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Abstract

This paper considers optimal control problems for a class of hybrid systems motivated by the struc-
ture of manufacturing environments that integrate process and operations control. We derive new
necessary and sufficient conditions that allow us to determine the structure of the optimal sample
path and hence decompose a large non-convex, non-differentiable problem into a set of smaller
convex, constrained optimization problems. Using these conditions, we develop two efficient, low-
complexity, scalable algorithms for explicitly determining the optimal controls. Several numerical

examples are included to illustrate the efficacy of the proposed algorithms.
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1 Introduction

Hybrid systems are characterized by the combination of time-driven and event-driven
dynamics. The former are represented by differential (or difference) equations, while the
latter may be described through various frameworks used for discrete event systems (DES),
such as timed automata, max-plus equations, or Petri nets (see [1]). Broadly speaking, two
categories of modeling frameworks have been proposed to study hybrid systems: Those
that extend event-driven models to include time-driven dynamics; and those that extend

the traditional time models to include event-driven dynamics; for an overview, see [2, 3, 4].

The hybrid system modeling framework considered in this paper falls into the first
category above. It is largely motivated by the structure of many manufacturing systems. In
these systems, discrete entities (referred to as jobs) move through a network of workcenters
which process the jobs so as to change their physical characteristics according to certain
specifications. Each job is associated with a temporal state and a physical state. The
temporal state of a job evolves according to event-driven dynamics and includes information
such as the service time or departure time of the job. The physical state evolves according
to time-driven dynamics and describes some measures of the “quality” of the job such
as temperature, weight and chemical composition. The interaction of time-driven with
event-driven dynamics leads to a natural tradeoff between temporal requirements on job

completion times and physical requirements on the quality of the completed jobs.

Such modeling frameworks and optimal control problems have been considered in [5, 6, 7,
8]. By the nature of event-driven dynamics, the problem is inherently non-convex and non-
differentiable. Moreover, its dimension (number of independent variables) is identical to
the number of considered jobs. If this number is in the hundreds or thousands, the problem
is highly complex and defies general-purpose algorithms (like dynamic programming) for
its solution. In earlier work [6, 7], the task of solving these problems was simplified by
exploiting structural properties of the optimal sample path. In particular, an optimal
sample path is decomposed into decoupled segments, termed “busy periods”. Moreover,
each busy period is further decomposed into “blocks” defined by certain jobs termed critical;
identifying such jobs and their properties was a crucial part of the analysis and the key to
developing effective algorithms for solving the optimal control problems. The identification
of critical jobs and busy periods have been realized using nonsmooth optimization methods
[7,9].

Recently, an efficient “backward” recursive algorithm was developed for computing the
optimal controls without the explicit identification of critical jobs [10]. The backward
algorithm also decomposes the entire optimal control problem into a set of smaller optimal

control subproblems by proceeding backward in time from the last job to the first. Each of



these subproblems turns out to be a convex optimization problem with linear constraints, a
much simpler problem to solve than the original non-convex and non-differentiable optimal
control problem. The complexity of the problem (measured in the number of convex
constrained optimization problems required to solve) was thus reduced from exponential

in N (the number of jobs processed) to linear bounded by 2N — 1.

In this paper, we further exploit the special structure of the optimal sample path in the
single-stage hybrid system framework. The resulting algorithm is also based on solving
convex optimization problems with linear constraints, as in [10]. However, there are a
number of differences and advantages: (i) The algorithm iterates forward in time and
turns out to be simpler to implement and of lower computational complexity. In fact, we
will show that it is always of complexity N (in contrast to the backward algorithm in [10]
which is bounded by 2N — 1). (ii) The algorithm is based on a necessary and sufficient
condition which allows us to simultaneously identify the exact busy period structure of the
optimal sample path, and (iii) Using this condition, a simpler proof of uniqueness of the

optimal solution (compared to the one presented in [7]) is possible.

The paper is organized as follows. Section 2 reviews the framework we use for the
class of hybrid systems and related optimal control problems considered. In Section 3, we
derive a necessary and sufficient condition for identifying the structure of optimal sample
paths and show that a solution is unique even though the problem is non-convex and
non-differentiable. Section 4 presents our new forward algorithm, whose complexity and
features are discussed. Section 5 presents a more efficient forward algorithm based on

decomposing each busy period into smaller decoupled segments. Section 6 summarizes the

paper.

2 A Single-Stage Hybrid System Framework

The single-stage hybrid system framework we consider is illustrated in Fig. 1. A se-
quence of N jobs is assigned by an external source to arrive for processing at known times
0 <a; <--- <ayn. We denote these jobs by C;, i+ = 1,---, N. The jobs are processed
first-come, first-served (FCFS) by a work-conserving and non-preemptive server. The pro-
cessing time is s(u;), which is a function of a control variable u;. In general, the control
is time varying over the course of the processing time s; (see [11]). We limit ourselves
here, however, to controls constrained to be constant over the duration of service, varying
only with each new job, and chosen to ensure that processing times are non-negative, i.e.,
s(ui) > 0.

Time-driven dynamics. A job Cj is initially at some physical state & at time zg and



subsequently evolves according to the time-driven dynamics
zl(t) = gi(ziauiat)a Zz(x(]) =& (1)

Event-driven dynamics. The completion time of each job is denoted by z; and is given

by the standard Lindley equation for a FCFS non-preemptive queue [12]:
x; = max(x;_1,a;) + si(u;), i=1,--- N (2)

where we assume g = —00.

Note that the choice of control u; affects both the physical state z; and the next temporal
state x;, justifying the hybrid nature of the system. In this framework, each job must be
processed until it reaches a certain quality level denoted by I';. That is, the processing

time for each job is chosen such that

to+t
si(u;) = min [t >0:zi(to+1t) = / gi(T,ui, t)dr + z(ty) € [y (3)
¢

0

For the above single-stage framework defined by equations (1)-(2), the optimal control

objective is to choose a control sequence {u1,---,uy} to minimize an objective function of
the form
N
J =Y {0i(ui) + ¢i(z:)}- (4)
i=1
Although, in general, the state variables z1,-- -, zny evolve continuously with time, min-

imizing (4) is an optimization problem in which we are concerned with the values of the
state variables only at the job completion times x1, - - -, 2. Note that a cost on the physical
state z;(z;) is not included. Clearly, when the stopping criterion in (3) is used to obtain the
service times, a cost on the physical state is unnecessary because in that case we know that
the physical state of each completed job satisfies the quality objectives, i.e., z;j(z;) € T;.
More generally, we can indirectly impose a cost on the physical state by appropriate choice
of the functions 6;(-) in (4) and s;(+) in (2).

In particular, in this paper, a class of hybrid problems is considered where the control is
interpreted as the processing time for the job, and the cost function trades off the quality
of the completed jobs against the job completion times; see [5] for various examples and
[11] for extension to cases with time varying controls u;(t). By assuming that s;(-) is either
monotone increasing or monotone decreasing, given a control u;, the service time s; can be
uniquely determined from s; = s(u;) and vice versa. Therefore, to simplify the exposition,
we can identify the control variables with the service times, i.e., we set s; = u; and carry

out the rest of the discussion in terms of the notation u;. Hence, the optimal control



problem, denoted by P, has the following form:

UL, UN

N
P: min {J:Z{OZ(UZ)-F(ﬁl((I,‘Z)} :uizo, ’izl,"',N} (5)
=1

subject to

z; = max(z;_1,a;) +u;, 1=1,---,N. (6)

The optimal solution of P is denoted by u; for¢ = 1,---, N and the corresponding departure

times in (6) are denoted by z; fori =1,---, N.

In this setup, following assumptions are necessary to make the problem somewhat more

tractable, yet it still captures the essence of the original problem.

Assumption 1 [7, 10] 6;(-) is continuously differentiable, strictly convex and monotone

decreasing for u > 0 and the following limit holds: lim,_,¢+ 6;(u) = oo.

Assumption 2 [7, 10] ¢;(-) is continuously differentiable, strictly convex and its minimum

is obtained at a finite point.

While the above assumptions seem to be somewhat restrictive, their interpretation is
consistent with the previous discussion regarding tradeoffs between the temporal and physi-
cal requirements in manufacturing problems modeled through hybrid systems. In this case,
the processing time u; can be interpreted as a measure of the quality of the finished ith
job. Beyond a certain minimum processing time, there are decreasing returns insofar as
further improvement in quality is concerned. A common manufacturing problem is to pro-
duce jobs that meet certain minimum quality standards and deliver them by specified due
dates. To achieve this, we place a cost on poor quality and a cost on missing due dates.
As an example, let

O(ui) = — and i(e;) = (w1 — 6:)°

uj

where the two functions satisfy the above assumptions. The cost on the control penalizes
short service times, since this generally results in poor quality. Letting J; be the due date
of job i, the cost on the departure time penalizes job earliness and tardiness. For a specific
manufacturing problem application of this framework, the reader is referred to [13] where a
steel heating/annealing process is modeled, analyzed, and optimized using a setting similar
to (5)-(6).



3 Properties of Optimal Solutions

In this section, we exploit properties of an optimal sample path in order to derive
necessary and sufficient conditions for identifying its structure. We begin with the following

definitions:

Definition 1 A job Cj is critical if it departs at the arrival time of the next job, i.e.

Tj = Gj41-

Definition 2 Consider a contiguous job subset {C,---,Cp}, 1 < k < n < N on the
optimal sample path. The subset is said to be a block if
]-) Trp—1 < ap and x, < apy

2) The subset contains no critical jobs.

Definition 3 A busy period is a contiguous set of jobs, Ck,---,Cp for 1 <k <n < N
such that the following three conditions are satisfied:

i) zr_1 < ay,

i) z, < apt1,

iii) x; > a;41, foreveryi==Fk,---,n—1.

Definition 4 A busy-period structure is a partition of the jobs C1,---,Cy into busy peri-

ods.

The busy-period structure is represented by {By, By, ---, By} for some M € {1,---,N}.
The jth busy period consists of jobs Cj;y, -+, Cy(;) where k(1) =1, k(j) =n(j — 1) +1
and n(M) = N.

Consider the following optimization problem for Cy, - - -, Cy,, which is denoted by Q(k,n):

Q(k,n) : min { J(k,n) = Z{Ql(uz) + ¢ilag + ZUJ)} u; >0 } (7)

Uk, U . .
k " i=k =k

subject to
i
xi:ak+2uj2ai+1, 1=k,---,n—1. (8)
j=k
Since the cost functional is continuously differentiable and strictly convex, the problem

Q(k,n) is also a convex optimization problem with linear constraints and has a unique



solution at a finite point (see [10]). The minimal cost of Q(k,n) is denoted by J(k,n), the
solution of Q(k,n) is denoted by uf(k,n) for j = k,---,n, and the corresponding departure
times are denoted by z7(k,n) for j = k,---,n. Note that the equality ax + 35— uj = @11,
for some 7 = k,---,n — 1 is satisfied at the solution to Q(k,n) if and only if job C; is

critical.

Problem Q(k, n) is of the same form as P, but it is limited to jobs C, - - -, C}, constrained
through (8) to all belong to the same busy period. There are two important properties of
Q(k,n) that are captured in the two lemmas that follow.

Lemma 1 If jobs, C,---, (), constitute a single busy period on the optimal sample path,

then the solution, u}, i = k,---,n is identical to v} (k,n), i = k,---,n respectively.

Proof : From (6) and Definition 3, if jobs Ck,---,C), constitute a single busy period on
the optimal sample path, then a, +E§':k uj > ajy1, foralli = k,---,n—1. This constraint
is identical to the constraint (8) which Q(k,n) is subject to. In addition, due to the idle
period decoupling property (Lemma 4.1 in [7]), the solution, u} for ¢ = k,---,n, on the

optimal sample path is identical to u}(k,n) for i = k,---,n of problem Q(k,n). [

An implication of Lemma 1 is that if the busy period structure obtained with the op-
timal controls in problem P were known in advance, then the optimal controls could be
obtained by solving a differentiable, convex problem of the form Q(k,n) for each busy pe-
riod. The following result provides a new necessary and sufficient condition for identifying

busy periods on an optimal sample path based on the solution of Q(k,n).

Lemma 2 Let C} initiate a busy period on an optimal sample path and suppose Cy, - - -, Cy,
all belong to this busy period. Then, Cy,---,C, constitute a single busy period on the
optimal sample path if and only if:

T (k,n) < any1. (9)

Proof : (Necessity) Since jobs Cy,- -+, C, constitute a single busy period on the optimal
sample path, the optimal control u;, for each ¢ = k,---,n is identical to the solution of
Q(k,n), ul(k,n) for i« = k,---,n, by Lemma 1. It follows that the departure time of C,,
x}, on the optimal sample path is equal to z} (k,n). Then, z} (k,n) = z} < a,41 because
C,, is the last job in the busy period defined by Cy,---, C,. This establishes (9).

(Sufficiency) By assumption, a busy period consists of Cg,- - -, Cys jobs for some n' > n

on the optimal sample path. Assume that n’ > n. We will then show that

J(k,n') > J(k,n) + J(n+1,n") (10)



under the constraint (9), which means that the combined cost of two busy periods formed
by Cy,---,Cy and Cpiq,---,Cy is lower than the cost of one busy period consisting of
Ck,--+,Cy. This is a contradiction, since Cj,---, (), are assumed to constitute a single
busy period on the optimal sample path. This would imply that n’ = n. Therefore, it

remains to prove that (10) indeed holds under (9) and the assumption n’ > n.

The minimal cost, .J(k,n'), of problem Q(k,n’') may be written as

!

J(k,n') = Y [0i(uj(k,n")) + ¢i(a] (k, n'))]
1=k
= D [0i(ui(k,n') + dilai (k)] + D [0i(ui(k,n')) + (2] (k, n'))] (11)
1=k i=n+1
subject to _
zi(k,n') = aj + Zu;‘(k,n') > ajyq, fori=Fk,---,n' — 1. (12)

j=k
Let the first term on the right-hand-side of (11) be denoted by Ja(k,n'), and the second
term be denoted by Jp(k,n'), i.e.,
j(kan,) = JA(kanl) + JB(kanl)'

Since z} (k,n) < apy1 from (9) and =, (k,n’) > a1 from (12), it is obvious that w}(k,n') #
u;(k,n) for some i € {k,---,n}. Then,

n
JA(k‘,n’) > j(k,n) = min {Z [Oz(ul) + qbz(%)] DUy > O,VZ} (13)
Ut
i=k
subject to z; = ap + Zu]- > a1, =k,---,n—1
j=k
because the optimal control, u}(k,n) for i = k,---,n in Q(k,n) is unique. In addition,

,',L/

Jp(k,n') = Z [0i(u;‘(k,n'))+¢(x%(k,n')wL Z u;‘(k,n'))]

1=n+1 j=n+1

1
subject to x5 (k,n') + Z u;‘-(k,n')ZaiH, i=n+1,---,n -1
Jj=n+1
and v} (k,n') >0, i=n+1,---,n

!

Now, set wy  ((k,n') +z;(k,n') — an41 2 Un+1 and uf(k,n’) 2 ujfori=n+2,---,n'. In
addition, for simplicity, let « 2 z} (k,n') — ap+1 and note that o > 0 by (12). Then, we

can rewrite Jp(k,n') as

Ip(k,n') = Oi(unyr —a) + D Oi(u)) + > ¢(an+1+ > Uj)

i=n-+2 i=n-+1 j=n-+1



i

subject to  ap41 + Z uj > ajy1, i=n+1,---,n —1,

j=n+1
un+12aanduj20,i:n+2,---,n'
n' i
> > i)+ ¢ lani+ D u; (14)
i=n-+1 j=n+1
i
subject to  ap4+1 + Z u; > a1, i=n+1,---,n -1,
j=n+1
un+12aanduj20,i:n+2,---,n'
n’ i
> uHIlI}.i.I.l’un’ Z 0;(u;) + ¢ an+1+lz uj || ru; >0,V (15)
i=n+1 j=n+1
i
subject to ap41 + Z Uj = Giyl, i=n+1,---,n -1
j=n-+1
= Jn+1,n) (16)

The inequality in (14) is obtained because « > 0 and 6;(-) is monotone decreasing by
Assumption 1. The inequality in (15) is obtained because we relax the constraint on w41
from up11 > a to upp1 > 0. The last equality in (16) is obtained by the definition of
problem Q(n + 1,n’). Finally, from (13) and (16),

J(k,n') = Ja(k,n') + Jg(k,n') > J(k,n) + J(n + 1,n') (17)

which proves (10) and therefore completes the proof. [ |

Lemma 2 allows us to identify busy periods on the optimal sample path. For Cy,---,Cy,
if C}, is the first job of a busy period on the optimal sample path, we can identify the busy
period by sequentially solving Q(k,%) and checking if z}(k,i) > a;q1, fori =k +1,---,n.

This idea is formalized in the following theorem.

Theorem 1 Jobs C,---,C), jobs constitute a single busy period on the optimal sample
path if and only if the following conditions are satisfied:

1) ar, > xj_,

2) z¥(k,i) > ajy1, foralli=Fk,---,n—1,

3) x;(kan) < Qn+1-

Proof : (Necessity) Since Cy, - - -, C,, constitute a single busy period on the optimal sample
path, Condition 1) is met by Definition 3, and Condition 3) is met directly by Lemma 2.
Condition 2) can be proved by a contradiction argument. Suppose that =7 (k, k) < af L1

for some k € {k,---,n — 1}; this means C, - -,C}, constitute a single busy period on the



optimal sample path by Lemma 2, which contradicts the fact that Cg,---,C), constitute a
single busy period. Thus, z}(k,i) > a;41, for alli==Fk,---,n — 1 should be satisfied.

(Sufficiency) If k = n, then apy1 > z,(n,n) which means that C}, alone forms a busy
period on the optimal sample path by Lemma 2. Thus, z} = z}(n,n) by Lemma 1. For
k < n, we can proceed by contradiction. First, suppose that Cj,---,C), form two busy
periods on the optimal sample path: By = {Cj,---,C;} and By = {Cri1,---,Cp}, for
some k € {k+1,---,n —1}. Then, z; < apyy holds by the definition of a busy period.
Since Bj is a single busy period on the optimal sample path, the optimal departure time
of the k-th job is zi =z} (k, k) by Lemma 1, where z (k, k) is obtained by solving Q(k, k).
Then, z7(k, k) = 27 < ag,,. This is a contradiction because z7(k, k) > ag,; by Condition
2). Thus, at least jobs Cy,---,C, lie within a single busy period on the optimal sample
path. The same argument holds for more than two busy periods, up to n — k + 1. In
addition, since z} (k,n) < a,41 by Condition 3), it follows from Lemma 2 that Cj,---,Cy,

constitute a single busy period on the optimal sample path. [ |

The uniqueness of the optimal solution of P under Assumption 1-2 was first established
in [7] using arguments relying on the optimality conditions formulated through generalized
gradients. Theorem 1 above, however, provides simpler means for proving uniqueness, as

follows.

Lemma 3 Under Assumptions 1-2, the busy period structure of an optimal sample path is
unique in the sense that for any C;, i = 1,---, N, the last job of the busy period containing

C; is unique on the optimal sample path.

Proof : The proof is by contradiction. In particular, suppose that, for a given arrival
sequence, there exist two different sample paths that both satisfy optimality. Due to
the idle period decoupling property (Lemma 4.1 in [7]), we can assume, without loss of
generality, that the difference between the two sample paths is in their respective first busy
periods. Let us denote the two sample paths by A and B. Let n4 be the last job in the
first busy period on sample path A, and np be the last job in the first busy period on
sample path B. Assume (without loss of generality) that ny < np. Applying condition 3)

in Theorem 1 to sample path A, we have
z, , (1,ma) < anyq1- (18)

On the other hand, applying condition 2) in Theorem 1 to sample path B for i = ny, we
get

2 (1,14) > an, i1 (19)

10



since ng € {1,---,np — 1}. The two inequalities (18) and (19) clearly contradict each
another, implying that ny = np, i.e., the busy periods must coincide, and the proof is

complete. [ |

Given the uniqueness of the busy period structure, the controls within each busy period
are unique, and hence the uniqueness of the entire optimal control sequence is proved as

follows.

Theorem 2 Under Assumptions 1-2, the optimal control sequence of P is unique.

Proof : From Lemma 3, the order of the busy period and its composition {Cj,---,Cy}
on the optimal sample path are unique. The optimal control sequence {ujy,---,u;} is
obtained by solving problems Q(k,n) and it is unique because Q(k,n) is a convex program
(a detailed proof of this fact is in Theorem 5.1 in [7]). ]

4 Forward Algorithm I

Theorem 1 provides the basis for a forward algorithm presented in this section. By
“forward” we mean that the optimal sample path is constructed starting with job 1 and
proceeding forward in time without the need for multiple forward-backward sweeps involved
in a solution based on the framework of a two-point-boundary-value problem. Before
presenting the algorithm, we explain the basic idea. Let £ = 1 and n = 1. We already
know that C is the first job of a busy period. We then solve Q(1,1) and check whether
zi(1,1) < ag. If z3(1,1) < ag, then C) forms a single busy period on the optimal sample
path by Theorem 1. Consequently, the first job of the next busy period is Cy. If, on
the other hand, z7(1,1) > a9, then C; alone cannot form a busy period; in this case, we
increment n by 1, i.e., set n = 2. We then solve @(1,2) and check whether z3(1,2) < as.
If 25(1,2) < a3, then Cy and C5 form a single busy period on the optimal sample path by
Theorem 1 and the optimal controls are obtained by solving (1, 2). If, on the other hand,
x5(1,2) > a3, then Cy and Co cannot form a busy period on the optimal sample path and

we increment n by 1, i.e., set n = 3. We then repeat the procedure over all jobs.

Given the arrival times of jobs C',---,Cy, the optimal problem P can be solved by
Forward Algorithm I shown in Table 1. In Step 2, we solve the linearly constrainted
convex optimization problem Q(k,n) and obtain the control u;(k,n),j = k,---,n and
departure times z7(k,n),j = k,---,n. In Step 3, the structure of busy periods is identified
by checking if =} (k,n) < aps1. If Ck,---,C, are identified as a single busy period, the
control on the optimal path for Cy,---,C), is given by u;‘(k, n),j =k, --,n. Then, we set

11



the index of the first job of a new busy period as n + 1, i.e. kK =n+ 1.

Remark 1 This algorithm requires only N iterations, because in Step 4, n is increased
by 1 at every iteration. Therefore, Forward Algorithm I must solve N subproblems to
obtain the optimal solution. The dimensionality of each of these N problems depends on

the given arrival sequence.

Remark 2 In Forward Algorithm I, the index k always indicates the first job of all busy
periods on the optimal sample path. This is because k is updated as K =n + 1 in Step 3
only when the last job of a busy period is identified to be C,.

Remark 3 (Best case): If each job constitutes a single busy period on the optimal sample
path, the optimal control is obtained by solving a convex problem Q(i,7), fori = 1,---, N.
This is the best case in the sense that Forward Algorithm I requires the smallest compu-

tation because the dimensionality of each Q(4,4) is just 1 job.

Remark 4 (Worst case): If all N jobs are in a single busy period on the optimal sample
path, the algorithm needs to solve problem Q(1, k%), for k =1,---, N at each iteration and
the optimal control is ultimately obtained as the solution of (1, N). This is the worst
case in the sense that the algorithm requires the largest possible computation, i.e., solving

Q(1,k), forall k=1,---,N.

4.1 Numerical Examples

In this subsection, a few examples are presented to illustrate some features of Forward

Algorithm I. Let us consider the following problem with N =5 :

UL, U5

5
min J = Z{u;l +2?}  subject to z; = max(a;, z; 1) + u; (20)
i=1

for the arrival sequence {0.2,0.6,0.9,1.8,2.1}. Figure 2 shows the progress of the algorithm
as it proceeds job by job toward the final solution. At the first step, Q(1,1) for k =n =1
is solved. Since z*1(1,1) = 0.932 > a9, we set n = 2. Then, Q(1,2) is solved. Since
x¥9(1,2) = 1.315 > a3, we set n = 3. Then, Q(1,3) is solved. Since z*3(1,3) = 1.595 < ay,
jobs C1,Cy and Cj5 constitute a single busy period. The optimal controls for this busy
period are obtained by solving (1, 3). Then, we set k = 4 and n = 4 where £ is the index

12



of the first job of the next busy period. Next, Q(4,4) is solved and z*4(4,4) = 2.269 is
obtained. Since z*4(4,4) = 2.269 > a5, we set n = 5. Finally, by solving Q(4,5), we obtain
the optimal solution. Observe that 7 = ag = 0.6, i.e., C is a critical job on the optimal

sample path automatically detected as part of the solution to Q(1,3).

Additional examples are presented in Fig. 3 to show the best case, a case that includes a
critical job, and the worst case. Each example uses 0;(u;) = u% and ¢;(w;) = 2. The arrival
sequences are {1,2,3,4,5}, {1,1.4,1.5,1.55,1.6} and {1,1.1,1.2,1.3,1.4} respectively. In
the best case of Fig. 3, the optimal processing time assigned to each job is such that it
departs before the next job arrives, i.e., each job constitutes a single busy period by itself.
In this case, the optimal control is obtained by solving Q(i,%), for ¢ = 1,---,5, which
results in the minimal computation load. In the worst case of Fig. 3, each job cannot be
completed until the next job arrives, i.e., all jobs constitute a single busy period. In this
case, the optimal control is obtained by solving for Q(1,7), for i = 1,---,5, which results

the maximal computation load.

5 Forward Algorithm II

In this section, we present a variant of Forward Algorithm I which is more efficient by
exploiting a feature of critical jobs in a single busy period. Without loss of generality, we

assume that jobs C1,---,C), constitute a single busy period (i.e., we set k = 1).

Lemma 4 Consider a single busy period consisting of jobs C4,---,C), on the optimal
sample path. If 27 (1,k) = a4, for some k € {1,---,n}, then the optimal departure time

of C}, on this busy period is identical to ag41, i.e. z3(1,n) = ap4;.

Proof : Since z}(1,n) is the optimal departure time on the busy period, a4 < z}(1,n)
is satisfied. Suppose that a1 < zj(1,n). As in the proof of Lemma 2, we can show that
J(1,n) > J(1,k) + J(k + 1,n) (detail omitted), which means that under the assumption
that a1 < 2} (1,n), there exists another control sequence {u;,j = 1,---,n} for which the
cost is less than J(1,n). This is a contradiction, because J(1,n) is the minimal cost. Thus,

z(1,n) = a1 u

Definition 5 Consider a contiguous job subset {Cf,---,Cp}, 1 < k < n < N on the
optimal sample path. The subset is said to be a zone if

1) zp—1 < ay,
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2) w;"(k,z) > a1, foralli=k,---,n—1,

3) x;‘;(kan) S an+1-

By the definition of block and zone and Lemma 4, a zone consists of a number of
blocks and a single busy period consists of a number of zones. An illustration of the
relation between blocks, zones, and busy periods is shown in Fig. 4 where z7(1,1) > as,

x5(1,2) > ag and z5(1,3) = a4.

Lemma 4 states that even in a single busy period on the optimal sample path, the
convex optimization problem Q(1,n) can be decomposed into a number of smaller convex
problems Q(1,%) and Q(k + 1,n) for some k if the condition z}(1,%k) = ak4 is satisfied.

This is stated formally in the following theorem.

Theorem 3 Consider a single busy period consisting of jobs Ci,---,Cy. If z}(1,k) =
ax+1, then the solution of Q(1,n) can be obtained by solving Q(1, k) and Q(k + 1,n), i.e.,

ui(1, k) forj=1,---,k
4= (21)
ui(k+1,n), forj=k+1,---,n
Proof : This is obvious from Lemma 4. .

Based on Theorem 3, we propose a more efficient algorithm (called Forward Algorithm
IT) than Forward Algorithm I, as shown in Table 2. The only difference from Forward
Algorithm T is that ‘a*,(k,n) < any1’ is replaced by ‘z*,(k,n) < apy1’ in Step 3. It
should be clear that Forward Algorithm II also requires N iterations and that the index k

always indicates the first job of all the zones on the optimal sample path.

Remark 5 (Best case compared with Forward Algorithm I): If each job, Cy,---,Cp, in a
single busy period constitutes a single zone on the optimal sample path, then the optimal
controls are obtained by solving each convex problem Q(i,i), for i = k,---,n. This is the
best case, compared with Forward Algorithm I, in the sense that Forward Algorithm I has

to solve the larger problem Q(k,n).

Remark 6 (Worst case compared with Forward Algorithm I): If a single busy period,
Cg,--+,Cy, is identical to a single zone on the optimal sample path, the optimal controls
are obtained by solving Q(k,n). This is the worst case, compared with Forward Algorithm

I, in the sense that the algorithm has to solve the same problem as Forward Algorithm I.
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5.1 Numerical Examples

In this subsection, best and worst case examples are presented to illustrate Forward Algo-

rithm II. Let us consider the following problem with N = 5:

UL,y e U5

5
min J = {u; ' + 2]} subject to z; = max(a;,zi—1) +u] (22)
i=1

With the arrival sequence {0.4,0.844,1.196,1.499,1.771}, Figure 5 shows the optimal sam-
ple path for the best case satisfying z7(1,7) = a;41, for all ¢ = 1,---,4. At each iteration,
the size of the subproblem is just 1 job, because k = n at each iteration. Finally, the opti-
mal control is obtained by solving Q(i,4) for i = 1,---,5. Note that each job is a critical

job on the optimal sample path.

Another example illustrates a worst case with the arrival sequence {0.4,0.8,1.1,1.3,1.5}.
In this optimal sample path we have z}(1,%) > a;41, for alli =1,---,4, as shown in Figure
6. We can observe that the size of the problem is increasing at each iteration, because
k is fixed at 1 while n is increasing. Finally, the optimal control is obtained by solving
Q(1,5). Note that each job is also critical on the optimal sample path, i.e. z}(1,5) = a1
i=1,---,4.

6 Conclusions

This paper has considered optimal control problems defined on a single-stage hybrid
system motivated from manufacturing environments. The control variables are comprised
of the service times of the various jobs and the performance metrics involve measures of
quality requirements and time delivery requirements of the completed jobs. This opti-
mal control problem is inherently neither convex nor differentiable because of the nature
of event-driven dynamics. We presented necessary and sufficient conditions to identify
the busy period structure of the optimal sample path and derived an efficient and low-
complexity, scalable algorithm for computing optimal controls. This algorithm iterates
forward in time, decomposing the optimal sample path into a number of decoupled seg-
ments, i.e., busy periods and zones, and solving small-scale convex optimization problems

with linear constraints. Its complexity is just the number of considered jobs N.

Ongoing work is aimed at extending our approach to systems with uncertainties in
arrival times of jobs and to more complex dynamics encountered in multi-stage processes.
In addition, we believe that the forward approach will enable us to make use of a receding

horizon control scheme for a system with an infinite number of sequential jobs.

Finally, it is obviously of interest to apply an optimal control framework in order to

15



determine time-varying controls u;(t), a problem not addressed in this paper. A hierarchical

decomposition approach for this purpose was introduced in [11]. This approach may be used

for hybrid system models beyond the manufacturing context considered here, as recently
described in [14].
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Figure 1: A single stage hybrid system.
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Table 1: Forward Algorithm I

Step 1 : (initialization) k = 1,n = 1,ay41 = o0;
while n < N do
Step 2 : solve sub-optimal problem Q(k,n);
Step 3 : (identify single busy periods.)
if z*,(k,n) < ap41 then
u*j < u*j(k,n) for j =k,---, n.
k<n+1;
endif
Step 4 : (increment index n.)
n < n+1;

end while
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Figure 2: An illustration of the process of Forward Algorithm 1.
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Figure 3: Some examples of Forward Algorithm I .
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Figure 4: Three blocks and two zones in a busy period.
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Table 2: Forward Algorithm II

Step 1 : (initialization) k = 1,n = 1,ay41 = o0;
while n < N do
Step 2 : solve sub-optimal problem Q(k,n);
Step 3 : (check single zones.)
if 2*,(k,n) < apy1 then
u*j < u*j(k,n) for j =k,---, n.
k<n+1;
endif
Step 4 : (increment index n.)
n < n+1;

end while
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Figure 5: Best case of Forward Algorithm II.

24



Size of Q(k,n)
N w

=

o

Worst case

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time

[

15 2 25 3 35 4 4.5
Iteration

Figure 6: Worst case of Forward Algorithm II.
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