
A GENERALIZED ‘SURROGATE PROBLEM’
METHODOLOGY FOR ON-LINE STOCHASTIC DISCRETE

OPTIMIZATION¤

Kagan Gokbayrak
Department of Manufacturing Engineering

Boston University
Boston, MA 02215
kgokbayr@bu.edu

Christos G. Cassandras
Department of Manufacturing Engineering

Boston University
Boston, MA 02215
cgc@bu.edu

Submitted to JOTA
January 2001

Abstract

We consider stochastic discrete optimization problems where the decision variables are
non-negative integers and propose a generalized “surrogate problem” methodology that mod-
i…es and extends previous work in [1]. Our approach is based on an on-line control scheme
which transforms the problem into a “surrogate” continuous optimization problem and pro-
ceeds to solve the latter using standard gradient-based approaches while simultaneously
updating both actual and surrogate system states. In contrast to [1], the proposed method-
ology applies to arbitrary constraint sets. It is shown that, under certain conditions, the
solution of the original problem is recovered from the optimal surrogate state. Applications
of this approach include solutions to multicommodity resource allocation problems, where,
exploiting the convergence speed of the method, one can overcome the obstacle posed by the
presence of local optima.

¤This work was supported in part by the National Science Foundation under Grants EEC-95-27422 and ACI-
98-73339, by AFOSR under contract F49620-98-1-0387, by the Air Force Research Laboratory under contract
F30602-99-C-0057 and by EPRI/ARO under contract WO8333-03.

1

1 Introduction

We consider stochastic discrete optimization problems where the decision variables are non-
negative integers. Problems of this type abound, for instance, in manufacturing systems and
communication networks. In a manufacturing system setting, examples include the classic bu¤er
allocation problem, whereK bu¤er slots are to be distributed overN manufacturing workstations
so as to optimize performance criteria involving throughput or mean system time; a variant of
this problem involving the use of kanban (rather than bu¤er slots) to be allocated to di¤erent
workstations [2]; and determining the optimal lot size for each of N di¤erent part types sharing
resources in a production facility with setup delays incurred when a switch from a lot of one part
type to another occurs [3]. In a communication network setting, similar bu¤er allocation issues
arise, as well as transmission scheduling problems where a …xed number of time slots forming a
“frame” must be allocated over several call types [4]. Such optimization problems are also very
common in any discrete resource allocation setting [5], as well as in control policies for Discrete
Event Systems (DES) that are parameterized by discrete variables such as thresholds or hedging
points.

The optimization problem we are interested in is of the general form

min
r2Ad

Jd(r) = E[Ld(r; !)] (1)

where r 2 ZN+ is a decision vector or “state” and Ad represents a constraint set. In a stochastic
setting, let Ld(r; !) be the cost incurred over a speci…c sample path ! when the state is r and
Jd(r) = E[Ld(r; !)] be the expected cost of the system operating under r. The sample space is
­ = [0; 1]1, that is, ! 2 ­ is a sequence of random numbers from [0; 1] used to generate a sample
path of the system. The cost functions are de…ned as Ld : Ad£­! R and Jd : Ad ! R, and the
expectation is de…ned with respect to a probability space (­;=; P) where = is an appropriately
de…ned ¾-…eld on ­ and P is a conveniently chosen probability measure. In the sequel, ‘!’ is
dropped from Ld(r; !) and, unless otherwise noted, all costs will be over the same sample path.

The problem (1) is a notoriously hard stochastic integer programming problem. Even in a
deterministic setting, where Jd(r) = Ld(r), this class of problems is NP-hard (see [5], [6] and
references therein). In some cases, depending upon the form of the objective function Jd(r)
(e.g., separability, convexity), e¢cient algorithms based on …nite-stage dynamic programming
or generalized Lagrange relaxation methods are known (see [5] for a comprehensive discussion on
aspects of deterministic resource allocation algorithms). Alternatively, if no a priori information
is known about the structure of the problem, then some form of a search algorithm is employed
(e.g., Simulated Annealing [7], Genetic Algorithms [8]).

When the system operates in a stochastic environment (e.g., in a resource allocation setting,
users request resources at random time instants or hold a particular resource for a random
period of time) and no closed-form expression for E[Ld(r)] is available, the problem is further
complicated by the need to estimate E[Ld(r)]. This generally requires Monte Carlo simulation
or direct measurements made on the actual system. Most known approaches are based on some
form of random search, as in algorithms proposed by Yan and Mukai [9], Gong et al [10], Shi
and Olafsson [11]. Another recent contribution to this area involves the ordinal optimization

2

approach presented in [12] and used in [13] to solve a class of resource allocation problems. Even
though the approach in [13] yields a fast algorithm, it is still constrained to iterate so that every
step involves the transfer of no more than a single resource from one user to some other user.
One can expect, however, that much faster improvements can be realized in a scheme allowed
to reallocate multiple resources from users whose cost-sensitivities are small to users whose
sensitivities are much larger. This is precisely the rationale of most gradient-based continuous
optimization schemes, where the gradient is a measure of this sensitivity.

With this motivation in mind, a new approach was proposed in [1] based on the following idea:
The discrete optimization problem (1) is transformed into a “surrogate” continuous optimization
problem which is solved using standard gradient-based methods; its solution is then transformed
back into a solution of the original problem. Moreover, this process is designed explicitly for
on-line operation. That is, at every iteration step in the solution of the surrogate continuous
optimization problem, the surrogate continuous state is immediately transformed into a feasible
discrete state r. This is crucial, since whatever information is used to drive the process (e.g.,
sensitivity estimates) can only be obtained from a sample path of the actual system operating
under r. It was shown in [1] that for resource allocation problems, where the constraint set

is of the form Ad =
n
r :
PN
i=1 ri = K

o
, the solution of (1) can be recovered from the solution

of the surrogate continuous optimization problem; the latter is obtained using a stochastic
approximation algorithm which converges under standard technical conditions.

The contributions of this paper are the following. First, we generalize the methodology presented
in [1] to problems of the form (1) which are not necessarily limited to constraints such as Ad =n
r :
PN
i=1 ri = K

o
, including the possibility of unconstrained problems. Second, we modify

the approach developed in [1] in order to improve its computational e¢ciency. In particular,
computational e¢ciency is gained in the following respects:

1. A crucial aspect of the “surrogate problem” method is the fact that the surrogate state,
denoted by ½ 2 RN+ , can be expressed as a convex combination of at most N + 1 points
in Ad, where N is the dimensionality of r 2 Ad. Determining such points is not a simple
task. In [1], this was handled using the Simplex Method of Linear Programming, which
can become ine¢cient for large values of N . In this paper, we show that for any surrogate
state ½, a selection set S(½) of such N + 1 points, not necessarily in Ad; can be identi…ed
through a simple algorithm of linear complexity. Moreover, this algorithm applies to any
problem of the form (1), not limited to any special type of constraint set Ad.

2. In solving the surrogate continuous optimization problem, a surrogate objective function
is de…ned whose gradient is estimated in order to drive a stochastic approximation type of
algorithm. The gradient estimate computation in [1] involves the inversion of an N £N
matrix. In this paper, we show that this is not needed if one makes use of the selection
set S(½) mentioned above, and the gradient estimate computation is greatly simpli…ed.

The price to pay for the generalization of the approach is the di¢culty in establishing a general
result regarding the recovery of the solution of (1) from the solution of the surrogate problem as
was done in our earlier work [1]. We are able, however, to still do so for two interesting cases.

3

Despite this di¢culty, the empirical evidence to date indicates that this generalized methodology
provides the optimal solutions under appropriate technical conditions guaranteeing convergence
of a stochastic approximation scheme.

A third contribution of this paper is in tackling a class of particularly hard multicommodity
discrete optimization problems, where multiple local optima typically exist. Exploiting the con-
vergence speed of the surrogate method, we present, as an application of the proposed approach,
a systematic means for solving such combinatorially hard problems.

The rest of the paper is organized as follows. In Section 2, we give an overview of our basic
approach. In Section 3, we present the key results enabling us to transform a discrete stochastic
optimization problem into a “surrogate” continuous optimization problem. In Section 4, we
discuss the construction of appropriate “surrogate” cost functions for our approach and the
evaluation of their gradients. Section 5 discusses how to recover the solution of the original
problem from that of the “surrogate” problem. Section 7 contains some numerical examples and
applications and describes how the “surrogate problem” method is used to solve multicommodity
resource allocation problems that exhibit multiple local optima.

2 Basic approach for on-line control

In the sequel, we shall adopt the following notational conventions as in [1]. We shall use sub-
scripts to indicate components of a vector (e.g., ri is the ith component of r). We shall use
superscripts to index vectors belonging to a particular set (e.g., rj is the jth vector within a
subset of ZN+ that contains such vectors). Finally, we reserve the index n as a subscript that
denotes iteration steps and not vector components (e.g., rn is the value of r at the nth step of
an iterative scheme, not the nth component of r).

The expected cost function Jd(r) is generally nonlinear in r, a vector of integer-valued decision
variables, therefore (1) is a nonlinear integer programming problem. One common method for
solving this problem is to relax the integer constraints on all ri so that they can be regarded
as continuous (real-valued) variables and then to apply standard optimization techniques such
as gradient-based algorithms. Let the “relaxed” set Ac contain the original constraint set Ad
and de…ne ¹Lc : RN+ £ ­ ! R to be the cost function over a speci…c sample path. As before
let us drop ‘!’ from ¹Lc(½; !) and agree that unless otherwise noted all costs will be over the
same sample path. The resulting “surrogate” problem then becomes: Find ½¤ that minimizes
the “surrogate” expected cost function Jc : RN+ ! R over the continuous set Ac, i.e.,

Jc(½
¤) = min

½2Ac
Jc(½) = E[¹Lc(½)] (2)

where ½ 2 RN+ , is a real-valued state, and the expectation is de…ned on the same probability
space (­;=; P) as described earlier. Assuming an optimal solution ½¤ can be determined, this
state must then be mapped back into a discrete vector by some means (usually, some form of
truncation). Even if the …nal outcome of this process can recover the actual r¤ in (1), this
approach is strictly limited to o¤-line analysis: When an iterative scheme is used to solve the
problem in (2) (as is usually the case except for very simple problems of limited interest), a

4

sequence of points f½ng is generated; these points are generally continuous states in Ac, hence
they may be infeasible in the original discrete optimization problem. Moreover, if one has to
estimate E[¹Lc(½)] or

@E[¹Lc(½)]
@½ through simulation, then a simulation model of the surrogate

problem must be created, which is also not generally feasible. If, on the other hand, the only
cost information available is through direct observation of sample paths of an actual system, then
there is no obvious way to estimate E[¹Lc(½)] or

@E[¹Lc(½)]
@½ , since this applies to the real-valued

state ½, not to the integer-valued actual state r.

As in [1], we adopt here a di¤erent approach intended to operate on line. In particular, we still
invoke a relaxation such as the one above, i.e., we formulate a surrogate continuous optimization
problem with some state space Ac ½ RN+ and Ad ½ Ac. However, at every step n of the
iteration scheme involved in solving the problem, both the continuous and the discrete states are
simultaneously updated through a mapping of the form rn = fn(½n). This has two advantages:
First, the cost of the original system is continuously adjusted (in contrast to an adjustment
that would only be possible at the end of the surrogate minimization process); and second, it
allows us to make use of information typically needed to obtain cost sensitivities from the actual
operating system at every step of the process.

The basic scheme we consider is the same as in [1] and is outlined below for the sake of self-
su¢ciency of the paper. Initially, we set the “surrogate system” state to be that of the actual
system state, i.e.,

½0 = r0 (3)

Subsequently, at the nth step of the process, let Hn(½n; rn; !n) denote an estimate of the sensi-
tivity of the cost Jc(½n) with respect to ½n obtained over a sample path !n of the actual system
operating under allocation rn; details regarding this sensitivity estimate will be provided later
in the paper. Two sequential operations are then performed at the nth step:

1. The continuous state ½n is updated through

½n+1 = ¼n+1[½n ¡ ´nHn(½n; rn; !n)] (4)

where ¼n+1 : RN ! Ac is a projection function so that ½n+1 2 Ac and ´n is a “step size”
parameter.

2. The newly determined state of the surrogate system, ½n+1, is transformed into an actual
feasible discrete state of the original system through

rn+1 = fn+1(½n+1) (5)

where fn+1 : Ac ! Ad is a mapping of feasible continuous states to feasible discrete states
which must be appropriately selected as will be discussed later.

One can recognize in (4) the form of a stochastic approximation algorithm (e.g., [14]) that
generates a sequence f½ng aimed at solving (2). However, there is an additional operation (5)
for generating a sequence frng which we would like to see converge to r¤ in (1). It is important to
note that frng corresponds to feasible realizable states based on which one can evaluate estimates

5

Hn(½n; rn; !n) from observable data, i.e., a sample path of the actual system under rn (not the
surrogate state ½n). We can therefore see that this scheme is intended to combine the advantages
of a stochastic approximation type of algorithm with the ability to obtain sensitivity estimates
with respect to discrete decision variables. In particular, sensitivity estimation methods for
discrete parameters based on Perturbation Analysis (PA) and Concurrent Estimation [15],[16]
are ideally suited to meet this objective.

Before addressing the issue of obtaining estimates Hn(½n; rn; !n) necessary for the optimization
scheme described above to work, there are two other crucial issues that form the cornerstones
of the proposed approach. First, the selection of the mapping fn+1 in (5) must be speci…ed.
Second, a surrogate cost function ¹Lc(½; !) must be identi…ed and its relationship to the actual
cost Ld(r; !) must be made explicit. These issues are discussed next, in Sections 3 and 4
respectively for the problem (1), which, as previously mentioned, is not limited to the class of
resource allocation problems considered in our earlier work [1].

3 Continuous-to-discrete state transformations

Let us …rst de…ne C(½), the set of vertices of the unit “cube” around the surrogate state as
C(½) = frj8i ri 2 fb½ic; d½iegg

where, for any x 2 R, dxe and bxc denote the ceiling (smallest integer ¸ x) and ‡oor (largest
integer · x) of x respectively. Note that when ½i 2 Z, all the ith components of the cube
elements are the same (= ½i) decreasing the dimension of the cube by one. In order to avoid
the technical complications due to integer components in ½, let us agree that whenever this is
the case we will perturb the integer components to obtain a new state ½̂ whose components are
non-integer, and then relabel this state as ½.

Next, we de…ne N (½), the set of all feasible neighboring discrete states in C(½) as:
N (½) = C(½) \Ad (6)

A more explicit and convenient characterization of the set N (½) is
N (½) = frjr = b½c+ ~r for all ~r 2 f0; 1gNg \Ad

where b½c is the vector whose components are b½ci = b½ic. In other words, N (½) is the set of
vertices of the unit “cube” containing ½ that are in the feasible discrete set Ad.

In earlier work (see [1]), we limited ourselves to resource allocation problems with linear capacity
constraints. For this class of problems, we used Ac = conv(Ad) as the feasible set in the
“surrogate” continuous state space. When the feasible set Ad is not a polyhedron, the set
Ac = conv(Ad) may include discrete states that are not in Ad. In order to prevent this and to
generalize the approach, we modify the de…nition of Ac, given the set N (½), as follows:

Ac =
[
½2RN+

conv(N (½)) (7)

6

Note that Ac µ conv(Ad) is the union of the convex hulls of feasible discrete points in every
cube, and is not necessarily convex. Note also that the de…nition reduces to Ac = conv(Ad)
when Ad is formed by all the discrete points in a polyhedron.

Now we are ready to de…ne the set of transformation functions F½ as follows:
F½ = ff jf : Ac ! Ad; (f(½))i 2 fd½ie; b½icg; i = 1; : : : ;Ng

The purpose of f 2 F½ is to transform some continuous state vector ½ 2 Ac into a “neighboring”
discrete state vector r 2 N (½) obtained by seeking d½ie or b½ic for each component i = 1; : : : ;N .
The existence of such a transformation is guaranteed by the projection mapping ¼ in (4), which
ensures that ½ 2 Ac, therefore N (½) is non-empty. A convenient element of F½ that we shall use
throughout the paper is

f(½) = arg min
r2N (½)

k½¡ rk

which maps the surrogate state ½ to the closest feasible neighbor in N (½). However, our analysis
is certainly not limited to this choice.

A key element of our approach is based on the fact that ½ can be expressed as a convex com-
bination of at most N + 1 points in C(½), as shown in Theorem 3.1 below. Given that the
cardinality of C(½) is combinatorially explosive, i.e., 2N , determining the set of these points is
not a simple task. In [1], it was shown that such a set of feasible points, NN(½), a subset of
N (½), can be determined using the Simplex Method when problems of the form (1) are limited

to constraint sets Ad =
n
r :
PN
i=1 ri = K

o
. In what follows, we provide a di¤erent approach

based on de…ning a selection set S(½) which (a) allows us to specify the N+1 points in C(½) that
de…ne a set whose convex hull includes ½ for problems with arbitrary Ad, (b) is much simpler
than the Simplex Method, and (c) simpli…es the gradient estimation procedure as we will see in
Section 4. An important distinction between NN(½) and S(½) is that the latter is not limited to
include only feasible points r 2 N (½).

De…nition 3.1 The set S(½) µ C(½) is a selection set if it satis…es the following conditions:

² jS(½)j = N + 1
² The surrogate state ½ resides in the convex hull of S(½), i.e., there exists f®ig such that

½ =
NX
i=0

®ir
i; with

NX
i=0

®i = 1; ®i ¸ 0; ri 2 S(½)

² The vectors in the set ©¹rij¹ri = £ 1 ri
¤
; ri 2 S(½)ª are linearly independent.

Next we will show the existence of the selection set S(½) by a constructive proof.

Theorem 3.1 A selection set S(½) exists for any ½ 2 RN+ .

7

Proof. We construct a selection set S(½) for ½ = [½1; :::; ½N] as described below and prove that
it satis…es all three conditions in De…nition 3.1.

Let us de…ne ei as the N-dimensional unit vector whose ith component is 1; the residual vector
~½ = ½ ¡ b½c; and the N-dimensional ordering vector o such that ok 2 f1; :::;Ng; k = 1; :::;N ,
and ok satis…es

~½ok · ~½ok+1 for k = 1; :::;N ¡ 1
Note that the de…nition of ~½ implies that 0 < ~½j < 1 for all j = 1; :::; N . Next, we de…ne

~rol =
NX
k=l

eok (8)

and

®ol =

½
~½ol ¡ ~½ol¡1 l > 1

~½o1 l = 1
¸ 0 (9)

It follows from (9) that we can write

~½ol =
lX

k=1

®ok (10)

and note that

~½oN =
NX
k=1

®ok =
NX
j=1

®j

Using (9) we have de…ned ®i for i = 1; : : : ;N . In addition, we now de…ne

®0 = 1¡
NX
i=1

®i = 1¡ ~½oN > 0 (11)

Similarly, (8) de…nes ~ri for i = 1; : : : ;N . In addition, we de…ne

~r0 = 0 (12)

where 0 = [0:::0] is the N-dimensional zero vector. Note that we can write

~½ =
NX
l=1

~½oleol (13)

Combining (10) and (13) and changing the summation indices gives

~½ =
NX
l=1

lX
k=1

®okeol =
NX
k=1

NX
l=k

®okeol (14)

Then, using (8) we get

~½ =
NX
k=1

®ok~r
ok =

NX
j=1

®j~r
j (15)

8

Next, we de…ne
rj = b½c+ ~rj (16)

Then, we can write

NX
j=0

®jr
j =

NX
j=0

®j b½c+
NX
j=0

®j~r
j

= b½c
NX
j=0

®j +
NX
j=0

®j~r
j

Observing that
PN
j=0 ®j = 1 from (11), and that

NX
j=0

®j~r
j =

NX
j=1

®j~r
j + ®0~r

0 = ~½

from (12) and (15), it follows that

NX
j=0

®jr
j = b½c+ ~½ = ½ (17)

i.e., the convex hull formed by S(½) = fr0; :::; rNg, with ri de…ned in (16), contains ½. This
satis…es the second condition in De…nition 3.1. Moreover, from (8), (12), and (16), it is obvious
that jS(½)j = N + 1, satisfying the …rst condition as well.

It remains to show that the vectors
£
1 ri

¤
with ri de…ned in (16) are linearly independent.

Consider the matrix
£
e R

¤
where e = [1 ¢ ¢ ¢ 1]0 is the (N + 1)¡ dimensional vector of 10s and

R is the matrix whose rows are vectors from S(½) such that

R =

26664
r0

roN

...
ro1

37775
Using (8), (12), and (16), one can write [1 rol] ¡ [1 rol+1] = [0 eol] for l < N and
[1 roN]¡ [1 r0] = [0 eoN]. Finally, note that

[1 r0] = [1 0] +
NX
i=1

b½ic [0 ei]

Using these arguments one can show that the matrix
£
e R

¤
can be transformed into the

identity matrix of dimension N + 1 by row operations. Therefore,
£
e R

¤
is non-singular,

i.e., the third condition of De…nition 3.1 is satis…ed. Moreover, the inverse of
£
e R

¤
, which

will be needed during the gradient estimation part of our approach in the next section, can be

9

evaluated to give:

£
e R

¤¡1
=

266664
1+

¥
½oN

¦ j
½oN¡1

k
¡ ¥½oN ¦ j

½oN¡2

k
¡
j
½oN¡1

k
::: ¡ ¥½o1¦

¡êN+1¡¹o1 + êN+2¡¹o1
...

¡êN+1¡¹oN + êN+2¡¹oN

377775 (18)

where êi is the (N + 1)¡dimensional unit vector whose ith component is 1 and ¹o is the N-
dimensional ordering vector such that ¹ok 2 f1; :::; Ng satisfying the relation

oi = j , ¹oj = i

One can also verify that
£
e R

¤¡1
above is such that

£
e R

¤¡1 £
e R

¤
= I.

We stress that the selection set S(½) is not unique; however, given a selection set S(½), the
®i values are unique for i = 0; :::;N . There are clearly di¤erent ways one can construct S(½),
including randomized methods. For instance, one can start out by randomly selecting the …rst
element of the selection set from C(½) and then proceed through a scheme similar to the one
used above.

The following is an algorithmic procedure for constructing S(½) as presented in Theorem 3.1:

² Initialize the index set I = f1; :::; Ng and de…ne a temporary vector v = ~½.
² While I 6= ;:

1. ~ri =
P
j2I ej where i = argminfvj ; j 2 Ig

2. ®i = vi

3. v Ã v ¡ ®i~ri

4. I Ã Infig

² ~r0 = 0
² ®0 = 1¡

PN
i=1 ®i

² S(½) = frijri = ~ri + b½c for i = 0; :::;Ng

Example: In order to clarify our notation and illustrate the speci…cation of the sets C(½), N (½)
and S(½), we provide the following example, which we will use throughout our analysis. Consider
the allocation problem of K = 10 resources over N = 3 users, and let ½ = [3:9; 3:9; 2:2]. The
feasible set is

Ac =

(
½ :

NX
i=1

½i = 10

)
(19)

10

Since b½c = [3; 3; 2], we have the unit cube
C(½) = f[3; 3; 2]; [3; 3; 3]; [3; 4; 2]; [3; 4; 3]; [4; 3; 2]; [4; 3; 3]; [4; 4; 2]; [4; 4; 3]g

and the feasible neighbors of ½ are

N (½) = f[3; 4; 3]; [4; 4; 2]; [4; 3; 3]g
Let us now construct a selection set satisfying the conditions of De…nition 3.1 using the algorithm
described above. First we initialize the index set I = f1; 2; 3g and the residual vector v =
½¡ b½c = [0:9; 0:9; 0:2]. Note that argminj2f1;2;3gfvjg = 3, therefore,

~r3 =
X

j2f1;2;3g
ej = [1; 1; 1]

®3 = v3 = 0:2

Next, we update

v Ã v ¡ ®3~r3 = [0:7; 0:7; 0]
I Ã Inf3g = f1; 2g

Now, note that the …rst two components in the updated v are equal. We can select any one of
them for the next argminj2f1;2gfvjg. Thus, if we pick the …rst component we get

~r1 =
X

j2f1;2g
ej = [1; 1; 0]

®1 = v1 = 0:7

Proceeding as before, we update

v Ã v ¡ ®1~r1 = [0; 0; 0]
I Ã Inf1g = f2g

and …nish this step by setting

~r2 =
X
j2f2g

ej = [0; 1; 0]

®2 = v2 = 0

Finally,

v Ã v ¡ ®2~r2 = [0; 0; 0]
I Ã Inf2g = fg

We may now construct the selection set from the vectors given by (16):

r1 = ~r1 + b½c = [1; 1; 0] + [3; 3; 2] = [4; 4; 2]
r2 = ~r2 + b½c = [0; 1; 0] + [3; 3; 2] = [3; 4; 2]
r3 = ~r3 + b½c = [1; 1; 1] + [3; 3; 2] = [4; 4; 3]
r0 = ~r0 + b½c = [0; 0; 0] + [3; 3; 2] = [3; 3; 2]

11

i.e.,
S(½) = f[3; 3; 2]; [3; 4; 2]; [4; 4; 2]; [4; 4; 3]g

The example above illustrates the important di¤erence between the selection setNN(½) employed
in [1] and the present construction: While all the elements of the set NN(½) are feasible, the
elements of the selection set S(½) constructed above may be infeasible. The following lemma
considers resource allocation problems with total capacity constraints as a special case of discrete
stochastic optimization and asserts that there is always exactly one feasible point in S(½).

Lemma 3.1 For problems (1) with a feasible set Ad =
n
r :
PN
i=1 ri = K; r 2 ZN+

o
, the selection

set S(½) constructed above includes one and only one feasible point. Moreover, this point is the
argument of minr2N (½) k½¡ rk.

Proof. Since ½ 2 Ac, it follows from (7) that there exist f®igMi=1 that satisfy

½j =
MX
i=1

®ir
i
j; ri 2 N (½);

MX
i=1

®i = 1; ®i ¸ 0 for i = 1; :::;M

where M = jN (½)j. Therefore,
NX
j=1

½j =
NX
j=1

MX
i=1

®ir
i
j =

MX
i=1

®i

NX
j=1

rij =
MX
i=1

®iK = K

Then, we can write
NX
j=1

¥
½j
¦ · K ·

NX
j=1

§
½j
¨

where the equality only holds for integer allocations. Since we agreed that ½ does not have
integer components,

NX
j=1

¥
½j
¦
< K <

NX
j=1

§
½j
¨

Note that
NX
j=1

(
§
½j
¨¡ ¥½j¦) = N (20)

and de…ne the residual resource capacity m, with 0 < m < N , as

m = K ¡
NX
j=1

¥
½j
¦

(21)

Also note that from (12) and (16)

r0 = b½c+ ~r0 = b½c 2 S(½)

12

and from (8)

ro1 = b½c+ ~ro1 = b½c+
NX
k=1

eok = d½e 2 S(½) (22)

Now, observe that during the construction of S(½),

rol ¡ rol+1 = eol
therefore,

NX
i=1

roli ¡
NX
i=1

r
ol+1
i =

NX
i=1

(eol)i = 1 (23)

Using (23),
NX
i=1

ro1 ¡
NX
i=1

roN+1¡m = N ¡m

and it follows from (22) that

NX
i=1

roN+1¡m =
NX
i=1

d½ie ¡N +m = K

where we have used (20) and (21). Therefore, roN+1¡m 2 N (½) and the …rst part of the proof is
complete.

By construction of the selection set S(½), the elements rol satisfy the following

roli = d½ie and rolj =
¥
½j
¦) ~½i ¸ ~½j (24)

Therefore, we claim that roN+1¡m is the solution of the minimization problem

min
r2N (½)

k½¡ rk =
vuut NX

i=1

(½i ¡ ri)2

for ½ 2 Ac. All elements r 2 N (½) can be characterized in terms of a setMr of indices de…ned
as

Mr = fijri = d½ieg
where jMrj = m for r 2 N (½). One can then write an equivalent minimization problem as

min
r2N (½)

NX
i=1

(½i ¡ ri)2 = min
r2N (½)

2664 NX
i=1

ri=b½ic

(½i ¡ ri)2 +
NX
i=1

ri=d½ie

(½i ¡ ri)2

3775
= min

r2N (½)

24 X
i2InMr

~½i
2 +

X
i2Mr

(1¡ ~½i)2
35

13

For r; roN+1¡m 2 N (½), the sets Mr and MroN+1¡m are formed by m elements from the set
f1; :::;Ng. Starting atMroN+1¡m , one can reach anyMr by a series of iterations, each iteration
involving the removal of one element from the setMroN+1¡mnMr, and the addition of an element
from the setMrnMroN+1¡m . If we remove i and add j while ~½i ¸ ~½j we increase the objective
value by

~½2i ¡ ~½2j + (1¡ ~½j)2 ¡ (1¡ ~½i)2 = 2(~½i ¡ ~½j) ¸ 0
Since MroN+1¡m has the arguments for the m highest ~½i, we cannot decrease the distance by
moving to another r 2 N (½) therefore roN+1¡m minimizes the distance from ½.

Example (Cont.): For the resource allocation problem of K = 10 resources over N = 3 users,
given ½ = [3:9; 3:9; 2:2], we found a selection set

S(½) = f[3; 3; 2]; [3; 4; 2]; [4; 4; 2]; [4; 4; 3]g

Observe that [4; 4; 2] is the only element of S(½) above which is feasible, consistent with Lemma
3.1. In addition, note that [4; 4; 2] is the obvious solution of the minimization problem

min
r2N (½)

k½¡ rk

where N (½) = f[3; 4; 3]; [4; 4; 2]; [4; 3; 3]g:

4 Construction of surrogate cost functions and their gradients

Since our approach is based on iterating over the continuous state ½ 2 Ac, yet drive the iteration
process with information involving Ld(r) obtained from a sample path under r, we must establish
a relationship between Ld(r) and ¹Lc(½). The choice of ¹Lc(½) is rather ‡exible and may depend
on information pertaining to a speci…c model and the nature of the given cost Ld(r).

Before de…ning ¹Lc(½), we shall concentrate on surrogate cost functions Lc(½;S(½); !) (which
clearly depend on a selection set and a sample path) that satisfy the following two conditions:

(C1): Consistency : Lc(r;S(r); !) = Ld(r; !) for all r 2 ZN+ .

(C2): Piecewise Linearity: Lc(½;S(½); !) is a linear function of ½ over conv(S(½)).

In the sequel, the ‘S(½)’ term will be dropped along with ‘!’ for simplicity.

Consistency is an obvious requirement for Lc(½). Piecewise linearity is chosen for convenience,
since manipulating linear functions over conv(S(½)) simpli…es analysis, as will become clear in
what follows.

Given some state ½ 2 Ac and cost functions Ld(rj) for all rj 2 S(½), it follows from (C2) and
(17) that we can write

½ =
NX
j=0

®jr
j) Lc(½) =

NX
j=0

®jLc(r
j)

14

with
PN
j=0 ®j = 1, ®j ¸ 0 for all j = 0; ::;N . Moreover, by (C1), we have

Lc(½) =
NX
j=0

®jLd(r
j) (25)

that is, Lc(½) is a convex combination of the costs of discrete neighbors in S(½). Note that
although S(½) is not unique, given S(½), the values of ®i for i = 0; :::; N are unique; therefore,
Lc(½) is well de…ned.

We now de…ne a surrogate cost function ¹Lc(½) and the corresponding selection set S¤(½) as
¹Lc(½) = minS(½)

Lc(½) (26)

and
S¤(½) = argmin

S(½)
Lc(½) (27)

where the minimization is over all possible selection sets for the point ½. The function ¹Lc(½)
satis…es the consistency condition (C1), but it may not be a continuous function due to changes
in the selection set S¤(¢) for neighboring points.

Next, if we are to successfully use the iterative scheme described by (4)-(5), we need information
of the form Hn(½n; rn; !n) following the nth step of the on-line optimization process. Typically,
this information is contained in an estimate of the gradient. Our next objective, therefore,
is to seek the selection-set-dependent sample gradient rLc(½) expressed in terms of directly
observable sample path data.

4.1 Gradient evaluation

The gradient information necessary to drive the stochastic approximation part of the surro-
gate method is evaluated depending on the form of the cost function. Gradient estimation for
separable cost functions is signi…cantly simpler and is discussed in Section 4.3.

Since Lc(½) is a linear function on the convex hull de…ned by S(½), one can write

Lc(½) =
NX
i=1

¯i½i + ¯0 (28)

where

¯i =
@Lc(½)

@½i
, i = 1; :::; N

and ¯0 2 R is a constant. Note that the ¯i values depend on the selection set S(½), which, as
already pointed out, may not be unique.

For any rj 2 S(½), one can use (28) and (C1) to write

Ld(r
j) =

NX
i=1

¯ir
j
i + ¯0

15

Note that the values Ld(rj) are either observable or can be evaluated using Concurrent Estima-
tion or Perturbation Analysis techniques (see [15], [16]) despite the fact that rj 2 S(½) may be
infeasible, i.e., having infeasible points in the selection set does not a¤ect our ability to obtain
gradients. One can now rewrite the equation above as£

e R
¤
¯ = L

where e is an (N + 1)¡dimensional column vector with all entries equal to 1, ¯ = [¯0; :::; ¯N]0,
R is the matrix whose rows are rj 2 S(½), and L is the column vector of costs for these discrete
states. Since we have constructed S(½) so that £ e R

¤
is non-singular, the gradient given by

rLc(½) = [¯1; :::; ¯N]0, can be obtained from the last equation as

rLc(½) =
£
0 I

¤ £
e R

¤¡1
L (29)

where I is the identity matrix of dimension N and 0 is the N-dimensional vector of zeros.
Substituting from equation (18), the gradient can be written as

rLc(½) =

264 ¡êN+1¡¹o1 + êN+2¡¹o1
...

¡êN+1¡¹oN + êN+2¡¹oN

375
26664
Ld(r

0)
Ld(r

oN)
...

Ld(r
o1)

37775 (30)

Therefore,
rjLc(½) = Ld(rj)¡ Ld(rk) (31)

where k satis…es ¹oj + 1 = ¹ok, i.e., rj ¡ rk = ej . As pointed out in the Introduction, this is a
signi…cant simpli…cation over the gradient evaluation used in our earlier work [1]. Moreover,
this analysis allows us to combine the algorithm for determining the selection set given in the
previous section with the gradient estimation component of our approach to obtain the following:

² Initialize the index set I = f1; :::; Ng
² ri = d½e where i = argminj2I ~½j
² OC = Ld(ri)
² oi = i
² I = Infig
² While I 6= ;:

1. rk = roi ¡ eoi where k = argminj2I ~½j
2. roiLc(½) = OC ¡ Ld(rk)
3. OC = Ld(rk)

4. oi = k

16

5. I = Infkg

² r0 = b½c
² roiLc(½) = OC ¡ Ld(r0)

Example (Cont.): For the example we have been using throughout the paper, consider the
cost function

J(r) = kr ¡ [2; 5; 3]k2

Let ½n = [3:9; 3:9; 2:2], for which we found S(½) = f[3; 3; 2]; [3; 4; 2]; [4; 4; 2]; [4; 4; 3]g with r1 =
[4; 4; 2], r2 = [3; 4; 2], r3 = [4; 4; 3], and r0 = [3; 3; 2]. The gradient at this point can, therefore,
be evaluated using (31) to give

rLc(½n) =
24 Jd([4; 4; 2])¡ Jd([3; 4; 2])Jd([3; 4; 2])¡ Jd([3; 3; 2])
Jd([4; 4; 3])¡ Jd([4; 4; 2])

35 =
24 3
¡3
¡1

35
Using ´n = 0:5 in (4):

½n+1 = ¼n+1[½n ¡ ´nrLc(½n)]
= ¼n+1[[2:4; 5:4; 2:7]]

= [2:2; 5:2; 2:6]

where we have used the projection ¼ to map the point [2:4; 5:4; 2:7] into a feasible point
[2:2; 5:2; 2:6] 2 Ac. For this example, ¼ can be de…ned as follows:

¼[¹½] = arg minPN
i=1 ½i=10

k½¡ ¹½k

4.2 Projection Mapping

The projection mapping ¼ is a crucial element of our method and may have a signi…cant e¤ect
on convergence. In this section, we discuss a projection mapping which can be used for resource
allocation problems with feasible sets

Ad =

(
r :

NX
i=1

ri = K; r 2 ZN+
)

Consider the optimization problem

min
½

NX
i=1

(½i ¡ ¹½i)2

17

subject to

½i ¸ 0
NX
i=1

½i = K

The solution to this optimization problem, which we will denote by ¼(¹½), is the closest point in
the feasible set Ac to the point ¹½. Note that a ¼ projection to a closed convex set de…ned in this
manner is continuous and nonexpansive, therefore it guarantees convergence (see [1]).

Let us consider the relaxed problem

min
½i¸0

NX
i=1

£
(½i ¡ ¹½i)2 ¡ ¸½i

¤
+ ¸K

The necessary optimality conditions are

[2(½i ¡ ¹½i)¡ ¸] = 0 for ½i > 0

[2(½i ¡ ¹½i)¡ ¸] > 0 for ½i = 0
NX
i=1

½i = K

or equivalently

½i = ¹½i +
¸

2
for ½i > 0

½i > ¹½i +
¸

2
for ½i = 0

NX
i=1

½i = K

i.e.,

½i = max(0; ¹½i +
¸

2
)

NX
i=1

½i = K

These equations suggest the following algorithm for the ¼ projection:

Projection Algorithm:

² Initialize ¸0 = 2
N (K ¡PN

i=1max(0; ¹½i))

² If some stopping condition is not satis…ed:

18

1. For i = 1; 2; :::N; ½i = max(0; ¹½i +
¸
2)

2. ¸Ã ¸+ 2
N (K ¡PN

i=1 ½i)

² Set ¼[¹½] = ½.

A common stopping condition we have used in our work (see also Section 7) is
¯̄̄
K ¡PN

i=1 ½i

¯̄̄
· ",

for some small " > 0. Then, the vector ½ is rescaled

½Ã KPN
i=1 ½i

½

to satisfy the capacity constraint. The error introduced while rescaling is small and it is a
monotonically increasing function of ". Note that there is a trade-o¤ between the number of
iterations needed and the size of the resulting error term determined by the selection of ".

4.3 Separable cost functions

Suppose that the cost function, Ld(¢), is separable in the sense that it is a sum of component
costs each dependent on its local state only, i.e., let

Ld(r) =
NX
i=1

Ld;i(ri) (32)

In this case, our approach is signi…cantly simpli…ed. In particular, from (31) and (32), we can
write

rjLc(½) = Ld(r
j)¡ Ld(rk)

=
NX
i=1

Ld;i(r
j
i)¡

NX
i=1

Ld;i(r
k
i)

=
NX
i=1

[Ld;i(r
j
i)¡ Ld;i(rki)]

= Ld;j(r
j
j)¡ Ld;j(rjj ¡ 1)

where k satis…es ¹oj+1 = ¹ok, i.e., rj¡ rk = ej. Note that rjj =
§
½j
¨
and rjj ¡1 =

¥
½j
¦
; therefore,

rjLc(½) = Ld;j(
§
½j
¨
)¡ Ld;j(

¥
½j
¦
) (33)

This result indicates that for separable cost functions estimating sensitivities does not require
the determination of a selection set; we can instead simply pick a feasible neighbor (preferably
the closest feasible neighbor to ½) and apply Perturbation Analysis (PA) techniques to determine
the gradient components through (33). There are a number of PA techniques developed precisely
for evaluating the e¤ect of decreasing and increasing the number of resources allocated to user

19

i; for example, estimating the sensitivity of packet loss in a radio network with respect to
adding/removing a transmission slot available to the ith user [17], [18]. In [19] a PA technique
is used together with our methodology to solve a call admission problem (with a separable cost
function) over a communication network where there are capacity constraints on each node,
while there is no total capacity constraint for the network.

5 Recovery of optimal discrete states

Our ultimate goal remains the solution of (1), that is the determination of r¤ 2 Ad that solves
this optimization problem. Our approach is to solve (2) by iterating on ½ 2 Ac and, at each
step, transforming ½ through some f 2 F½. The connection between ½ and r = f (½) for each
step is therefore crucial, as is the relationship between ½¤ and f(½¤) when and if this iterative
process comes to an end identifying a solution ½¤ to the surrogate problem (2).

The following theorem identi…es a key property of the selection set S¤(½¤) of an optimal surrogate
state ½¤.

Theorem 5.1 Let ½¤ minimize ¹Lc(½) over Ac. If r¤ = argminr2S¤(½¤)Ld(r) 2 N (½¤), i.e., the
minimal cost element r¤ of the selection set S¤(½¤) corresponding to ¹Lc(½¤) is feasible, then r¤
minimizes Ld(r) over Ad and satis…es Ld(r¤) = ¹Lc(½

¤).

Proof. By (25), the optimal surrogate state ½¤ = argmin½2Ac ¹Lc(½) satis…es

¹Lc(½
¤) =

NX
j=0

®jLd(r
j)

where
PN
j=0 ®j = 1, r

j 2 S¤(½¤), ®j ¸ 0 for j = 0; ::; N . Then,

¹Lc(½
¤) =

NX
j=0

®jLd(r
j) ¸

NX
j=0

®jLd(r
¤) = Ld(r¤) (34)

regardless of the feasibility of r¤.

Next, note that Ad ½ Ac and ¹Lc(r) = Ld(r) for any r 2 Ad. Therefore, if r¤ 2 N (½¤), then
Ld(r

¤) = ¹Lc(r
¤) ¸ ¹Lc(½

¤) (35)

In view of (34) and (35), we then get

Ld(r
¤) · ¹Lc(½

¤) · Ld(r¤)
It follows that

Ld(r
¤) = ¹Lc(½

¤)

that is, r¤ is optimal over Ad. Finally, since r¤ is one of the discrete feasible neighboring states
of ½¤, i.e. r¤ 2 N (½¤), we have r¤ = f(½¤) for some f 2 F½¤ .

20

Corollary 5.1 For unconstrained problems, let ½¤ minimize ¹Lc(½). Then,

r¤ = arg min
r2S¤(½¤)

Ld(r)

minimizes Ld(r) and satis…es Ld(r¤) = ¹Lc(½
¤).

Proof. If problem (1) is unconstrained, then trivially r¤ = argminr2S¤(½¤)Ld(r) 2 N (½¤) and
the result follows.

An interesting example of an unconstrained problem is that of lot sizing in manufacturing
systems (see [20]) where the sizes of lots of di¤erent parts being produced may take any (non-
negative) integer value. Clearly, Corollary 5.1 also holds for problems where the optimal point
is in the interior of the feasible set where the constraints are not active, i.e., N (½¤) = C(½¤).

If there are active constraints around the optimal point ½¤, i.e., N (½¤) 6= C(½¤), and there are
infeasible points in the selection set S(½¤), then, if one of these infeasible points has the minimal
cost, the recovery of the optimal as a feasible neighbor of ½¤ becomes di¢cult to guarantee
theoretically, even though empirical evidence shows that this is indeed the case. This is the price
to pay for the generalization of the surrogate problem method we have presented here through
the introduction of a selection set that allows the inclusion of infeasible points. However, if the
cost function Ld(r) is “smooth” in some sense, the minimal cost element of N (½¤) will in general
be either an optimal or a near-optimal point as stated in the next lemma.

Lemma 5.1 If the cost function Ld(r) satis…es¯̄
Ld(r

1)¡ Ld(r2)
¯̄ · c! °°r1 ¡ r2°° ; c! <1 (36)

then all r 2 N (½¤) satisfy
Ld(r) · ¹Lc(½

¤) + c!
p
N (37)

Proof. Note that S¤(½¤) ½ C(½¤) and N (½¤) ½ C(½¤). It is easy to show that for r1; r2 2 C(½¤)°°r1 ¡ r2°° · pN
By (34), there exists r¤ 2 S¤(½¤) that satis…es ¹Lc(½¤) ¸ Ld(r¤) regardless of its feasibility. For
r 2 N (½¤), we can write ¹Lc(½¤) · Ld(r), therefore

jLd(r)¡ Ld(r¤)j = Ld(r)¡ Ld(r¤) ¸ Ld(r)¡ ¹Lc(½¤) (38)

By assumption (36),
jLd(r)¡Ld(r¤)j · c! kr ¡ r¤k · c!

p
N (39)

Hence, from (38) and (39),
Ld(r) · ¹Lc(½

¤) + c!
p
N

In practice, for many cost metrics such as throughput or mean system time in queueing models,
it is common to have the costs in the neighborhood of an optimal point be relatively close, in
which case the value of c! is small and (37) is a useful bound.

21

6 Optimization Algorithm

Summarizing the results of the previous sections and combining them with the basic scheme
described by (4)-(5), we obtain the following optimization algorithm for the solution of the basic
problem in (1):

² Initialize ½0 = r0 and perturb ½0 to have all components non-integer.
² For any iteration n = 0; 1; : : ::

1. Determine S(½n) [using the construction of Theorem 3.1; recall that this set is gen-
erally not unique].

2. Select fn 2 F½n such that rn = argminr2N (½n) kr ¡ ½nk = fn(½n) 2 N (½n).
3. Operate at rn to collect Ld(ri) for all ri 2 S(½n) [using Concurrent Estimation or
some form of Perturbation Analysis; or, if feasible, through o¤-line simulation].

4. Evaluate rLc(½n) [using (31)].
5. Update the continuous state: ½n+1 = ¼n+1[½n ¡ ´nrLc(½n)].
6. If some stopping condition is not satis…ed, repeat steps for n+1. Else, set ½¤ = ½n+1.

² Obtain the optimal (or the near optimal) state as one of the neighboring feasible states in
the set N (½¤).

Note that for separable cost functions, steps 1-6 can be replaced by

1. Select fn such that rn = argminr2N (½n) kr ¡ ½nk = fn(½n) 2 N (½n).
2. Operate at rn to evaluate rLc(½n) using Perturbation Analysis and (33).
3. Update the continuous state: ½n+1 = ¼n+1[½n ¡ ´nrLc(½n)].
4. If some stopping condition is not satis…ed, repeat steps for n+ 1. Else, set ½¤ = ½n+1.

The surrogate part of this algorithm is a stochastic approximation scheme with projection whose
convergence was analyzed in [1] and references therein.

Note that ideally we would like to have rJc(½n) be the cost sensitivity driving the algorithm.
Since this information is not always available in a stochastic environment and since Jc(½n) =
E[¹Lc(½n; !)], the stochastic approximation algorithm uses r¹Lc(½n; !) as an estimate and under
some standard assumptions on the estimation error "n where

rJc(½n) = r¹Lc(½n; !) + "n
the convergence is guaranteed. In order to get r¹Lc(½n; !), however, one needs to consider
all possible selection sets. In this algorithm we utilize only one of those selection sets and

22

approximate r¹Lc(½n; !) with rLc(½n; S(½n); !). This approximation introduces yet another
error term ¹"n where

r¹Lc(½n; !) = rLc(½n; S(½n); !) + ¹"n
Note that this error term ¹"n exists regardless of stochasticity, unless the cost function Ld(:) is
separable (all selection sets will yield the same sensitivity for separable cost functions). We can
combine error terms to de…ne ²n = ¹"n + "n and write

rJc(½n) = rLc(½n; S(½n); !) + ²n
If the augmented error term ²n satis…es the standard assumptions, then convergence of the
algorithm to the optimal follows in the same way as presented in [1].

7 Numerical Examples and Applications

We …rst illustrate our approach by means of a simple deterministic example, followed by a more
challenging stochastic optimization application for a classical problem in manufacturing systems.

Example 1: Consider an allocation problem of K = 20 resources over N = 4 users so as to
minimize the convex cost function Jd(r) de…ned as

Jd(r) = kr ¡ [4; 5; 3; 8]k2

Suppose the initial state is ½0 = [1:8; 9:1; 6:2; 2:9]. Note that the set of feasible neighboring states
N (½0) is

N (½0) = f[2; 10; 6; 2]; [2; 9; 7; 2]; [2; 9; 6; 3]; [1; 10; 7; 2]; [1; 10; 6; 3]; [1; 9; 7; 3]g
Following the steps shown in the algorithm of Section 6, we have:

1. Determine the selection set S(½0)
S(½0) = f[1; 9; 6; 2]; [1; 9; 6; 3]; [2; 9; 6; 3]; [2; 9; 7; 3]; [2; 10; 7; 3]g

2. Select r0 = f0(½0) 2 N (½0):
r0 = [2; 9; 6; 3]

3. Evaluate cost functions for states in S(½0):
Jd([1; 9; 6; 2]) = 70 Jd([1; 9; 6; 3]) = 59 Jd([2; 9; 6; 3]) = 54

Jd([2; 9; 7; 3]) = 61 Jd([2; 10; 7; 3]) = 70

4. Evaluate the gradient of the cost at ½0

(rJc(½0))1 = Jd([2; 9; 6; 3])¡ Jd([1; 9; 6; 3]) = ¡5
(rJc(½0))2 = Jd([2; 10; 7; 3])¡ Jd([2; 9; 7; 3]) = 9
(rJc(½0))3 = Jd([2; 9; 7; 3])¡ Jd([2; 9; 6; 3]) = 7
(rJc(½0))4 = Jd([1; 9; 6; 3])¡ Jd([1; 9; 6; 2]) = ¡11

23

Therefore,

rJc(½0) =

2664
¡5
9
7
¡11

3775
5. Update the surrogate state:

½1 = ¼1[½0 ¡ ´0rJc(½0)]

6. If the stopping condition is not satis…ed, go to step 1 and repeat with ½n+1 replacing ½n for
n = 0; 1; :::.

Using a step size sequence ´n = 0:5=(n + 1), the following table shows the evolution of the
algorithm for the …rst few steps. Note that the optimal allocation [4; 5; 3; 8] is reached after a
single step.

STEP ½ r Jc(½) J(r)

0 [1:800; 9:100; 6:200; 2:900] [2; 9; 6; 3] 56:84 54

1 [4:300; 4:600; 2:700; 8:400] [4; 5; 3; 8] 0:50 0

2 [4:050; 4:850; 2:950; 8:150] [4; 5; 3; 8] 0:05 0

Table 1: Optimal Resource Allocation

Example 2: Consider a manufacturing system formed by …ve stages in series. The arrival
process to the system is Poisson with rate ¸ = 1:0 and the service processes are all exponential
with rates ¹1 = 2:0, ¹2 = 1:5, ¹3 = 1:3, ¹4 = 1:2, and ¹5 = 1:1. Note that Poisson arrival
process and exponential service times are not required by the algorithm. They are chosen for
simplicity of the simulations.

We would like to allocate kanban (tickets) to stages 2¡ 5, to minimize a cost function that has
two components

J(r) = J1(r) + J2(r)

where r 2 Z4+ is the vector of kanban allocated to stages 2¡ 5. The …rst component J1(r) is the
average system time for jobs and the second component J2(r) is a cost on the number of kanban
allocated de…ned as

J2(r) = c

¯̄̄̄
¯K ¡

4X
i=1

ri

¯̄̄̄
¯

For large enough c, the second component J2(r) dominates the cost; therefore, a capacity con-
straint of the form

4X
i=1

ri = K

is enforced. The problem, then, can be written as

minP4
i=1 ri=K

J1(r)

24

which was considered in [21] withK = 13. The surrogate method for the same problem performs
as follows:

Iterations r J(r)

1 [3; 3; 3; 4] 0:798133

2 [1; 2; 2; 8] 0:781896

3 [1; 5; 4; 8] 0:767171

4 [1; 4; 6; 7] 0:746568

5 [1; 4; 6; 7] 0:761161

6 [1; 4; 6; 6] 0:709394

7 [1; 3; 5; 6] 0:827928

8 [1; 3; 5; 6] 0:788815

9 [1; 3; 5; 5] 0:730709

10 [1; 3; 5; 6] 0:742748

11 [1; 3; 5; 5] 0:791522

12 [1; 2; 5; 5] 0:865436

13 [1; 3; 4; 5] 0:795680

14 [1; 3; 4; 5] 0:738700

15 [1; 3; 4; 5] 0:857133

16 [1; 3; 4; 5] 0:679464

17 [1; 3; 4; 5] 0:875472

18 [1; 3; 4; 5] 0:840447

Table 2: Optimal Kanban Allocation

At each iteration we observe 100 departures and use the decreasing step size ´n =
140
n . The

optimal allocation is observed as [1; 3; 4; 5] which matches the result from [21]. It is worthwhile
noting that this optimal point is identi…ed within 13 iterations, illustrating the convergence
speed of this method.

7.1 Multicommodity Resource Allocation Problems

An interesting class of discrete optimization problems arises when Q di¤erent types of resources
must be allocated to N users. The corresponding optimization problem we would like to solve
is

min
r2Ad

J(r)

where r = [r1;1; : : : ; r1;Q; ¢ ¢ ¢ ; rN;1; : : : ; rN;Q] is the allocation vector and ri;q is the number of
resources of type q allocated to user i. A typical feasible set Ad is de…ned by the capacity
constraints

NX
i=1

ri;q · Kq, q = 1; : : : ;Q

and possibly additional constraints such as ¯i · ri;q · °i for i = 1; : : : ; N . Aside from the
fact that such problems are of higher dimensionality because of the Q di¤erent resource types

25

that must be allocated to each user, it is also common that they exhibit multiple local minima.
Examples of such problems are encountered in operations planning that involve N tasks to be
simultaneously performed, each task i requiring a “package” of resources (ri;1; : : : ; ri;Q) in order
to be carried out. The natural trade-o¤ involved is between carrying out fewer tasks each with
a high probability of success (because each task is provided adequate resources) and carrying
out more tasks each with lower probability of success.

The “surrogate problem” method provides an attractive means of dealing with these problems
with local minima because of its convergence speed. Our approach for solving these problems
is to randomize over the initial states r0 (equivalently, ½0) and seek a (possibly local) minimum
corresponding to this initial point. The process is repeated for di¤erent, randomly selected,
initial states so as to seek better solutions. For deterministic problems, the best allocation seen
so far is reported as the optimal. For stochastic problems, we adopt the stochastic comparison
approach in [10]. The algorithm is run from a randomly selected initial point and the cost
of the corresponding …nal point is compared with the cost of the “best point seen so far”.
The stochastic comparison test in [10] is applied to determine the “best point seen so far”
for the next run. Therefore, the surrogate problem method can be seen as a complementary
component for random search algorithms that exploits the problem structure to yield better
generating probabilities (as discussed in [10]), which will eliminate (or decrease) the visits to
poor allocations enabling them to be applied on-line.

In what follows we consider a problem with N = 16, Q = 2, and K1 = 20, K2 = 8. We then
seek a 32¡dimensional vector r = [r1;1; r1;2; ¢ ¢ ¢ ; r16;1; : : : ; r16;2] to maximize a reward function
of the form

J(r) =
16X
i=1

Ji(r) (40)

subject to
NX
i=1

ri;1 · 20;
NX
i=1

ri;2 · 8

The reward functions Ji(r) we will use in this problem are de…ned as

Ji = ViP
0
i (r)¡C1ri;1P 1i (r)¡C2ri;2P 2i (r) (41)

In (41), Vi represents the “value” of successfully completing the ith task and P 0i (r) is the
probability of successful completion of the ith task under an allocation r. In addition, Cq is the
cost of a resource of type q, where q = 1; 2, and P qi (r) is the probability that a resource of type
q is completely consumed or lost during the execution of the ith task under an allocation r. A
representative example of a reward function for a single task with Vi = 150 is shown in Fig. 1.
The cost values of resource types are C1 = 20 and C2 = 40, and the values for tasks we will use
in this problem range between 50 and 150.

The surrogate method is executed from random initial points and the results for some runs are
shown in Fig. 2. Note that due to local maxima, some runs yield suboptimal results. How-
ever, in all cases convergence is attained extremely fast, enabling us to repeat the optimization
process multiple times with di¤erent initial points in search of the global maximum. Although
it is infeasible to identify the actual global maximum, we have compared our approach to a

26

0
2

4
6

8
10

0

2

4

6

8

10
-200

-150

-100

-50

0

50

100

150

Resource Type 1Resource Type 2

R
ew

ar
d

Figure 1: A typical reward function Ji(ri;1; ri;2)

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19

Iterations

To
ta

l R
ew

ar
d

Figure 2: Algorithm convergence under di¤erent initial points

27

few heuristic techniques and pure random search methods and found the “surrogate problem”
method to outperform them.

8 Conclusions

In this paper we have generalized the methodology presented in [1] for solving stochastic discrete
optimization problems. In particular, we have introduced the concept of a “selection set” associ-
ated with every surrogate state ½ 2 Ac and modi…ed the de…nition of the surrogate cost function
¹Lc(½) so that the method can be applied to arbitrary constraint sets and is computationally
more e¢cient.

As in [1], the discrete optimization problem was transformed into a “surrogate” continuous
optimization problem which was solved using gradient-based techniques. It was shown that,
under certain conditions, the solution of the original problem is recovered from the optimal
surrogate state. A key contribution of the methodology is its on-line control nature, based on
the actual data from the underlying system. One can therefore see that this approach is intended
to combine the advantages of a stochastic approximation type of algorithm with the ability to
obtain sensitivity estimates with respect to discrete decision variables. This combination leads
to very fast convergence to the optimal point.

Using this approach, we have also tackled a class of particularly hard multicommodity discrete
optimization problems, where multiple local optima typically exist. Exploiting the convergence
speed of the surrogate method, we presented a procedure where the algorithm is started from
multiple random initial states in an e¤ort to determine the global optimum.

References

[1] K. Gokbayrak and C. G. Cassandras, “An on-line ‘surrogate problem’ methodology for sto-
chastic discrete resource allocation problems,” J. of Optimization Theory and Applications,
2000. To appear.

[2] C. G. Cassandras and C. G. Panayiotou, “Concurrent sample path analysis of discrete event
systems,” Journal of Discrete Event Dynamic Systems: Theory and Applications, vol. 9,
pp. 171–195, 1999.

[3] H. Hafner, “Lot-sizing and throughput times in a job shop,” International Journal of Pro-
duction Economics, vol. 23, pp. 111–116, 1991.

[4] C. M. Barnhart, J. E. Wieselthier, and A. Ephremides, “Admission control policies for
multihop wireless networks,” Wireless Networks, vol. 1, no. 4, pp. 373–387, 1995.

[5] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches. Cam-
bridge, MA: MIT Press, 1988.

[6] R. Parker and R. Rardin, Discrete Optimization. Inc, Boston: Academic Press, 1988.

28

[7] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines. New York, NY:
Wiley, 1989.

[8] J. Holland, Adaptation in Natural and Arti…cial Systems. Ann Arbor, MI: University of
Michigan Press, 1975.

[9] D. Yan and H. Mukai, “Stochastic discrete optimization,” SIAM Journal on Control and
Optimization, vol. 30, pp. 549–612, 1992.

[10] W. B. Gong, Y. C. Ho, and W. Zhai, “Stochastic comparison algorithm for discrete opti-
mization with estimation,” Proc. of 31st IEEE Conf. on Decision and Control, pp. 795–800,
1992.

[11] L. Shi and S. Olafsson, “Nested partitions method for global optimization,” Operations
Research, vol. 48, pp. 390–407, 2000.

[12] Y. C. Ho, R. S. Sreenivas, and P. Vakili, “Ordinal optimization in DEDS,” J. of Discrete
Event Dynamic Systems: Theory and Applications, vol. 2, pp. 61–88, 1992.

[13] C. G. Cassandras, L. Dai, and C. G. Panayiotou, “Ordinal optimization for deterministic
and stochastic resource allocation.,” IEEE Trans. Automatic Control, vol. 43, no. 7, pp. 881–
900, 1998.

[14] H. Kushner and D. Clark, Stochastic Approximation for Constrained and Unconstrained
Systems. Berlin, Germany: Springer-Verlag, 1978.

[15] Y. C. Ho and X. Cao, Perturbation Analysis of Discrete Event Dynamic Systems. Dordrecht,
Holland: Kluwer Academic Publishers, 1991.

[16] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Kluwer Aca-
demic Publishers, 1999.

[17] C. G. Cassandras and V. Julka, “Scheduling policies using marked/phantom slot algo-
rithms,” Queueing Systems: Theory and Applications, vol. 20, pp. 207–254, 1995.

[18] J. Wieselthier, C. Barnhart, and A. Ephremides, “Standard clock simulation and ordinal
optimization applied to admission control in integrated communication networks,” Journal
of Discrete Event Dynamic Systems, vol. 5, pp. 243–279, 1995.

[19] K. Gokbayrak and C. G. Cassandras, “Adaptive call admission control in circuit switched
networks,” IEEE Transactions on Automatic Control, 2000. Submitted.

[20] C. G. Cassandras and R. Yu, “A ‘surrogate problem’ approach for lot size optimization in
manufacturing systems,” Proc. of 2000 American Control Conference, pp. 3279–3283, 2000.

[21] C. G. Panayiotou and C. G. Cassandras, “Optimization of kanban-based manufacturing
systems,” Automatica, vol. 35, pp. 1521–1533, September 1999.

29

