 < µ < µ̄ < 1. Set v(m, 0) = 1−m and replace v(m, 1) by v(m).

1. Determine a necessary condition on the derivative v′(m) such that the expert reveals

his belief µ (and sends the message µ for any µ ∈ [µ, µ̄]).

2. Determine the family of admissible functions.

3. Is the condition in question 1 sufficient?

EXERCISE 6.6. The value of reputation (Section ??)

Let α be the reputation of the expert (probability of being of the good type). Suppose

there is only one period and the expert does not care about his reputation at the end of

the period; he gives an advice such that the receiver takes an action which maximizes the

expert’s payoff.

1. Determine the action of the receiver as a function of the messagem and the reputation

α.

2. Compute the ex ante expected payoff of the good expert, VG(α), and of the bad

expert, VB(α), at the beginning of the period, before he gets his private information.

Show that both functions are strictly increasing in α.

EXERCISE 6.7. (The white van)

This exercise white van problem which has been raised recently in the suburbs of Wash-

ington D.C.. The issue is related to Chapter 12 in the notes, but with some shortcuts, it

can be addressed now. First, some very brief introductory remarks:

In most of the problems we studied, agents receive exogenous private information (or

signals). The revelation of this information is endogenous—that is the essence of all the

problems we had—but the private information is exogenous. It seems that in the case of

white van, endogenous signals are important: people look for news; if they look for a white

van, they don’t look for a dark sedan (which turned out to be the true state). There is

much more work there... At this stage, one should simplify as much as possible. Hence,

the following model.

There are two spots, 1 and 2, and the state θ is in one of the two spots: θ ∈ {1, 2}. Say,

the criminal is in a white van if θ = 1, and otherwise θ = 2. We assume by convention

that the true state is 1. (Agents do not know that however). The state is randomly fixed

before the first period.
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In each period, nature issues two signal sj ∈ {0, 1}, one in each spot j, which is defined as

follows: (i) With probability β, there is no information: with probability α one signal is

equal to 1, and that signal is in spot 1 or 2, with the same probability; with probability

1− α both signals are 0; (ii) with probability 1− β, the signal is informative in the sense

that s1 = 1 with probability γ (and to 0 with probability 1− γ), and s2 = 0. Recall that

θ = 1, by convention.

There is a sequence of N agents, N finite. Agent t is “active” in period t only. His decision

is to monitor one of the two spots, i.e., one of the two signals s1 or s2. After observing

the signal, he makes a truthful report, that means he reports a sighting if and only he

observes a signal 1. The incentive compatibility constraint for the report will be met if

there is a reward for agents who have made a sighting in the correct spot after the true

state is eventually revealed, once all agents have played.

The policy maker (the police), makes one and only one investment x ∈ {1, 2} in one of the

spots after all agents have played. The payoff of the investment is equal to 1 if x = θ, that

is if the police invests in the correct spot. The police maximizes its expected payoff.

Let µt be the public belief at the beginning of period t, i.e., the probability that θ = 1. In

questions 1 and 2, the agents’ reports are publicly available.

1. 1. Show that an agent monitors the spot 1 if µt > 1/2, and the spot 0 is µt < 1/2.

(Ignore ties). Show that the monitoring choice by agent t is observable by others.

2. Assume that γ = α and assume µt > 1/2. Determine µt+1 if the observed signal is 1,

and if it is 0. (Use Bayes’ rule in the likelihood ratio or in the LLR). Show that the

increase in LLR (if there is a sighting) is larger in absolute value than the decrease (if

there is no sighting). Interpret this property as a kind of “herding” behavior. (You

may take a numerical example to check some order of magnitude: α = β = γ = 0.2).

3. Assume, to simplify the argument, that α = β = γ ≤ 1/2, µ1 is strictly greater than

1/2 but vanishingly close to 1/2, and N = 3. The first agent makes his report to the

police, but the police makes the official report to the other agent. Assume the first

agent reports seeing a white van (a signal 1). Show that

(a) if the police makes the report public, any report by the next two agents is

irrelevant for the police’s investment decision;

(b) the police should deceive the other agents, if possible, and claim that the first

agent has seen nothing.

(c) Draw some conclusions about the social usefulness of the media in recent events.
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EXERCISE 6.8. (‘Yes men” for a partially informed receiver )

The exercise is based on an article by Prendergast (JPE, 1993). In all the models considered

so far, the expert does not know the private information of the receiver about the state.

This is critical since that information is used by the receiver for the reward function. If the

expert knew this information he could change his message to manipulate the reward. Of

course, the expert could do this only if the receiver did not know what the expert knows

about him...

The state θ has a prior distribution that is normal with mean 0 and precision ρθ. The

“boss” (Prendergast) has a signal on θ:

z = θ + εz,

where εz is normal with zero mean and precision ρz.

The expert has two signals, one on θ and the other on the information of the boss:
s = θ + εs,

sz = z + η, with η ∼ N (0, 1/ρη).

The expert’s objective function is such that he attempts to fit the information of the boss.

He sends a message m such that

m = E[z|s, sz].

Solve the problem of the expert.
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