
21

Dynamic Sleep Time Control in Wireless
Sensor Networks

XU NING
Microsoft Corporation
and
CHRISTOS G. CASSANDRAS
Boston University

Idle listening is a major source of energy waste in wireless sensor networks. It can be reduced
through Low-Power Listening (LPL) techniques in which a node is allowed to sleep for a significant
amount of time. In contrast to conventional fixed sleep time policies, we introduce a novel dynamic
sleep time control approach that further reduces control packet energy waste by utilizing known
data traffic statistics. We propose two distinct approaches to dynamically compute the sleep time,
depending on the objectives and constraints of the network. The first approach provides a dynamic
sleep time policy that guarantees a specified average delay at the sender node resulting from
packets waiting for the end of a sleep interval at the receiver. The second approach determines
the optimal policy that minimizes total energy consumed. In the case where data traffic statistics
are unknown, we propose an adaptive learning algorithm to estimate them online and develop
corresponding sleep time computation algorithms. Simulation results are included to illustrate the
use of dynamic sleep time control and to demonstrate how it dominates fixed sleep time methods.
An implementation of our approach on a commercial sensor node supports the computational
feasibility of the proposed approach.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Distributed networks; C.2.2 [Computer-Communication Networks]:
Network Protocols—Protocol architecture

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Energy management, low-power listening, stochastic processes,
Learning

The research in this article was conducted while X. Ning was a student at Boston University.
The work is supported in part by NSF under grants DMI-0330171 and EFRI-0735974, by AFOSR
under grants FA9550-04-1-0133 and FA9550-04-1-0208, and by DOE under grant DE-FG52-
06NA27490.
Authors’ addresses: X. Ning, Microsoft Corp., One Microsoft Way, Redmond, WA 98052; email:
xuning@microsoft.com; C. G. Cassandras, Division of Systems Engineering, Boston University, 15
St. Mary’s St., Brokline, MA 02446; email: cgc@bu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1550-4859/2010/06-ART21 $10.00
DOI 10.1145/1754414.1754417 http://doi.acm.org/10.1145/1754414.1754417

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:2 • X. Ning and C. G. Cassandras

ACM Reference Format:
Ning, X. and Cassandras, C. G. 2010. Dynamic sleep time control in wireless sensor networks.
ACM Trans. Sensor Netw. 6, 3, Article 21 (June 2010), 37 pages.
DOI = 10.1145/1754414.1754417 http://doi.acm.org/10.1145/1754414.1754417

1. INTRODUCTION

A Wireless Sensor Network (WSN) is a spatially distributed wireless network
consisting of low-cost autonomous nodes that are mainly battery powered and
have sensing and wireless communication capabilities [Megerian and Potkon-
jak 2003]. Usually, nodes in such a network share a common objective, such as
environmental monitoring or event detection. Due to limited onboard power,
nodes rely on short-range communication and form a multi-hop network to
deliver information to a base station. Power consumption is a key issue in
WSNs, since it directly impacts their lifespan in the likely absence of human
intervention for most applications of interest.

Energy in WSN nodes is consumed by the CPU, by sensors/actuators, and
by radio, with the last consuming the most [Shnayder et al. 2004]. In order to
optimize energy usage, it is important to identify the major sources of waste in
communication [Ye et al. 2004]. A collision occurs when a packet is corrupted
by other simultaneous transmissions and requires a retransmission; overhear-
ing arises when a node receives a packet that is not destined to it; control
packet overhead is the energy cost incurred during sending and receiving con-
trol packets instead of actual data payload; finally, idle listening, the largest
energy waste, occurs when a radio receiver remains listening during an idle
period in the network. Energy waste due to idle listening can be reduced by
adopting a Medium Access Control (MAC) scheme. Such schemes can be cat-
egorized into scheduled and unscheduled. Scheduled schemes, such as TDMA
[Sohrabi et al. 2000] and S-MAC [Ye et al. 2004], maintain a schedule among
a small cluster of nodes such that the nodes have coordinated transmission.
Therefore, nodes can turn off their radio according to the schedule. Unscheduled
schemes, on the other hand, try to emulate an “always-on” receiver by intro-
ducing additional ad hoc synchronization. One way to achieve this is to use
Low-Power Listening (LPL), which has been adopted previously, for instance,
in radio paging systems [Mangione-Smith 1995]. LPL uses a preamble-channel
polling scheme to synchronize sender and receiver; detail will be given in Sec-
tion 2. Unscheduled MACs using LPL include B-MAC [Polastre et al. 2004],
WiseMAC [El-Hoiydi and Decotignie 2004] and X-MAC [Buettner et al. 2006],
and so on. One obvious advantage of unscheduled MAC is its universality, since
all transmission controls are transparent to the applications to which it just
appears to be a normal, always-on radio. Another advantage is that it does not
need advance synchronization (it can, though, benefit from it since a preamble
can be shortened when the transmission pair is roughly synchronized).

In LPL, the key design problem is to determine the sleep time in the re-
ceiving node. Many MAC schemes that adopt LPL only use periodic sleep time
control for its simplicity. In this article we propose a dynamic sleep time control
scheme in order to address the control packet overhead problem induced by the

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:3

preamble and channel polling in LPL. Depending on the tasks they perform,
WSNs can be differentiated in terms of continuous monitoring or event-driven
operation [Sichitiu 2004]. In continuous monitoring WSNs, data are acquired
by sensors on a periodic basis. As an example, Hill and Culler [2002] describe
an environmental monitoring application where a WSN collects and sends back
temperature, light level, and humidity data over a vineyard. Under common
assumptions, such periodic sleeping control can achieve a very high reduction
in the duty cycle. In an event-driven WSN, network activities are triggered by
external random events, such as the detection of human/wild life activity or
other events. Since event times are not deterministic, many wake-ups actually
take place during times when an event is not likely to happen, thus energy is
wasted.

In this aricle, we propose a dynamic sleep time control scheme where the time
between consecutive channel pollings is controlled using available statistical
network traffic information as well as prior observations. We will show that if
statistical information about event times is known, we can control the sleep
time of the receiver so that it samples the channel more frequently when an
event is more likely to happen, and less frequently when it is not. Along this line,
we propose two dynamic sleep time control approaches (originally introduced
in Ning and Cassandras [2006] and Ning and Cassandras [2008]).

(1) Fixed Expected Preamble Duration. We assume a desired expected pream-
ble duration is given by design, and we dynamically compute the sleep
time interval to ensure this is satisfied, using the interarrival time distri-
bution information. Our numerical results show that this dynamic sleep
time control dominates fixed sleep time control in the Pareto optimality
sense.

(2) Total Energy Minimization. The objective is to minimize the link energy—
the overhead energy consumed by control packets to transmit and receive
a message. Exploiting the structure of the problem, we are able to for-
mally derive both the necessary optimality conditions and an algorithm
which is of low complexity and which provides an optimal sleep time control
policy.

Both approaches hinge on the fact that the interarrival time distribution of
external events is known. When this information is not present, we propose
a probability distribution estimation scheme suitable for WSNs in terms of
memory space and computation limits. This scheme is based on recursive quan-
tile estimation [Tierney 1983] and a Stochastic Approximation (SA) algorithm
[Robbins and Monro 1951; Kushner and Yin 2003]. Based on the data structure
of the distribution, we derive corresponding algorithms for both approaches.

The article is organized as follows: in Section 2, we review pertinent litera-
ture regarding recent developments in LPL and their application to WSNs. In
Section 3, we introduce the basic modeling framework and the problem of inter-
est. In Sections 4 and 5, we detail the two proposed approaches to dynamically
control the sleep time in LPL. In Section 6, we deal with the practical situation
where statistical information is not known in advance, by proposing a learning

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:4 • X. Ning and C. G. Cassandras

and approximation algorithm. In Section 7 we develop implementations of the
sleep time algorithms under the approximation. In Section 8, numerical results
are provided and the conclusion is in Section 9.

2. LPL LITERATURE REVIEW

LPL is an approach to saving energy at the link level, which consists of a sender
and a receiver. The main steps of LPL are as follows.

(1) The receiver remains at a sleep state most of the time, and occasionally
wakes up to sample the channel in order to determine whether it is busy
or idle.

(2) When the sender wants to send a message to the receiver, it begins with
an attached signal called the preamble. The preamble can be viewed as a
wake-up signal. After the preamble signal, the sender sends the message.

(3) When the receiver wakes up and samples the channel, either of two cases
may occur: (1) If the channel is idle, the receiver sets the next wake-up time
and sleeps again, (2) If the channel is busy (preamble detected), the receiver
stays on until the message is received. After transmission, the receiver sets
its next wake-up time and sleeps again.

The application of LPL in WSNs has the following three basic
implementations.

(1) Plain-vanilla LPL. This is the simplest LPL, where both the receiver’s sleep
period and the sender’s preamble length are fixed. Usually the preamble
length is a little bit longer than the sleep period to ensure that the pream-
ble is picked up by one of the receiver’s channel pollings. B-MAC, pro-
posed in the seminal work Polastre et al. [2004], uses this type of LPL and
has implemented it in TinyOS 1.0. Since B-MAC was designed for earlier
bit-streaming radio chips such as Chipcon CC1000, which supports long
preamble durations, it cannot be directly applied to recent packet radios,
such as the IEEE 802.15.4-compliant Chipcon CC2420. Later work such as
Virtual Preamble Cross-Checking (VPCC) [Moon et al. 2007] and B-MAC+
[Avvenuti et al. 2006] have implemented LPL for packet radios. While be-
ing the simplest one to implement, in plain-vanilla LPL the sender has
to transmit the full preamble due to lack of handshaking or other means
to shorten the preamble. Therefore, generally the overhead introduced by
long preamble and/or frequent channel polling is large compare to other
LPL implementations.

(2) Short preamble LPL. In this version, the receiver’s sleep period remains
fixed. However, there exists some degree of clock synchronization between
the sender and the receiver so the sender can estimate within some short
interval when the receiver will wake up. Hence, the sender can send a
shorter preamble as long as it is long enough to cover the estimated interval.
This version is used in WiseMAC [El-Hoiydi and Decotignie 2004].

(3) Variable preamble LPL. Although the short preamble version also varies
the length of the preamble, it requires clock synchronization between the

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:5

DATA

Rx

Sender

Receiver
!

OFF

P P P P !

R

SYN

…

OFF ON OFF OFF

t

Fig. 1. Low-power listening (LPL) with variable preamble. After each preamble packet P is sent,
the sender listens for a brief period for acknowledgement from the receiver, then sends P again if
no acknowledgement is received.

two peers. In variable preamble LPL, there is no need for such synchroniza-
tion. Instead, handshaking is used. As shown in Figure 1, while similar to
the packet train implementation in plain-vanilla LPL, variable preamble
LPL inserts short listening intervals between consecutive preamble pack-
ets. When the receiver wakes up and picks up a preamble signal, it replies
to the sender so a handshake is formed. Then, the sender knows for sure
the receiver is awake in receiving mode, so the message will be transmitted
immediately instead of after the whole preamble. Implementation details
can be found in Joe and Ryu [2007], Mahlknecht and Bock [2004] and
Buettner et al. [2006] (X-MAC). An important feature of variable preamble
LPL is that it does not require a fixed, predetermined sleep time control
at all, due to the handshake, hence it is truly asynchronous. This key
feature enables us to control the sleep time more flexibly and save more
energy.

All the aforementioned implementations of LPL use fixed sleep time.
Jurdak et al. [2005] and Jurdak et al. [2007] combine the MAC layer LPL
and routing schemes, proposing Energy-Aware Adaptive LPL. In this scheme,
the LPL sleeping periodicity is determined by the load imposed at each node,
and is adaptive as the routing topology changes. To the best of our knowledge
this work is the closest to our problem of interest in that it recognizes the need
to select the sleep time so as to conserve energy. However, in Jurdak et al.
[2007], nodes assume a fixed sleep time policy where the sleep time is con-
sidered a parameter determined by the work load. In our work, we allow the
sleep time to dynamically change in each sleep interval according to how likely
the sender is to send a message to the receiver. Intuitively, this can reduce
energy consumption because, when the incoming transmission is unlikely to
occur in the near future, the receiver does not need to sample the channel as
frequently and therefore conserves its own energy. On the other hand, when
the incoming transmission is highly likely to occur in the near future, the
receiver should sample the channel more frequently so that the preamble du-
ration can be shortened so the sender’s energy is conserved. Essentially, more
information regarding the incoming transmission time is used in the sleep time
decision. Therefore, dynamic sleep time control is superior to fixed sleep time
control.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:6 • X. Ning and C. G. Cassandras

3. PROBLEM DESCRIPTION AND MODELING FRAMEWORK

We consider a link in a WSN which consists of a sender and a receiver. The
sender is a wireless node equipped with some event detector driven by exter-
nal, random events such as body movement in a room or fire alarms. When the
sender detects an event or reports its status, it sends a message to the receiver,
which is a downstream node in the network. In this link, variable preamble
LPL is used. To simplify the analysis, we make the following assumptions:
(1) Generally, the interarrival time of the events is much larger than pream-
ble durations, the time to transmit a message and the duration of a channel
sampling activity. Therefore, we model channel samplings as points in time.
(2) In case of multiple events occurring during one preamble duration, they are
immediately transmitted after the first message that initiates the preamble.
(3) Although in the variable preamble LPL a sequence of discrete preamble
packets is sent, we model the preamble as a continuous signal whose duration
is a real positive number. In addition, we focus on the preamble and the channel
sampling activities and ignore the energy cost incurred during the handshak-
ing and the transmission of the data payload part of the message, since it is
not controllable in the scope of our optimization problem.

We define the ith event to be the instant when the transmission of the ith
message’s preamble starts. Ai is the occurrence time of the ith event and Ti =
Ai − Ai−1 (T1 = A1) is the ith interevent time. We assume Ti is a random
variable whose distribution, conditioned on all previous history, is specified
by a conditional cumulative distribution function, (cdf) Fi (t) = Pr (T ≤ t|Fi−1),
and a probability density function (pdf), fi (t), where Fi is a filtration generated
by {T1, T2, . . . , Ti} and F0 = ∅. Let tn be the nth wake-up time of the receiver.
Di is the preamble duration of message i, which is also the delay of message i.
Because Ai is random, Di is a random variable also.

The central problem in LPL consists of determining when the receiver should
wake up and sample the channel: a sequence {tn, n ≥ 1} of wake up times.
Clearly this is a trade-off between the sender and the receiver. On one hand,
as the receiver wakes up more often, energy depletes faster because each wake
up needs to turn the radio on and off, where some energy cost is incurred.
Denote this energy cost by c. On the other hand, if the sleep time between
two receiver sampling events is long, the sender will obviously need to send a
longer preamble so that it can be picked up by the receiver in its next wake-up.
Sending a preamble also incurs an energy cost, which is proportional to the
length of time of the preamble. For simplicity, let the energy cost per unit time
of the preamble be 1. Moreover, the message experiences some latency. Hence,
the problem is to determine how the receiver should control its sleep time so
that the total energy spent in each message transmission is minimized, subject
to a constraint in delay.

To simplify notation, we introduce the following single-message model, illus-
trated in Figure 2. The random time until the next message is denoted by T ,
the preamble duration by D, and the distribution is F(·), dropping the index i
throughout. Redefine {tk, k ≥ 0} so that t0 is the time instant at which the last
received message has finished transmitting, and tk is the kth wake-up since

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:7

T D

zk

……

tk-1 tk tk+1

0

t0

Sender

Receiver

Fig. 2. The single-message model, which only focuses on the very next incoming message. All time
epochs are religned with respect to the last event.

the last event. Define sleep time as zk = tk+1 − tk, which will be determined at
time tk. This model allows us to focus only on the very next message. When this
message, say Ai, is received, we roll over the single-message model with F(·)
replaced by a new Fi+1(·).

In fixed sleep time control, zk ≡ Z̄ which is a constant, and tk = kZ̄ + t0.
However, in dynamic sleep time control, we adopt a policy zk = z(tk), a function
of the time tk elapsed since the last event. In the following two sections, two
approaches to determining a policy of the general form z(t) are proposed.

4. DYNAMIC SLEEP TIME CONTROL WITH FIXED EXPECTED
PREAMBLE DURATION

4.1 Problem Formulation and Analysis

In WSNs, the senders are usually low powered sensors. It is common to place
stringent requirements on the sender’s energy consumption, which is propor-
tional to the preamble duration in our case. This section proposes an approach
to compute the sleep time such that a desirable average preamble duration D̄ is
maintained. Because D̄ can be viewed as a constraint both on delay and energy
placed by the sender, the dynamic sleep time approach proposed in this section
allows the receiver to calculate the sleep time so that its own energy is smartly
spent while not violating the sender’s constraint.

Consider some k in Figure 2 where the kth channel polling has just occurred
and the channel is still idle. Knowing that the event (message) has not oc-
curred so far, for any given sleep time zk, we can evaluate the expectation of D
conditioned on the fact that the event occurs before the next wake up at time
tk + zk:

E
[
D|tk < T ≤ tk + zk

] = tk + zk − E
[
T |tk < T ≤ tk + zk

]
= tk + zk −

∫ tk+z
tk

τdF(τ)

F (tk + zk) − F (tk)
, (1)

which is defined for zk such that F(tk + zk) − F(tk) > 0. Therefore, given some
desired average preamble duration D̄ > 0, we can establish a condition:

D̄ = E
[
D|tk < T ≤ tk + zk

]
, (2)

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:8 • X. Ning and C. G. Cassandras

and seek a solution z∗ in (1) which will be a sleep time satisfying this condition.
Because the right-hand side in Equation (1) involves the interarrival distri-
bution F(·), the arrival statistics are utilized. If the next arrival is unlikely to
occur over a short time horizon, the sleep time will be longer. To see this, sup-
pose that the probability of an event occurring is very small for time interval
(tk, tk + s] for some s > 0. Because the expectation in (2) must equal to D̄, zk

will be larger than s, as the interval contributes little to the expectation. This
adaptation helps us reduce unnecessary channel sampling and hence energy
cost. Last, it is observed that if E[D] is the unconditional expectation of the
delay, then E[D] = D̄. To see this, suppose it takes N channel polling attempts
to finally receive the message, and observe that the expected delay conditioned
on N is:

E
[
D|N] = E

[
D|tN−1 < T ≤ tN

] = D̄,

and therefore,

E
[
D

] = E
[
E (D|N)

] = D̄. (3)

As we will see in the numerical examples in Section 8, this sleep time control
approach lowers the total energy consumption of the system. However, it does
not attempt to minimize it; it only dynamically selects sleep times that meet
a specific average delay given by D̄. The choice of D̄ is by design and usually
determined by the sender’s energy requirements, as the senders are typically
end-point sensors, which have less resources than the receivers, which could
be more powerful cluster-head nodes.

4.2 Characterizing the Solution

In order to construct our sleep time control policy, z(t), we have to solve
Equation (2) for all possible values of tk. Therefore, we parameterize
Equation (2) by t, replacing tk by t and zk by z (t):

D̄ = t + z (t) −
∫ t+z(t)

t τdF(τ)
F (t + z (t)) − F (t)

. (4)

Equation (4) is not trivial to solve for z(t) because it involves an integral over an
arbitrary F(·). However, assuming F(τ) is differentiable with the pdf denoted
by f (τ), and assuming that F(s) − F(t) > 0 for all s > t within the support
region of F(·), we can see in what follows how the sleep time policy z(t) can
be specified through an ordinary differential equation (ODE). For notational
simplicity, define:

u (t) = t + z (t).

We can then rewrite equation (4) as:∫ u(t)

t
τ f (τ)dτ = (u (t) − D̄) (F (u (t)) − F (t)).

Differentiating both sides with respect to t and solving for du(t)/dt gives:

du (t)
dt

=
(
u (t) − t − D̄

)
f (t)

F (u (t)) − F (t) − D̄ f (u)
. (5)

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:9

Solving (5), we can construct a sleep time policy z(t) = u(t) − t such that the
expected preamble duration is D̄. To solve (5), we still need an initial condition,
obtained, for example, by solving (4) for t = 0. Note that the evaluation of z(t)
need only be performed once; from an implementation standpoint it can then
be stored in memory.

4.3 Special Cases: Exponential and Uniform Interarrival Time Distributions

4.3.1 Exponential Distribution. For an exponential distribution with rate
λ, (1) is rewritten as:

D̄ = t + z (t) −
∫ t+z(t)

t τλe−λτ dτ

e−λt − e−λ(t+z(t))
, (6)

which yields:

D̄ = e−λz(t) + λz (t) − 1
λ

[
1 − e−λz(t)

] . (7)

Solving (7) for z(t), we can see that the sleep time does not depend on t,
as expected, due to the memoryless property. Therefore, there exists a value
Z(λ, D̄) such that z(t) ≡ Z(λ, D̄) is the solution to (7) and dynamic control re-
duces to fixed sleep time control. The exponential distribution can be viewed
as the worst case in the sense that we cannot benefit from knowledge of past
arrivals. Nonetheless, (7) establishes a relationship between the expected de-
lay, D̄, of every message and the sleep time control applied. However, (7)
does not have a closed-form solution and can only be solved using numerical
methods.

4.3.2 Uniform Distribution. Consider a uniform distribution U [a, b],
where 0 ≤ a < b. In this case, using fixed sampling will waste energy polling
the channel while it is not possible to have an arrival (0 ≤ t ≤ a). An analytical
solution to Equation (1) is obtainable by considering two cases:

Case 1: 0 ≤ t ≤ a. Equation (1) is rewritten as:

D̄ = t + z(t) −
∫ t+z(t)

a τ (b − a)−1 dτ

F (t + z (t))

=
{ 1

2 (t + z (t) − a) t + z (t) ≤ b

t + z (t) − 1
2 (a + b) t + z (t) > b

. (8)

Note that for any positive D̄, t + z(t) > a, otherwise the right-hand side is
not defined. The solution in this case is given by:

z (t) =
{

2D̄ + a − t D̄ ≤ 1
2 (b − a)

D̄ + 1
2 (a + b) − t D̄ > 1

2 (b − a)
. (9)

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:10 • X. Ning and C. G. Cassandras

Case 2: a ≤ t ≤ b. In this case, (1) is rewritten as:

D̄ = t + z(t) −
∫ t+z(t)

t τ (b − a)−1 dτ

F (t + z (t)) − (t − a) (b − a)−1

=
{

1
2 z (t) t + z (t) ≤ b

z (t) − 1
2 (b − t) t + z (t) > b

. (10)

The solution is:

z (t) =
{

2D̄ D̄ ≤ 1
2 (b − t)

D̄ + 1
2 (b − t) D̄ > 1

2 (b − t)
. (11)

Letting v = max(t, a), the two cases can be consolidated as one:

z (t) =
{

2D̄ + v − t D̄ ≤ 1
2 (b − v)

D̄ + 1
2 (b − t) + 1

2 (v − t) D̄ > 1
2 (b − v)

. (12)

5. DYNAMIC SLEEP TIME CONTROL WITH TOTAL ENERGY MINIMIZATION

5.1 Problem Formulation and Analysis

From an energy standpoint, the approach in the previous section does not
attempt to minimize energy consumption. The energy consumed by LPL over-
head consists of the preamble cost and the channel sampling cost. Assuming
the sampling time sequence is {tk, k = 1, 2, 3, . . .}, the total cost is

Q = cN + D,

where N = arg mink tk > T and D = tN − T , that is, N is the number of
samplings needed to receive the message and D is the duration of the preamble.
Because the arrival time of the message T is a random variable, D and N
are also random. It is difficult to formulate a static optimization problem to
minimize Q over all possible {tk, k = 1, 2, 3, . . .} because the number of variables
can potentially be infinite.

Nevertheless, we can consider a different perspective. Let t be the age of
the last event: no additional event has occurred for the past t time. Let t be
the state and define J(t) as the minimum expected cost-to-go to receive the
message:

J (t) = min
z>0

V (t, z) ,

where V (t, z) is the expected cost-to-go at event age t and with sleep time z.
Hence, V (t, z) should include: (1) a fixed cost c to wake up at time t + z; (2) the
expected preamble cost if a message arrival event occurs during the sleep time,
or equivalently, before t + z, which is:

E[t + z − T |t ≤ T ≤ t + z],

and (3) the future minimum expected cost to receive the message if it does not
occur during the sleep time, which is J(t + z). Let the probability of the event

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:11

occurring before the receiver waking up at t + z be P1(t, z); we have:

P1 (t, z) = Pr (T ≤ t + z|T > t) = F (t + z) − F (t)
1 − F (t)

(13)

and its complement:

P2 (t, z) = Pr (T > t + z|T > t) = 1 − F (t + z)
1 − F (t)

. (14)

Therefore,

V (t, z) = c + E
[
t + z − T |t ≤ T ≤ t + z

]
P1 (t, z) + J (t + z) P2 (t, z),

so the Bellman equation is:

J (t) = min
z>0

{c + E
[
t + z − T |t ≤ T ≤ t + z

]
P1 (t, z) + J (t + z) P2 (t, z)}. (15)

For a distribution with a bounded support region 0 < T ≤ Tmax, the allowable
control set is limited to 0 < z ≤ Tmax−t and, in this case, the boundary condition
for (15) is J(Tmax) = c. By solving the Bellman equation (15) for all possible
t > 0, one can obtain the optimal sleep time control policy z∗(t).

5.2 Characterizing the Optimal Solution

In this section we characterize the optimal solution to (15). In the following
analysis, we assume that F(τ) has a finite support 0 ≤ τ ≤ Tmax, and f (τ) has
a continuous derivative.

For notational simplicity, define u = t + z, which is the wake-up time epoch
of the receiver determined at time t. We can redefine P1 and P2 from (13) and
(14) using u:

P1 (t, u) = F (u) − F (t)
1 − F (t)

, P2 (t, u) = 1 − F (u)
1 − F (t)

and rewrite the Bellman equation (15) as:

J(t) = min
t<u≤Tmax

{c + E
[
u − T |t ≤ T ≤ u

]
P1(t, u) + J(u)P2(t, u)}. (16)

Define

G (t, u) = c + E
[
u − T |t ≤ T ≤ u

]
P1 (t, u) + J (u) P2 (t, u)

= c +
∫ u

t (u − τ) f (τ) dτ

F (u) − F (t)
· F (u) − F (t)

1 − F (t)
+ J (u)

1 − F (u)
1 − F (t)

= c +
∫ u

t (u − τ) f (τ) dτ + J (u) (1 − F (u))
1 − F (t)

(17)

and we can write:

J(t) = min
t<u≤Tmax

G (t, u).

Let the optimal policy be u∗(t):

u∗ (t) = arg min
t<u≤Tmax

G (t, u),

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:12 • X. Ning and C. G. Cassandras

which is a function of t. Because u∗(t) is the solution to (16), we have:

J (t) = G
(
t, u∗ (t)

)
. (18)

Before proceeding, we prove the following two lemmas:

LEMMA 5.1. Let 0 ≤ t1 < t2 ≤ Tmax. As long as there exists a measurable
subset S of [t1, t2] such that ∀τ ∈ S, f (τ)
= 0, then u∗(t1) ≤ u∗(t2).

PROOF. First, u∗(t) = arg mint<u≤Tmax G(t, u) > t. Hence, if u∗(t1) ≤ t2, then
it is trivially true that u∗(t1) < u∗(t2). If u∗(t1) > t2, we can prove the result
by contradiction. To simplify notation, let u1 = u∗(t1) and u2 = u∗(t2). Suppose
t1 < t2 < u2 < u1. Because both u1 and u2 are minimizers, we have:

G (t1, u1) ≤ G (t1, u2) and G (t2, u2) ≤ G (t2, u1) .

Using (17) in these inequalities, gives:∫ u1

t1
(u1 − τ) f (τ) dτ+J (u1) (1 − F (u1)) ≤

∫ u2

t1
(u2 − τ) f (τ) dτ+J (u2) (1 − F (u2))

(19)∫ u2

t2
(u2 − τ) f (τ) dτ+J (u2) (1 − F (u2)) ≤

∫ u1

t2
(u1 − τ) f (τ) dτ+J (u1) (1 − F (u1)) .

(20)

Adding the two inequalities, we can cancel the terms involving J(·), obtaining:∫ u1

t1
(u1 − τ) f (τ) dτ+

∫ u2

t2
(u2 − τ) f (τ) dτ ≤

∫ u2

t1
(u2 − τ) f (τ) dτ

+
∫ u1

t2
(u1 − τ) f (τ) dτ, (21)

which implies ∫ t2

t1
(u1 − τ) f (τ) dτ ≤

∫ t2

t1
(u2 − τ) f (τ) dτ,

that is ∫ t2

t1
(u1 − u2) f (τ) dτ ≤ 0

Because u1 > u2, this implies that f (τ) = 0 for t1 < τ < t2 in order to satisfy the
inequality, which contradicts the fact that there exists a measurable subset S
of [t1, t2] such that for τ ∈ S, f (τ)
= 0.

LEMMA 5.2. Assuming that | f ′(t)| < L < ∞ for 0 ≤ t ≤ Tmax, there exists
δ > 0 such that for all t ∈ [Tmax − δ, Tmax], u∗(t) = Tmax.

PROOF. From (16), we know that J(t) ≥ c for all 0 ≤ t ≤ Tmax. Thus, from
(17), we have:

J (t) ≥ c +
∫ u∗(t)

t (u∗ (t) − τ) f (τ) dτ + c (1 − F (u∗ (t)))
1 − F (t)

.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:13

Define a function H(t, u) as:

H (t, u) = c +
∫ u

t (u − τ) f (τ) dτ + c (1 − F (u))
1 − F (t)

.

Recalling the definition of G(t, u) in (17), and since F(Tmax) = 1, observe that:

H (t, u) ≤ G (t, u)
H (t, Tmax) = G (t, Tmax) .

Because J(t) = mint<u≤Tmax G(t, u) and G(t, u) is bounded from below by H(t, u),
if we can prove that, for some δ > 0, for all t ∈ [Tmax − δ, Tmax], H(t, u)
attains its minimum at H(t, Tmax), then H(t, Tmax) will also be the minimum
of G(t, Tmax) and the optimal control is u∗(t) = Tmax. Therefore, to establish
this fact, we take the partial derivative of H(t, u) with respect to u and use the
mean value theorem:

∂ H (t, u)
∂u

=
∫ u

t f (τ) dτ − c f (u)
1 − F (t)

= f (ξ) (u − t) − c f (u)
1 − F (t)

, (22)

where t ≤ ξ ≤ u ≤ Tmax. Using a Taylor expansion of f (·) at u:
f (ξ) = f (u) − f ′(u)(u − ξ) + o(u − ξ), we can then rewrite (22) as:

∂ H (t, u)
∂u

=
[

f (u) − f ′ (u) (u − ξ) + o (u − ξ)
]

(u − t) − c f (u)
1 − F (t)

= (u − t − c) f (u) − f ′ (u) (u − ξ) (u − t) + o (u − ξ) (u − t)
1 − F (t)

Because | f ′(u)| ≤ L and (u−ξ)(u−t) = o(u−t), we have the following inequality:

∂ H (t, u)
∂u

≤ (u − t − c) f (u) + L · o (u − t)
1 − F (t)

≤ (Tmax − t − c) f (u) + o (Tmax − t)
1 − F(t)

.

Because Tmax is the boundary of the support region of f (·), there must exist
δ0 > 0 such that for Tmax − δ0 ≤ u < Tmax, f (u) > 0. Therefore, there must also
exist δ1 > 0 such that for Tmax − δ1 ≤ t < Tmax, we have Tmax − t ≤ δ1 < c and

∂ H (t, u)
∂u

≤ (Tmax − t − c) f (u) + o (Tmax − t)
1 − F(t)

< 0.

Letting δ = min{δ0, δ1}, we know that for Tmax − δ ≤ t < Tmax, ∂ H(t, u)/∂u is
strictly negative for all t < u ≤ Tmax. Hence,

min
t<u≤Tmax

H (t, u) = H (t, Tmax) .

Therefore, J(t) = G(t, Tmax) = H(t, Tmax) and thus u∗(t) = Tmax. This proves
the lemma.

From Lemmas 5.1 and 5.2, we can conclude that either u∗(t) = Tmax for
0 ≤ t ≤ Tmax, or there exists 0 < t0 ≤ Tmax such that:{

u∗(t) < Tmax for 0 ≤ t < t0 (23a)

u∗(t) = Tmax for t0 ≤ t ≤ Tmax. (23b)

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:14 • X. Ning and C. G. Cassandras

Since the allowable control set is such that t < u∗(t) ≤ Tmax for any t, and u∗(t)
is the minimizer of G(t, u), the following necessary optimality conditions must
be satisfied: ⎧⎪⎪⎨

⎪⎪⎩
∂G(t, u)

∂u

∣∣∣∣
u=u∗(t)

= 0 for t < u∗(t) < Tmax (24a)

∂G(t, u)
∂u

∣∣∣∣
u=u∗(t)

≤ 0 for u∗(t) = Tmax, (24b)

where, using (17),

∂G (t, u)
∂u

= F (u) + uf (u) − F (t) − uf (u) + J′ (u) (1 − F (u)) − J (u) f (u)
1 − F (t)

= F (u) − F (t) + J′ (u) (1 − F (u)) − J (u) f (u)
1 − F (t)

, (25)

where J′(u) is the first derivative of J (t) at u.
We first consider the case where t < u∗(t) < Tmax. Since (24a) holds in this

case, we can rearrange (25) and establish the following equation:

F
(
u∗ (t)

) + J′ (u∗ (t)
) (

1 − F
(
u∗ (t)

)) − J
(
u∗ (t)

)
f
(
u∗ (t)

) = F (t) . (26)

Differentiating (26) with respect to t on both sides, we have:

dF (u∗ (t))
dt

+ d
dt

[
J′ (u∗ (t)

) (
1 − F

(
u∗ (t)

))]− d
dt

[
J

(
u∗ (t)

)
f
(
u∗ (t)

)] = f (t) . (27)

Considering each term on the left-hand side, we have:

dF (u∗ (t))
dt

= f
(
u∗ (t)

) du∗ (t)
dt

d
dt

[
J′ (u∗ (t)

) (
1 − F

(
u∗ (t)

))] = [
J′′ (u∗ (t)

) (
1 − F

(
u∗ (t)

))
−J′ (u∗ (t)

)
f
(
u∗ (t)

)] du∗ (t)
dt

d
dt

[
J

(
u∗ (t)

)
f
(
u∗ (t)

)] = [
J′ (u∗ (t)

)
f
(
u∗ (t)

) + J
(
u∗ (t)

)
f
(
u∗ (t)

)] du∗ (t)
dt

.

Therefore, from (27), we derive the following expression for du∗(t)/dt:

du∗ (t)
dt

= f (t) [f
(
u∗ (t)

) + J′′ (u∗ (t)
) (

1 − F
(
u∗ (t)

))
− 2J′ (u∗ (t)

)
f
(
u∗ (t)

) − J
(
u∗ (t)

)
f ′ (u∗ (t)

)
]−1 (28)

for t < u∗(t) < Tmax. We now need J′(·) and J′′(·) in order to compute (28). First,
recalling that J(t) = G(t, u∗(t)), we can again differentiate with respect to t on
both sides and obtain:

dJ (t)
dt

= ∂G (t, u)
∂t

∣∣∣∣
u=u∗(t)

+
(

∂G (t, u)
∂u

∣∣∣∣
u=u∗(t)

)
du∗ (t)

dt
, (29)

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:15

where (24a) still holds. Therefore,

dJ (t)
dt

= ∂

∂t

[
c +

∫ u
t (u − τ) f (τ) dτ

1 − F (t)
+ J (u)

1 − F (u)
1 − F (t)

]∣∣∣∣∣
u=u∗(t)

= t − u∗ (t)
1 − F (t)

f (t) + f (t)[
1 − F (t)

]2 [u∗ (t)
(
F

(
u∗ (t)

) − F (t)
)

−
∫ u∗(t)

t
τ f (τ) dτ + J

(
u∗ (t)

) (
1 − F

(
u∗ (t)

))
]. (30)

Using (17) and (18), the second term in the right-hand-side is:

f (t)
1 − F (t)

[
J (t) − c

]
.

Therefore,

dJ (t)
dt

= f (t)
1 − F (t)

[
t − u∗ (t) + J (t) − c

]
. (31)

To compute J′′(t), we take the derivative of (31) with respect to t again:

d2 J (t)
dt2

=
[

f ′ (t) (1 − F (t)) − f 2 (t)
]

(t − u∗ (t) + J (t) − c)

(1 − F (t))2

+ f (t)
(
1 − u∗′

(t) + J′ (t)
)

1 − F (t)
.

We can substitute (31) into the first term and obtain:

d2 J (t)
dt2

=
[

f ′ (t) (1 − F (t)) − f 2 (t)
]

J′ (t)
(1 − F (t)) f (t)

+ f (t)
(
1 − u∗′

(t) + J′ (t)
)

1 − F (t)

= f ′ (t)
f (t)

J′ (t) + f (t)
1 − F (t)

(
1 − u∗′ (t)

)
. (32)

Next, let us consider Case (24b) when u∗(t) = Tmax, that is, t0 ≤ t ≤ Tmax. We
first directly compute J(t):

J (t) = c +
∫ Tmax

t (Tmax − τ) f (τ) dτ

1 − F (t)
, (33)

so that

dJ (t)
dt

= − (Tmax − t) f (t) (1 − F (t)) − f (t)
∫ Tmax

t (Tmax − τ) f (τ) dτ

(1 − F (t))2

and using (33), this finally reduces to:

dJ (t)
dt

= f (t)
1 − F (t)

[
t − u∗ (t) + J (t) − c

]
.

We can immediately see that this is equivalent to (31).

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:16 • X. Ning and C. G. Cassandras

Now let us consider du∗(t)/dt. When u∗(t) = Tmax, (24b) is satisfied. First, if
∂G(t,u)

∂u

∣∣∣
u=Tmax

< 0, we must have:

du∗ (t)
dt

= 0. (34)

When both ∂G(t,u)
∂u

∣∣∣
u=Tmax

= 0 and u∗ (t) = Tmax, we know that t = t0, in which

case we will obtain the same du∗(t)/dt as in (28) by differentiating (26).
To conclude, we have derived the necessary optimality conditions. For J(t),

the solution is specified by (31). Provided that | f ′(·)| < L < ∞, Lemmas 5.1 and
5.2 imply that either u∗(t) = Tmax for all 0 ≤ t ≤ Tmax, or there exists a positive
value t0 such that u∗(t) = Tmax for t ∈ [t0, Tmax] and u∗(t) < Tmax, t < t0. Thus,
u∗(t) is specified either by du∗(t)/dt = 0 if t > t0, or by (28) if 0 ≤ t ≤ t0 where t0
satisfies:

u∗ (t0) = Tmax,
∂G (t, u)

∂u

∣∣∣∣
t=t0, u=Tmax

= 0.

du∗(t)/dt also involves the second derivative of J(t), which was obtained in (32).
We can use the optimality conditions to solve for u∗(t), by integrating (28),

(31), and (32) jointly backwards, with initial conditions provided by Lemma 5.2:

u∗ (τ) = Tmax for Tmax − δ ≤ τ ≤ Tmax.

5.3 Special Case: Exponential Interarrival Time Distribution

The fundamental question posed in the Bellman equation (15) is how to opti-
mally control the sleep time conditioned on the fact that T > t. Because the
exponential distribution is memoryless, knowing T > t does not provide any
information. Intuitively, therefore, the optimal control under the exponential
distribution will be a constant sleep time, since all wake up events are no dif-
ferent than each other. We can prove this and obtain the optimal fixed sleep
time z∗ by solving (15).

THEOREM 5.3. If F(τ) = 1 − e−λτ , then there exists a constant K such that
J(t) ≡ K. K satisfies the equation c + λ−1 ln(1 + λK) − K = 0. The optimal sleep
time is given by z(t) ≡ z∗ = λ−1 ln(1 + λK).

PROOF. We just need to verify that J(t) ≡ K and z∗ = λ−1 ln(1 + λK) is the
solution to the Bellman equation (15):

J (t) = min
z>0

{
c +

∫ t+z
t (t + z − τ) λe−λτ dτ

e−λt
+ J (t + z)

e−λ(t+z)

e−λt

}

= min
z>0

{
c +

∫ z

0
(z − τ) λe−λτ dτ + J (t + z) e−λz

}
. (35)

Letting J(t) ≡ K, for the optimal control z∗, we have

K = c +
∫ z∗

0

(
z∗ − τ

)
λe−λτ dτ + Ke−λz∗

. (36)

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:17

First, because z∗ is the minimizer of the right-hand side, we take the derivative
with respect to z∗ and set it to zero:

d
dz∗

{∫ z∗

0
(z∗ − τ)λe−λτ dτ + Ke−λz∗

}
= 0, (37)

that is

1 − e−λz∗ − Kλe−λz∗ = 0, (38)

whose solution is z∗ = λ−1 ln(1 + λK). Using z∗ in (36) we obtain:

c + λ−1 ln (1 + λK) − K = 0, (39)

which does have a positive solution. To see this, let v(x) = c +λ−1 ln(1 +λx) − x.
Clearly, v(x) is continuous in x, and v(0) = c. Because ln(1 + λx) has an order of
o(x), when x becomes large enough v(x) is negative. Hence, there must exist a
positive value K such that v(K) = 0. Therefore, we have verified that J(t) ≡ K
and z∗ = λ−1 ln(1 + λK) is the solution to the Bellman equation (16).

Clearly, the larger c becomes, the larger K has to be, and z∗ is larger as
well but grows slower than K. The intuitive explanation is that if the cost
to poll the channel is higher, on average the energy consumption to receive
a message is also higher, and the receiver will wake up at a lower frequency.
The exponential distribution represents the worst case in our problem, because
knowing T > t produces no value at all in the decision making process. For
any other distribution, this information will be helpful and thus the optimal
control is dynamic (depending on the state t). Another feature of the exponential
distribution is that it has infinite support. For such distributions, we cannot
obtain the optimal solution using the necessary optimality conditions because
initial conditions given in the last subsection require a finite support. Generally,
infinite support cases require solving the Bellman equation (16) analytically.
This is in contrast to the fixed expected preamble duration approach in Section 4
where the sleep time is solved forward in time and infinite support cases can
be handled.

6. DISTRIBUTION APPROXIMATION AND LEARNING

In Sections 4 and 5 we developed two dynamic sleep time control approaches.
In both approaches, to compute the sleep time policy z(t), we need to know the
interarrival time distribution F(·). This breaks down to three cases: (1) F(·) is
known analytically; (2) F(·) is known but can only be expressed in terms of a
histogram or quantiles or just sample data; (3) F(·) is unknown and needs to
be learned.

In Case (1), we can substitute F(·) into the equations or ODEs in the previous
sections and solve for z(t) using routine ODE solvers. In both Cases (2) and (3),
we need to reconstruct F(·) from data. In these cases, F(·) will be approximated,
and the dynamic sleep time control algorithms are developed corresponding to
the approximation. For Case (3), we assume that the arrival process is indepen-
dently idntically distributed, that is, the interarrival times {Ti, i > 0} form a

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:18 • X. Ning and C. G. Cassandras

Fig. 3. Flow chart of the adaptive dynamic sleep time control.

sequence of independently idntically distributed random variables with distri-
bution F(·), and provide an online algorithm that learns F(·) as time proceeds.
The procedure is as shown in Figure 3. At the beginning of the process, the
receiver has a preliminary distribution approximation that is manually input.
The receiver computes the sleep time policy using the existing distribution
approximation, and follows the policy. When a new message is received, the
receiver also obtains a sample of T , which is used to update the current ap-
proximation. As the receiver observes more samples, the approximation will
approach the underlying interarrival time distribution of the events.

In this section, we first focus on how to approximate and store an arbitrary
distribution F(·) in a suitable way for sensor nodes. Then, we illustrate the
aforementioned online algorithm, which learns F(·) without storing the sample
data.

6.1 Distribution Approximation Using Quantiles

A probability distribution can be approximated in various ways. Generally, for
distributions with known finite support, a histogram provides a good approxi-
mation. However, in many cases, the upper bound, Tmax, of the support region
of the histogram is not known in advance. Therefore, it is hard to determine
the size of each interval in the histogram and the number of intervals. We
use an alternative approach for distribution approximation, which occupies a
fixed amount of memory while retaining the ability to accommodate an un-
known support region as well as the ability to simplify the computation in both
dynamic sleep time control approaches.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:19

F(τ)

f(τ)

τ

τ
τ1 τ2 τ6τ3 τ4 τ5

0

0

1

Fig. 4. Piecewise linear approximation of arbitrary distribution.

The aforementioned inherent problem with histograms is due to the fact
that it is quantizing the unknown support region of the pdf. On the other
hand, consider the cdf F(τ) of any distribution. F(τ) can only take values in a
fixed interval [0, 1]. Thus, we can construct a finite quantization on the y-axis.
Figure 4 illustrates the approximation. In this figure, the arbitrary distribution
F(τ) is approximated by M = 6 values, from τ1 to τ6. The values are selected
such that:

F (τi) = i
M

, 1 ≤ i ≤ N. (40)

In other words, τi is the (i/M)th quantile of F(τ). If the underlying distribution
has an infinite support region, τM will have to be infinite. In this case, we choose
a large enough value for τN, such as the (1 − 0.1/M)th quantile.

Points in [τi, τi+1) are linearly interpolated. Setting τ0 = 0, fi is defined as
the slope of F(τ) in the interval [τi−1, τi):

fi = 1
M (τi − τi−1)

, i = 1, . . . , N, (41)

and is hence constant. Clearly, the underlying distribution is approximated by
a finite mixture of uniform distributions. As we will soon see, this allows us to
derive a simple algorithm to solve Equation (1) in the fixed expected preamble
duration problem. It also simplifies some computation that arises in the total
energy minimization problem.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:20 • X. Ning and C. G. Cassandras

6.2 Updating the Existing Approximation from New Data

In what follows, we propose a mechanism to update the existing approximation
based on new arrival information. The way in which the approximation is up-
dated is essentially a quantile estimation problem. Our main concern, however,
is to save memory as opposed to traditional quantile estimation methods that
use sample quantiles. For example, Tierney [1983] and Chen et al. [2000] have
proposed space-efficient recursive algorithms on quantile estimation based on
stochastic approximation (SA) algorithms. Here we propose an approach also
based on the stochastic approximation method in Tierney [1983], but modified
to take advantage of the setting in our problem.

In sequential quantile estimation we estimate the αth quantile by solving
F(τ) = α, where F(τ) is the unknown cdf. In Robbins and Monro [1951], an
SA algorithm is used to solve the aforementioned equation. In the stochastic
approximation algorithm, we start with a guessed value of τ . As we observe a
new sample, we make small adjustments to τ , and so on. In Tierney [1983], an
estimator of τ = F−1(α) is given by:

τ̂ k+1 = τ̂ k − dk

k + 1
(1{T k+1 ≤ τ̂ k} − α) (42)

dk = min
{ (

φ̂k)−1
, d0ka}, 0 < a <

1
2

, (43)

where φ̂k is an estimate of F ′(τ), given by:

φ̂k+1 = 1
k + 1

(
kφ̂k + 1

{∣∣T k+1 − τ̂ k
∣∣ ≤ hk+1

}
2hk+1

)
, (44)

where {hk} is a decreasing sequence satisfying
∑∞

k=1(k2hk)−1 < ∞. It has been
proved in Tierney [1983] that estimator (42) converges to the αth quantile. In
(44), F ′(τ) is estimated by averaging the number of samples falling in a shrink-
ing interval [τ̂ k − hk+1, τ̂

k + hk+1]. The issue with this estimation is that when
samples are few, the convergence speed is slow since only local information is
used. Also, one needs to carefully adjust {hk} so that it does not decrease too
fast so that we can collect enough samples falling in the interval. Since in the
problem presented in this article we need to estimate a set of quantiles and use
them to approximate the whole function F, we can take advantage of the esti-
mation of other quantiles in estimating F ′(τ) around some particular quantile.
For all 1 ≤ i ≤ M − 1,

τ̂ k+1
i = τ̂ k

i − dk
i

k + 1

(
1
{
T k+1 ≤ τ̂ k

i

} − i
M

)
(45)

dk
i = min

{ (
φ̂k

i

)−1
, d0ka}, 0 < a <

1
2

(46)

φ̂k+1
i = 2i

M
(
τ̂ k

i+1 − τ̂ k
i−1

) (47)

and for i = M:

τ̂ k+1
M = max

{
τ̂ k

M, T k+1}. (48)

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:21

We need to point out that (47) is not an asymptotically unbiased estimator of
f (τi), unlike (44), but rather a finite difference approximation to leverage more
information. However, our numerical results show that the modified method
presented here has an advantage in terms of convergence speed. After we have
obtained new τ̂ k+1

i , i = 1, . . . , M, we can recalculate the sleep time control policy
with new quantile estimates.

To conclude, for the sensor node, it only needs to keep {τ̂i}M
i=1 in memory. The

initial values are given by the a priori knowledge of the application. When a
new message arrives, the interarrival time is obtained through a timer. Then,
{τ̂i}M

i=1 can be updated using (45)–(47). The novelty of the distribution approx-
imation and learning approach is that: (1) it uses quantiles to approximate a
distribution, hence the memory usage is limited; (2) the learning process is
sequential and does not require storage of past observations. Both features
are extremely suitable for sensor networks, and applicable to any setting that
involves distribution learning. Moreover, the structure of the approximation
(mixture of uniforms) allows some simplification in the computation of dynamic
sleep times, as we will see in the next section.

7. DYNAMIC SLEEP TIME CONTROL COMPUTATION ALGORITHMS

In this section we present two computation algorithms for dynamic sleep time
control, based on the distribution approximation scheme described in Section 6.
The algorithms correspond to both Case (2), where F(·) is approximated and
Case (3), where F(·) is learned on line.

7.1 Fixed Expected Preamble Duration

In the fixed expected preamble duration approach, we need to solve the
equation:

D̄ = t + z −
∫ t+z

t τdF (τ)
F (t + z) − F (t)

(49)

for z(t). While we have characterized the solution using ODE (5) in Section 4.2,
based on the distribution approximation given in Section 6.1, we are able to
solve Equation (49) in a much simpler way. First, we can calculate the integral
in (1) by segments. For notational simplicity, let u = t + z. To calculate the
integral, we first need to determine in which interval [τi−1, τi), i = 1, . . . , M, t
and u lie. Define integers m, n as in Figure 5 such that:

1 ≤ m, n ≤ M

τm−1 < t ≤ τm

τn−1 < u ≤ τn.

Note that there may not exist m, n, satisfying these inequalities. For example,
it is possible that t > τM, or u > τM. We will deal with these special cases
separately.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:22 • X. Ning and C. G. Cassandras

Fig. 5. Definition of m and n.

Define:

Am (t) =
∫ τm

t
τdF (τ) = fm

2

(
τ 2

m − t2)
Bi =

∫ τi

τi−1

τdF (τ) = fi
2

(
τ 2

i − τ 2
i−1

)
for i = 1, . . . , M − 1, and

Cn (u) =
∫ u

τn−1

τdF (τ) = fn

2

(
u2 − τ 2

n−1

)
,

where fi are defined in (41). Then, it is clear that the integral:

I (t, u) �
∫ u

t
τdF(τ)

can be rewritten in terms of Am(t), Bi, and Cn(t, z):

I (t, u) = Am (t) +
n−1∑

i=m+1

Bi + Cn (u) .

We replace z and the integral in (49) by u and I(t, u), obtaining:

D̄ = u − I (t, u)
F (u) − F (t)

, (50)

where F(u) and F(t) can also be calculated based on the linear interpolation:

F (t) = F (τm) − fm (τm − t) = m
M

− fm (τm − t)

F (u) = n
M

− fn (τn − u) .

Noting that F(u) − F(t) is non-zero, (50) becomes a solvable quadratic equa-
tion in u. Before solving the equation, we need to identify n, which designates
in which interval the solution u lies. Since E[D|t < T < u] is nondecreasing in
u, n must satisfy:

τn−1 − I (t, τn−1)
F (τn−1) − F (t)

< D̄ < τn − I (t, τn)
F (τn) − F (t)

. (51)

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:23

Therefore, n can be obtained by performing a search over all possible m ≤ n <

M. Once n is obtained, we are in position to solve for u. Define:

a (t) = I (t, u) − 1
2

fnu2 = Am (t) +
n−1∑

i=m+1

Bi − fn

2
τ 2

n−1 (52)

b (t) = F (u) − F (t) − fnu = n
M

− fnτn − m
M

+ fm (τm − t), (53)

where a (t) , b (t) are calculable values depending on t. Thus, (50) can be rewrit-
ten as:

E[D|t < T < u] = u −
1
2 fnu2 + a (t)

fnu + b (t)
.

As previously stated, this is a solvable quadratic equation in u. Its solution
(omitting the argument t associated with a(t) and b(t)) is:

u = − (
b − fnD̄

) +
√(

b − fnD̄
)2 + 2 fn

(
a + bD̄

)
fn

(54)

and thus

z (t) = − (
b − fnD̄

) +
√(

b − fnD̄
)2 + 2 fn

(
a + bD̄

)
fn

− t.

There are three special cases:

Case 1. n = m, that is, u and t both lie in the same interval [τm−1, τm]. Then,

D̄ = u −
1
2 fm

(
u2 − t2

)
fm (u − t)

= 1
2

(u − t) = 1
2

z,

which gives:

z (t) = 2D̄ (55)

Case 2. u > τM, which is equivalent to:

D̄ > τM − I (t, τM)
1 − F (t)

. (56)

This case implies that even letting u = τM, which is the maximum possible
interarrival time in the approximation, cannot satisfy the constraint set by D̄.
Since I(t, u) = I(t, τN) and F(u) = 1 for all u ≥ τM, the solution to (50) is given
by:

z (t) = D̄ + I (t, τM)
1 − F (t)

− t. (57)

In practice we will have to make a decision. If τM is the real boundary of
the support region, there is no benefit to wake up later than τM because the
incoming event will definitely occur before τM. In this case the sleep time should
simply be z = τM − t instead. However, if τM is an estimated value, we cannot
be sure that the incoming event will definitely occur before τM. Therefore, we

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:24 • X. Ning and C. G. Cassandras

do not have enough information to compute the sleep time, and (57) provides
a conservative sleep time such that the expected preamble duration will not
exceed D̄.

Case 3. t > τM. This case implies that the current interarrival time has
exceeded the maximal possible interarrival time in the current approximation.
This case generally follows Case 2, which means the statistical knowledge
about the interarrival time is insufficient. In this case, we take a conservative
approach as well:

z (t) = D̄. (58)

In conclusion, the approximation of an arbitrary distribution by a mixture of
uniform distributions has introduced an attractive structure, which has greatly
eased the computational difficulty of solving (1).

7.2 Total Energy Minimization

Now we switch to the total energy minimization problem. Assume we have
an approximation of F(·) specified by {τ0, . . . , τM}, where τ0 = 0 and τi is the
i/Mth quantile. Define the state space as {0, 1, . . . , M − 1}, where state i corre-
sponds to t ∈ [τi, τi+1). Therefore, we have quantized the finite continuous state
space [0, Tmax] into M discrete states. With this discretization we can solve the
Bellman equation (15) exhaustively without suffering from the curse of dimen-
sionality, and the exhaustive algorithm’s complexity only depends on the dis-
cretization resolution M. The allowable wake up time epochs are {τi+1, . . . , τM}.
Hence, the decision space at state i will be {i + 1, . . . , M}, corresponding to
wake-up time at τ j . Define the value function:

Vi,u = c + τu (u − i) − M
∫ τu

τi
x f (x) dx

M − i
+ Ju

M − u
M − i

,

where Ji is the minimum expected cost-to-go at state i, and u∗
i is the optimal

wake up time. Therefore, the discrete Bellman equation (16) is:

Ji = min
u∈{(i+1),...,M}

Vi,u (59)

= min
u∈{(i+1),...,M}

{
c + τu (u − i) − M

∫ τu

τi
x f (x) dx

M − i
+ Ju

M − u
M − i

}

u∗
i = arg min

u∈{(i+1),...,M}
Vi,u.

Using the fact that under a quantile-based approximation, a distribution is
approximated by a mixture of uniforms, we can easily evaluate the integral
with (41): ∫ τu

τi

x f (x) dx =
u−1∑
j=i

∫ τ j+1

τ j

x
1

M(τ j+1 − τ j)
dx

=
u−1∑
j=i

1
2M

(
τ j + τ j+1

)
.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:25

Table I. The DP Algorithm

For i = M − 1 down to 0 :
Compute Vi,M from (61).
For j = M − 1 down to i + 1 :

Compute Vi, j recursively from (62)
Ji = mini+1≤ j≤M Vi, j
u∗

i = arg mini+1≤ j≤M Vi, j
z∗

i = τu∗
i

− τi

Then, Vi,u can be expressed in terms of τi values:

Vi,u = c + τu (u − i) − 1
2

∑u−1
j=i

(
τ j + τ j+1

)
M − i

+ Ju
M − u
M − i

. (60)

We can see that, expressed in quantiles, the Bellman equations are simpler to
evaluate. Now we can solve (59) numerically. The direct, exhaustive algorithm
to solve (59) has complexity O(M3), because one has to compute Vi,u for all
possible i and u, and to compute Vi,u for a single (i, u) pair is an O(M) task
due to the inner sum, as seen in (60). However, the computation can be simpli-
fied noting that Vi,u can be easily obtained from Vi,u+1 without computing the
integral again. To see this, take the difference between Vi,u and Vi,u+1. Thus,

Vi,M = c + τM (M − i) − 1
2

∑M−1
j=i

(
τ j + τ j+1

)
M − i

(61)

Vi,u = Vi,u+1 − (τu+1 − τu) (u − i) + 1
2 (τu+1 − τu) − Ju+1 + (Ju+1 − Ju) (M − u)

M − i
,

(62)

so we can obtain Vi,u from Vi,u+1 in O(1) time.
To solve (59), we evaluate Vi,u backwards in time. From VM−1,M, obtained

with (61), we obtain JM−1 and u∗
M−1 = M. We compute VM−2,M, and then

VM−2,M−1 with (62), obtaining JM−2 and u∗
M−2, and so on. Therefore, we can

solve (59) in O(M2) complexity. The process is summarized in the dynamic
programming (DP) algorithm in Table I.

Recall that in Section 5.2 we have derived a set of ODEs (28), (31), and (32)
that characterizes the optimal solution u∗(t). We can obtain u∗(t) by integrating
the differential equations backwards using a routine ODE solver. Complexity-
wise, this is generally an O(M) task, which is very efficient. However, the
drawback is that because the group of ODEs is only a necessary condition for
the optimality of u∗(t), it may not be the global optimal solution. Numerical
stability is another concern. Moreover, the ODEs require differentiability of
f (·), which cannot be satisfied if f (·) is not analytically known. Therefore, it is
still desirable to use the DP algorithm to compute a globally optimal solution
at the expense of more computation effort.

8. NUMERICAL RESULTS

In this section we present some numerical examples to illustrate our dynamic
sleep time control approaches and quantify their benefit compared to fixed

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:26 • X. Ning and C. G. Cassandras

Table II. Parameters of the Distribution Examples. All Distributions are
Truncated at Tmax = 60 and Normalized

Distribution Parameters
Uniform [0, 60]
Weibull α = 20, β = 2
Bi-modal Gaussian μ1 = 15, μ2 = 48, σ1 = σ2 = 3, modal probability = 0.5

sleep time control. In Section 8.1, we use some distributions that are known to
the receiver. We will see that our fixed expected preamble duration approach
dominates the conventional fixed sleep time control, and that our total energy
minimization approach achieves better energy savings comparing to the best
possible fixed sleep time control. In Section 8.2 we show an example where
the distribution is unknown, and how the dynamic sleep time controller learns
the distribution and improves performance as time proceeds. In Section 8.3
we extend the total energy minimization approach to a multihop network and
evaluate the performance. In Section 8.4 we implement the total energy min-
imization approach in a commercially available sensor node and evaluate the
computation time.

8.1 Known Distribution Examples

We begin with examples where distribution information is known. The dis-
tribution examples are: (1) uniform distribution, (2) Weibull distribution,
(3) bimodal Gaussian distribution. The parameters of the distributions used
are listed in Table II. We set M = 1000, which is the number of quantiles in
the distribution approximation.

We first compare the fixed expected preamble duration approach to fixed
sleep time control. Recall that the fixed expected preamble duration approach is
used when one wants to impose stringent requirements on the average pream-
ble duration. Therefore, we compare this approach with fixed sleep time control
under the criterion that both approaches yield the same average preamble du-
ration per message. The comparison results are illustrated in Figures 6, 7,
and 8, where the Pareto frontiers of both the fixed expected preamble dura-
tion approach and the fixed sleep time control are plotted. In fixed sleep time
control, by varying the sleep time, we can plot the average preamble duration
per message versus the average number of samplings per message. In the fixed
expected preamble duration approach we vary D̄ and plot the same trade-off
relationship.

In Figures 7 and 8, we see that the Pareto frontier of the dynamic sleep
time control dominates the fixed sleep time control. In other words, compared
to fixed sleep time control, with the same average preamble duration, dynamic
sleep time control needs fewer channel samplings. On the other hand, with
the same average channel samplings per message, the preamble duration in
dynamic sleep time control is shorter. In Figure 6, however, we see that the
Pareto frontier of both fixed sleep time control and the fixed expected preamble
duration approach overlap. This is to be expected because in (5), if we let
f (t) = 1/Tmax, F(t) = t/Tmax, we will immediately get _u(t) = 1, which means
_z(t) = 0, a fixed sleep time until u(t) = Tmax.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:27

0.8 1 1.2 1.4 1.6 1.8

8

10

12

14

16

18

Average preamble duration per message

A
ve

ra
ge

 s
am

pl
es

 p
er

 m
es

sa
ge

Dynamic w/FEPD
Fixed Sleep Time Control

Fig. 6. Pareto frontier plot under the uniform distribution.

0.8 1 1.2 1.4 1.6 1.8 2 2.2

3

4

5

6

7

8

9

Average preamble duration per message

A
ve

ra
ge

 s
am

pl
es

 p
er

 m
es

sa
ge

Dynamic w/FEPD
Fixed Sleep Time Control

Fig. 7. Pareto frontier plot under the Weibull distribution.

Next, we compare the best fixed sleep time control, and our total energy
minimization (TEM) approach. The best fixed sleep time control is obtained by
using Monte Carlo simulation and exhaustive search to find the best sleeping
interval that minimizes energy usage. We set c = 0.1 in this example. The data
are obtained by simulating a 10,000 message sample path. Table III shows the
energy cost comparison in different distribution examples with different sleep
time control approaches.

Table III shows that depending on different distributions, our total energy
minimization approach achieves a considerable amount of energy savings. To
further analyze how these savings are achieved, we plot the optimal sleep time

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:28 • X. Ning and C. G. Cassandras

1 1.5 2 2.5
2

3

4

5

6

7

Average preamble duration per message

A
ve

ra
ge

 s
am

pl
es

 p
er

 m
es

sa
ge

Fixed Sleep Time Control
Dynamic w/FEPD

Fig. 8. Pareto frontier plot under the bimodal gaussian distribution.

Table III. Energy Cost Comparison in Different
Distributions. The Values are the Average Energy Cost

per Message

Distribution Best Fixed TEM Save%
Uniform 2.4272 2.2976 5.34%
Weibull 2.0593 1.8947 7.99%
Bi-modal Gaussian 2.5050 1.5984 36.19%

z∗(t) and the optimal expected cost-to-go function J(t) as a function of the age
t, shown in Figures 9, 10, and 12. The Direct curve is obtained by solving
the Bellman equation with known F(·) and f (·). The ODE curve is obtained
by solving the necessary optimality conditions. The DP curve is obtained by
approximating F(·) using quantiles, and applying the DP algorithm presented
in Section 7.2.

First, in Figure 9, we see that as t increases, the sleep time z∗(t) decreases
gradually, and approaches 0 at t → Tmax. Recall that the sleep time at t is
calculated based on the fact that no event has occurred during the last t amount
of time. Therefore, as t increases, the possibility that the event takes place in
the near future increases as well, which leads to a shorter sleep time. We also
see that while DP overlaps with the Direct curve, the ODE curve has a small
deviation. This is due to the numerical instability of the ODE approach.

The Weibull distribution models random events with an increasing hazard
rate with respect to the age of the event. We see that in Figure 10, the optimal
sleep time control z∗(t) is again decreasing as t increases, but with a different
shape from Figure 9. In this case, the ODE curve overlaps with the direct curve,
while the DP curve deviates in t ∈ [40, 60]. This is because near the thin tail
of the distribution, the difference τi+1 − τi becomes larger. Because in the DP
algorithm, the minimum sleep time at state i is τi+1 − τi, the controller does not
have any other choice but to sleep for this whole large interval. Thus, the control
granularity is inevitably larger, resulting in a deteriorating performance.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:29

0 10 20 30 40 50 60
0

1

2

3

Age t

J
(t

)

0 10 20 30 40 50 60
0

1

2

3

4

Age t

z
* (t

)

Direct
ODE
DP

Direct
ODE
DP

Fig. 9. The optimal sleep time control obtained under Uniform distribution.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Age t

J(
t)

0 10 20 30 40 50 60
0

2

4

6

Age t

z* (t
)

Direct
DP
ODE

Direct
DP
ODE

Fig. 10. The optimal sleep time control obtained under Weibull distribution.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:30 • X. Ning and C. G. Cassandras

0 10 20 30 40 50 60

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

Bimodal Gaussian Distribution

Fig. 11. The bimodal Gaussian distribution.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Age t

J(
t)

0 10 20 30 40 50

10

20

30

Age t

z* (t
)

Direct
DP
ODE

Direct
DP
ODE

Fig. 12. The optimal sleep time control obtained under bimodal Gaussian distribution.

The bimodal Gaussian (BG) distribution is shown in Figure 11. This pdf
has two peaks corresponding to two modes of the distribution. The interval
of approximately [20, 40] shows a valley where the event arrival probability
is small. The optimal policy obtained is shown in Figure 12. We first notice
that there is a discontinuity in the optimal sleep time curve of Direct and DP.
From t = 0 to around t = 15, we see the sleep time is decreasing. However,
because the probability of an event occurring in the interval of [20, 40] is small,
the optimal sleep time is to skip over the period in order to save energy. We
also notice that ODE completely fails to handle the jump, which is expected.
The explanation of the occurrence of such a jump is that there exist multiple
local minima in G(t, u), so (24a) and (24b) no longer provide a globally optimal
solution.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:31

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

τ

F(
τ)

Initial approximation
Actual CDF
New method
Tierney’s method

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.02

0.04

0.06

0.08

0.1

of Iterations

R
oo

t M
ea

n
S

qu
ar

e
E

rr
or New method

Tierney’s method

Fig. 13. Comparison of the convergence speed between the new method and Tierney’s method.

8.2 Distribution Learning

When the distribution is unknown to the dynamic sleep time controller, we
use the algorithm presented in Section 6.2 to learn it by observing samples
sequentially. Figure 13 shows simulation results for a system with the bi-
modal Gaussian distribution. The process begins with an approximation using
a uniform distribution U [0, 60], labeled as Initial approximation in Figure 13.
The actual cdf of the bimodal Gaussian distribution is labeled as Actual CDF.
We compare the result of our learning algorithm, labeled as New method and
the result using Tierney’s method [Tierney 1983], labeled as Tierney’s method.
The two methods are computed separately with the same sample sequence. We
can see that compared to Tierney’s method, the method we have proposed has
a significant advantage in convergence speed, that is, the accuracy of the learn-
ing. This is a very important feature since the quality of control increases faster
as the root-mean-square error (RMSE) decreases. As the number of iterations
increases, we can see that the RMSE of both methods tends to zero.

In Figure 14, the total power is measured by taking a moving average of
the instantaneous power. The process begins with {τi}M

0 , initialized using a
uniform distribution U [0, 60]. Since the approximation error is large, the total
power during this period is high. As time evolves and the interarrival times
are collected, the approximation is updated and better controls are generated,
which subsequently reduces the total power.

In the total energy minimization approach, because of the mismatch in dis-
tribution the sleep time controller cannot attain the maximum energy savings
at first. Figure 15 shows the average cost per message as time proceeds. We
see a decreasing cost as the receiver learns the distribution, adjusts its control
policy, and approaches the level obtained by off-line computation.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:32 • X. Ning and C. G. Cassandras

0 200 400 600 800 1000

3.2

3.4

3.6

3.8

4

4.2

4.4

A
ve

ra
g

e
 e

n
e

rg
y

p
e

r
m

e
ss

a
g
e

of messages

Fig. 14. Average power in the fixed expected preamble duration approach with unknown
distribution.

0 100 200 300 400 500 600 700
1

2

3

4

5

6

7

Av
er

ag
e

en
er

gy
 p

er
 m

es
sa

ge

of messages

Fig. 15. Average power in the total energy minimization approach with unknown distribution.

1

3

2

4

5 6 0

Fig. 16. Network topology.

8.3 Multi-Hop Total Energy Minimization

So far, our approaches focus on single-hop performance. It is interesting to see
how they perform in a multihop environment. We consider a network with six
nodes, as shown in Figure 16, where node 0 is the base station. Nodes 1–6 are

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:33

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Interarrival time (seconds)

Fig. 17. Histogram of the aggregated interarrival time distribution of the mixed arrival streams.

homogeneous. The dynamic sleep time controller will be applied at nodes 3, 5,
and 6, which receive messages from upstream nodes.

To make the experiment more realistic, we consider the following scenario.
We assume that the WSN operates in two modes: stand-by mode and active
mode. This emulates a typical event detection sensor network, where during
stand-by mode, only occasional status report messages are transmitted. When
the network detects the event of interest, it switches to active mode, where
frequent data packets are transmitted. Therefore, two classes of messages are
involved. We assume that the receiver does not know this mode-switching
scheme. We also assume the interarrival time of the status report messages
is uniformly distributed U [60, 61], which models a constant frequency status
report message with 1-second jitter. The active message is triggered by an
external event, which occurs according to an exponential distribution with
mean μ = 300 (seconds). Once triggered, the active message process continues
with interarrival time distribution U [10, 11] for 10 messages. The aggregated
interarrival time pdf is shown in Figure 17. We can see two peaks corresponding
to two operating modes. When a node receives messages from more than one
sender (e.g., nodes 3, 5), the interarrival time is for the aggregated arrival
process, that is the superposition of the output processes at nodes 1 and 2
(for node 3) and nodes 3 and 4 (for node 5), respectively. Because the arrival
process is complicated, there is no analytical form of F(·) available. Therefore,
F(·) needs to be approximated and learned online.

Figure 18 shows the comparison results. On the left is the percentage sav-
ings observed on nodes 3, 5, 6 and the total energy savings. On the right is
the comparison of total energy amounts. We see that in the multihop envi-
ronment, although the dynamic sleep time control is still superior in terms
of energy savings, the margin is not as large. This is because the closer to
the base station, the more messages a node will observe. Because they are all

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:34 • X. Ning and C. G. Cassandras

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

3 5 6 Total

Dynamic

Fixed

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

3 5 6 Total

Fig. 18. Performance comparison with fixed sleep time control on various nodes.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

Time (Seconds)

Fig. 19. Interarrival time distribution observed at Node 6.

aggregated into a single arrival stream, the interarrival time distribution re-
sembles an exponential distribution, the worst case in our approach. Figure 19
shows the histogram of the interarrival time at Node 6 which highly resembles
an exponential distribution. We can see that the gain from directly extending
the single-link energy minimization is limited because it does not consider the
topological information.

8.4 Computation Time Experiment with Total Energy Minimization

To demonstrate the feasibility of our total energy minimization approach, we
implemented the optimal sleep time computation on a TMote wireless sensor,
manufactured by Sentilla, Inc. The TMote is equipped with an 8 MHz MSP430
16-bit microcontroller, manufactured by Texas Instruments, Inc. We measured
the CPU time used to compute the optimal sleep time policy using the ODE and
DP and show our results (in seconds) as a function of the time resolution M in
Table IV. The ODE row describes the time used to compute the optimal sleep
time by solving the ODEs (28), (31), and (32) using the basic Euler method.
The DP row describes the computation time using the O(M2) DP algorithm
described in Table I.

Due to the limitation of on-board memory (10KBytes), we were unable to
experiment with larger M. However, the final case of M = 300 is more than
enough; if the interevent time does not exceed 60 seconds (typical in WSNs

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:35

Table IV. Computation Time
Experiment. CPU Times are

Measured in Seconds

M 50 100 200 300
ODE 1.5 3 6 9
DP 3 11 45 97

because of heartbeat/health/routing messages), this produces a resolution of
0.2 seconds. We believe that a value in the vicinity of M = 100 offers a good
trade-off between performance and resource usage. It is important to emphasize
that this computation is performed only once to generate the optimal sleep
time policy, unless the interevent time distribution is significantly changed.
Therefore, the amortized computation time overhead imposed on each message
is very small (e.g., <0.1 seconds) compared to the typical interevent time.

We also notice that ODE is much faster than DP thanks to its linear time
growth. However, as mentioned before, ODE has numerical stability problems
and cannot reliably handle cases like bimodal Gaussian distributions.

9. CONCLUSIONS AND FUTURE WORK

We have presented two dynamic sleep time control approaches to reduce control
packet overhead incurred in LPL. In the first approach, fixed expected preamble
duration, we determine a dynamic sleep time such that a design requirement on
the expected preamble duration is satisfied. The computation of the sleep time
uses the interarrival time distribution, and results in fewer channel samplings
per message compared to a fixed sleep time control that produces the same
average preamble duration.

In the second approach, total energy minimization, we address a different
problem, which aims to minimize the energy consumption incurred by the total
control packet overhead. We formulated, and managed to solve, the continuous
time Bellman equation and derived a set of differential equations characteriz-
ing the optimal solution.

In both approaches, we obtained the dynamic sleep time as a function of
the event age, with the function posed as the solution to an ODE with initial
condition fully specified. The knowledge of the interarrival time distribution is
crucial to the computation. If the form of F(t) is known in advance, depending
on what that function is, one can often obtain the solution in closed form, oth-
erwise it can be obtained through numerical means. Solving ODE numerically
is well studied and easily implemented. However, in practice F(t) is usually
not known in advance. Therefore, we have developed a quantile-based distri-
bution approximation and learning algorithm, which exploits the structure of
the problem and is an improvement over existing literature. We have created
algorithms of both approaches that capitalize on this quantile-based approxi-
mation. In both approaches, this approximation simplifies the computation of
the dynamic sleep time. In fixed expected preamble duration, the computation
of sleep time is even reduced to a closed-form formula. In the total energy mini-
mization approach, the computation of sleep time requires a DP algorithm that
ends in finite time.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

21:36 • X. Ning and C. G. Cassandras

For future work, there are two extensions. The first is batching. Our ap-
proaches only focus on the next message. However, it is possible that the
sender can intentionally delay sending the preamble so that a few messages can
be batched together and share the same preamble, see Ning and Cassandras
[2007]. On the receiver’s side, it can also intentionally wake up later, hoping
that there will be more messages queued up at the sender’s side. In order to in-
vestigate this problem, some augmentations to the existing model are needed,
allowing the receiver to see beyond the next message.

The second extension is network-level sleep time control. In our numerical
example section, we have naively extended our approach to a multihop net-
work. Although it does have some advantages over the best fixed sleep time
control, the margin is smaller than in a single hop situation. Clearly, the total
energy minimization approach developed for a single link does not minimize the
end-to-end control packet overhead in a multi-hop network. Our observation
is that the interarrival time distribution gradually conforms to an exponen-
tial distribution, a known asymptotic result, which happens to be our worst
case. Therefore, at a network level, in addition to what is proposed in this
article, some coordination effort is required, which should utilize the topol-
ogy and possibly more application-related information to achieve better energy
savings.

REFERENCES

AVVENUTI, M., CORSINI, P., MASCI, P., AND VECCHIO, A. 2006. Increasing the efficiency of preamble
sampling protocols for wireless sensor networks. In Proceedings of the 1st Mobile Computing and
Wireless Communication International Conference (MCWC’06). 117–122.

BUETTNER, M., YEE, G. V., ANDERSON, E., AND HAN, R. 2006. X-MAC: A short preamble MAC protocol
for duty-cycled wireless sensor networks. In Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems (SenSys’06). 307–320.

CHEN, F., LAMBERT, D., AND PINHEIRO, J. C. 2000. Incremental quantile estimation for massive
tracking. Knowl. Discov. Data Mining. 516–522.

EL-HOIYDI, A. AND DECOTIGNIE, J.-D. 2004. WiseMAC: An ultra low power MAC protocol for multi-
hop wireless sensor networks. Lecture Notes in Computer Science, vol. 3121, 18–31. Springer-
Verlag.

HILL, J. L. AND CULLER, D. E. 2002. MICA: a wireless platform for deeply embedded networks.
IEEE Micro 22, 6, 12–24.

JOE, I. AND RYU, H. 2007. A patterned preamble MAC protocal for wireless sensor networks.
In Proceedings of 16th International Conference on Computer Communications and Networks
(ICCCN’07). 1285–1290.

JURDAK, R., BALDI, P., AND LOPES, C. V. 2005. Energy-aware adaptive low power listening for sensor
networks. In Proceedings of the 2nd International Workshop on Networked Sensing Systems
(INSS’05). San Diego, CA.

JURDAK, R., BALDI, P., AND LOPES, C. V. 2007. Adaptive low power listening for wireless sensor
networks. IEEE Trans. Mobile Comput. 6, 8, 988–1004.

KUSHNER, H. J. AND YIN, G. G. 2003. Stochastic Approximation and Recursive Algorithms and
Applications 2nd Ed. Springer-Verlag.

MAHLKNECHT, S. AND BOCK, M. 2004. CSMA-MPS: a minimum preamble sampling MAC protocol
for low power wireless sensor networks. In Proceedings of the IEEE International Workshop on
Factory Communication Systems. 73–80.

MANGIONE-SMITH, B. 1995. Low power communications protocols: paging and beyond. In Proceed-
ings of IEEE Symposium on Low Power Electronics. 8–11.

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

Dynamic Sleep Time Control in Wireless Sensor Networks • 21:37

MEGERIAN, S. AND POTKONJAK, M. 2003. Wireless Sensor Networks. Wiley Encyclopedia of Telecom-
munications. Wiley-Interscience, New York, NY.

MOON, S., KIM, T., AND CHA, H. 2007. Enabling low power listening on IEEE 802.15.4-based
sensor nodes. In Proceedings of the IEEE Wireless Communication and Networking Conference
(WCNC’07).

NING, X. AND CASSANDRAS, C. G. 2006. Dynamic sleep time control in event-driven wireless sensor
networks. In Proceedings of the 45th IEEE Conference on Decision and Control. 2722–2727.

NING, X. AND CASSANDRAS, C. G. 2007. Message batching in wireless sensor networks–a pertur-
bation analysis approach. In Proceedings of the 46th IEEE Conference on Decision and Control.
939–944.

NING, X. AND CASSANDRAS, C. G. 2008. Optimal dynamic sleep time control in wireless sensor
networks. In Proceedings of the 47th IEEE Conference on Decision and Control. 2332–2337.

POLASTRE, J., HILL, J., AND CULLER, D. 2004. Versatile low power media access for wireless sensor
networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor
Systems (SenSys’04). 95–107.

ROBBINS, H. AND MONRO, S. 1951. A stochastic approximation method. Annals Math. Stat. 22,
400–407.

SHNAYDER, V., HEMPSTEAD, M., CHEN, B., ALLEN, G. W., AND WELSH, M. 2004. Simulating the power
consumption of large-scale sensor network applications. In Proceedings of the 2nd International
Conference on Embedded Networked Sensor Systems (SenSys’04). 188–200.

SICHITIU, M. 2004. Cross-layer scheduling for power efficiency in wireless sensor networks. In
Proceedings of IEEE INFOCOM. 1740–1750.

SOHRABI, K., GAO, J., AILAWADHI, V., AND POTTIE, G. 2000. Protocols for self-organization of a
wireless sensor network. IEEE Pers. Comm. 7, 5, 16–27.

TIERNEY, L. 1983. A space-efficient recursive procedure for estimating a quantile of an unknown
distribution. SIAM J. Sci. Stat. Comput. 4, 4, 706–711.

YE, W., HEIDEMANN, J., AND ESTRIN, D. 2004. Medium access control with coordinated adaptive
sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12, 3, 493–506.

Received December 2008; revised March 2009; accepted July 2009

ACM Transactions on Sensor Networks, Vol. 6, No. 3, Article 21, Publication date: June 2010.

