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Abstract— We study two problems of optimally controlling
how to accelerate and decelerate a non-ideal energy-aware
electric vehicle so as to (a) maximize its cruising range and
(b) minimize the traveling time to a specified destination under
a limited battery constraint. Modeling an electric vehicle as a
dynamic system, we adopt an Electric Vehicle Power Consump-
tion Model (EVPCM) and formulate two respective optimal
motion control problems. Although the full solutions can only
be obtained numerically, we propose approximate controller
structures such that the original optimal control problems are
transformed into nonlinear parametric optimization problems,
which are much easier to solve. Numerical examples illustrate
the solution structures and support their accuracy.

I. INTRODUCTION

The emergence of plug-in hybrid electric vehicles (HEV)
and fully electric vehicles (EV) is motivated by the goals
of reduced oil dependency and greenhouse gas emissions.
However, both HEVs and EVs heavily rely on limited battery
power, thus raising such issues as vehicle cruising ranges and
accessibility to charging sources.

In the HEV literature, work has been focused on designing
optimal strategies for power distribution between the electric
motor and the combustion engine in order to minimize fuel
consumption [1], [2]. Moreover, efforts have been dedicated
to establishing control-oriented models of the traction dy-
namics of the vehicles, which are the vital ingredients for
active controllers to achieve desired accuracy and energy-
efficiency. For example, a dynamic model of the powertrain
of HEVs is proposed in [3]; [4] addresses the traction control
of an EV; and speed and acceleration controllers are studied
for an energy-aware two-wheeled EV in [5].

On the other hand, the expanding number of HEV and EV
fleets brings out new research issues related to insufficient
power supplied to vehicles, allocation of limited charging
stations and power balance of electric grids. From the vehicle
side, a circuit-based battery is commonly used to represent
the electricity source when considering the supervisory con-
trol of an HEV [6]. Sundstrom et al. [7] employed this
model to optimally plan the charging behaviors of EV fleets
in terms of grid power balancing. In order to minimize
the waiting time for EV charging, a scheduling problem
in a network of EVs and charging stations was studied
in [8]. From the grid side, an optimization methodology
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of allocating the recharging infrastructure for EVs in an
urban environment was developed in [9]. More recently, a
decentralized protocol for negotiating day-ahead charging
schedules for EVs via pricing control was proposed in [10]
to fill the overnight electricity demand valley. However,
despite the variety of research on HEV/EV energy-aware
systems, there is little work investigating HEV/EV motion
control from a power management perspective, which is
mainly because the relationship between vehicle dynamics
and power consumption is complicated.

An analytical power consumption model for an EV was
proposed in [11], which presents a comprehensive relation-
ship between velocity, acceleration and power consumption
rate. Motivated by this model, we formulate two optimal
motion control problems, i.e., a cruising range maximiza-
tion problem and a vehicular traveling time minimization.
Although the intricate state dynamics of the problems re-
quire resorting to numerical solutions, they do serve to
formulate approximate solution structures so as to transform
the original difficult optimal control problems into simpler
nonlinear parametric optimization problems. While for the
first problem the solution turns out to involve practically un-
realistic optimal parameter settings, for the second problem
the solution does give an optimal strategy with reasonable
settings. Moreover, the approximate solutions possess a much
simpler structure while preserving accuracy. This approxima-
tion technique allows us to apply optimal motion planning
to various interesting issues in EV-based systems, such as
vehicular routing, charging station deployment and EV-to-
smart-grid (V2G) charging scheduling, thus opening up a
wide spectrum of research directions.

The structure of the paper is as follows. In Section II,
we introduce the analytical power consumption model for
EVs. In Section III, we formulate an EV cruising range
maximization problem based on a power consumption model
with a prescribed initial energy. The explicit numerical
solution, as well as an approximate one, are presented and the
accuracy of the latter is verified. Based on the approximate
solution structure, the optimal control problem is reduced
to a nonlinear parametric optimization problem, which is
easier to solve. Section IV explores an EV traveling time
minimization problem with the same procedure as Section
III. Finally, conclusions and further research directions are
described in Section V.



II. ELECTRIC VEHICLE POWER CONSUMPTION MODEL
(EVPCM)

In [11], an analytical electric vehicle power consumption
model (EVPCM) was proposed, capturing the relationship
between vehicular power consumption and motion metrics
(velocity, acceleration). The accuracy of this model is verified
based on tests involving two real EVs. The following table
is the nomenclature used for the EVPCM:

K = KaφN
R

Ka : DC motor innate armature constant;
φ : magnetic flux on the armature;

R : radius of the tire [m];
N : gear reduction ratio

r coil resistance [Ω]
m vehicle mass [kg]
a(t) acceleration at time t [m/s2]
v(t) vehicle velocity at time t [m/s]
k air resistance constant [kg/m]
µ rolling resistance constant
g gravity acceleration constant [m/s2]

P (t) instantaneous output power of the battery at t [J]

TABLE I
NOMENCLATURE FOR THE EVPCM

This model takes into account the power consumption on
vehicle traction as well as heat loss of the motor. The former
part can be expressed as:

Pτ (t) = v(t)F (t) = v(t)(ma(t) + kv2(t) +mgµ) (1)

where F (t) represents the instantaneous motor traction force,
incorporating the acceleration resistance, air resistance and
rolling resistance respectively (assuming the vehicle travels
on flat ground so that the inclination resistance is ignored).
When a vehicle motor runs at high speed, the energy loss
coming from the coil heating cannot be ignored. However,
this is usually not considered when modeling the vehicle’s
engine-generator power consumption [12]. In [11], the power
loss due to the motor is modeled according to the relation-
ship of the motor back-electromotive force E(t), the motor
current I(t), the vehicle velocity v(t) and the motor traction
force F (t), which are as follows:{

F (t) = KaφN
R · I(t) = KI(t)

E(t) = KaφN
R · v(t) = Kv(t)

resulting in I(t) = F (t)/K. Along with the definition of
F (t) in (1), the power loss due to the motor at time t
becomes:

Pm(t) = I2(t)r =
r

K2
(ma(t) + kv2(t) +mgµ)2

Therefore, the total vehicle power consumption is Pm(t) +
Pt(t). In other words, the instantaneous battery output power
of an EV is:

P [a(t), v(t)] =
r

K2
(ma(t) + kv2(t) +mgµ)2

+ v(t)(ma(t) + kv2(t) +mgµ) (2)

Note that it is possible to have P [a(t), v(t)] < 0 when a(t) <
0, which indicates that the EVPCM also incorporates the

regenerative braking effect, i.e., the EV’s battery recovering
energy from braking.

III. CRUISING RANGE MAXIMIZATION PROBLEM

A. Problem Statement

EVs usually have a smaller maximum cruising range on
a single charge than cars powered by fossil fuels. Therefore,
the cruising range is critical for an EV to consider before it
can reach its destination or a charging station. Motivated by
this issue, we seek to control the acceleration process so as
to maximize the EV’s cruising distance with a given initial
battery power, where the EV is modeled as an EVPCM.
We denote the EV’s traveling distance by time t as x(t)
and the instantaneous battery’s residual energy at time t as
e(t). v(t) and a(t) are respectively the vehicle velocity and
acceleration, defined in Tab. I, and a(t) is the only control
variable. We let P (t) be the EV’s instantaneous battery
output power, whose expression is given in (2). Therefore,
the problem we are interested in can be formulated as a
state constrained optimal control problem with an unspecified
terminal time T aiming to maximize the range x(T ) or
equivalently:

min
a(t)

−x(T ) (3)

ẋ(t) = v(t) (4)
v̇(t) = a(t) (5)
ė(t) = −P (t) (6)

e(0) = E0, x(0) = 0, v(0) = 0 (7)
e(T ) = emin, v(T ) = 0 (8)

e(t) ≥ 0, 0 ≤ v(t) ≤ vmax (9)
amin ≤ a(t) ≤ amax (10)

where the initial conditions in (7) initialize the battery energy,
traveled distance and vehicle speed. The terminal time T
is determined by (8), implying that the entire process ends
when the battery energy reaches a given minimum value
emin which, for simplicity, we take to be emin = 0 without
affecting the analysis. Finally, vmax bounds the top speed
while amin and amax are, respectively, the maximum decel-
eration and acceleration, where amin < 0 and amax > 0.

B. Hamiltonian Analysis

We begin by analyzing the unconstrained case in which (9)
are relaxed. In this case, the optimal state trajectory consists
of an interior arc over the entire interval [0, T ]. Let x(t) =
(x(t), v(t), e(t))T and λ(t) = (λ1(t), λ2(t), λ3(t))T denote
the state and costate vector respectively. The Hamiltonian for
this problem is

H(x, λ, a) = λ1(t)v(t) + λ2(t)a(t)− λ3(t)P (a, v) (11)

Then, the costate (Eular-Lagrange) equations λ̇ = −∂H∂x give
λ̇1(t) = 0

λ̇2(t) = −λ1(t) + λ3(t)∂P (a,v)
∂v

λ̇3(t) = 0

(12)



In view of (2), we have

∂P (a, v)

∂v
=

r

K2

(
4k2v3(t) + 4mkv(t)a(t) + 4mgµkv(t)

)
+ma(t) + 3kv2(t) +mgµ (13)

Moreover, due to (3) and (8), we must satisfy λ(T ) =
∂Φ(x(T ))

∂x , where Φ(x(T )) = −x(T ) + ν1v(T ) + ν2e(T ) and
ν1, ν2 are unknown multipliers, so that

λ1(T ) = −1, λ2(T ) = ν1, λ3(T ) = ν2 (14)

Since the terminal time is unspecified, the transversality
condition L+ dΦ

dt |t=T = 0 (L = 0 here) gives

−v(T ) + ν1a(T )− ν2P [a(T ), v(T )] = 0 (15)

Note that from (14) and (12),

λ̇2(t) = 1 + ν2
∂P (a, v)

∂v
, with λ2(T ) = ν1 (16)

where λ2(t) is a function of the control a(t) due to (13).
Therefore, in view of (11), the Hamiltonian is not a linear
function of a(t). As a result, we can use the optimality
condition ∂H

∂a = 0 so that

λ2(t)− λ3(t)
∂P (a, v)

∂a
= 0 (17)

where
∂P (a, v)

∂a
=
rm

K2

(
2ma(t) + 2kv2(t) + 2mgµ

)
+mv(t)

(18)
Now a two-point boundary value problem is fully speci-
fied using (12)-(18). However, owing to the complexity of
∂P (a,v)
∂v in (16), we are unable to analytically obtain λ2(t).

Therefore, we have to resort to numerical methods.

C. Numerical Solution

We solve this optimal control problem by means of
GPOPS [13], an open-source MATLAB-based optimal con-
trol solver that implements the Gauss and Radau hp-adaptive
pseudo-spectral methods. A numerical example of the opti-
mal solution and optimal state trajectories is shown in Fig.1.
The parameter settings are listed in Tab. II and are the ones
used for a 4-wheeled TOYOTA Coms [11] except that the
values of E0, amin and amax which we have selected.

Kaφ [V· s] r [Ω] R [m] k [kg/m] amin [m/s2] N
1.05 0.16 0.23 1.26 -15 1

g [m/s2] µ m [kg] E0 [J] amax [m/s2]
9.8 0.006 350 104 20

TABLE II
PARAMETER SETTINGS FOR THE EVPCM

In Fig.1, the numerical solution displays a clear structure
for the optimal acceleration: it starts with a small value
(0.0588 m/s2 in the solution), slowly decreases to 0 at some
time, gradually increasing the speed up to a value (1.0338
m/s), and then remains at 0 for a while, and in the end slowly
decreases to a negative value (-0.0588 m/s2), bringing the
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Fig. 1. Optimal solution of the Cruising Range Maximization Problem

speed down to 0. The accelerating process in the beginning
and decelerating process in the end are symmetric in terms
of the absolute values of acceleration and velocity. Under the
control process, the energy trajectory e(t) and the cruising
distance x(t) seem to be respectively linearly decreasing and
increasing throughout [0, T ]. In this example, T ∗ = 406.7113
s and x∗(T ) = 387.4078 m.

D. Approximate Parametric Optimization Problem

Motivated by the numerical solution and its clear structure,
we propose an approximate optimal control ã∗(t) as follows:

ã∗(t) =


A
t1

(t1 − t) t ∈ [0, t1]

0 t ∈ (t1, t2]
−A
t1

(t− t2) t ∈ (t2, T ]
(19)

where T = t1 + t2 and A, t1 and t2 are the unknown
parameters to be determined, also satisfying 0 < A ≤ amax
and 0 < t1 ≤ t2. This structure approximates the numerically
obtained optimal control a∗(t) by linearizing the gradually
changing curves at the beginning and ending parts shown in
Fig.1.

Accordingly, since the acceleration structure has been
determined, the velocity structure can be obtained through
(5):

ṽ∗(t) =


At− A

2t1
t2 t ∈ [0, t1]

At1
2 t ∈ (t1, t2]

A
t1

(
t21−t

2
2

2 − t2

2 + t2t) t ∈ (t2, T ]

(20)

We let vcr = At1
2 , which is the critical cruising speed of the

vehicle over (t1, t2].
Moreover, in light of (4) and (7), we can write the

objective function (3) as

x̃∗(T ) = x(0) +

∫ T

0

ṽ∗(t)dt =
A

6
(3t1t2 + t21) (21)

Note that since T = t1 + t2, then ṽ∗(T ) = 0 by (20),
which satisfies the terminal condition (8). However, we



still have a constraint on the terminal energy value, i.e.,
e(T ) = 0. Therefore, substituting ã∗(t) and ṽ∗(t) into (2)
and integrating (6) from 0 to T , we can establish a new
equality constraint g(A, t1, t2) = 0 defined by:

e(T )− e(0) =

∫ T

0

−P (t)dt =⇒

g(A, t1, t2) =

∫ t1

0

r

K2

(mA
t1

(t1 − t) + k(At− A

2t1
t2)2+

mgµ
)2

+ (At− A

2t1
t2)
(mA
t1

(t1 − t) + k(At− A

2t1
t2)2+

mgµ
)
dt+

∫ t2

t1

r

K2

(
k(
At1
2

)2 +mgµ
)2

+
At1
2

(
k(
At1
2

)2+

mgµ
)
dt+

∫ t1+t2

t2

r

K2

(
− mA

t1
(t− t2) + k(

A

2t1
(t21 − t22)+

A

t1
(− t

2

2
+ t2t))

2 +mgµ
)2

+ (
A

2t1
(t21 − t22) +

A

t1
(− t

2

2
+

t2t))
(
− mA

t1
(t− t2) + k(

A

2t1
(t21 − t22) +

A

t1
(− t

2

2
+ t2t))

2

+mgµ
)
dt− E0 = 0

We use the software package Mathematica [14] to complete
the integration, the result of which is presented as follows:

g(A, t1, t2) =

[
r

K2
(m2g2µ2 +m2Agµ+

1

3
m2A2)t+

(
mgµA

3
+
mA2

8
)t2 +

r

K2
(

1

12
mA3k +

4

15
mgµkA2)t3+

2

35
kA3t4 +

8rk2A4t5

315K2

]∣∣∣∣t1
0

+
[ r

K2
(
k2A4

16
t41 +

kmgµA2

2
t21+

m2g2µ2) +
kA3

8
t31 +

mgµA

2
t1

]
t

∣∣∣∣t2
t1

+[
r

16K2t41

((
A2(t21 − t22)2k + 4at1t2m+ 4t21µgm

)2
t+

4A
(
At2(t21 − t22)k − t1m

)(
A2(t21 − t22)2k + 4At1t2m+

4t21µgm
)
t2 − 4

3
A2
(
A2(t21 − 7t22)(t21 − t22)2k2 + 4At1t2(3t21

− 5t22)km+ 4t21(t21µgk − 3t22µgk −m)m
)
t3 − 2A2k

(
A2t2·

(3t41 − 10t21t
2
2 + 7t42)k − 2At1(t21 − 5t22)m+ 4t21t2µgm

)
t4+

2

5
A2k

(
A2(3t41 − 30t21t

2
2 + 35t42)k + 20At1t2m+ 4t21µgm

)
t5

− 4

3
A3k(−3At21t2k + 7At32k + t1m)t6

4

7
A4(t21 − 7t22)k2t7−

A4t2k
2t8 +

1

9
A4k2t9

)
+

A

8t31

(
− 4

3
t21µgmt(−3t21 + 3t22−

3t2t+ t2) +At1mt(−2t2 + t)(−2t21 + 2t22 − 2t2t+ t2)+

A2kt

35

(
35t61 − 35t41(3t22 − 3t2t+ t2) + 21t21(5t42 − 10t32t+

10t22t
2 − 5t2t

3 + t4)− 5(7t62 − 21t52t+ 35t42t
2 − 35t32t

3+

21t22t
4 − 7t2t

5 + t6)
))]∣∣∣∣t1+t2

t2

− E0 = 0 (22)

Now along with (21), we can transform the original optimal
control problem into a nonlinear parametric optimization

problem:

min
A,t1,t2

−x̃∗(T ) =
A

6
(3t1t2 + t21) (23)

s.t. g(A, t1, t2) = 0

0 < A ≤ amax, 0 < t1 ≤ t2

Using the same parameter settings as in Tab. II, we solve this
problem using the general-purpose nonlinear optimization
problem solver KNITRO [16]. In the numerical solution,
A∗ = 0.0515, t∗1 = 39.2287 and t∗2 = 370.5033 such that
x̃∗(T ) = 387.2875, which is a very accurate approximation
of the optimal objective x∗(T ) = 387.4078 for the optimal
control problem. Fig. 2 shows the optimal solution and
optimal state trajectories, closely resembling those in Fig.1.
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Fig. 2. Optimal solution of the parametric optimization problem

To further justify the effectiveness of our approximate
solution, we compare the objective values in the solutions
of the two problems based on different values of E0 in Tab.
III. The comparison shows that the solution to the parametric
optimization problem is nearly equivalent to the one of the
optimal control problem. In addition, the numerical solutions

E0 = 103 E0 = 5 × 103 E0 = 104 E0 = 4 × 104

x∗(T ) 34.7192 191.3058 387.4078 1.4582 × 103

x̃∗(T ) 34.5986 191.2110 387.2875 1.4336 × 103

TABLE III
COMPARISON OF SOLUTIONS TO THE OPTIMAL CONTROL PROBLEM

AND THE PARAMETRIC OPTIMIZATION PROBLEM

indicate that the maximum value of v∗(t) is much lower than
the value vmax commonly used for EVs (around 100 km/h or
28 m/s) [11]. Consequently, we can relax the state constraint
0 ≤ v(t) ≤ vmax without affecting the optimality of the
solution. On the other hand, since the critical cruising speed
vcr is so low in the optimal solution, we also investigate
the performance of the optimal solution by comparing it
to other candidate solutions with different cruising speed
values as shown in Fig. 3. The investigation is under the



setting E0 = 104 (J), in which the point (1.011, 387.3)
is clearly the summit of the curve, also verifying that the
solution at vcr = 1.011 m/s (3.6396 km/h) achieves the
maximum cruising range x∗(T ). Nonetheless, at least for
this example, it is still the case that the optimal cruising
speed is unrealistically low.

0 1 2 3 4 5
100

150

200

250

300

350

400

X: 1.011
Y: 387.3

critical speed Vcr (m/s)

c
ru

is
in

g
 r

a
n
g

e
 x

(T
) 

(m
)

Vcr vs. x(T) under E0 = 10,000 J

Fig. 3. Cruising range x(T ) vs. critical speed vcr under E0 = 104 J

To sum up, by solving the parametric problem (23) to
determine the control policy (19), we obtain an approximate
solution to the EV cruising range maximization problem and
observe that this policy has a simple, easy to implement
structure dependent only on two critical times and a fixed
cruising speed maintained between these times. Admittedly,
the optimal cruising speed is unreasonably low from a prac-
tical standpoint, but the approximation technique provides
a means to tackle complicated optimal control problems of
the same type. We will apply the same methodology to the
problem of the next section, which gives more interesting
results.

IV. TRAVELING TIME MINIMIZATION PROBLEM

A. Problem Statement

We are now interested in how fast the EV can cover a
desired traveling distance with a given initial battery load.
This is a traveling time minimization problem. We still adopt
the EVPCM to model the EV and formulate an optimal
control problem as follows:

min
a(t)

∫ T

0

dt (24)

ẋ(t) = v(t) (25)
v̇(t) = a(t) (26)
ė(t) = −P (t) (27)

e(0) = E0, x(0) = 0, v(0) = 0 (28)
x(T ) = S (29)

e(t) ≥ 0, 0 ≤ v(t) ≤ vmax (30)
amin ≤ a(t) ≤ amax (31)

The problem formulation is almost the same as the one of the
cruising range maximization problem except for the objective
function (24) and the terminal condition (29), where S
is the desired traveling distance, assumed to be less than
the maximum achievable cruising range given the same E0

(otherwise, there exists no feasible solution.) We also no
longer require v(T ) = 0.

B. Hamiltonian Analysis

We begin again by relaxing the state constraints (30)
and analyzing the unconstrained case, where the optimal
state trajectory consists of an interior arc throughout the
entire process. As before, let x(t) = (x(t), v(t), e(t))T and
λ(t) = (λ1(t), λ2(t), λ3(t))T denote the state and costate
vector respectively. The Hamiltonian for this problem is

H(x, λ, a) = 1+λ1(t)v(t)+λ2(t)a(t)−λ3(t)P (a, v) (32)

and the costate equations λ̇ = −∂H∂x are the same as (12):
λ̇1(t) = 0

λ̇2(t) = −λ1(t) + λ3(t)∂P (a,v)
∂v

λ̇3(t) = 0

(33)

where ∂P (a,v)
∂v is the same as (13). Moreover, due to (3) and

(8), we must satisfy λ(T ) = ∂Φ(x(T ))
∂x , where Φ(x(T )) =

ν(x(T )− S) and ν are an unknown multiplier, so that

λ1(T ) = ν, λ2(T ) = 0, λ3(T ) = 0 (34)

Solving (33) with the boundary conditions (34), we get λ1(t) = ν
λ2(t) = −ν(t− T )
λ3(t) = 0

(35)

Still owing to the unspecified terminal time, the transversality
condition L+ dΦ

dt |t=T = 0 (L = 1 here) requires that

1 + νv(T ) = 0 (36)

Thus, with the terminal costate condition (34), we have

ν = − 1

v(T )

It follows that ν < 0 with v(T ) ≥ 0, which makes λ2(t) <
0 over [0, T ). We can now apply the Pontryagin minimum
principle using (32):

H(x∗, λ∗, a∗) = min
a(t)

H(x, λ, a) (37)

where a∗(t), t ∈ [0, T ), denotes the optimal control. We can
then see that since λ2(t) < 0 and λ3(t) = 0 over [0, T ),

a∗(t) = amax, t ∈ [0, T ] (38)

which is the optimal control policy for the unconstrained
case. Accordingly, the optimal velocity trajectory is achieved
by (26):

v∗(t) = amaxt, t ∈ [0, T ] (39)

and the optimal objective value is attained by
∫ T∗

0
v∗(t)dt =

S in (29), which gives

T ∗ =

√
2S

amax
(40)

When it comes to the constrained case with only 0 ≤
v(t) ≤ vmax incorporated, we can directly check whether



the constraint is active or not by comparing amaxT
∗ with

vmax: if amaxT ∗ ≤ vmax, then the constraint is not active,
therefore (38) is still the optimal control policy; otherwise,
the constraint v(t) ≤ vmax is active at t = vmax

amax
and the

optimal control (38) cannot apply anymore. In this case,
we can still carry out the Hamiltonian analysis. We can
immediately exclude v(T ) < vmax since, if this holds, then
no change would occur from (32) to (36), hence the optimal
control would still be (38). Now with v(T ) = vmax, we have
a different Φ(x(T )) = ν1(x(T )−S) + ν2(v(T )− vmax) (νi
are the unknown multipliers), which implies that

λ1(T ) = ν1, λ2(T ) = ν2, λ3(T ) = 0 (41)

In view of (33), as long as λ3(t) = 0, ∂P (t)
∂v will not be

involved in λ̇2(t), which will make λ2(t) independent of
the control a(t). Therefore, we can proceed with a similar
derivation to (35)-(38) and determine the optimal control as:

a∗(t) =

{
amax, t ∈ [0, vmax

amax
]

0, t ∈ ( vmax

amax
, T ∗]

(42)

where T ∗ can be determined by (25)-(26) as:

T ∗ =
S

vmax
+

vmax
2amax

(43)

Lastly, let us consider the constrained case with both
0 ≤ v(t) ≤ vmax and e(t) ≥ 0 incorporated. Regarding the
optimal controls (38) and (42), a∗(t) ≥ 0 throughout [0, T ∗].
Then, according to (27) and (2), P ∗(t) > 0 over [0, T ∗] and
e∗(t) is monotonically decreasing. Thus, we only need to
check the value of e∗(T ) for the two possible optimal con-
trols (38) and (42). If e∗(T ) ≥ 0 under the optimal control,
then the constraint e(t) ≥ 0 is not involved during t ∈ [0, T ).
Otherwise, we have to revise the Hamiltonian analysis letting
Φ(x(T )) = ν1(x(T )−S)+ν2(v(T )−vmax)+ν3e(T ) (νi are
the unknown multipliers), which will make λ3(T ) = ν3. As
a result, from (33) λ2(t) becomes a function of a(t). Similar
to the analysis of the cruising range maximization problem,
this analysis cannot generally yield an explicit analytical
solution for the optimal control problem, so that we once
again proceed with numerical solutions.

C. Numerical Solution

Since we are to address the case where the optimal controls
(38) and (42) cannot apply, we assume e(T ) = 0. At first,
we relax the state constraint v(t) ≤ vmax. As in Section III,
by using GPOPS we can obtain a numerical solution to this
optimal control problem. A numerical example of the optimal
solution and optimal state trajectories is shown in Fig. 4.
The parameter settings are the same as in Tab. II except that
the required traveling distance S is set as 2000 m and the
value of E0 is 108, which is designed to achieve a higher
top speed so as to incorporate state constraint v(t) ≤ vmax
in what follows. Also, we still employ the commonly used
vmax value, which is 28 m/s (100.8 km/h).

From Fig. 4, it is clear that in the numerical solution, the
whole acceleration process consists of five parts: (1) fully
accelerating at amax (20 m/s2); (2) gradually descending
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Fig. 4. Optimal solution to the Traveling Time Minimization Problem

to 0; (3) maintaining a(T ) = 0; (4) gradually descending
to the maximum decelerating value amin (-15 m/s2) and (5)
fully decelerating at amin to the end. Accordingly, along with
the acceleration process the speed increases until it reaches
part (3), and then remains at a fixed value until some time
after which the vehicle is required to fully decelerate for
the remaining traveling time. Under this optimal control, we
obtain T ∗ = 18.2523s.

Moreover, in this numerical example, we notice that the
maximum velocity value is 137.5064 m/s (about 495 km/h),
which is unrealistically high in practice. However, note
that this result is only for the relaxed problem without
incorporating vmax, and usually vmax < 137.5064 m/s. By
numerically perturbing the value of vmax we find that there
exist two additional types of solutions. The first one can be
expressed as

a∗1(t) =


amax, t ∈ [0, vmax

amax
]

0, t ∈ ( vmax

amax
, ts]

amin t ∈ (ts, T ]

(44)

in which case e(T ) = 0 and the value of ts depends on
vmax and E0. The second one arises when vmax and E0

are such that ts = T in (44) but e(T ) > 0, in which case
the solution is the same as (42). This case corresponds to a
scenario where the vehicle has so much initial energy that
it can complete the entire process as fast as possible with a
positive residual energy.

D. Approximate Parametric Optimization Problem

Motivated by the results obtained in the last section, we
can again propose an approximate optimal control ã∗(t) as
follows:

ã∗(t) =

 amax t ∈ [0, t1]
0 t ∈ (t1, t2]

amin t ∈ (t2, T ]
(45)

where t1, t2 and T are unknown parameters to be deter-
mined, also satisfying 0 < t1 ≤ t2 ≤ T and t1 ≤ vmax

amax
. This



control structure contains all three types of optimal controls
obtained through numerical solutions.

Accordingly, the velocity structure can be expressed using
(5):

ṽ∗(t) =

 amaxt t ∈ [0, t1]
amaxt1 t ∈ (t1, t2]

amaxt1 + amin(t− t2) t ∈ (t2, T ]
(46)

Therefore, in light of (25) and (28), we can represent the
terminal condition (29) by a new equality constraint:

g1(t1, t2, T ) = amaxt1(T − t1
2

) +
amin(T − t2)2

2
− S = 0

(47)
Moreover, as pointed out earlier, the condition e∗(T ) > 0
could only occur in the optimal solution (42). Thus, we can
simply check the feasibility of the solution (42): if, under
(42), e(T ) > 0, then the optimal solution is (42); otherwise,
we can add the additional terminal condition e(T ) = 0
without affecting the solution.

Thus, let us assume e(T ) = 0 in what follows. Substituting
ã∗(t) and ṽ∗(t) into (2) and integrating (6) from 0 to T ,
we can replace the condition e(T ) = 0 with an equality
constraint g2(t1, t2, T ) = 0, where g(t1, t2, T ) is:

e(T )− e(0) =

∫ T

0

−P (t)dt =⇒

g2(t1, t2, T ) =

∫ t1

0

r

K2
(mamax + ka2

maxt
2 +mgµ)2+

amaxt(mamax + ka2
maxt

2 +mgµ)dt+

∫ t2

t1

r

K2
(ka2

maxt
2
1

+mgµ)2 + amaxt1(ka2
maxt

2
1 +mgµ)dt+∫ T

t2

r

K2

(
mamin + k

(
amaxt1 + amin(t− t2)

)2
+mgµ

)2

(amaxt1 + amin(t− t2))
(
mamin+

k
(
amaxt1 + amin(t− t2)

)2
+mgµ

)
dt

As in the previous section, we use Mathematica to do the

integration, the result of which is as follows:

g2(t1, t2, T ) =

[
r

K2

(
(mamax +mgµ)2t+

2

3
(mamax+

mgµ)ka2
maxt

3 + frack2a4
max5t5

)
+

1

2
(ma2

max+

mgµamax)t2 +
ka3

max

4
t4
]∣∣∣∣t1

0

+
[ r

K2
(ka2

maxt
2
1 +mgµ)2+

amaxt1(ka2
maxt

2
1 +mgµ)

]
t

∣∣∣∣t2
t1

+

[
r

K2

((
mgµ+ a2

maxt
2
1k−

2aminamaxt2k + amin(amint
2
2k +m)

)2
t− 2amin·

(−amaxt1 + amint2)k
(
mgµ+ a2

maxt
2
1k − 2aminamaxt1t2k

+ amin(amint
2
2k +m)

)
t2 +

2

3
a2
mink

(
mgµ+ 3a2

maxt
2
1k−

6aminamaxt1t2k + amin(3amint
2
2k +m)

)
t3−

a2
min(−amaxt1 + amint2)k2t4 +

1

5
a4
mink

2t5
)

+

1

4
t
(
2amaxt1 + amin(−2t2 + t)

)(
2mgµ+ 2a2

maxt
2
1k+

2aminamaxt1k(−2t2 + t)+

amin
(
2m+ amink(2t22 − 2t2t+ t2)

))]∣∣∣∣T
t2

− E0 = 0 (48)

Now, along with (47), we can transform the original opti-
mal control problem into a nonlinear parametric optimization
problem as follows:

min
t1,t2,T

T (49)

s.t. g1(t1, t2, T ) = 0

g2(t1, t2, T ) = 0

0 < t1 ≤ t2 ≤ T, t1 ≤
vmax
amax

Note that the constraint t1 ≤ vmax

amax
is equivalent to v ≤ vmax.

Using the same parameter settings as in the optimal control
problem, we use KNITRO to solve this problem. In order to
verify the accuracy of our approximate solution, we first relax
the constraint t1 ≤ vmax

amax
and compare the result with the

numerical solution in Fig. 4. In the solution to the parametric
problem (49), t∗1 = 6.6369 s and T ∗ = t∗2 = 18.3858 s,
which can be seen to be very close to the numerical optimal
objective T ∗ = 18.2523 s for the optimal control problem.
Fig. 5 shows the solution and corresponding state trajectories.

If we incorporate the constraint t1 ≤ vmax

amax
with vmax =

28 m/s (about 100 km/h, the usual vmax values for EVs
mentioned earlier), then we apply the control policy (42)
and test the corresponding e(T ), which turns out to be
9.6706 × 107 J, much greater than 0. Consequently, (42) is
the optimal control in this case, under which T ∗ = 72.1000
s. The solution, including the control and state trajectories,
is shown in Fig. 6. If we reduce the initial energy E0, then
the optimal top speed will correspondingly decrease. Thus,
when E0 is small enough, the optimal top speed does not
exceed the speed limit vmax. In this scenario, the optimal
controller behaves as (45) and the solution is shown in Fig.
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Fig. 5. Optimal solution to the parametric optimization problem without
the constraint t1 ≤ vmax

amax

7, where the optimal cruising speed is 18.5342 m/s (about 67
km/h). Unlike the range maximization problem, this optimal
speed is reasonable for EVs.
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V. CONCLUSIONS AND FUTURE WORK

We have used an Electric Vehicle Power Consumption
Model (EVPCM) to study two problems of optimally control-
ling the acceleration (and deceleration) of a non-ideal energy-
aware electric vehicle so as to (a) maximize the cruising
range and (b) minimize the traveling time to a prescribed
destination with limited battery power. In the cruising range
maximization problem, due to the complicated relationship
between power consumption and vehicle dynamics, the so-
lution can only be attained numerically. However, based on
the numerical solution, an approximate solution structure
is proposed such that the original optimal control problem
can be transformed into a nonlinear parametric optimization
problem, which is easier to solve. The accuracy of the
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Fig. 7. Optimal solution to the parametric optimization problem without
violating t1 ≤ vmax

amax

approximate solution is also verified. Even though the speed
values involved in the optimal solution for this problem are
practically unrealistic, the approach provides a methodology
to solve complicated optimal control problems of this type,
where the vehicle state dynamics are too complex for exact
analytical solutions to be derived. Subsequently using this
methodology to the traveling time minimization problem
yields interesting and practically realizable results. For both
problems, we have obtained simple near-optimal solution
structures despite the complexity of an elaborate vehicle
energy consumption model.

This line of research opens up a wide spectrum of ex-
tensions. With the approximate simple solution structure
for both problems, we can integrate the EVPCM into a
number of problems including vehicular routing, charging
station deployment and EV to smart grid (V2G) charging
scheduling, where either EV traveling time or distance are
metrics to optimize over.

REFERENCES

[1] A. Sciarretta, M. Back, and L. Guzzella, “Optimal control of parallel
hybrid electric vehicles,” IEEE Transactions on Control Systems
Technology, vol. 12, no. 3, pp. 352–363, 2004.

[2] F. Salmasi, “Control strategies for hybrid electric vehicles: Evolution,
classification, comparison, and future trends,” IEEE Transactions on
Vehicular Technology, vol. 56, no. 5, pp. 2393–2404, 2007.

[3] B. Powell, K. Bailey, and S. Cikanek, “Dynamic modeling and control
of hybrid electric vehicle powertrain systems,” IEEE Control Systems
Magazine, vol. 18, no. 5, pp. 17–33, 2002.

[4] Y. Hori, Y. Toyoda, and Y. Tsuruoka, “Traction control of electric
vehicle: Basic experimental results using the test ev uot electric
march,” IEEE Transactions on Industry Applications, vol. 34, no. 5,
p. 1131C1138, 2002.

[5] A. Dardanelli, M. Tanelli, B. Picasso, S. M. Savaresi, O. di Tanna,
and M. Santucci, “Optimal decentralized protocols for electric vehicle
charging,” in 50th IEEE Conf. on Decision and Control, Orlando, FL,
Dec. 2011.

[6] L. Guzzella and A. Sciarretta, Vehicle Propulsion Systems: Introduc-
tion to Modeling and Optimization. 2nd Ed. Berlin: Springer, 2007.

[7] O. Sundstrom and C. Binding, “Opimization methods to plan the
charging of electric vehicle fleets,” in 50th IEEE Conf. on Decision
and Control, Orlando, FL, Dec. 2011.



[8] H. Qin and W. Zhang, “Charging scheduling with minimal waiting in
a network of electric vehicles and charging stations,” in VANET ’11
Proceedings of the Eighth ACM international workshop on Vehicular
inter-networking, New York, NY, 2011.

[9] J. Gallego and E. Larrodeg, “Efficient allocation of recharging stations
for electric vehicles in urban environments,” in Advanced Microsys-
tems for Automotive Applications, VDI-Buch 2011, 2011, pp. 49–58.

[10] L. Gan, U. Topcu, and S. Low, “Optimal decentralized protocols
for electric vehicle charging,” in 50th IEEE Conf. on Decision and
Control, Orlando, FL, Dec. 2011.

[11] D. Tanaka, T. Ashida, and S. Minami, “An analytical method of ev
velocity profile determination from the power consumption of electric
vehicles,” in IEEE Vehicle Power and Propulsion Conference (VPPC),
Harbin, China, Sept. 2008.

[12] Z. Taha, R. Passarella, N. A. Rahim, and J. M. Sah, “Driving force
characteristic and power consumption of 4.75 kw permanent magnet
motor for a solar vehicle,” ARPN Journal of Engineering and Applied
Sciences, vol. 5, no. 1, p. 26C31, 2010.

[13] A. V. Rao, C. L. Darby, D. Garg, G. T. Huntington, D. A. Benson,
M. Patterson, B. Mahon, and C. Francolin, “http://www.gpops.org.”

[14] Wolfram Research Inc., “http://www.wolfram.com/mathematica.”
[15] Ziena Optimization Inc. and Tomlab Optimization, “TOM-

LAB/KNITRO v5.1,” 2007.


