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Abstract—We propose a novel “smart parking” system for an
urban environment. The system assigns and reserves an optimal
parking space based on the driver’s cost function that combines
proximity to destination and parking cost. Our approach solves
a mixed-integer linear programming (MILP) problem at each
decision point defined in a time-driven sequence. The solution of
each MILP is an optimal allocation based on current state infor-
mation and is updated at the next decision point with a guarantee
that there is no resource reservation conflict and that no driver
is ever assigned a resource with a cost function higher than this
driver’s current cost function value. Based on simulation results,
compared with uncontrolled parking processes or state-of-the-art
guidance-based systems, our system reduces the average time to
find a parking space and the parking cost, whereas the overall
parking capacity is more efficiently utilized. We also describe full
implementation in a garage to test this system, where a new light
system scheme is proposed to guarantee user reservations.

Index Terms—Dynamic resource allocation, mixed-integer
linear programming (MILP), parking guidance and information
(PGI), reservation, smart parking.

I. INTRODUCTION

THE motivation for this paper is provided by the need
to reduce traffic in urban settings caused by vehicles

searching for parking. On a daily basis, it is estimated that 30%
of traffic congestion in an urban downtown area is caused by
vehicles cruising for parking space, and it takes the driver an
average of 7.8 min to find a parking space [2]. This not only
causes waste of time and fuel for drivers looking for parking
but also contributes to additional waste of time and fuel for
other drivers as a result of traffic congestion. For example, it
has been reported [22] that, for over one year in a small Los
Angeles business district, cars cruising for parking created the
equivalent of 38 trips around the world, burning 47 000 gal of
gasoline and producing 730 tons of carbon dioxide.

There has been considerable work in studying parking be-
haviors and improving parking efficiency. During the early
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stages of such research, a number of parking models were built
to understand and replicate parking choice behavior, such as
CLAMP [19], PARKSIM [33], PARKAGENT [4], multilayer
[8], and others [26]. In most of these models, competitive alter-
natives are reasonably well known in advance to the decision
maker (driver).

Over the past two decades, traffic authorities in many cities
have developed so-called parking guidance and information
(PGI) systems for better parking management. PGI systems
present drivers with dynamic information on parking within
controlled areas and direct them to vacant parking spots. Park-
ing information may be displayed on variable-message signs
(VMS) at major roads, streets, and intersections, or it may
be disseminated through the Internet [12], [23], [24]. PGI
systems are based on the development of autonomous vehi-
cle detection and parking space monitoring, typically through
the use of sensors placed in the vicinity of parking spaces
for vehicle detection and surveillance [6]. These sensors can
be classified as either “in-roadway” or “over-roadway” [18].
In-roadway sensors are either embedded in the pavement or
taped to the surface of the roadway; examples include loop
detectors, pneumatic road tubes, piezoelectric cables, etc. Over-
roadway sensors are mounted above the surface of the roadway;
examples include video, image, and acoustic signal processors
[32]; microwave radar [30]; ultrasonic [17], magnetic, and
passive infrared sensors [31]; and radio-frequency identification
(RFID) readers [5]. However, it has been found that in using
PGI systems, system-wide reductions in travel time and vehicle
benefits may be relatively small [25], [29]. Building upon the
objectives of PGI systems, e-parking is an innovative plat-
form that allows drivers to obtain parking information before
or during a trip and to reserve a parking spot [20]. Drivers
access the central system via a cellular phone or the Internet.
Bluetooth technology recognizes each car at entry points and
triggers automatic reservation checking and parking payment
[15]. More reservation-based parking systems are described in
[27] and [28].

Researchers also find that traffic congestion can be allevi-
ated by controlling the parking price [24]. For example, in
San Francisco (SFPark), there are already time- or demand-
dependent parking fees to achieve the right level of parking
availability in different areas [21]. Dynamic parking negotiation
is discussed in [7], where drivers may negotiate to find better
and cheaper parking spaces.

Although current parking guidance systems increase the
probability of finding vacant parking spaces, they have several
shortcomings [10], [11]. First, drivers may not actually find va-
cant parking spots by merely following the guidance system. In
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essence, such systems change driver behavior from searching to
competing for parking: More drivers go toward the same avail-
able parking spots, and it is possible that none is free by the time
some drivers arrive, thus forcing replanning and competition for
other spots. Although there exist some smartphone applications
for drivers to check real-time parking information using their
mobile phone [23], there are also safety issues associated with
drivers watching parking updates while driving. Second, even
if a driver is successfully guided to a parking space, such a
system increases the probability of finding any parking space
at the expense of missing the opportunity for a better space. For
example, a driver may pay to park at an off-street parking spot
but miss the chance to obtain a nearby free on-street parking
spot that may better serve him. Third, from the traffic authority
point of view, parking space utilization becomes imbalanced:
Parking spaces for which information is provided are highly
utilized and cause higher traffic congestion nearby, whereas
other parking spaces may be routinely left vacant. In general,
guidance systems do not solve the basic parking problem. Even
worse, they may cause new traffic congestion in areas where
parking spaces are monitored.

In this paper, we propose a new concept for a “smart parking”
system. This system explicitly allocates and reserves optimal
parking spaces to drivers, as opposed to simply guiding them
to a space that may not be available by the time it is reached.
The allocation is based on each user’s objective function that
combines proximity to destination and parking cost while also
ensuring that the overall parking capacity is efficiently utilized.
The reservation in our “smart parking” system is different from
that in the e-parking platform and others earlier mentioned.
The latter only involves garage space reservations, and there
is no attempt at any form of optimality, whereas in our “smart
parking” system, drivers may reserve both off-street and on-
street parking spaces, which are selected to be optimal based
on a well-defined objective function structure.

In our problem, a key feature is that each driver has specific
requirements and that only a subset of resources (parking spots)
can satisfy them. This is similar to the skills-based routing
(SBR) problem encountered in telephone call centers, where
calls are routed based on the skills required for a server to
respond to the call [1], [9]. Whereas, in SBR, a server remains
assigned to a call until its completion, in “smart parking,” we
allow parking spaces to be reallocated so that a driver can
continuously upgrade the resource assigned to him until it is
physically occupied. Even without this complicating feature,
however, dynamic routing problems in multiclass multipool
call centers are outside the reach of exact analytical methods.
Related research has focused on various forms of approxima-
tions to bypass the high dimensionality involved in determining
optimal routing policies. For example, Koole and Pot [16]
used approximate dynamic programming to solve a specific
structured multiskill call center routing problem. Some work
considers these problems in a heavy-traffic regime [14], where
system utilization approaches one. Multiclass single-pool sys-
tems in this regime are analyzed in [3]. Gurvich and Whitt
[13] also proposed a routing method for multiclass multipool
systems based on a fixed-queue-ratio strategy. In this paper,
we view the “smart parking” allocation process as a sequence

of mixed-integer linear programming (MILP) problems solved
over time at specific decision points.

The rest of this paper is organized as follows: In Section II,
we introduce the framework of our “smart parking” system.
In Section III, we describe the dynamic resource-allocation
model we use and formulate the MILP problem solved at every
decision point over time. Simulations based on a case study
involving parking resources at Boston University, Boston, MA,
USA, are given in Section IV. A garage implementation is
described in Section V. Finally, we conclude and discuss future
work in Section VI.

II. “SMART PARKING” SYSTEM

Here, we describe the “smart parking” system framework and
its operation.

A. System Framework

Our proposed “smart parking” system takes the basic struc-
ture of PGI systems as one component. In addition, it includes a
Driver Request Processing Center (DRPC) and a Smart Parking
Allocation Center (SPAC). Fig. 1 shows this framework. The
Parking Resource Management Center (PRMC) collects and
updates all real-time parking information and disseminates it
via VMS or the Internet (basic functions of PGI systems). The
DRPC gathers driver parking requests and real-time informa-
tion (i.e., car location), keeps track of the driver allocation
status, and sends back the assignment results to drivers. Based
on driver requests and parking resource states, the SPAC makes
assignment decisions and allocates and reserves parking spaces
for drivers.

As we can see, compared with PGI systems, the additional
cost of these two new components is minimal. Only one or two
servers are required to carry out computation and for user data
storage.

The basic allocation process is described as follows. Drivers
who are looking for parking spots send requests to the DRPC.
A request is accompanied by two requirements: a constraint
(upper bound) on parking cost and a constraint (upper bound)
on the walking distance between a parking spot and the driver’s
actual destination. It also contains the driver’s basic informa-
tion, such as license number, current location, car size, etc. The
SPAC collects all driver requests in the DRPC over a certain
time window and makes an overall allocation at decision points
in time, seeking to optimize a combination of driver-specific
and system-wide objectives. An assigned parking space is sent
back to each driver via the DRPC. If a driver is satisfied with the
assignment, he/she has the choice to reserve that spot. Once a
reservation is made, the driver still has opportunities to obtain a
better parking spot (with a guarantee that it can never be worse
than the current parking spot) before the current assigned spot
is reached. The PRMC then updates the corresponding parking
spot from vacant to reserved and provides the guarantee that
other drivers have no permission to take that spot. If a driver
is not satisfied with the assignment (either because of limited
resources or because of his own overly restrictive parking
requirements) or if he/she fails to accept it for any other reason,
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Fig. 1. “Smart parking” framework overview.

he/she has to wait until the next decision point. During intervals
between allocation decisions made by the center, drivers with
no parking assignment have the opportunity to change their
cost or walking-distance requirements, possibly to increase the
chance to be allocated if the parking system is highly utilized.
(It is, of course, possible that no parking space is ever assigned
to a driver.)

B. System Realization

The realization of such a “smart parking” system relies on
four main requirements.

1) Parking Space Detection: First of all, the system relies
on the availability of real-time parking information, based on
which it makes and upgrades allocations for drivers. As al-
ready mentioned, current sensing technologies provide several
options to monitor parking spaces.

Moreover, whenever the system must make an allocation,
it requires location information on all vehicles with pending
requests. Based on this information, it estimates the traveling
time to an allocated spot and provides driving directions to it.
Current vehicle tracking devices/systems provide solutions to
this problem. Vehicle tracking systems combine GPS tracking
technology with flexible advanced mapping and reporting soft-
ware. A vehicle tracking device is installed on a vehicle, which
collects and transmits tracking data via a cellular or satellite net-
work. The system receives real-time vehicle tracking updates,
including location, direction, speed, idle time, start/stop, and so
on. This technology has been widely used in bus systems.

2) V2I and I2V Communication: The second requirement
involves an effective two-way communication between ve-
hicles and the allocation center (infrastructure): vehicle-to-
infrastructure (V2I) and infrastructure-to-vehicle (I2V). In our
“smart parking” system, V2I communication involves drivers
sending their parking requests, providing driver information,
and confirming reservation to the system. I2V communication

includes the DRPC sending allocation results, driving direc-
tions, and payment details back to vehicles. Cellular networks
(CNs) are usually applied in V2I and I2V solutions, i.e., drivers
interact with the system through their mobile phones.

In our implementation, we have developed a smartphone
application through which drivers interact with the “smart
parking” system. Using the application, drivers may log in
the system with a unique ID, associated with which is a
driver’s general information, such as license number, credit
card number, car size, etc. The ID is registered by the driver,
and the DRPC maintains a database to store the driver’s basic
information. In the application, drivers also have the option
to choose their destination, walking-distance preference, and
parking cost tolerance. After the driver finishes all settings
and sends out the request, the system will send back parking
allocation results based on his parking preferences and the state
of the system.

There are three kinds of allocation results as follows: 1) If
the system fails to find a parking space for the driver, then a
notification asks the driver to wait for the next allocation time.
A detailed explanation is also provided regarding the failed
allocation; for example, there are no vacant parking spaces,
the driver’s requirements are too strict, or the driver is too far
away from his destination. The driver may then either release
his parking request by changing his preferences to increase
the chance to be allocated or simply do nothing but wait.
2) If a parking space is allocated to the driver but he/she is not
satisfied with it, then he/she can reject the allocation and adjust
his requirements. However, by doing this, he/she takes the risk
that he/she may not be allocated a space at the next decision
time. To prevent drivers from constantly rejecting successful
allocations and adjusting requirements for better parking spots
or to prevent drivers from always providing extremely strict
conditions at the beginning and gradually relaxing them later,
the system may charge an increasing fee if the number of
requests exceeds a certain threshold. 3) If the driver is satisfied
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with the result, then the system reserves that space for him,
and the application shows the driving directions to the reserved
parking space. While he/she is driving, the system may notify
him of a better parking spot based on his real-time position.
The driver needs to respond and tell the system whether he/she
accepts it or not. When the driver arrives at the parking spot,
he/she needs to confirm parking at the allocated spot. All these
driver responses are simply done by pushing a button in the
application. When the car leaves the parking spot, a summary
of charges is sent to him.

Notice that both V2I and I2V communication are imple-
mented through a smartphone application, and data are trans-
mitted through the CN. Drivers may reserve a parking space
before a trip and interact with the system by simply pushing
buttons on the smartphone, thus not causing distraction from
driving.

3) Reservation Guarantee: Parking reservations are a key
feature of the “smart parking” system. To implement this func-
tion, when a parking spot is reserved by the driver, the system
must guarantee that this will not be taken by other vehicles.
For off-street parking resources, it is relatively easy to prevent
drivers with no reservation from taking the spot that has been
reserved by someone else. The system can do ID checking (with
RFID technology) at the gate of a garage or a parking lot. If the
driver has made a reservation, then the gate opens, and a space
number is provided to him. If the driver made no reservation,
then he/she either may be allowed to park if there are empty
unreserved spaces or is blocked from entering.

For on-street parking resources, the reservation scheme is
more complicated because there is no central ID checking
location so that drivers may park at any space if it is vacant. One
method is through wireless technology interfacing a vehicle
with hardware that makes a space accessible only to the driver
who has reserved it. Examples include gates, “folding barriers,”
and obstacles that emerge from and retract to the ground under a
parking spot; these are wirelessly activated by devices on-board
vehicles, similar to mechanisms for electronic toll systems.
However, this method is relatively expensive, and the hardware
is not easy to install and maintain. A “softer” scheme is to use
a light system placed at each parking space, where different
colors indicate different parking space states. In our system,
we use a GREEN light to indicate that a vacant parking spot
is available for any driver, a RED light to indicate that the
spot is reserved by other drivers, a YELLOW (or blinking
YELLOW for increased visibility) light to attract a driver in the
vicinity who has reserved that space, and a blinking RED light
to notify a driver who is parking at a space reserved by someone
else. An LED light with these three colors is connected to and
controlled by an IRIS sensor node (also referred to as “mote”)
placed at each parking space. When a driver is approaching the
parking space reserved for him, this is automatically detected
by the GPS data sent from his smartphone through our “smart
parking” application. (Alternatively, the driver can explicitly
notify the system.) The system then sends a command to the
IRIS mote, which switches the light at his reserved spot from
RED to YELLOW (or blinking YELLOW). The driver should
then be able to recognize his reserved spot and park there. After
parking, the light goes off until the car leaves, and it returns

Fig. 2. Queueing model for dynamic resource allocation.

to its GREEN or RED state if the parking space is reserved.
If a driver violates the rule and parks at a space reserved by
someone else, then the blinking RED provides a warning, and
the driver should leave. If he/she does not leave, the system
knows which space is occupied and will tow the car or issue
a ticket; in the meantime, the system makes a new assignment
for the driver who had actually reserved that spot. If the second
assignment is worse than the previous assigned spot, then the
driver receives some compensation, which may come from the
violator’s fine.

4) Optimal Allocation: One of the benefits of the “smart
parking” system is that it determines the best parking space
for each driver. This is done through an efficient allocation
algorithm executed at the SPAC (see Fig. 1). In what follows,
we will concentrate on the methodology that enables us to make
optimal parking space allocations and reservations.

III. DYNAMIC RESOURCE ALLOCATION

For the sake of generality, we will employ the term “user”
when referring to drivers or vehicles and the term “resource”
when referring to parking spaces. We adopt a queueing model
for the problem, as shown in Fig. 2, where there are N re-
sources, and every user arrives randomly and independently
to join an infinite-capacity queue (labeled WAIT) and waits
to be assigned a resource if possible. At each decision point,
the system makes allocations for all users in both the waiting
queue and the queue of users (labeled RESERVE) who have
already been assigned and have reserved a resource from a prior
decision point. If a user in WAIT is successfully assigned a
resource, he/she joins the RESERVE; otherwise, he/she remains
in WAIT. A user in RESERVE may be assigned a different
resource after a decision point and remains in this queue until
he/she can physically reach the resource and occupy it. A user
leaves the system after occupying a resource for some amount
of time at which point the resource becomes free again.

At each decision point indexed by k, we define the state of
the allocation system, i.e., X(k), k = 1, 2, . . ., and the state of
the ith user, i.e., Si(k), i = 1, 2, . . ., as explained next. First,
we define

X(k) = {W (k), R(k), P (k)} (1)

where W (k) = {i : user i is in the WAIT queue}, R(k) =
{i : user i is in the RESERVE queue}, and P (k) = {p1(k),
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. . . , pN (k)} is a set describing the state of the jth resource with
pj(k) denoting the number of free parking spaces at resource
j, j = 1, . . . , N . (This is possibly >1 if a resource models a
group of parking spaces, e.g., a parking garage, rather than an
individual space.)

We assume that each resource has a known location associ-
ated to it, which is denoted by yj ∈ Z ⊂ R

2 in 2-D Euclidean
space. We also define

Si(k) = {zi(k), ri(k), qi(k),Ωi(k)} (2)

where zi(k) ∈ Z ⊂ R
2 is the location of user i, ri(k) ∈ R

+ is
the total time that user i has spent in the RESERVE queue up to
the kth decision point (ri(k) = 0 if i ∈ W (k)), and qi(k) is the
reservation status of user i, i.e.,

qi(k) =

{
0, if i ∈ W (k)
j, if user i has reserved resource j.

(3)

Finally, Ωi(k) is a feasible resource set for user i, i.e., Ωi(k) ⊆
{1, . . . , N}, depending on the requirements set forth by this
user regarding the resource requested. In general, Ωi(k) may
be a set that is specified by each user at each decision point;
however, for the specific parking problem we are interested in,
we will define Ωi(k) in terms of attributes associated with user
i and defined as follows.

We associate two attributes to user i. The first, which is
denoted by Di, is an upper bound on the distance (walking
distance or walking time) between the resource that the user
is assigned and his actual destination di ∈ Z ⊂ R

2. If the user
is assigned resource j located at yj , let Dij = ‖di − yj‖, where
‖ · ‖ is a suitable distance metric. Then, the constraint

Dij ≤ Di (4)

defines a requirement that contributes to the determination of
Ωi(k) by limiting the set of feasible resources to those that
satisfy (4).

The second attribute for user i, which is denoted by Mi, is
an upper bound on the cost that this user is willing to tolerate
for the benefit of reserving and subsequently using a resource.
The actual cost depends on the specific pricing scheme that is
adopted by the allocation system and may include a flat fee for
reserving a resource, a fee dependent on the total reservation
time, and subsequently, a fee for occupying the resource. Our
approach does not depend on the specific pricing scheme used,
but we will assume that each user cost is a monotonically
nondecreasing function of the total reservation time ri(k), user
expected occupancy time ci, and a function of the traveling
time from the user location at the kth decision time, i.e., zi(k),
to a resource location yj . Let sij(k) = ‖zi(k)− yj‖ be this
distance, and define the traveling time

tij(k) = f (sij(k), ω)

where ω is a random vector capturing all stochastic traffic
conditions. We use Mij(ri(k), tij(k), ci) to denote the total
expected monetary cost for using resource j, which is evaluated

at the kth decision time. Note that Mij(ri(k), tij(k), ci) is
an expectation since the actual cost is a random variable that
depends on traffic conditions, which determine the time tij(k)
and on the resource occupancy time (e.g., the actual parking
time) after the resource is reached. Once a pricing scheme is
known, Mij(ri(k), tij(k), ci) can be evaluated if all random
variables involved are characterized by known probability dis-
tributions. Alternatively, an estimate of Mij(ri(k), tij(k), ci)
can be computed. Comparing Mij(ri(k), tij(k), ci) with Mi

leads with the constraint

Mij (ri(k), tij(k), ci) ≤ Mi. (5)

This defines a second requirement that contributes to the deter-
mination of Ωi(k) by limiting the set of feasible resources to
those that satisfy (5). To fully specify Ωi(k), we further define

Γ(k) = {j : pj(k) > 0, j = 1, . . . , N}

to be the set of free and reserved resources at the kth decision
time and set

Ωi(k) = {j : Mij(k) ≤ Mi, Dij ≤ Di, j ∈ Γ(k)} (6)

where, for simplicity, we have written Mij(k) instead of
Mij(ri(k), tij(k), ci). Note that this set allows the system to
allocate to user i any resource j ∈ Ωi(k), which satisfies the
user’s requirements even if it is currently reserved by another
user. Thus, resource j may be dynamically reallocated to dif-
ferent users at each decision point until pj(k) = 0, signaling
that there is no available resource.

Remark: Since Mij(k) is generally an estimate of the cost a
user incurs, it is subject to noise contributed by random traffic
events and, therefore, so is set Ωi(k), as defined in (6). This
implies that resource j ∈ Ωi(k) may, in fact, be such that j /∈
Ωi(k + l) for some l > 0. Indeed, it is possible that Ωi(k) �= ∅,
whereas Ωi(k + l) = ∅. In such cases, a user may perceive as
unfair the fact that he/she is assigned a feasible resource that
ultimately becomes infeasible subject to his requirements. We
will assume that this happens as a result of uncontrollable ran-
dom events, in which case, the user must re-enter the allocation
system with new Di and Mi requirement parameters.

We can now concentrate on defining an objective function,
which we will seek to minimize at each decision point by
allocating resources to users. We use a weighted sum to define
user i’s cost function, i.e., Jij(k), if he/she is assigned to
resource j, as follows:

Jij(k) = λi
Mij(k)

Mi
+ (1 − λi)

Dij

Di
(7)

where λi ∈ [0, 1] is a weight that reflects the relative importance
assigned by the user between cost and resource quality. In the
case of parking, resource quality is measured as the walking
distance between the parking spot the user is assigned and his
actual destination.

To capture the essence of “smart parking,” the objective
of the system is to make allocations for as many users as
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possible and, at the same time, to achieve minimum user cost
as measured by Jij(k). We introduce binary control variables

xij =

{
1, if user i is assigned to resource j
0, otherwise

(8)

and define matrix X = [xij ]. We can now formulate the alloca-
tion problem (P) at the kth decision point as follows:

min
X

∑
i∈W (k)∪R(k)

∑
j∈Ωi(k)

xij · Jij(k)

+
∑

i∈W (k)

⎛
⎝1 −

∑
j∈Ωi(k)

xij

⎞
⎠ (9)

s.t.
∑

j∈Ωi(k)

xij ≤ 1 ∀i ∈ W (k) (10)

∑
j∈Ωi(k)

xij = 1 ∀i ∈ R(k) (11)

∑
i∈W (k)∪R(k)

xij ≤ pj(k) ∀j ∈ Γ(k) (12)

∑
j∈Ωi(k)

xij · Jij(k) ≤ Jiqi(k−1)(k) ∀i ∈ R(k) (13)

xij ∈ {0, 1} ∀i ∈ W (k) ∪R(k), j ∈ Γ(k). (14)

In this problem, the objective function focuses on user satis-
faction. One can formulate alternative versions that incorporate
system-centric objectives, such as maximizing resource utiliza-
tion or the total revenue without affecting the essence of our
approach. The term min

∑
i∈W (k)∪R(k)

∑
j∈Ωi(k)

xij · Jij(k)
in (9) aims to find the minimum cost over all users. If the system
fails to allocate a resource to some user i, i.e.,

∑
j∈Ωi(k)

xij =
0, a cost of 1 is added to the objective function. Therefore,
the added term

∑
i∈W (k)(1 −

∑
j∈Ωi(k)

xij) in (9) is the total
cost contributed by the number of “unsatisfied” users. Since by
its definition in (7) Jij(k) ≤ 1, the added cost of value 1 is
sufficiently large to ensure that a user is assigned to a resource
if there are free qualified resources left. With this added term,
the problem allocates as many users as possible.

Constraints (10) indicate that any user in the WAIT queue
may be assigned, at most, one resource but may also fail to get
an assignment. On the other hand, (11) guarantees that each
user in the RESERVE queue maintains a resource assignment.
Capacity constraints (12) ensure that every resource is occupied
by no more than pj(k) users. Constraints (13) add a unique
feature to our problem by guaranteeing that every user in the
RESERVE queue is assigned a resource that is no worse than
that most recently reserved, i.e., qi(k − 1). Together, (11) and
(13) ensure a reservation guarantee and improvement.

Fairness: As we can see from (10) and (11), a solution
of (P) gives a higher assignment priority to users in the
RESERVE queue. This is because these users are already
incurring a positive cost. (Recall that the pricing scheme we
assume does not impose a fee to unassigned users, i.e., users
still in the WAIT queue.) On the other hand, (10) makes no
distinction among waiting users, regardless of where they are

located. This introduces unfairness among waiting users. For
example, a waiting user may be located right next to an avail-
able resource, which, however, is assigned to another waiting
user at a considerably larger distance from it. To remove such
unfairness, we add the following constraints:
⎡
⎣ ∑
n∈Ωi(k)

xin

⎤
⎦− xmj ≥ 0 ∀i, j,m s.t. j ∈ Γ(k)

j ∈ Ωi(k), m ∈ W (k), tmj > tij . (15)

These constraints are explained as follows. Consider re-
source j, which is available for assignment (i.e., j ∈ Γ(k)) and
qualified for user i (i.e., j ∈ Ωi(k)). If i fails to be allocated
any resource, we have

∑
n∈Ωi(k)

xin = 0, and (15) requires that
xmj = 0, i.e., any other waiting user m located farther away
from j than user i (i.e., tmj > tij) is forbidden from being
assigned to j. If, on the other hand,

∑
n∈Ωi(k)

xin = 1, i.e.,
user i is assigned some resource, then xmj ≤ 1, i.e., there is
no constraint on allocating resource j to any user m as long
as condition (12) is satisfied. Thus, all subsequent references
to (P) refer to the original problem modified to include (15).
We also note that there is no fairness issue related to users in
the WAIT queue in terms of how long they have resided in
it since this does not affect the cost objective unless a user is
in the vicinity of his/her destination, which is a situation that
we handle through the wandering ratio metric, as defined later
in (17).

Moreover, in between any two decision points, users in the
waiting queue who are close to their destination may reach it
before having an opportunity to be assigned a parking space.
To deal with this effect, we adopt the following immediate
allocation (IA) policy: Whenever user i is in the WAIT queue
and reaches location zi such that ‖zi − di‖ ≤ viτ , he/she is
placed in an IA queue. Here, τ is the decision interval, and vi
is the average driving speed. If this queue is not empty, then, as
soon as user departure makes a resource available, the system
immediately prioritizes user i over other users in W (k) and
assigns him this resource if it is feasible. This IA problem is
easy to solve. We define an “urgent” user set

I(k) = {i : i ∈ W (k), ‖zi − di‖ ≤ viτ}

and as soon as resource j becomes free, we allocate it to user i
such that Jij = minn∈I(k),j∈Ωn(k) Jnj , if such i exists.

Decision Points: An important remaining issue concerns the
choice of decision points over time or, equivalently, defining
appropriate “decision intervals” τ(k), k = 1, 2, . . .. In this pa-
per, we pursue a time-driven strategy for decision making.
After the (k − 1)th decision point, the system waits for some
duration τ(k) and then makes a new allocation over all users
that arrived during τ(k) and all previous users residing in either
the WAIT or the RESERVE queue. Clearly, there is a tradeoff:
A large τ(k) may eventually yield a lower cost for all users
involved, but it also forces a large number of users to remain in
the WAIT queue with no assignment, until either it is too late
because a user has reached his destination or it has lost patience
and searches for resources by himself. In [10], we empirically
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explored the effect of varying τ(k) on the performance of the
system.

Scalability: MILP problems are known to be NP-hard. If we
deploy the system in a large urban area, problem (P) becomes
huge with a large number of variables and constraints. Obtain-
ing a solution at each decision point becomes time consuming,
and during this time, the system state changes, and the solution
may no longer be optimal. In that case, we use the following
steps to reduce the complexity of the problem.

1) Area partitioning: Observe that driver requests are in-
dependent if their destinations are far away from each
other. Practically speaking, an allocation made for driver
A has little or no influence on driver B if B’s destination
is several miles away from driver A. Thus, rather than
aggregating all drivers and resources in one problem, we
can instead partition the whole area into several small
“districts.” For each district, we solve problem (P) for
all drivers whose destinations are located in the district.
Notice that drivers whose destinations are on the border
of two adjacent districts are considered for allocation in
both districts.

2) Grouping resources: Even in a single district, the total
number of parking spaces may be large, particularly in a
business district or downtown. However, drivers normally
do not request a specific spot but only care for a street or a
in which garage to park. Therefore, all spaces in the same
garage or parking lot can be treated as a single resource,
with pj denoting the number of vacant spaces. Similarly,
we can group all on-street parking spots in the same street
block as one resource. The system may randomly pick
a vacant spot for the driver when he/she arrives. The
problem size is thus greatly reduced.

3) Discriminating users: Drivers who are far away from their
destination do not usually require an IA result. This is be-
cause once they make a reservation, they incur a cost that
accumulates over time. Moreover, long-term reservations
are detrimental to the system. First, users who are close to
their destination may fail to obtain an assignment because
available resources may have been reserved by users who
are still far away and can be accommodated with later
assignments. Second, there is a large fraction of resources
left physically vacant because of reservations, which may
cause user discontent when they cannot be allocated a
resource. This points to a tradeoff in “smart parking”
between a reasonable reservation scheme and parking
space utilization. This can be achieved by restricting the
number of users in the waiting queue who are assigned a
resource. Thus, we introduce threshold t0: Users within
t0 min away from their destination are considered for
assignment; otherwise, they are kept in the waiting queue.
Therefore, waiting set W (k) in (P) is replaced by W̃ (k),
which is defined as

W̃ (k) = {i : i ∈ W (k), tij(k) ≤ t0} . (16)

Of course, the number of decision variables in problem
(P) also decreases with this restriction.

Performance Metrics: In solving problem (P), we aim to
minimize user costs as defined by (7) at each decision point. To
assess the overall system performance over some time interval
[0, T ], we define several appropriate metrics that are evaluated
over a total number of users NT served over this interval (e.g.,
a simulation run length).

From the system’s point of view, we consider resource uti-
lization as a performance metric and break it down into two
parts: ur(T ) is the utilization of resources by reservation (i.e.,
the fraction of resources that are reserved), and up(T ) is the
utilization by occupancy (i.e., the fraction of resources that are
physically occupied by a user).

From users’ point of view, we first define a satisfaction metric
for those users that actually occupy a resource. Let P (T ) be
the set of such users over [0, T ]. Moreover, returning to (7), let
q∗i ∈ {1, . . . , N} be the resource that is ultimately assigned to
user i ∈ P (T ). We then define

Jiq∗
i
=λi

Miq∗
i

Mi
+ (1 − λi)

Diq∗
i

Di

J̄(T ) =
1

|P (T )|
∑

i∈P (T )

Jiq∗
i

measuring the average cost of users served. In addition, unlike
traditional queueing problems, waiting times are not a measure
of user satisfaction, since users do not actually need a resource
until they have physically reached it. Instead, another metric
that we will use is the wandering ratio w(T ), which is defined
as follows: Let

AW (k) = {i : i ∈ W (k), ‖zi(k)− di‖ ≤ ε}

be the set of users who reach their destination but are still in the
WAIT queue at the kth decision point, where ε ≥ 0 is a small
real number used to indicate that a user is in the immediate
vicinity of his destination di. Letting kT denote the last decision
point within the time interval of length T , we then define

w(T ) =
|AW (kT )|

NT
. (17)

Finally, we consider the average time-to-park tp(T ), which is
the time from the instant a user sends a parking request to the
instant he/she physically occupies a parking resource.

IV. SIMULATION RESULTS

In all simulations, we assume that user arrivals (requests)
to each destination i are Poisson distributed with rate λi.
User travel times to reach their destination are exponentially
distributed with rate γ. The resource occupancy time is also
exponentially distributed with rate μ. User cost parameter
Mi is uniformly distributed in interval [Mmin,Mmax], and
walking-distance parameter Di is also uniformly distributed
in [Dmin, Dmax]. For simplicity, we adopt a constant decision
interval τ(k) = τ , k = 1, 2, . . .. Note that τ(k) can be made
adjustable according to traffic conditions at the kth decision
time.
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Fig. 3. Case study environment.

We provide a simulation case study based on parking within
the main campus of Boston University, as shown in Fig. 3.
There are a total of 679 on-street parking spaces and 1932 off-
street parking spaces in this part of the campus. We assume that
all these spaces are monitored and can be used by any driver
(student, faculty, or visitor) with no time limit.

Adopting the “grouping resources” method mentioned in the
previous section, we aggregate 679 on-street parking spaces to
27 groups and 1932 off-street parking spaces to 14 groups.
Following the same strategy, we also aggregate driver desti-
nations: Buildings in the same block are treated as a single
destination, and we consider a total of 12 destinations. Fig. 3
shows the parking configuration after grouping, where red
triangles represent destinations, blue squares represent parking
garages or lots, and dark-blue bars are on-street parking spaces.

We seek to quantify the improvement of the “smart parking”
(SP) approach over an uncontrolled setting, where users park
without any guidance (NG) and the case of guidance provided
to available parking spaces (G). In both G and NG cases,
we assume that users start searching for parking when they
reach regions defined by their desired walking distance. For
G, users know exactly the location of available spaces, and we
assume that drivers always select the closest and least expensive
available spot as their first choice. For NG, we assume that
they search for vacant spaces with the following rules: On their
way to the destinations, they check all nearby parking spaces
within their desired walking distance; after they reach their
destinations, they perform an increasing-radius search around
them.

In all simulations, we set 1/γ = 30 min, 1/μ = 60 min,
Mmax = $8, Dmax = 8 min, τ = 1 min, and ε = 0. The on-
street parking price is $0.25 per 12 min, whereas the off-
street parking price is $2 per 30 min. All results are generated
by an average of five simulations, with each lasting for T =
3000 min. We will examine all performance metrics that we
have defined under different traffic intensities by changing the
interarrival times 1/λi.

In Table I, we set high average arrival rate λ̄i > 1.5 to mimic
heavy traffic and low arrival rate λ̄i < 1 to generate normal
traffic. The performance metrics show that SP provides signif-
icant benefits over the G and NG approaches, where “-ons”
indicates the on-street parking metrics, and “-offs” indicates
the off-street parking metrics. From the system point of view,
the total resource utilization (u = ur + up) increases compared
with both G and NG approaches. On-street parking utilization
generally exceeds off-street parking utilization, which indicates
that the system first allocates resources with low cost to users.

TABLE I
PERFORMANCE METRICS UNDER TWO DIFFERENT TRAFFIC INTENSITIES

TABLE II
PERFORMANCE METRICS WITH DIFFERENT t0

From a user’s point of view, we see decreases in both w(T ) and
J̄(T ), whereas the average time-to-park is reduced by as much
as half (from 70.85 to 35.34) compared with the G method
under heavy traffic. For the G and NG methods, w(T ) is defined
as the fraction of users who fail to obtain a parking spot on
their first try. Thus, w(T ) shows the fraction of users who
are simply wandering around in search of parking, whereas
(tp(T )− 1/γ) indicates the average searching time. We can
see that SP dramatically decreases not only the number of
wandering drivers but their searching time as well. At the same
time, the smaller J̄(T ) shows that users who ultimately parked
obtained better-quality spots, i.e., either cheaper or closer to
their destination or both.

We notice that in Table I, the actual utilization by occupancy
using SP, i.e., up(T ), is smaller than that of G under heavy
traffic. (However, up(T ) + ur(T ) is still higher under SP.) This
is because a considerable fraction of resources are utilized by
user reservations, which prevents other users from occupying
them. This is the reason why w(T ) under SP is not reduced as
much as one might expect. An additional undesirable effect is
the indignation that drivers may feel if they observe that a large
fraction of parking spaces are empty but cannot be used due to
reservations. To address this issue, we discriminate reservation
requests by only allowing them when drivers are within an
estimated travel time t0 away from their destination. This
has the added benefit of reducing the problem scale. Table II
shows all performance metrics with different t0 values under
heavy traffic. Clearly, up(T ) indeed increases as t0 decreases,
whereas w(T ) and tp(T ) generally become smaller compared
with allocations without a t0 time threshold. However, the total
average user cost increases if we set t0 too small. With this
additional t0 regulation, the system gives higher priority to
users who are approaching their destinations; therefore, they
have a lower chance of wandering and tp(T ) approaches 1/γ.
However, since only a smaller group of users is now considered
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Fig. 4. Simulation results under t0 = 10.

for allocation, the results are optimal for them but not for
all users in the waiting queue; users farther away from their
destinations generally end up with a parking spot of worse
quality than closer users, and the overall average cost increases.
Moreover, if we set t0 too small, drivers have less time to adjust
their requirements when they fail to be allocated. In short,
the choice of threshold t0 requires careful consideration. For
example, in Table II, t0 = 10 appears to be a good choice.

By setting t0 = 10, we have obtained additional simulation
results summarized in Fig. 4. All four performance metrics
(off-street utilization is not shown here) are compared under
different traffic intensities determined by λi. We find that
in all scenarios, the SP approach improves parking resource
utilization and decreases user cost and search time. As traffic in-
tensity increases, the improvement offered by the SP approach
becomes more significant. Moreover, w(T ) can be further
decreased using the IA policy mentioned earlier. (Results are
shown in [10].)

V. IMPLEMENTATION

The “smart parking” system, as described in this paper, has
been deployed in a garage at Boston University, which contains
27 parking spaces. At each parking space, we have installed
a Streetline [23] parking detection sensor on the ground and
an LED device for controlling our light system described in
Section II-B. A Streetline gateway receives data from each
sensor in the network and forwards it to an upper level database,
which serves as the PRMC with the state (vacant or occupied)
of each parking space. The real-time parking information is
published and updated on the web and can be obtained by users.
Thus, our system still provides the service of a normal PGI

Fig. 5. “Smart parking” application and website.

system. We have also installed cameras and use standard image
processing algorithms, based on which the state of each parking
space (vacant or occupied) is determined; the joint data from
the ground sensors and the cameras are combined to increase
the reliability of parking state estimates.

We have also built a smartphone application (see http://
smartpark.bu.edu/smartparking/home.php), through which
users can send parking requests and obtain reservations. The
application sends all user requests to a computer, which serves
as both DRPC and SPAC (see Fig. 1). The computer maintains
all driver requests, solves the optimal allocation problem (P),
updates the parking space state database, and sends commands
to control the state of the light at each parking space device.
Fig. 5 shows the smartphone application and real-time parking
information website.

An important component of our implementation is a super-
visory controller based on a finite-state automaton describing
full system operations. Fig. 6 shows the automaton associated
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Fig. 6. Automaton of parking spot and light status.

with a single parking space. The state S = {L,R, P,C,D,A}
is defined as follows:

1) Light Status (L) = {GREEN(G), RED(R),
Y ELLOW_BLINK(BY ), RED_BLINK(BR),
OFF (O)};

2) Reservation Status (R)={NOT_RESERV ED(nRD),
RESERV ED(RD)};

3) Parking Status (P) = {V ACANT (V ),
OCCUPIED(O)};

4) Driver’s Response Status (C)={Y ES(Y ), NO(N),
PENDING(P ), T IMEOUT (TO), NULL(NA)};

5) Driver’s Position Status (D) = {NEARBY (NR),
FAR(FR), NULL(NA)};

6) Driver’s Self-Confirmation Status (A) =
{CONFIRMED(P ), NULL(NA)}.

In this automaton, Driver’s Self-Confirmation indicates that
the driver presses a button in the smartphone to confirm that
he/she has parked before the sensor detects his vehicle in the
parking spot. If the driver forgets to confirm parking but the
sensor detects a car in his reserved spot, the system will ask
whether he/she parked there or not. Driver’s Response Status is
then used to store the driver’s response. The driver may answer
YES or NO or not reply (TIMEOUT). The value NULL(NA)
means that the status is not applicable. We also assume that
all sensors have 100% accuracy. Thus, we assume that the car
parked event in the automaton indicates that the sensor detects
a car and that the car indeed parked there. However, if a sensor
reports an erroneous parking status, we allow users to report
the wrong situation using the smartphone, and the system will
either adjust the sensor state or replace it with a new one.

The automaton describes the complete operational function-
ality of the system. Considering a vacant parking spot without
reservation as the initial state, there are seven possible state
transition flows (see Fig. 6) for a parking spot to return to the
initial state. (The flows are color differentiated, and the flow
number indicates the last step of the corresponding flow.)
Flow (1): A parking spot is occupied by a driver with no system

allocation.
Flow (2): A parking spot is reserved by a driver, but it is

occupied by a different driver. This is a violation.

Flow (3): A parking spot is reserved by a driver. The driver
parks his vehicle and immediately confirms parking before
the system sends any parking confirmation request.

Flow (4): A parking spot is reserved by a driver. The driver
parks his vehicle but forgets to confirm. The system re-
quests confirmation, and the driver says YES.

Flow (5): This is the same as Flow (4), except that the driver
says NO. This indicates that the parking spot is occupied
by a different driver. This is a violation.

Flow (6): This is the same as Flow (4), except that the driver
did not respond to the parking confirmation request. In this
case, the system conservatively assumes that the spot is
occupied by someone else.

Flow (7): This flow involves all possible timeout events while a
parking spot is reserved by a driver. For example, a parking
spot is reserved by a driver, but the driver does not show up
within 1 h.

The system is now being used by approximately 30 registered
users. A pilot study is ongoing to analyze utilization and user
cost data and collect feedback on system usability.

VI. CONCLUSION AND FUTURE WORK

We have proposed a “smart parking” system that exploits
technologies for parking space availability detection and for
driver localization and that allocates parking spots to drivers
instead of only supplying guidance to them. We have focused
on determining an efficient and optimal allocation strategy for
both users and the system by solving a sequence of MILP
problems, which are guaranteed to have a feasible solution and
to satisfy some fairness constraints. Simulation results show
significant performance improvements over existing parking
behavior, including the use of guidance-based systems.

Current research focuses on selecting (possibly state-
dependent) proper decision intervals and on the use of pricing
control to adjust parking space prices for different classes
of users or other bidding-type mechanisms that can enhance
fairness. Moreover, through an ongoing collaboration with the
City of Boston, we plan to expand deployment tests to on-street
parking on several urban blocks.
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