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Optimal Routing of Energy-Aware Vehicles
in Transportation Networks With
Inhomogeneous Charging Nodes

Sepideh Pourazarm and Christos G. Cassandras, Fellow, IEEE

Abstract— We study the problem of routing for energy-aware
battery-powered vehicles (BPVs) in networks with charging
nodes. The objective is to minimize the total elapsed time,
including travel and recharging time at charging stations, so that
the vehicle reaches its destination without running out of
energy. Relaxing the homogeneity of charging stations, and here,
we investigate the routing problem for BPVs through a network
of “inhomogeneous” charging nodes. We study two versions of
the problem: the single-vehicle (user-centric) routing problem
and the multiple-vehicle (system-centric) routing problem. For
the former, we formulate a mixed-integer nonlinear program-
ming (NLP)problem for obtaining an optimal path and charging
policy simultaneously. We then reduce its computational com-
plexity by decomposing it into two linear programming problems.
For the latter, we use a similar approach by grouping vehicles
into “subflows” and formulating the problem at a subflow-level
with the inclusion of traffic congestion effects. We also propose
an alternative NLP formulation obtaining near-optimal solutions
with orders of magnitude reduction in the computation time.
We have applied our optimal routing approach to a subnetwork
of the eastern Massachusetts transportation network using actual
traffic data provided by the Boston Region Metropolitan Planning
Organization. Using these data, we estimate cost (congestion)
functions and investigate the optimal solutions obtained under
different charging station and energy-aware vehicle loads.

Index Terms— Vehicle routing, optimization, transportation
networks, electric vehicles, game theory.

I. INTRODUCTION

A. Literature Review

IN VIEW of the energy recuperation ability in EVs, [4]
addresses an energy-optimal routing problem which

exploits this ability to extend their cruising range; in particular,
a general shortest-path algorithm is extended and adapted to
this problem. Considering both limited energy supply and
energy recuperation ability, [5] studies the energy-efficient
routing problem for EVs. Employing a generalization of
Johnson’s potential shifting technique in Dijkstra’s algorithm,
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a computationally efficient route planning algorithm is pro-
posed in this work, applicable to any road network graph
whose edge costs represent energy consumption or energy
recuperation. In [6] the problem of energy-optimal routing for
EVs is studied in a graph-theoretic context, subject to specific
characteristics such as energy recuperation, battery capacity
limitations and dynamic energy cost, and a heuristic algorithm
is proposed to determine an optimal path.

A multi-constrained route optimization problem for EVs
is studied in [7] where, applying penalty function method,
the problem is transformed into an unconstrained optimization
problem and then a particle swarm optimization algorithm
is proposed to find a suboptimal solution. In [8] several
routing problems are considered, including the shortest path
and the Traveling Salesman Problem (TSP), by incorporating
all costs in terms of gas prices. The goal is to find the least
expensive route for an origin-destination pair or the least
expensive tour in the case of a TSP. For the shortest path
problem, equivalent to our single vehicle routing problem,
a Dynamic Programming (DP) algorithm is proposed to find a
least cost path from an origin to a destination in a network with
inhomogeneously priced refueling stations. The same problem
is revisited in [9], where the recharging cost is assumed to
be a nonlinear function of the battery charging level. Again,
the goal is to find a minimum-cost path for an EV. Discretizing
the state space, a DP-based algorithm is proposed to determine
an optimal path. In [10], the Electric Vehicle Routing Problem
with Time Windows and recharging stations (E-VRPTW) is
introduced. In this case, the charging scheme simply forces
vehicles to be always fully recharged. In [11], the problem
of locating charging stations and also determining optimal
routes for commercial EVs is formulated as an integer pro-
gramming problem. Combinatorial optimization methods for
different aspects of EV management, such as energy-efficient
routing and facility location problems, are studied in [12].
In recent work, [13] investigates the user-optimal network flow
equilibrium with different scenarios for flow dependency of
energy consumption of Battery Electric Vehicles (BEVs).

In this paper, we study the EV routing problem in a network
with charging stations and the goal is to determine an optimal
route and charging policy which minimizes the total traveling
time. We impose an energy constraint in order to prevent an
EV from running out of energy during its journey. In our
earlier work [1], we studied this problem with the assumption
that the charging nodes are homogeneous in the sense that
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TABLE I

CLASSIFICATION OF CHARGING STATIONS [15]

their charging capabilities are indistinguishable. In contrast,
relaxing the homogeneity assumption, here we study the
EV routing problem in a network containing inhomogeneous
charging nodes, i.e., charging rates at different nodes are not
identical. In fact, depending on an outlet’s voltage and current,
charging an EV battery could take anywhere from minutes
to hours and the Society of Automotive Engineering (SAE)
classifies charging stations into three categories [14]–[16] as
shown in Tab. I. Thus, charging rates and times are highly
dependent on the class of the charging station and they clearly
affect the solution of our optimization problem.

As in [1], we view this as a network routing problem where
vehicles control not only their routes (we will use “path”
and “route” interchangeably) but also recharging amounts at
various nodes in the network.

The contributions of this paper are as follows. First,
we study the user-centric problem and propose a MINLP for-
mulation to determine the optimal path and charging amounts
simultaneously. Because of the inhomogeneity in charging
nodes, the problem is more complicated than that in [1] and
it can no longer be reduced to a simple Linear Program (LP).
However, we can still prove certain optimality properties
allowing us to reduce the dimensionality of the original prob-
lem. Further, by adopting a locally optimal charging policy,
we derive an LP formulation through which near-optimal
solutions are obtained. We note that the main difference
between this single-vehicle problem and the one considered
in [8] is that we aim to minimize the total elapsed time over
a path, as opposed to a fueling cost, and must, therefore,
include two parameters per network arc (we will use “arc”
and “link” interchangeably): energy consumption and traveling
time. Next, we study a multiple-vehicle energy-aware routing
problem, where congestion effects are incorporated. Similar
to [1], by grouping vehicles into “subflows” we are able to
reduce the complexity of the original problem, although we
can no longer obtain an LP formulation. Moreover, we pro-
vide an alternative flow-based formulation which reduces the
computational complexity of the original MINLP problem
by orders of magnitude with numerical results showing little
loss in optimality. Finally, we consider actual traffic data
provided by the Boston Region Metropolitan Planning Orga-
nization (MPO) for the Eastern Massachusetts transportation
network and apply our algorithms to an interstate highway sub-
network. For the single vehicle routing problem, we observe
that the optimal route may deviate from the shortest path for
different combinations of charging stations. For the multiple
vehicle routing problem, we solve the problem for different
values of the number of subflows and notice that a near optimal
solution can be obtained under a relatively small such number.
We also investigate the effect of increasing the EV inflow rate

on the optimal policy and observe that for small rates the
shortest path remains the optimal solution; however, for higher
rates, due to congestion effects, a fraction of vehicles deviates
from the shortest path.

It is worth mentioning that we have investigated a Dynamic
Programming (DP) approach for both single vehicle and
multiple vehicle routing problems in [17]. For the former,
the DP formulation results in optimal solutions with lower
computational complexity compared to the MINLP formu-
lation proposed here, however for the latter, the problem
size significantly increases with the number of subflows
and the DP algorithm is eventually outperformed by the
MINLP approach proposed here, as the number of subflows
increases.

The paper is organized as follows. In Section II, we address
the single-vehicle routing problem in a network with inho-
mogeneous charging nodes and identify properties which
lead to its simplification. In Section III, the multiple-vehicle
routing problem is formulated, first as a MINLP and then as
an alternative flow optimization problem. To investigate the
routing and recharging solutions for an actual transportation
network, we use real traffic data for the Eastern Massachusetts
transportation network, and provide numerical results for a
sub-network illustrating our approaches and providing insights
on the relationship between recharging speed and optimal
routes as well as the effect of inflows rates on the optimal solu-
tion. Conclusions and further research directions are outlined
in Section IV.

II. SINGLE VEHICLE ROUTING

The single vehicle routing problem represents the “user-
centric” point of view in which the objective is to find the
optimal path and charging policy for a single EV minimizing
its total traveling time. As in earlier work [1], we model the
transportation network as a directed graph G = (N ,A) where
N = {1, . . . , n} is the set of nodes, each of them representing
a charging node, and A is the set of links with (i, j) ∈ A
denoting a link connection node i to j and |A| = m. Node
i ∈ N /{n} represents a charging station with gi denoting
the charging time per unit of energy at node i . In contrast
to [1], here gi , 1, . . . , n, are node-dependent parameters and
not identical. Without loss of generality, let us assume all
nodes have a charging capability (if node i does not have
such capability, we can simply set gi = ∞). We define
I (i) and O(i) as the set of start nodes (respectively, end
nodes) of arc that are incoming to (respectively, outgoing
from) node i , that is, I (i) = { j ∈ N |( j, i) ∈ A} and O(i) =
{ j ∈ N |(i, j) ∈ A}.

Assuming nodes 1 and n as origin and destination respec-
tively, the goal is that to determine an energy-feasible path and
charging policy to optimize the traveling time from node 1 to
node n for a single EV. For each link (i, j) ∈ A, there exist
two cost parameters: the required traveling time τi j and the
energy consumption ei j . Note that τi j > 0 (if nodes i and j
are not connected, then τi j = ∞), whereas ei j is allowed
to be negative due to a BPV’s potential energy recuperation
effect [4]. Note that here we consider τi j and ei j as fixed
parameters where their values depend on the traffic conditions
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TABLE II

TABLE OF NOTATION

at the time one solves the user-centric problem (as illustrated
in Section II-C using actual traffic data). Clearly, this is not the
case for the system-centric problem in which routing decisions
affect congestion over a link and, consequently, the traveling
time and energy consumption of the link. Defining the EV’s
battery capacity as B , we assume 0 < ei j < B for all
(i, j) ∈ A, i.e. all links in the network are energy-feasible
for the EV (this assumption is for simplicity and does not
affect our analysis). Table II summarizes the main notation
that we use throughout the paper.

Since the EV has limited battery energy it may not be able
to reach the destination without recharging. Thus, recharging
amounts at charging nodes i ∈ N are also decision variables.
We define the decision variables as follows: m binary variables
for selecting link (i, j) denoted by xi j ∈ {0, 1}, i, j ∈ N , and
n − 1 non-negative real variables for the energy recharging
amount at node i ∈ N /{n} denoted by ri . Moreover, in order
to model the energy dynamic of the EV while traveling through
the network, we define n − 1 non-negative real variables as
Ei denoting the vehicle’s residual battery energy at node i .
Then, for all E j , j ∈ O(i), we have:

E j =
{

Ei + ri − ei j if xi j = 1

0 otherwise
(1)

which can also be expressed as

E j =
∑

i∈I ( j )

(Ei + ri − ei j )xi j , xi j ∈ {0, 1}

We formulate the user-centric problem as follows:

min
xi j ,ri , i, j∈N

n∑
i=1

n∑
j=1

τi j xi j +
n∑

i=1

n∑
j=1

ri gi xi j (2)

s.t .
∑

j∈O(i)

xi j −
∑

j∈I (i)

x j i = bi , for each i ∈ N (3)

b1 = 1, bn = −1, bi = 0, for i �= 1, n (4)

E j =
∑

i∈I ( j )

(Ei +ri −ei j )xi j , for j = 2, . . . , n (5)

0 ≤ Ei ≤ B, E1 given, for each i ∈ N (6)

xi j ∈ {0, 1}, ri ≥ 0 (7)

This is a Mixed Integer Non-Linear Programming (MINLP)
problem with m + 2(n − 1) variables and it will be referred
to as P1. The objective of this problem, as observed in
equation (2), is to determine a path from the origin (node 1) to
the destination (node n), as well as a recharging amount at each
node minimizing the total elapsed time. Constraints (3)-(4)
stand for the flow conservation which enforces the condition
that, starting from node i , only one path can be selected,
i.e.,

∑
j∈O(i) xi j ≤ 1. It is easy to check that this also

implies xi j ≤ 1 for all i, j since b1 = 1, I (1) = ∅.
The vehicle’s energy dynamics at each node are modeled
using (5). Finally, (6) indicates that the vehicle cannot run
out of energy before reaching a node or exceed a given
capacity B . Note that the nonlinearity in the problem appears
in the objective function as well as constraint (5). All other
parameters are predetermined according to the network topol-
ogy. A crucial difference between P1 and the MINLP intro-
duced in [1] is that here the charging rates gi in (2) are
node-dependent.

A. Properties

As discussed, P1 is a MINLP problem which is compu-
tationally demanding. In the sequel, we reduce the computa-
tional complexity of P1 by deriving some key properties of an
optimal solution. Applying these properties we obtain a lower-
dimensional problem with m + (n − 1) variables. The main
difficulty in this problem lies in the coupling of the decision
variables xi j and ri in (5) and the following lemma will enable
us to eliminate ri from (2).
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Lemma 1: Given (2)-(7), an optimal solution
{xi j , ri , Ei }, i, j ∈ N satisfies:

n∑
i=1

n∑
j=1

(ri xi j −ei j xi j )gi =
n∑

i=1

n∑
j=1

(E j − Ei )gi xi j (8)

=
n∑

i=1

n∑
j=1

E j (gi −g j )xi j −E1g1 (9)

Proof: Multiplying both sides of (1) by gi gives:

E j gi =
{
(Ei + ri − ei j )gi if xi j = 1,
0 otherwise .

which can be expressed as∑
i∈I ( j )

E j gi xi j =
∑

i∈I ( j )

(Ei + ri − ei j )gi xi j

Summing both sides over j = 2, . . . , n and rearranging yields:
n∑

j=2

∑
i∈I ( j )

E j gi xi j −
n∑

j=2

∑
i∈I ( j )

Ei gi xi j =
n∑

j=2

∑
i∈I ( j )

(ri −ei j )gi xi j

Based on (1), Ei = 0 for all nodes which are not in the
selected path. Thus we can rewrite the equation above as

n∑
i=1

n∑
j=1

(ri xi j − ei j xi j )gi =
n∑

i=1

n∑
j=1

(E j − Ei )gi xi j

which establishes (8). Finally, (9) follows by observing that
if P is an optimal path we can re-index nodes so that P =
{1, . . . , n} with gn = 0. Thus, we have

∑n
i=1

∑n
j=1 Ei gi xi j =

E1g1 + . . . + En−1gn−1 which can also be written as E1g1 +∑n
i=2

∑n
j=2 E j g j xi j where xi j = 0 for all (i, j) not in the

optimal path. Therefore,
n∑

i=1

n∑
j=1

(E j − Ei )gi xi j =
n∑

i=1

n∑
j=1

E j (gi − g j )xi j − E1g1

which proves (9). �
Lemma 2: If

∑
i r∗

i > 0 in the optimal routing policy, then
E∗

n = 0.
Proof: This is the same as the homogeneous charging node

case; see [1, Lemma 2].
Using Lemma 1, we replace

∑n
i=1

∑n
j=1 ri gi xi j in (2) and

eliminate the presence of ri , i = 2, . . . , n − 1, from the
objective function and the constraints. Thus, P1 is reduced to
the following MINLP problem with only m + (n −1) decision
variables, referred to as P2:

min
xi j ,Ei
i, j∈N

n∑
i=1

n∑
j=1

(
τi j xi j + ei j gi xi j + E j (gi − g j )xi j

) − E1g1

(10)
s.t

∑
j∈O(i)

xi j −
∑

j∈I (i)

x j i = bi (11)

b1 = 1, bn = −1, bi = 0 for i �= 1, n (12)
0 � E j − (Ei − ei j )xi j � B ∀ i, j ∈ N (13)
0 � Ei � B, E1 given, ∀ i ∈ N (14)
xi j ∈ {0, 1} (15)

Constraint (13) is derived from (5). Assuming xi j = 1,
i.e. arc (i, j) is part of the optimal path, we can recover

ri = E j − Ei + ei j and constraint (13) is added to prevent
any vehicle from exceeding its capacity B in an optimal path.
Solving this problem gives both an optimal path and residual
battery energy at each node.

Although P2 has fewer decision variables, it is still a
MINLP which is hard to solve for large networks. Specifically,
the computation time is highly dependent on the number of
nodes and arcs in the network. In what follows we intro-
duce a locally optimal charging policy, leading to a simpler
problem, by arguing as follows. Looking at (10), the term∑n

i=1
∑n

j=1 E j (gi − g j )xi j is minimized by selecting each
E j depending on the sign of (gi − g j ):

Case 1: gi − g j < 0, i.e., node i has a faster charging rate
than node j . Therefore, E j should get its maximum possible
value, which is B − ei j . This implies that the vehicle must be
maximally charged at node i .

Case 2: gi − g j � 0, i.e., node j has a faster or same
charging rate as node i . In this case, E j should get its
minimum value E j = 0. This implies that the vehicle should
get the minimum charge needed at node i in order to reach
node j .

We define πC to be the charging policy specified as above
and note that it does not guarantee the global optimality
of Ei thus selected in (10) which can easily be checked by
a counterexample. However, it allows us to decompose the
optimal routing problem from the optimal charging problem.
If, in addition, we consider only solutions for which the vehicle
is recharged at least once (otherwise, the vehicle is not energy-
constrained and the problem is of limited interest), we can
obtain the following result.

Theorem 1: If
∑

i r∗
i > 0 (i.e. the vehicle has to be

recharged at least once), then under charging policy πC,
the solution x∗

i j , i, j ∈ N , of the original problem (2) can
be determined by solving the LP problem:

min
xi j,i, j∈N

n∑
i=1

n∑
j=1

(
τi j + ei j gi + K (gi − g j )

)
xi j (16)

K =
{

B − ei j if gi < g j ,
0 otherwise .

(17)

s.t .
∑

j∈O(i)

xi j −
∑

j∈I (i)

x j i = bi (18)

b1 = 1, bn = −1, bi = 0 f ori �= 1, n (19)
0 � xi j � 1 (20)

Proof: Applying charging policy πC in (10) we
change the objective function to

∑n
i=1

∑n
j=1

(
τi j + ei j gi+

K (gi − g j )
)
xi j − E1g1 where K is as in (17). Therefore,

x∗
i j can be determined by the following problem:

min
xi j,i, j∈N

n∑
i=1

n∑
j=1

(
τi j + ei j gi + K (gi − g j )

)
xi j − E1g1

K =
{

B − ei j if gi < g j ,
0 otherwise .

s.t .
∑

j∈O(i)

xi j −
∑

j∈I (i)

x j i = bi , for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i �= 1, n

xi j ∈ {0, 1}
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which is a typical shortest path problem formulation. More-
over, according to the property of minimum cost flow
problems [18], the above integer programming problem is
equivalent to the LP with the integer restriction on xi j relaxed.
Finally, since E1 and g1 are given, the problem reduces to (16),
which proves the theorem. �

Remark 1: If gi = g j for all i, j in (16), the problem reduces
to the homogeneous charging node case studied in [1] with the
same optimal LP formulation as in Theorem 1. With gi �= g j

however, the LP formulation cannot guarantee global opti-
mality, although the routes obtained through Theorem 1 may
indeed be optimal (see Section II.C), in which case the optimal
charging amounts are obtained as described next.

B. Determination of Optimal Recharging Amounts r∗
i

Once we determine an optimal route P , it is relatively
easy to find a feasible solution for ri , i ∈ P , to satisfy the
constraint (5) and minimize the total charging time on the
selected path. It is obvious that the optimal charging amounts
r∗

i are non-unique in general. Without loss of generality we
re-index nodes so that we may write P = {1, . . . , n}. Then,
the problem resulting in an optimal charging policy is

min
ri , i∈P

∑
i∈P

giri

s.t . Ei+1 = Ei + ri − ei,i+1

0 ≤ Ei ≤ B, E1 given

ri ≥ 0 for all i ∈ N (21)

This is an LP where Ei and ri are decision variables. Unlike
the homogeneous charging node problem in [1] where the
objective function includes charging prices pi associated with
nodes, i.e.,

∑
i∈P piri , this is not the case here, since there is a

tradeoff between selecting faster-charging nodes and possible
higher costs at such nodes. However, the advantage of the
decoupling approach is that if an optimal path is determined,
an additional cost minimization problem can be formulated to
determine optimal charging times at nodes on this path.

C. Numerical Example for the Eastern Massachusetts
Transportation Network

Using an actual traffic dataset provided by the Boston
Region Metropolitan Planning Organization (MPO), our goal
is to find the optimal path and charging policy for a single EV
to travel from an origin to a destination in the Eastern Massa-
chusetts transportation network shown in Fig. 1. The dataset
includes traffic data in the form of spatial average speeds for
major roadways and arterial streets in Eastern Massachusetts
for every minute of year 2012 as described in [19]. In this
paper, we use the same network - a representative interstate
highway sub-network - presented in [19] for the numerical
examples as shown in Fig. 2(a). This network is composed
of 8 nodes and 24 links including 701 road segments. The
topology of this sub-network is also shown in Fig. 2(b).

As discussed in the beginning of this section, we assume a
fixed traveling time, τi j , and energy consumption, ei j , for each
link in the network depending on given traffic conditions at the

Fig. 1. Road map of eastern massachusetts.

Fig. 2. (a) An interstate highway sub-network of Eastern Massachusetts (the
blue numbers indicate node indices); (b) The topology of the sub-network.

time the single-vehicle routing problem is solved. The value
of these parameters depend on given traffic conditions at the
time the single-vehicle routing problem is solved. To calculate
the traveling time, first we convert the speed data to flow
data on each link using Greenshield’s model [20] (details are
provided in [19]). Then, the average traveling time on each link
(i, j) ∈ A is estimated by incorporating the calculated flow
and link capacity in a delay function with the general form
of ta = t0

i j h( fi j /Cij ), where t0
i j , fi j , and Cij denote free

flow traveling time, link flow, and link capacity respectively.
For example, adopting the corresponding data-driven delay
function estimated in [19], Tab. III shows the average traveling
time of each link during the AM period (7-9 AM) of a working
day in April 2012.
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TABLE III

TRAVELING TIME [hr] AND DISTANCE [mile] OF EACH
LINK OF SUB-NETWORK OF FIG. 2(A)

TABLE IV

OPTIMAL PATHS OBTAINED BY SOLVING PROBLEMS P-1 AND
LP FOR DIFFERENT CHARGING NODE CONFIGURATIONS

For simplicity we assume ei j is proportional to the distance
of each link (see Tab. III), i.e. ei j = αdi j where α is the
energy consumption rate. In our numerical example we set
α = 0.3 [kWh/mile] as per the EPA fuel economy of a
Nissan Leaf 2016 [21]. We then solve the problem for different
configurations of charging stations in the network. The optimal
paths obtained by solving the MINLP formulation as well
as the decomposed LP are shown in Tab. IV where G =
[g1, g2, , . . . , gn−1]. In our numerical example we assume
charging stations from 2 classes: level 1 with charging rate
41.67 [min/kWh] or g1 = 41.67/60[hr/kWh], and level 2 with
charging rate 10 [min/kWh] or g2 = 1/6 [hr/kWh]. It is
observed that both formulations (original MINLP and approx-
imate LP) result in the same optimal path while their com-
putational complexities are drastically different (from around
250 sec for P1 to less than 1 sec for the LP formulation).
Once the optimal path is determined, we can easily solve (21)
to determine optimal charging amounts as well.

Next, we investigate the traffic congestion effect on the total
traveling time. To do so, we solve the single vehicle routing
problem for all days in April during AM periods. We assume
g1,...,7 = 1/6 and E1 = 0. Fig. 3 shows the total elapsed time
for a single EV to travel from node 1 to node 8 in different
days in the month. For all days in April the optimal path is the
same: (1→3→5→7→8). However, due to the traffic condition
of different days, the traveling time may not be the same (recall
that the energy consumption on each link is a linear function
of its distance, the total charging time is independent of traffic
conditions). Also, it is observed that the traveling time has a
periodic pattern and its minimum value occurs at weekends
and holidays as expected.

III. MULTIPLE VEHICLE ROUTING

Next, we investigate the system-centric problem, referred
to as the multiple-vehicle routing problem, in a network with
inhomogeneous charging nodes. As opposed to the user-centric
policy, here we determine the routing and charging policies
so as to optimize a system-wide objective. Thus, as discussed
in Section II, the first technical difficulty here is the need to
incorporate the effect of traffic congestion on both traveling

Fig. 3. Total elapsed time for a single EV traveling from node 1 to node 8 in
April 2012 during AM period (Weekends / Holidays shown with red stars).

time and energy consumption; therefore, the variables τi j and
ei j no longer have fixed values. A second difficulty is the
implementation of an optimal routing policy, which requires
signaling mechanisms and possibly incentive structures to
enforce desired routes assigned to vehicles. This raises a
number of additional research issues which are beyond the
scope of this paper and likely to be addressed by the advent
of Connected Automated Vehicles (CAVs).

As in [1], we formulate the problem by grouping subsets
of vehicles into N “subflows”. In the sequel, it will be
observed that the problem complexity highly depends on N
which should, therefore, be selected to render the problem
manageable (the effect of N is discussed in Section III-D).

We define R as the EV flow rate entering the network
at node 1. We divide it into N subflows such that each
subflow includes the same type of vehicles (e.g., large vehicles
vs smaller ones or vehicles with the same initial energy).
Formulating the problem at the “subflow-level” (rather than
individual EVs), we assume all vehicles in the same subflow
follow the same routing and recharging decisions. Note that
asymptotically, as N → ∞, we can recover routing at the
individual vehicle level. Clearly, it is not realistic to consider
all vehicles in the system as EVs. In [22] we have addressed
the routing problem for vehicle flows including both Elec-
tric Vehicles (EVs) and Non-Electric Vehicles (NEVs) for a
network with homogeneous charging nodes and shown that
a similar framework and analysis as in [1] are applicable.
Here, we focus on routing of EVs while the NEV flows
are not part of our optimization process. Instead, we treat
them as uncontrollable interfering traffic and assume that their
flow rates are known. It should be noted that extending this
framework to include both EV and NEV flows (as done for the
network with homogeneous nodes in [22]) is straightforward.

Our goal is to minimize the total elapsed time (latency) of
the EVs traveling from origin to destination by determining
optimal routes and energy recharging amounts for each vehicle
subflow. The decision variables are as follows: Nm binary
variables for selecting links for each subflow denoted by xk

i j ∈
{0, 1} for all links (i, j) ∈ A and subflows k = 1, . . . , N , and
N(n − 1) non-negative real variables for charging amounts at
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each node for all subflows represented by rk
i , i = 1, . . . , n −1

and k = 1, . . . , N . Given traffic congestion effects, the time
and energy consumption on each arc depends on the values
of xk

i j and the fraction of the total flow rate R associated
with each subflow k; the simplest such flow allocation (which
we will adopt) is one where each subflow is assigned R/N .
Let xij = (x1

i j , · · · , x N
i j )

T and ri = (r1
i , · · · , r N

i )T . Then,
we denote the traveling time (delay) a vehicle will experience
through link (i, j) by some nonlinear function τi j (xij). The
corresponding energy consumption of the kth vehicle subflow
through link (i, j) is a nonlinear function denoted by ek

i j (xij).
As already mentioned, τi j (xij) and ek

i j (xij) can also incorporate
the influence of uncontrollable (NEV) vehicle flows, which can
be treated as parameters in these functions as further discussed
in Section III-C. Similar to the user-centric case, we define
N(n−1) non-negative variables denoted by Ek

i for the residual

energy of subflow k at node i , so that Ek
i represents the

aggregated residual energy of all vehicles in the subflow. If the
subflow does not go through node i , then Ek

i = 0. The problem
is formulated as the following MINLP with N(m + 2(n − 1))
variables:

min
xij,ri, i, j∈N

n∑
i=1

n∑
j=1

N∑
k=1

(
τi j (xij)xk

i j
R

N
+ rk

i gi x
k
i j

)
(22)

s.t . for each k ∈ {1, . . . , N} :∑
j∈O(i)

xk
i j −

∑
j∈I (i)

xk
j i = bi , for each i ∈ N (23)

b1 = 1, bn = −1, bi = 0, for i �= 1, n (24)
Ek

j =
∑

i∈I ( j )

(Ek
i + rk

i − ek
i j (xij))xk

i j , j = 2, . . . , n

(25)
Ek

1 is given, Ek
i ≥ 0, for each i ∈ N (26)

xk
i j ∈ {0, 1}, rk

i ≥ 0 (27)

We will refer to this problem as P3. The difference from the
MINLP formulated in [1] is that we consider different charging
rates gi in the objective function. In the sequel, we discuss
some properties of the optimal solution allowing us to reduce
the complexity of this MINLP problem as we did for the user-
centric case.

A. Properties

It can be seen that for each subflow k, the constra-
ints (23)-(27) are similar to those in the user-centric case,
though the term τi j (xij) in the objective function is no longer
linear in general. Consequently, we can derive similar useful
properties in the form of the following lemmas (proofs are
very similar to those of the user-centric case and are omitted).

Lemma 3: An optimal solution {xij, ri}, i, j ∈ N satisfies:

n∑
i=1

n∑
j=1

N∑
k=1

rk
i gi x

k
i j −

n∑
i=1

n∑
j=1

N∑
k=1

ek
i j (xij)gi x

k
i j (28)

=
n∑

i=1

n∑
j=1

N∑
k=1

(Ek
j − Ek

i )gi x
k
i j

=
n∑

i=1

n∑
j=1

N∑
k=1

Ek
j (gi − g j )xk

i j −
N∑

k=1

Ek
1 g1 (29)

Lemma 4: If
∑

i r k∗
i > 0 in the optimal routing policy, then

Ek∗
n = 0 for k = 1, . . . , N .
Using Lemma 3, we replace

∑n
i=1

∑n
j=1

∑N
k=1 rk

i gi xk
i j

in (22) through (29) and rk
i , i = 1, . . . , n − 1, k = 1, . . . , N ,

is eliminated from the objective function (22). The term∑N
k=1 Ek

1 g1 is also removed because it has a fixed value. Thus,
a new MINLP formulation with N(m + (n − 1)) variables
is obtained to determine xk∗

i j and Ek∗
i for all i, j ∈ N and

k = 1, . . . , N as follows:

min
xk

i j ,Ek
i

i, j∈N

n∑
i=1

n∑
j=1

N∑
k=1

[
τi j (xij)xk

i j
R

N
+

(ek
i j (xij)gi + Ek

j (gi − g j ))xk
i j

]
(30)

s.t . for each k ∈ {1, . . . , N} :∑
j∈O(i)

xk
i j −

∑
j∈I (i)

xk
j i = bi (31)

b1 = 1, bn = −1, bi = 0 for i �= 1, n

0 ≤ Ek
j − (Ek

i − ek
i j (xij))xk

i j ≤ Bk ∀(i, j) ∈ A (32)

Ek
1 is given, Ek

i ≥ 0, for each i ∈ N (33)

xk
i j ∈ {0, 1} (34)

We call this problem P4. Note that inequality (32) is derived
from (25). Assuming xk

i j = 1, i.e., arc (i, j) is part of the
optimal path for the kth subflow, rk

i = ek
i j (xij)+Ek

j −Ek
i . Thus,

(32) ensures the optimal solution Ek∗
i results in a feasible

charging amount for the kth subflow, 0 ≤ rk
i ≤ Bk where Bk is

the maximum charging amount kth subflow can get. This value
should be predetermined for each subflow based on the vehicle
types and the fraction of total inflow in it. Similar to P2 in
the single-vehicle case, once we determine Ek∗

i we can simply
calculate optimal charging amounts using (25). Although P4
has fewer decision variables than P3, its complexity still highly
depends on the network size and number of subflows. Similar
to the charging policy πC used in Theorem 1, we introduce
a charging policy by arguing as follows. Looking at (30),
the term

∑n
i=1

∑n
j=1

∑N
k=1 Ek

j (gi − g j )xk
i j is minimized by

selecting each Ek
j depending on the sign of (gi − g j ):

Case 1: gi < g j , i.e., node i has faster charging rate than
node j . Therefore, Ek

j should get its maximum value, i.e., the
kth subflow should get its maximum charge at node i .

Case 2: gi � g j , i.e., the charging rate of node j is greater
than or equal to node i . Therefore, Ek

j should get its minimum
value of 0. This implies that the kth subflow should get the
minimum charge needed at node i in order to reach node j .

Applying this policy in (30) and changing the objective
function accordingly we introduce problem P5 as follows:

min
xk

i j

n∑
i=1

n∑
j=1

N∑
k=1

[
τi j (xij)xk

i j
R

N
+

+ (ek
i j (xij)gi + K (gi − g j ))xk

i j

]
(35)

K =
{

Bk − ek
i j (xij) if gi < g j ,

0 otherwise
(36)

s.t . for each k ∈ {1, . . . , N} :
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∑
j∈O(i)

xk
i j −

∑
j∈I (i)

xk
j i = bi (37)

b1 = 1, bn = −1, bi = 0 for i �= 1, n

xk
i j ∈ {0, 1} (38)

Unlike the user-centric case, the objective function is no longer
necessarily linear in xk

i j , therefore, (35) cannot be further
simplified into an LP problem as in Theorem 1. Nonetheless,
we are still able to decompose the original problem into two
smaller problems: a MINLP to determine routing variables xk

i j

and a NLP to find recharging amounts rk
i over the optimal

routes. Similar to the single-vehicle case, once the optimal
routes for all subflows, Pk , k = {1, . . . N}, are determined,
we can obtain rk

i by formulating a corresponding NLP which
minimizes

∑N
k=1

∑
i∈Pk rk

i gi while satisfying the energy con-
straints (25)-(26). The computational effort required to solve
this problem with Nm decision variables, depends on the
dimensionality of the network and the number of subflows.

Next, we present an alternative formulation of (22)-(27)
leading to a computationally simpler solution approach.

Remark 2: If gi = g j for all i, j in (35), the problem reduces
to the homogeneous charging node case with the exact same
MINLP formulation as in [1] for obtaining an optimal path.
However, P5 cannot guarantee an optimal solution because
of the locally optimal charging policy πC which may not be
feasible in a globally optimal solution (xk∗

i j , Ek∗
i ).

B. Flow Control Formulation

We begin by relaxing the binary variables in (27) by letting
0 ≤ xk

i j ≤ 1. Thus, we switch our attention from determining
a single path for any subflow k to several possible paths by
treating xk

i j as the normalized vehicle flow on arc (i, j) for
the kth subflow. This is in line with many network routing
algorithms in which fractions xi j of entities are routed from
a node i to a neighboring node j using appropriate schemes
ensuring that, in the long term, the fraction of entities routed
on (i, j) is indeed xi j . Following this relaxation, the objective
function in (22) is changed to:

min
xij,ri, i, j∈N

n∑
i=1

n∑
j=1

N∑
k=1

τi j (xij)xk
i j

R

N
+

n∑
i=1

N∑
k=1

rk
i gi

Moreover, the energy constraint (25) needs to be adjusted
accordingly. Let Ek

i j represent the fraction of residual energy
of subflow k associated with the xk

i j portion of the vehicle
flow exiting node i . Therefore, the constraint (26) becomes
Ek

i j ≥ 0. We can now capture the relationship between the
energy associated with subflow k and the vehicle flow as
follows:⎡
⎣ ∑

h∈I (i)

(Ek
hi −ek

hi(xij))+rk
i

⎤
⎦· xk

i j∑
h∈I (i) xk

hi

= Ek
i j (39)

Ek
i j∑

j∈O(i) Ek
i j

= xk
i j∑

j∈O(i) xk
i j

(40)

In (39), the energy values of different vehicle flows entering
node i are aggregated and the energy corresponding to each

portion exiting this node, Ek
i j , j ∈ O(i), is proportional to the

corresponding fraction of vehicle flows, as expressed in (40).
Clearly, this aggregation of energy leads to an approximation,
since one specific vehicle flow may need to be recharged in
order to reach the next node in its path, whereas another might
have enough energy without being recharged. This approxima-
tion foregoes controlling recharging amounts at the individual
vehicle level and leads to approximate solutions of the original
problem (22)-(27). Several numerically based comparisons
are provided in the next section showing little or no loss
of optimality relative to the solution of (22). Adopting this
formulation with xk

i j ∈ [0, 1] instead of xk
i j ∈ {0, 1}, we obtain

the following simpler nonlinear programming problem (NLP):

min
xij,ri, i, j∈N

n∑
i=1

n∑
j=1

N∑
k=1

τi j (xij)xk
i j

R

N
+

n∑
i=1

N∑
k=1

rk
i gi (41)

s.t . for each k ∈ {1, . . . , N} :∑
j∈O(i)

xk
i j −

∑
j∈I (i)

xk
j i = bi , for each i ∈ N (42)

b1 = 1, bn = −1, bi = 0, for i �= 1, n⎡
⎣ ∑

h∈I (i)

(Ek
hi − ek

hi (xij)) + rk
i

⎤
⎦ · xk

i j∑
h∈I (i) xk

hi

= Ek
i j

(43)
Ek

i j∑
j∈O(i) Ek

i j

= xk
i j∑

j∈O(i) xk
i j

(44)

Ek
i j ≥ 0, (45)

0 ≤ xk
i j ≤ 1, rk

i ≥ 0 (46)

As in our previous analysis, we are able to eliminate ri from
the objective function in (41) as follows.

Lemma 5: For each subflow k = 1, . . . , N ,
n∑

i=1

rk
i gi =

n∑
i=1

n∑
j=1

ek
i j (xij)gi +

n∑
i=1

∑
j∈O(i)

Ek
i j gi −

n∑
i=1

∑
h∈I (i)

Ek
hi gi

=
n∑

i=1

n∑
j=1

ek
i j (xij)gi +

n∑
i=1

∑
j∈O(i)

Ek
i j (gi − g j )

Proof: Multiplying (43) by gi and summing over all
i = 1, . . . , n, then using (42) and (44) proves the
lemma. �

Using Lemma 5 we change the objective function (41) to:

n∑
i=1

n∑
j=1

N∑
k=1

(
τi j (xij)xk

i j
R

N
+ ek

i j (xij)gi
)

+
n∑

i=1

n∑
j=1

N∑
k=1

Ek
i j (gi − g j ) (47)

Once again, we adopt a charging policy πC as follows:
Case 1: If gi < g j , then Ek

i j gets its maximum value
(Bk − ek

i j (xij))xk
i j .

Case 2: If gi ≥ g j , then Ek
i j gets its minimum value 0.

Applying this policy in (47) we can transform the objective
function (41) to (48) and determine near-optimal routes xk∗

i j
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by solving the following NLP:

min
xij

i, j∈N

N∑
k=1

n∑
i=1

n∑
j=1

[
τi j (xij)xk

i j
R

N
+ ek

i j (xij)gi + K (gi − g j )

]

K =
{

(Bk − ek
i j (xij))xk

i j if gi < g j ,

0 otherwise

s.t . for each k ∈ {1, . . . , N} :∑
j∈O(i)

xk
i j −

∑
j∈I (i)

xk
j i = bi , for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i �= 1, n

0 ≤ xk
i j ≤ 1 (48)

Once again, there is no guarantee of global optimality due
to applying charging policy πC. The values of rk

i , i =
1, . . . , n, k = 1, . . . , N , can then be determined so as
to satisfy the energy constraints (43)-(45), and minimizing∑N

k=1
∑n

i∈Pk rk
i gi . Note that in the above formulation, the

nonlinearity appears in the objective function due to the traffic
congestion effect on traveling time and energy consumption.
Thus, if τi j (xij)xk

i j and ek
i j (xij) are convex functions, the

NLP is a convex optimization problem and its solution can
be found generally fast (Note that this is not in general the
global optimum of the main problem). Finally, if gi = g j

for all i, j in (48), the problem reduces to the homogeneous
charging node case with the same exact NLP flow control
formulation as in [1].

C. Objective Function Selection

We now explain how to estimate the delay function, τi j (xij),
in either (22) or (48) using the same actual traffic dataset
from the Eastern Massachusetts transportation network as
in Section II-C and based on the analysis given in [19].
We assume that the delay functions have the following
form [23]:

τi j
(

fi j
) = t0

i j h

(
fi j

Ci j

)
, (49)

where t0
i j is the free-flow travel time of link (i, j) ∈ A, h(·) is

strictly increasing and continuously differentiable on R+, and
fi j and Cij denote the flow and the effective capacity of link
(i, j) ∈ A respectively. The goal is to estimate h(·) functions
based on actual traffic data.

As already mentioned, the dataset at our disposal, pro-
vided by the Boston Region Metropolitan Planning Organi-
zation (MPO), includes spatial average speeds and the flow
capacity for each road segment of major roadways and arterial
streets of Eastern Massachusetts (see Fig. 1). We assume that
the observed traffic data correspond to user (Wardrop) equi-
libria. Applying Greenshield’s traffic flow model [20], we first
convert the spatial average speed data into equilibrium flows
for each road segment. Then, by adopting the estimated traffic
flows we obtain Origin-Destination (O-D) demand matrices.
Finally, we formulate appropriate inverse problems [23] to
recover the per-road cost (congestion) functions determining
user route selection for each month and time-of-day period

Fig. 4. Comparison of the estimated cost functions corresponding to different
time periods.

(details are provided in [19]). Applying polynomial kernels in
the corresponding Quadratic Programming (QP) problem [19],
we estimate cost functions h(·) as polynomial functions.
We estimate the cost functions for different scenarios:
AM (7 am – 9 am), MD (11 am – 1 pm), PM (5 pm – 7 pm),
and NT (9pm – 11 pm) for each day of January, April, July,
and October, all in 2012.

The estimated h(·) functions corresponding to five different
time periods for month April are shown in Fig. 4. We observe
that the costs for the AM/PM peaks are much more sensitive to
traffic flows than for the other three time periods (MD, NT, and
weekend). This can be explained by taking into account the
traffic condition during a day: from a congested road network
in the AM/PM period to an uncongested road network during
MD, NT, or weekend periods.

For the rest of the paper, we consider the estimated equilib-
rium flow on each link as the uncontrolled NEV flow. Then,
our goal is to determine system-optimal routes and charging
policies for the EV flow entering the network. Let us assume
that EVs enter the network at a rate of R veh./hr. We then
evenly divide the EV inflow into N subflows and the total
flow entering link (i, j) becomes:

fi j =
∑

k

xk
i j

R

N
+ f eq

i j (50)

where the first term represents the assignment of EV sub-
flows to link (i, j) and the second term is the equi-
librium flow for NEVs inferred from the average speed
data. Therefore, the time a vehicle spends on link (i, j)
becomes

τi j (xij) = t0
i j h

⎛
⎜⎝

∑
k(xk

i j
R

N
) + f eq

i j

Ci j

⎞
⎟⎠ (51)

As for ek
i j (xij), we assume that the energy consumption rates

of subflows on link (i, j) are all identical, proportional to the
distance between nodes i and j , giving

ek
i j (xij) = αdi j

R

N
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TABLE V

UNCONTROLLED NEV FLOW ON EACH LINK DURING AM PERIOD [NO. veh/hr]

Therefore, the objective function in problems (35)-(38) and
(48) in this case becomes

min
xk

i j
i, j∈N

n∑
i=1

n∑
j=1

N∑
k=1

[
t0
i j h

⎛
⎜⎝

∑
k(xk

i j
R

N
) + f eq

i j

Ci j

⎞
⎟⎠ xk

i j
R

N

+ αdi j gi x
k
i j

R

N
+ K (gi − g j )

]
(52)

D. Numerical Examples for the Eastern Massachusetts
Transportation Network

We consider the same sub-network shown in Fig. 2. Our
goal is to determine system-optimal routes and charging poli-
cies for the flow of EVs traveling from node 1 to node 8 while
the effect of NEV flows on the traffic congestion should be
included in the cost function. As discussed in Section III-C,
we use real traffic data to calculate the uncontrolled NEV flow
on each link. To do so, we use the average speed data on each
road segment and infer the average flow data on that using the
Greenshield’s traffic flow model. Finally, the calculated flow
for all segments composing a link are aggregated in order to
calculate the uncontrolled NEV flow on each link [19]. Tab.
V shows the calculated average flow on each link of the sub-
network on April 3 during AM period and we consider them as
the user equilibrium flow, f eq

i j , in (50). We then use the data-
derived estimated cost function in our formulations. As stated
earlier, the cost function is in polynomial form since we apply
polynomial kernels in the corresponding QP problem. For the
April-Workday-AM period, the estimated h(·) function in (51)
has the following form (red curve in Fig. 4):

h(x) = 0.11x8−0.4705x7+0.946x6−0.9076x5+0.6238x4

− 0.1973x3 + 0.057x2 − 0.0032x + 1 (53)

Applying this function in (51), we obtain the delay function for
each link (i, j), τi j , based on actual traffic data. For the energy
consumption function we set α = 0.3 and distances between
nodes are as shown in Tab. III. We assume the network
has inhomogeneous charging nodes with a level 2 charging
station at node 3 (charging rate of g2 = 1/6 [hr/kWh]) and
level 1 charging stations ( charging rate of g1 = 41.67/60
[hr/kWh]), for the rest, i.e., G = [g1 g1 g2 g1 g1 g1 g1].
In our approach, we need to identify N subflows and we do so
by evenly dividing the entire vehicle inflow into N subflows,
each of which has R/N vehicles per unit time. In order to
verify the accuracy of different formulations, we numerically
solve the optimal and near-optimal problems P3 and P5. Let
us set R = 1492 [Veh./hr] as the flow of EVs traveling from
node 1 to node 8. Tab. VI shows both optimal routes and
suboptimal routes obtained by solving P3 and P5 respectively

Fig. 5. Performance as a function of N (No. of subflows).

for different values of N ∈ [1, . . . , 11] and

G = [41.67

60

41.67

60

1

6

41.67

60

41.67

60

41.67

60

41.67

60
].

We observe that vehicles are mainly distributed through two
routes and the traffic congestion effect makes the flow distrib-
ution differ from the shortest path, 1 → 3 → 5 → 7 → 8. The
number of decision variables (hence, the solution search space)
rapidly increases with the number of subflows. However,
looking at Fig. 5 which gives the performance in terms of our
objective functions in (22) and (35) as a function of the number
of subflows, observe that the optimal objective value (P3)
quickly converges around N = 3. Thus, even though the best
solution is found when N = 11, a near-optimal solution can be
determined under a small number of subflows. This suggests
that one can rapidly approximate the asymptotic solution of
the multiple-vehicle problem (dealing with individual vehicles
routed so as to optimize a system-wide objective) based on a
relatively small value of N .

Another observation is that although P5 is a suboptimal
formulation it results in the same paths as those obtained by
solving P3. Next, we obtain a solution to the same problem
using the NLP formulation (48) with 0 ≤ xk

i j ≤ 1. Since in this
example all subflows are identical, we can further combine all
xk

i j over each (i, j), leading to the N-subflow relaxed problem:

min
xi j

i, j∈N

n∑
i=1

n∑
j=1

[
t0
i j h

(
xi j R + f eq

i j

Ci j

)
xi j R +

αdi j gi xi j R + K (gi − g j )
]

K =
{

(B − edi j R)xi j if gi < g j ,

0 otherwise

s.t .
∑

j∈O(i)

xi j −
∑

j∈I (i)

x j i = bi , for each i ∈ N

b1 = 1, bn = −1, bi = 0, for i �= 1, n

0 ≤ xi j ≤ 1 (54)
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TABLE VI

NUMERICAL RESULTS FOR SAMPLE PROBLEM

This is a relatively easy to solve NLP problem. It is obvious
from Fig. 4 that the h(·) function during AM period is a strictly
convex function, thus the solution of this NLP is a unique
global optimum. Using the same parameter settings as before,
we obtain the objective value of 1.8862e45 hrs and the optimal
routes are:

63.24% of vehicle flow: (1 → 3 → 5 → 7 → 8)

36.76% of vehicle flow: (1 → 3 → 6 → 7 → 8)

Compared to the best solution (N = 11) in Fig. 5, the dif-
ference in objective values between the integer and flow-based
solutions is less than 4.7%. This supports the effectiveness of a
solution based on a limited number of subflows in the MINLP
problem.

1) Effect of EV Inflow on Optimal Routes: Tab. VII shows
the optimal paths obtained by solving both problem P3 and the
NLP relaxed problem (54) for different values of EV inflow, R.

TABLE VII

EFFECT OF FLOW RATE, R , ON OPTIMAL ROUTES

TABLE VIII

CPU TIME FOR SAMPLE PROBLEM

It is observed that the optimal routes will change with the
inflow rate. For lower flows, e.g. R = 300, it is optimal
that all EVs travel through the shortest path which means the

corresponding change in
fi j

Ci j
in (49) is negligible. However,

higher flows may cause congestion in some links, i.e., larger

values of
fi j

Ci j
in (49), resulting in larger delays on those

links τi j . Consequently,some EVs should deviate from the
shortest path in the optimal routing.

2) CPU Time Comparison: Tab. VIII compares the com-
putational effort in terms of CPU time for problems P3, P5
and the flow control formulation to find optimal routes for the
sample network shown in Fig. 2. Our results show that the flow
control formulation results in a reduction of about 3 orders of
magnitude in CPU time with almost the same solution as the
optimal solution.

3) Selection of the Number of Subflows: Since the problem
size increases with the number of subflows, N , a proper selec-
tion of this number is essential to render the problem computa-
tionally manageable and reflects a trade-off between proximity
to optimality and computational effort needed to solve the
problem. Our numerical results have shown that a small
number of subflows are adequate to obtain convergence to
near-optimal solutions. In [1] we have proposed a criterion and
procedure for appropriate choice of the number of subflows
for the network with homogeneous charging stations. In brief,
the key idea is based on the fact that the decomposed MINLP
problem (35)-(38) obtains the optimal solution for the homoge-
neous network (gi = g j ∀i, j ), thus the corresponding relaxed
NLP, i.e., problem (54) with gi = g j , gives a lower bound for
the optimal objective value. We then defined a critical number
of subflows, N∗, which guarantees near optimality and showed
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that by selecting N so that N > N∗, the average deviation
between NLP solution and MINLP solution with N subflows
never exceeds a predefined upper bound (for details refer
to [1]).

For the network with inhomogeneous charging stations one
should note that adopting a locally optimal charging policy,
the decomposed MINLP (35)-(38) is suboptimal in general.
Therefore, the corresponding relaxed NLP does not give a
lower bound for the optimal objective value, though it does
for the decomposed suboptimal MINLP. Nevertheless, since
the routes obtained by solving the decomposed MINLP are
near-optimal and the relaxed NLP gives a lower bound for
its objective value, we may still use the same procedure as
in [1] for selecting a “good” N . In our numerical results, it is
observed that both P3 and P5 result in the same solutions for
different values of N . Furthermore, for the for the value N
with the lowest objective value, N = 11, the normalized flow
on each path, that is 4/11 = 36.36% for 1 → 3 → 6 → 7 →
8 and 7/11 = 63.64% for 1 → 3 → 5 → 7 → 8, has the
least deviation from the solution of the NLP problem which
is the main idea in the selection of N .

IV. CONCLUSION

We have studied the routing problem for energy-aware vehi-
cles (typically, EVs) in road networks with inhomogeneous
charging stations. We have considered two versions of the
problem: user-centric (referred as single vehicle routing prob-
lem) vs. system-centric (referred as multiple-vehicle problem).
For the former, we have shown how to reduce the complexity
of this problem. For the latter, where traffic congestion effects
are considered, we used a similar approach by aggregating
vehicles into subflows and seeking optimal routing decisions
for each such subflow. We also developed an alternative flow-
based formulation which yields approximate solutions with a
computational cost reduction of several orders of magnitude,
so it can be used in problems of large dimensionality. We then
applied real traffic data from the Eastern Massachusetts trans-
portation network and investigated the user-optimal vs social-
optimal routing policies for different scenarios.

So far, we have assumed all the charging stations have
unlimited capacities and a vehicle begins the charging process
as soon as it gets to a station. Our ongoing work focuses on
considering queueing capacities for charging stations. For the
system-centric routing problem, we are exploring extensions
to stochastic vehicle flows where the objective is to minimize
average vehicle travel times or to periodically re-solve the
routing problem based on new traffic flow data. Moreover,
in the system-centric case, a challenging problem is the
implementation of an optimal charging and routing policy,
i.e., how does an individual driver receive the explicit guidance
from a central controller? Also, does the driver follow this pol-
icy? The first question may be addressed through Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communi-
cation capabilities which are increasingly being made available
to vehicles. The second question is more challenging since
it deals with individual drivers’ behavior who act “selfishly”
in general. The emerging trend towards CAVs is likely to

facilitate a centrally derived system-centric optimal routing
policy which could be implemented through CAVs, a research
topic of growing interest.
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