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Optimal Control of Multibattery
Energy-Aware Systems

Tao Wang and Christos G. Cassandras

Abstract— We study the problem of optimally controlling a set
of nonideal rechargeable batteries that can be shared to perform
a given amount of work over some specified time period. We seek
to maximize the minimum residual energy among all batteries at
the end of this period by optimally controlling the discharging
and recharging process at each battery. Modeling a battery as a
dynamic system, we adopt a kinetic battery model and formulate
an optimal control problem under the constraint that discharging
and recharging cannot occur at the same time. We show that the
optimal solution must result in equal residual energies for all
batteries as long as such a policy is feasible. This simplifies the
task of subsequently deriving explicit solutions for the problem,
which is accomplished by first analyzing the 2-battery case and
then considering the general N-battery case (N > 2).

Index Terms— Dynamic power management, energy-aware
systems, kinetic battery model, nonideal batteries, optimal
control.

I. INTRODUCTION

W ITH the increasing use and dependence on wireless
and mobile devices, batteries are playing a critical role

in areas such as communications, automotive, transportation,
robotics, and consumer electronics. Due to their limited power
capacity, especially for small and light devices, research on
energy management of battery-powered systems has become
increasingly active. The opportunity to recharge batteries
through energy harvesting for small devices or connecting
to the grid for electric vehicles adds an extra level of flex-
ibility and power control. Energy-aware systems of this type
have been studied with techniques such as dynamic voltage
scheduling (DVS) [1]–[3] where a battery is modeled as a
queueing system [4], usually based on the assumption that the
battery is “ideal,” it maintains a constant voltage throughout
the discharge process and a constant capacity for all discharge
profiles. However, because of the rate capacity effect [5] and
the recovery effect [6], both characterizing real batteries, the
voltage as well as energy amount delivered by the battery
heavily rest on the discharge profile. Therefore, when dealing
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with energy optimization, it is necessary to take that into
account along with nonlinear variations in a battery’s capacity.
As a result, there are several proposed models to describe a
nonideal battery; a detailed overview is given in [7]. Accord-
ingly, models are broadly classified as: 1) electrochemical
[5], [8], [9]; 2) circuit-based [10], [11]; 3) stochastic [12]–[15];
and 4) analytical [16]–[18]. Electrochemical models possess
the highest accuracy, but their complexity makes them
impractical for most real-time applications. Comparatively,
electrical-circuit models are much simpler and therefore
computationally less expensive. However, they are generally
less accurate, with errors of approximately 10% [7]. Recently,
a more accurate electrical-circuit model was proposed in [11],
reducing the error to less than 1% at the expense of added
complexity. Stochastic models use a discrete time Markov
chain with N +1 states to represent the number of charge units
available in the battery. Since N is large (around 72·107), these
models are also limited by high computational requirements.
Last but not least, analytical models, including diffusion-based
models [17], [19], [20] and the kinetic battery model (KBM)
[15], [21], use only a few equations to capture the battery’s
main features. While diffusion-based models are hard to
combine with a performance model [7], a KBM combines
speed with sufficient accuracy, as reported, for instance, in
embedded system applications [21]. It is also suitable for
large-scale systems such as wireless sensor networks [22]
where batteries are distributed over the nodes in the network.

With this motivation, in [23] we studied an optimal control
problem based on a KBM with the added feature of a
recharging capability so that the battery may be in either
discharging or recharging mode at any time. We showed
that an optimal policy maximizing the work performed by
the battery over a given time interval while requiring that
its energy is at a desired level at the end of this interval
is of bang-bang type with an optimal time to switch from
discharging to recharging within the constraints of the
problem. This result was found to be consistent with a
solution of the same problem using a much more elaborate
linear state space model [19] derived from the popular RVW
diffusion-based model [16]. In this paper, we study systems
with multiple nonideal rechargeable batteries which can be
shared in performing a certain amount of work, viewing this
as a first step toward battery-powered networked systems
with renewable energy. Along these lines, in [4], a dynamic
node activation problem in networks of rechargeable sensors
is addressed by modeling the battery as a queueing system
processing energy tasks. In [24] an optimal control policy
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is presented for cross-layer resource allocation in wireless
networks operating with rechargeable batteries. In [25]
advantage is taken of battery energy storage in optimal power
flow problems, while in [26] a network resource allocation
problem is presented for energy-harvesting sensor platforms
with time-varying battery recharging rates. However, in all
these cases the battery models used are simple and assume
ideal behavior. Recently, based on an electrochemical model,
Moura et al. [27] used a deterministic dynamic programming
formulation to derive a heuristic for controlling the charging
processes so as to reduce film growth and thus improve
battery pack lifetime. Despite different problem objectives,
the optimal policy features in [27], such as unequal and
delayed charging, are structurally consistent with our results
based on the KBM.

In this paper, we use a KBM for multiple batteries that
can be shared and are fully rechargeable. We seek to maxi-
mize the minimum residual energy among all batteries at
the end of a given time interval [0, T ] with the require-
ment that the total battery output should reach a desired
level at the end of [0, T ], subject to certain rechargeability
constraints. We assume that recharging a battery is possible
only while it is not being discharged, a requirement which
is application-dependent. Relaxing this constraint is a special
case of the more general problem we have analyzed and leads
to a simpler solution. Our motivation mainly comes from:
1) multiple battery-powered robotic systems, which must peri-
odically interrupt operation for recharging purposes; 2) wire-
less sensor nodes, which are usually battery-powered and must
also be periodically recharged; and 3) electric vehicles, where
the emerging “smart grid” provides considerable flexibility for
controlling the timing of recharging intervals in between usage
of the vehicle [28]. In many such applications, discharging and
recharging processes of each battery-powered system cannot
be conducted simultaneously. In the meantime, these multiple
battery-powered systems are usually required to complete a
common load of work over [0, T ] while ensuring the available
functionality of the system at T so that the process may be
repeated, possibly in periodic fashion. We first prove some
properties of an optimal policy, the main one being the fact
that it must result in equal residual energies for all batteries
at time T . This enables us to subsequently derive explicit
solutions for the problem. As already mentioned, we view
this as a first step toward studying similar problems where
the batteries are not all shared at a single location, but
rather distributed over a network of devices with one or more
batteries placed on board and powering each device. We may
then address resource allocation and network lifetime maxi-
mization problems where the nonideal nature of the batteries
is not only taken into account but also taken advantage of.

In Section II, a multibattery optimal control problem based
on a KBM is formulated. Significant properties of the optimal
solution are identified and proved in Section III. In Section IV,
with the help of these properties, we are able to provide a full
determination of the optimal control solution, starting with
the 2-battery case, which is then extended to a solution of
the N-battery case and its verification. Conclusions and a
description of future research are given in Section V.

(a) (b)

Fig. 1. (a) Multibattery system based on KBM. (b) Modified KBM proposed
in [29].

II. PROBLEM STATEMENT

We consider N battery-powered devices, each with an
embedded battery and a corresponding controller, that may
be shared to serve a common load, as shown in Fig. 1.

Each battery is modeled by a KBM, as in [29]. To briefly
review, a KBM views each battery, indexed by i = 1, . . . , N ,
as consisting of two communicating wells, a bound-charge
well whose content (energy level) is bi (t) and an
available-charge well whose content is ri (t) (details are given
in [29]). The controllable input flow is denoted by h(t) and, in
general, it is distributed to both wells through a constant coef-
ficient β (0 ≤ β ≤ 1). As shown in [29], the case where β = 0
gives the same optimal solution structure as the generic case.
Thus, to maintain some simplicity in the analysis, we will limit
ourselves to β = 0 and obtain the KBM shown in (2) and (3)
below. In our prior work involving a single battery we sought
to control the discharging and recharging processes (executed
by the controller) so as to maximize the battery output over
a given interval while maintaining some required residual
energy level. However, when dealing with multiple recharge-
able batteries, we adopt an objective motivated by the goal
of maximizing a system’s “lifetime,” often viewed as the time
until the first battery is depleted (e.g., [22] and [30]). Thus, we
seek to maximize the minimum residual energy after finishing
a prescribed workload within a time interval [0, T ] (note that
this provides the flexibility to repeat the system’s operation
over cycles of length T ). Let S be the battery index set with
|S| = N , and let U(t) = (u1(t), h1(t), . . . , uN (t), hN (t))T ,
where ui (t) and hi (t) for i ∈ S denote the instantaneous
discharge and recharge rate of battery i , respectively. We then
formulate the problem as follows:

max
U (t)

min
i∈S

ri (T ) (1)

ṙi (t) = −c1ui (t) + k(bi (t) − ri (t)) (2)

ḃi (t) = c2hi (t) − k(bi (t) − ri (t)) (3)

ri (t) ≥ 0, bi(t) ≤ B (4)

ui (t)hi (t) = 0 (5)

0 ≤ ui (t) ≤ 1, 0 ≤ hi (t) ≤ 1 (6)

0 ≤
N∑

i=1

ui (t) ≤ 1 (7)

∫ T

0

∑

i

ui (t)dt = Q. (8)
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Here, (2) and (3) capture the battery dynamics through the
KBM, where k depends on the battery characteristics and
c1, c2 are battery-specific influencing factors for discharge and
recharge processes, satisfying c1 > c2 ≥ 0 (this indicates that
a battery discharges faster than it recharges). The constraint
(5) requires that the discharging and recharging processes
cannot occur simultaneously (this can be relaxed, depending
on the application) and (6) imposes natural limits on the
corresponding process rates. The state variables ri (t), bi (t)
are physically constrained as in (4) with bi (0) ≥ ri (0). The
overall load to be served can be supported by either one or
multiple batteries at any time, as indicated in (7) and consistent
with (6). Finally, (8) captures the fact that the load is required
to complete a specific amount of work Q within [0, T ].

III. OPTIMAL CONTROL PROPERTIES

We begin by solving (2) and (3) under the assumption
that a control policy {ui (t), hi (t), i ∈ S} is feasible over
some interval [t1, t2] ⊆ [0, T ], including possible boundary
arcs where ri (τ ) = 0 or bi (τ ) = B , τ ∈ [t1, t2]. It is
straightforward to derive this solution

ri (τ ) = 1
2

[
bi(t1) + ri (t1) − (bi (t1) − ri (t1))e−2k(τ−t1)

]

− 1
2

∫ τ
t1

[
c1ui (t)[1 + e2k(t−τ )] − c2hi (t)[1 − e2k(t−τ )]

]
dt (9)

bi (τ ) = 1
2

[
bi (t1) + ri (t1) + (bi (t1) − ri (t1))e−2k(τ−t1)

]

− 1
2

∫ τ
t1

[
c1ui (t)[1 − e2k(t−τ )] − c2hi (t)[1 + e2k(t−τ )]

]
dt . (10)

Setting ρi (t1, τ ) and βi (t1, τ ) to denote the first term in (10)
and (10) respectively, we can write for a solution over [0, T ]

ri (T ) = ρi (0, T ) −
∫ T

0
c1ui (r)

1 + e2k(r−T )

2
dr

+
∫ T

0
c2hi (r)

1 − e2k(r−T )

2
dr (11)

bi (T ) = βi (0, T ) −
∫ τ

0
c1ui (r)

1 − e2k(r−T )

2
dr

+
∫ τ

0
c2hi (t)

1 + e2k(r−T )

2
dr (12)

as long as the feasibility of {ui (t), hi (t)} over [0, T ] is
assumed. Since we have assumed bi (0) ≥ ri (0), obviously
βi (0, T ) > ρi (0, T ) > 0.

Let us denote an optimal control policy by {u∗
i (t), h∗

i (t), i ∈
S}. We can immediately observe that {0, 0, i ∈ S} cannot be an
optimal policy, i.e., a policy that maximizes mini∈S ri (T ). This
follows from the constraint (5) and the fact that {0, 0} in (11)
is dominated by any control {0, hi (t)} with hi (t) > 0 which
gives a larger value for ri (T ). Moreover, (8) requires ui (t) >
0, hi (t) = 0 for some i and over some interval [t1, t2] ⊆
[0, T ]. Thus, at least some i ∈ S must include ui (t) > 0; for
any remaining i ∈ S an optimal control would be {0, hi (t)}
with hi (t) > 0. Therefore, an optimal control for any i ∈ S
has the property that either u∗

i (t) > 0, h∗
i (t) = 0 or u∗

i (t) =
0, h∗

i (t) > 0 (with h∗
i (t) = 1 when bi (t) < B).

The main result in this section (Theorem 1) is that, under
optimal control, all r∗

i (T ), i ∈ S, are equal provided there is
at least one feasible policy under which all ri (T ), i ∈ S, are

equal. In order to establish this result, we will make use of a
perturbed policy {u′

i (t), h′
i (t), i ∈ S} relative to any feasible

one {ui (t), hi (t), i ∈ S}. We define such a policy by perturbing
two of the controls indexed by i and j �= i respectively as
follows:
{

u′
i (t) = ui (t), h′

i (t) = hi (t) t ∈ [0, T ]/[τi , τi + �i ]
u′

i (t) = ui (t) − �ui , h′
i (t) = 0 t ∈ [τi , τi + �i ]

(13)
{

u′
j (t) = u j (t), h′

j (t) = h j (t) t ∈ [0, T ]/[τ j , τ j + � j ]
u′

j (t) = u j (t) + �u j , h′
j (t) = 0 t ∈ [τ j , τ j + � j ]

(14)

where �ui , �u j , �i , and � j are all positive constants. For
notational convenience, we shall refer to the perturbed control
for i in (13) above as π−[ui , τi ,�i ,�ui ] and the one for
j in (14) as π+[u j , τ j ,� j ,�u j ]. In simple terms, under
π−[ui , τi ,�i ,�ui ] the discharging control ui (t) is reduced
by �ui > 0 over an interval [τi , τi + �i ], while u j (t) under
π+[u j , τ j ,� j ,�u j ] is increased by �u j > 0 over an interval
[τ j , τ j + � j ]; in both cases, the recharging control over these
intervals is 0 to satisfy (5) and the controls remain unchanged
over the rest of [0, T ]. Assuming for the moment the feasibility
of {u′

i (t), h′
i (t)} and {u′

j (t), h′
j (t)}, let �ri (t) = r ′

i (t) − ri (t),
�bi(t) = b′

i (t) − bi (t) and observe that for any t ∈ [τi , T ] it
follows from (9) and (10):

�ri (t) =
{

1
2 c1�ui

∫ t
τi
[1 + e2k(r−t)]dr t < τi + �i

1
2 c1�ui

∫ τi +�i
τi

[1 + e2k(r−t)]dr t ≥ τi + �i
(15)

�bi (t) =
{

1
2 c1�ui

∫ t
τi
[1 − e2k(r−t)]dr t < τi + �i

1
2 c1�ui

∫ τi +�i
τi

[1 − e2k(r−t)]dr t ≥ τi + �i
(16)

and note that �ri (t) > �bi(t) > 0. Similarly, for any
t ∈ [τ j , T ]

�r j (t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
2

∫ t
τ j

[
c1�ui [1 + e2k(r−t)]

+ c2h j (r)[1 − e2k(r−t)]]dr t < τ j + � j

− 1
2

∫ τ j +� j
τ j

[
c1�ui [1 + e2k(r−t)]

+ c2h j (r)[1 − e2k(r−t)]]dr t ≥ τ j + � j

(17)

�bi (t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
2

∫ t
τ j

[
c1�ui [1 − e2k(r−t)]

+ c2h j (r)[1 + e2k(r−t)]]dr t < τ j + � j

− 1
2

∫ τ j +� j
τ j

[
c1�ui [1 − e2k(r−t)]

+ c2h j (r)[1 + e2k(r−t)]]dr t ≥ τ j + � j

(18)

and note that �r j (t) < �b j (t) < 0. Regarding the feasibility
of {u′

i (t), h′
i (t)} and {u′

j (t), h′
j (t)}, we need to satisfy all

problem constraints. This can be accomplished under certain
conditions, as expressed in the next two lemmas.

Lemma 1: Let {ui (t), hi (t)}, {u j (t), h j (t)} be controls for
i, j in a feasible policy. If r j (t) > 0 for all t ∈ [0, T ] under
this policy, then the following conditions ensure that there are
feasible perturbed controls {u′

i (t), h′
i (t)}, {u′

j (t), h′
j (t)}.

C1) There exists an interval [τi , τi + �i ] with ui (t) > 0,
t ∈ [τi , τi + �i ].
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C2) There exists an interval [τ j , τ j + � j ] such that∑
k∈S uk(t) < 1, t ∈ [τ j , τ j + � j ]/[t1, t2], where

[t1, t2] = [τi , τi +�i ]∩[τ j , τ j +� j ] and [τi , τi +�i ]
satisfies C1).

Proof: In order to ensure the feasibility of {u′
i (t), h′

i (t)},{u′
j (t), h′

j (t)}, we must satisfy the constraints (4) through (8).
Note that (5) holds by construction. Next, to satisfy (6), we
have u′

j (t) > u j (t) ≥ 0 in (14), but must also ensure that
u′

i (t) ≥ 0 in (13); this follows from C1) since we may select
�ui > 0 arbitrarily small. Regarding (7), u′

i (t) < ui (t) in
(13) preserves the inequality, but u′

j (t) in (14) may violate
it. However, under C2) we may select �u j > 0 arbitrarily
small to satisfy

∑
k∈S u′

k(t) ≤ 1 over [τ j , τ j + � j ]/[t1, t2].
In the interval [t1, t2] (if it is not empty), we can select
�ui ≥ �u j to preserve (7). To satisfy (8), we require∫ T

0 [ui (t) + u j (t)]dt = ∫ T
0 [u′

i (t) + u′
j (t)]dt , which implies

�ui�i = �u j� j a condition which may be satisfied by
properly selecting �i , � j relative to the values of �ui , �u j .

Regarding the constraints in (4), from (15) and (17), we
have

r ′
i (t) > ri (t), b′

i (t) > bi (t), t ∈ [τi , T ] (19)

r ′
j (t) < r j (t), b′

j (t) < b j (t), t ∈ [τ j , T ] (20)

so that we only have to ensure that b′
i (t) ≤ B and r ′

j (t) ≥ 0
in (4) are satisfied under {u′

i (t), h′
i (t)}, {u′

j (t), h′
j (t)}. As far

as the constraint b′
i (t) ≤ B is concerned, we can ensure it

remains in force as follows. Suppose bi (t1) = B for some t1 ∈
[τi , T ]. Consider an interval [τh, τh + �h] with τh + �h < t1,
where ui (t) = 0, hi (t) > 0. The existence of [τh, τh + �h] is
guaranteed because bi (t1) = B cannot be satisfied by (3) if
hi (t) = 0 over [0, t1]. Let hi (t) be perturbed by −�hi < 0
over [τh, τh + �h] and observe that from (9) and (10) we get
corresponding perturbations

�rh
i (t) = − 1

2 c2�hi
∫ τh+�h
τh

[1 − e2k(r−t)]dr (21)

�bh
i (t) = − 1

2 c2�hi
∫ τh+�h
τh

[1 + e2k(r−t)]dr (22)

where �bh
i (t) < �rh

i (t) < 0. Now recalling that in
(15) and (16) �ri (t) > �bi(t) > 0 over [τi , T ], we can
always select τh,�h,�hi to satisfy �ri (t) + �rh

i (t) > 0 and
�bi (t) + �bh

i (t) = 0 over [t1, T ]. Consequently, for any i
subject to π−[ui , τi ,�i ,�ui ], we can guarantee b′

i(t) ≤ B
by adequately perturbing hi (t) over [τh, τh + �h].

Regarding the constraint r ′
j (t) ≥ 0, under the lemma’s

assumption r j (t) > 0 for all t ∈ [τ j , T ], there exists ε > 0
such that r j (t) > ε > 0. Then, from (17), we can always
satisfy r ′

j (t) ≥ 0 by selecting �u j > 0, � j > 0 such that

1

2

∫ τ j +� j

τ j

[
c1�ui [1 + e2k(r−t)]

+ c2h j (r)[1 − e2k(r−t)]
]

dr ≤ ε

which completes the proof of the lemma. �
Under certain conditions, C2) in Lemma 1 can be relaxed

and the result requires only C1) as expressed in the following
corollary.

Corollary 1: For the setting of Lemma 1, suppose τi = τ j

and �i = � j . Then, C2) is not needed and the result holds
under C1) only.

Proof: Condition C2) was needed to ensure (7) is satisfied.
In this case, suppose

∑
k∈S uk(t) = 1 over [τi , τi + �i ] ≡

[τ j , τ j + � j ]. Since, under {u′
i (t), h′

i (t)}, {u′
j (t), h′

j (t)} the
only changes occur over [τi , τi + �i ], we can ensure that∑

k∈S u′
k(t) = 1 over [τi , τi + �i ] [hence, (7) still holds] by

selecting �ui = �u j . If, on the other hand,
∑

k∈S uk(t) < 1,
the same construction obviously satisfies

∑
k∈S u′

k(t) < 1. �
Before establishing our main result, we need one more

lemma as follows, which ensures the existence of some j with
r j (t) > 0 whenever

∑
i∈S ui (t) = 1.

Lemma 2: Suppose
∑

i∈S ui (t) = 1 over some interval
[t1, t2] ⊂ (0, T ]. Then, among all j with u j (t) > 0 over
[t1, t1 + ε] ⊆ [t1, t2] for some ε > 0, there exists at least one
with r j (t) > 0 over [t1, t1 + ε].

Proof: We first use a contradiction argument to prove that
there exists j ∈ S with u j (t) > 0 over [t1, t1 + ε] such
that r j (t1) > 0. Assume that for all j with u j (t) > 0 over
[t1, t1 + ε], we have r j (t1) = 0. Suppose there are n such
batteries (arbitrarily indexed from 1 to n) with u j (t) > 0,
h j (t) = 0 over [t1, t1 +ε] so that U(t) ≡ ∑n

i=1 ui (t) = 1. Let
R(t) = ∑n

i=1 ri (t) and B(t) = ∑n
i=1 bi (t) and observe that

by summing (2) and (3) over all i = 1, . . . , n we get

Ṙ(t) = −c1 + k(B(t) − R(t)), t ∈ [t1, t1 + ε] (23)

Ḃ(t) = −k(B(t) − R(t)) (24)

where R(t) ≥ 0 due to ri (t) ≥ 0, i = 1, . . . , n, in (4).
Moreover, under the assumption that r j (t1) = 0, j = 1, . . . , n,
we have R(t1) = 0. We now invoke Lemma 2 in [29] which
asserts that for the KBM model (2) and (3) if t1 ∈ (0, T )
is such that ui (t1) = 1 and ṙi (t1) > 0 regardless of {hi (t)},
then, under feasible {ui (t), hi (t)}, we must have ṙi (t) > 0 for
all t ∈ [0, t1]. If Ṙ(τ ) > 0, τ ∈ [t1, t1 + ε], this property
applies to (23) and (24), since U(t) = 1 over [t1, t1 + ε].
Thus, suppose there exists τ ∈ [t1, t1 + ε] such that Ṙ(τ ) > 0.
Then, Ṙ(t) > 0 for all t ∈ [0, τ ]. However, this contradicts
the fact that R(t1) = 0 which requires Ṙ(t) < 0 for at least
some t < t1, since R(t) ≥ 0 over all t ∈ [0, T ]. We conclude
that Ṙ(t) ≤ 0 over [t1, t1 + ε]. Since R(t1) = 0, this implies
that R(t) ≤ 0 over [t1, t1 + ε]. Still subject to R(t) ≥ 0 over
all t ∈ [0, T ], it follows that R(t) = 0 over all t ∈ [t1, t1 + ε],
which also leads to Ṙ(t) = 0 over [t1, t1 + ε]. Then, (23)
implies that B(t) = c1

k in such an interval, so that (24) implies
that Ḃ(t1) = −c1 < 0 contradicting the fact that B(t) = c1

k is
constant. We conclude that R(t1) = 0 cannot be true; hence,
the assumption that r j (t1) = 0, j = 1, . . . , n cannot hold.
Therefore, there exists j ∈ S, such that r j (t1) > 0. Since
r j (t) is continuous, there exists ε > 0 such that r j (t) > 0,
t ∈ [t1, t1 + ε], proving the lemma. �

Theorem 1: Let � be the set of feasible policies for the
problem (1)–(8). If there exists π0 ∈ � under which ri (T ) =
r j (T ) for all i, j ∈ S, then there exists an optimal policy
π∗ ∈ � such that r∗

i (T ) = r∗
j (T ) for all i, j ∈ S.

Proof: For any optimal policy, let

S1 = {i : r∗
i (T ) = r̄}, S2 = {i : r∗

i (T ) > r̄} (25)
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where S = S1 ∪ S2, and r̄ is the optimal value of the objective
function in (1). Moreover, let

l = arg min
i∈S2

{r∗
i (T )} (26)

so that for all j ∈ S1 we have r̄ = r∗
j (T ) < r∗

l (T ). Note that
if S2 = ∅, then S1 = S, i.e., r∗

i (T ) = r̄ for all i ∈ S, which
proves the theorem. Thus, suppose S2 �= ∅ and consider two
possible cases.

Case 1: For all j ∈ S1,
∫ T

0 u∗
j (t)dt > 0.

Case 2: For at least one a ∈ S1,
∫ T

0 u∗
a(t)dt = 0.

Let us consider Case 1 first.
Under Case 1, we will use a contradiction argument to

prove the assumed optimal policy is not optimal. In particular,
since S2 �= ∅ for such a policy, then r∗

i (T ) �= r∗
j (T ) for

some i, j ∈ S. We will show that there is a feasible perturbed
policy that provides a higher objective value. There are two
possible subcases to consider, as follows.

Case 1a: For all j ∈ S1,
∫ T

0 u∗
j (t)dt > 0 and r∗

l (t) > 0
for all t ∈ [0, T ]. In this case, the assumption of Lemma 1
applies for l ∈ S2. In addition, there exists an interval
[τ j , τ j + � j ] ⊆ [0, T ] such that u∗

j (t) > 0 for all t ∈
[τ j , τ j + � j ] [this may include a boundary arc r∗

j (t) = 0
where u∗

j (t) = [(kb∗
j (t))/c1] > 0 as seen in (2)]. There-

fore, condition C1) of Lemma 1 holds for all j ∈ S1. We
now construct a perturbed policy where the controls of all
j ∈ S1 and of l in (26) are perturbed to {u′

j (t), h′
j (t)} for

j ∈ S1 and to {u′
l(t), h′

l (t)} as follows. We sequentially
apply π−[u j , τ j ,� j ,�u j ] in (13) to each j ∈ S1 and
each time this is done we also apply π+[ul, τ j ,� j ,�ul ] to
l ∈ S2 over each individual [τ j , τ j + � j ]. By Corollary 1,
the resulting perturbed policy after each application of π−[·],
π+[·] is feasible. In particular, let us arbitrarily re-index S1
by m = 1, . . . , M where M = |S1|. Then, let {u′

m(t), h′
m (t)}

and {u(m)
l (t), h(m)

l (t)} denote the control resulting from the
mth application of π−[·] and π+[·] respectively. By Corol-
lary 1, π−[u1, τ1,�1,�u1] and π+[ul, τ1,�1,�u1] result
in feasible {u′

1(t), h′
1(t)} and {u(1)

l (t), h(1)
l (t)}. Repeating

this process for m = 2, . . . , M , applying π−[um, τm ,�m ,

�um] and π+[u(m−1)
l , τm ,�m,�um ] results in feasible

{u′
m(t), h′

m (t)} and {u(m)
l (t), h(m)

l (t)}. At the final step, we set
{u(M)

l (t), h(M)
l (t)} ≡ {u′

l(t), h′
l (t)} which is a feasible control

and it is easy to check that
∑

k∈S u′
k(t) = ∑

k∈S uk(t) for all
t ∈ [τm, τm + �m], m = 1, . . . , M .

By the construction of the perturbed policy, (15) applies
to all j ∈ S1, so that r ′

j (T ) > r̄ . Moreover, (17) applies
to l ∈ S2 so that r ′

l (T ) < r∗
l (T ). By selecting �u j , � j

sufficiently small, however, we can guarantee |�rl(T )| in (17)
is sufficiently small to ensure that r ′

l (T ) > r̄ . Therefore, under
the feasible perturbed policy, the objective value is

r̄ ′ = min
i∈S1∪S2

r ′
i (T ) > r̄ (27)

which contradicts the optimality of a policy with r∗
i (T ) �=

r∗
j (T ) for at least some i, j ∈ S.

Case 1b: For all j ∈ S1,
∫ T

0 u∗
j (t)dt > 0 and r∗

l (t) = 0
for some t ∈ [0, T ]. In this case, let te = sup{t : t ∈

(0, T ), r∗
l (t) = 0}. Note that te < T since r∗

l (T ) > r̄ ≥ 0
from (25). Then, we have r∗

l (t) > 0 over (te, T ] and r∗
l (te) =

0. Therefore, for any j ∈ S1 such that u∗
j (t) > 0 over

[τ j , τ j + � j ] ⊂ [te, T ], the construction of perturbed controls
is the same as in Case 1 since r∗

l (t) > 0 over (te, T ] and we
can obtain r ′

j (T ) > r̄ and r∗
l (T ) > r ′

l (T ) > r̄ by adequately
selecting �u j , � j .

Thus, we only need to consider j ∈ S1 such that u∗
j (t) = 0

over [te, T ] in the sequel. In this case, however, since∫ T
0 u∗

j (t)dt > 0 for all j ∈ S1, there must exist some interval
[τ j , τ j +� j ] ⊆ [0, te) with u∗

j (t) > 0 for all t ∈ [τ j , τ j +� j ].
If there exists some interval [τl , τl +�l] ⊆ [te, T ] over which∑

i∈S u∗
i (t) < 1, then condition C2) holds and Lemma 1

applies, so that we can again obtain a feasible perturbed policy
with r ′

j (T ) > r̄ and r∗
l (T ) > r ′

l (T ) > r̄ satisfying (27) by
adequately selecting �u j , � j .

Consequently, the only remaining case to consider is that
of j ∈ S1 such that both u∗

j (t) = 0 and
∑

i∈S u∗
i (t) = 1 for

all t ∈ [te, T ]. By Lemma 2, there exists some m ∈ S such
that u∗

m(t) > 0 and r∗
m(t) > 0 over a finite-length interval

[te, te + ε] ⊆ [te, T ]. Then, regarding the interval (0, te), we
consider two possible cases: 1) r∗

m(t) > 0 for all t ∈ (0, te),
and 2) r∗

m(t) = 0 at some t ∈ (0, te).
In case 1), since all remaining j ∈ S1 satisfy u∗

j (t) > 0
over some interval [τ j , τ j + � j ] ⊆ [0, te), Corollary 1
may be used over [0, te + ε] for j, m and we can apply
π−[u j , τ j ,� j ,�u j ] and π+[um, τ j ,� j ,�um] to all j and
m by proceeding exactly as in Case 1 above. Although the
resulting policy is feasible over [0, te + ε], we do not know
whether m ∈ S1 or m ∈ S2 and whether r∗

m(t) > 0 over
(te + ε, T ]. As a result, we cannot ensure that r ′

m(T ) > r̄ or
that the constraint r ′

m(t) ≥ 0 is satisfied over (te + ε, T ]. We
can still achieve this, however, by applying π−[um, te, ε,�um ]
and π+[ul, te, ε,�um ] since u∗

m(t) > 0 over [te, te + ε] and
r∗

l (t) > 0 over (te, T ] so Corollary 1 can be used again for
m, l. In this way, by appropriately selecting �u j ,� j ,�um ,
we can construct a perturbed policy that satisfies (27).

In case 2), let t1 = sup{t : t ∈ (0, te), r∗
m(t) = 0}. Since

r∗
m(t) > 0 over (t1, te], we can still apply Corollary 1 for all
j ∈ S1 such that

∫ te
t1

u∗
j (t)dt > 0 since u∗

j (t) > 0 over some
[τ j , τ j + � j ] ⊆ (t1, te]. We apply π−[u j , τ j ,� j ,�u j ] and
π+[um, τ j ,� j ,�um] to all j and m and proceed exactly as
in Case 1 above.

At this point, we have found perturbed policies which satisfy
(27) for all j ∈ S1 such that

∫ T
t1

u∗
j (t) > 0. We can now

proceed backward in time and repeat the exact same argument
over [t2, t1] where t2 = sup{t :t ∈ (0, t1), r∗

n1
(t) = 0} since,

by Lemma 2, there exists some n1 ∈ S such that u∗
n1

(t) > 0
and r∗

n1
(t) > 0 over [t1, t1 +ε]. If r∗

n1
(t) > 0 for all t ∈ [0, t1],

we apply π−[u j , τ j ,� j ,�u j ] to all remaining j ∈ S1 and
π+[un1, τ j ,� j ,�un1 ]; otherwise, we limit ourselves to those
j ∈ S1 such that u∗

j (t) > 0 for some interval in (t2, t1]
and repeat the process over [t3, t2] where t3 = sup{t:t ∈
(0, t2), r∗

n2
(t) = 0} where n2 ∈ S such that u∗

n2
(t) > 0 and

r∗
n2

(t) > 0 over [t2, t2 + ε] and the existence of n2 is still
guaranteed by Lemma 2. Clearly, this iterative process ends
when all j ∈ S1 are exhausted, at which point a feasible



WANG AND CASSANDRAS: OPTIMAL CONTROL OF MULTIBATTERY ENERGY-AWARE SYSTEMS 1879

perturbed policy has been constructed satisfying (27) and
establishing a contradiction with the assumption that the policy
described by (25) is optimal. Therefore, there exists an optimal
policy π∗ such that r∗

i (T ) = r∗
j (T ) for all i, j ∈ S.

Next, we consider Case 2, in which there exists at least one
a ∈ S1 such that

∫ T
0 u∗

a(t)dt = 0, therefore h∗
a(t) > 0 for all

t ∈ [0, T ] and h∗
a(t) attains its maximum feasible value subject

to all constraints so as to satisfy r∗
a (T ) = r̄ . In this case, we

can find another optimal policy π ′ such that r ′
i (T ) = r ′

j (T )
for all i, j ∈ S as follows. We construct a perturbed policy
in which {u′

j (t), h′
j (t)} = {u∗

j (t), h∗
j (t)} for all j ∈ S1 and

adjust {u∗
k(t), h∗

k (t)} to {u′
k(t), h′

k(t)}for all k ∈ S2, so that
r ′

k(T ) = r̄ . Since, by assumption, r̄ is the largest value ra(T )
can attain, under all feasible policies we have ra(T ) ≤ r̄ .
Then, since we have assumed there exists some π0 ∈ � with
ri (T ) = r j (T ) for all i, j ∈ S, it follows that ri (T ) = re ≤ r̄
for all i ∈ S under π0. This means that the optimal control
that yields r∗

i (T ) ≥ r̄ ≥ re can be perturbed to a feasible
control that yields ri (T ) = re ≤ r̄ . Looking at (11), since
ri (T ) is continuous, all ri (T ) values in [re, r̄ ] are attainable,
including r̄ . As a result, there is a policy π ′ that yields r ′

i (T ) =
r̄ for all i ∈ S, which is also optimal, implying the existence of
an optimal policy satisfying r∗

i (T ) = r∗
j (T ) for all i, j ∈ S. �

Remark 1: It is clear from the proof of Theorem 1 that
not all optimal policies have the property r∗

i (T ) = r∗
j (T ) for

all i, j ∈ S. While this is true in Case 1, under Case 2 it
is possible to have an optimal policy in which one or more
batteries are never actually discharged over [0, T ]. In the latter
case, however, there is always a policy satisfying r∗

i (T ) =
r∗

j (T ) for all i, j ∈ S which is also optimal.
We will now tackle the situation where there exists no π0 ∈

� under which ri (T ) = r j (T ) for all i, j ∈ S. Let us start by
defining r̄i (T ) as the maximum reachable value in (11) based
on the initial condition ρi (0, T ) defined in (11) and setting
hi (t) to its maximum feasible value subject to bi (t) ≤ B . Let

r̄L(T ) = min
i∈S

{r̄i (T )}, L = argmin
i∈S

{r̄i (T )}. (28)

We will show in Theorem 2 that r̄L(T ) is the optimal value
of the objective function in (1). We will accomplish this with
the help of the following lemma.

Lemma 3: If there exists no feasible policy π0 ∈ � such that
ri (T ) = r j (T ) for all i, j ∈ S, then under an optimal control
policy π∗, there exists k ∈ S such that r∗

k (T ) > r̄L(T ).
Proof: We will use a contradiction argument and assume

that under π∗ we have r∗
i (T ) ≤ r̄L(T ) for all i ∈ S. We have

already established that in an optimal policy we have either
u∗

i (t) > 0, h∗
i (t) = 0 or u∗

i (t) = 0, h∗
i (t) > 0 for any t ∈

[0, T ]. Therefore, if r∗
L(T ) = r̄L(T ) we have

∫ T
0 u∗

i (t)dt > 0
for all i ∈ S/{L}, and if r∗

L(T ) < r̄L(T ) we have
∫ T

0 u∗
i (t)dt >

0 for all i ∈ S. Since the case where r∗
i (T ) = r̄L(T ) for

all i ∈ S is excluded by the assumption that a policy π0
is not feasible, let us define two sets S1 = {i : r∗

i (T ) <
r̄L(T )}, S2 = {i : r∗

i (T ) = r̄L(T )}. Note that regardless of
whether L ∈ S1 or L ∈ S2, we have

∫ T
0 u∗

j (t)dt > 0 for all
j ∈ S1. Next, there are two cases to consider.

First, suppose S2 �= ∅. Then, we can perturb the controls of
all j ∈ S1 and all k ∈ S2 to increase r j (T ) and decrease rk(T )

respectively. Since r̄L(T ) = mini∈S{r̄i (T )}, it is feasible for
each r j (T ) to increase and reach the value r ′

j (T ) = r̄L(T ).
Moreover, from (11), ri (T ) can be continuously perturbed for
all i ∈ S. Therefore, we can fix a value r ′

i (T ) < r̄L(T ) which
is attainable by all i ∈ S. This contradicts the assumption that
π0 does not exist. Consequently, it is not possible to satisfy
r∗

i (T ) ≤ r̄L(T ) for all i ∈ S under π∗ and it follows that
r∗

k (T ) > r̄L(T ) for some k ∈ S.
Second, suppose S2 = ∅, i.e., S1 = S. Then, we can always

find some l = arg maxi∈S{r∗
i (T )} and similarly perturb the

controls of all j ∈ S/{l} and of l so as to increase r j (T )

and decrease rl(T ) through (11). Since
∫ T

0 u∗
i (t)dt > 0 for all

i ∈ S, it follows that r∗
l (T ) is not the smallest value that l can

reach. In addition, each r j (T ) can be increased to r̄L(T ) since
r∗

j (T ) ≤ r̄L(T ). Thus, we can fix a value r ′
i (T ) < r̄L(T ) which

is attainable by all i ∈ S. This again contradicts the assumption
that π0 does not exist. Consequently, it is not possible to satisfy
r∗

i (T ) ≤ r̄L(T ) for all i ∈ S under π∗ and it follows that
r∗

k (T ) > r̄L(T ) for some k ∈ S. �
Theorem 2: If there exists no feasible policy π0 ∈ � such

that ri (T ) = r j (T ) for all i, j ∈ S, then the optimal value of
the objective function is r̄L(T ) in (28).

Proof: We will use a contradiction argument. Assume the
optimal value of the objective function is r∗ < r̄L(T ). Let us
define three sets

S1 = {i : r∗
i (T ) < r̄L(T )}, S2 = {i : r∗

i (T ) = r̄L(T )}
S3 = {i : r∗

i (T ) > r̄L(T )}.
By Lemma 3, S3 �= ∅. On the other hand, if S1 = ∅, then
it directly contradicts the assumption r∗ < r̄L(T ). Therefore,
S1 �= ∅ in the following argument. Since we have established
that in an optimal policy we have either u∗

i (t) > 0, h∗
i (t) = 0

or u∗
i (t) = 0, h∗

i (t) > 0 and in view of the definition of
r̄L(T ) in (28), we have

∫ T
0 u∗

j (t)dt > 0 for all j ∈ S1. We
can now proceed similar to the argument used in Cases 1
and 2 in the proof of Theorem 1. We can always find some
l ∈ S3 to increase r j (T ) for all j ∈ S1 through perturbations
π−[u j , τ j ,� j ,�u j ] for all j ∈ S1 and decrease rl(T ) through
π+[ul , τ j ,� j ,�ul ] for l ∈ S3 as long as r ′

j (T ) ≤ r̄L(T ) and
l ∈ S3. If r ′

l (T ) decreases to a value r ′
l (T ) = r̄L(T ), i.e.,

l ∈ S2, and not all r ′
j (T ) increase to r ′

j (T ) = r̄L(T ), i.e.,
S1 �= ∅, then we can select some other m ∈ S3 to repeat the
process. By Lemma 3, S3 will never be empty. However, we
will eventually reach the point where all r ′

j (T ) = r̄L(T ) for all
j ∈ S1, thus emptying S1. Then, we contradict the assumption
that r∗ < r̄L(T ) and thus prove the theorem. �

IV. OPTIMAL CONTROL SOLUTION

In this section, we provide a complete solution to the
problem (1)–(8) by making use of the two main results in
Section III. If there exists no feasible policy π0 ∈ � such that
ri (T ) = r j (T ) for all i, j ∈ S, we can directly determine the
optimal objective function value by Theorem 2. Therefore,
let us concentrate on the case where π0 ∈ � exists. Then,
by Theorem 1, we can add a terminal state constraint to the
problem (1)–(8) without affecting its solution

ri (T ) = r j (T ) ∀i, j ∈ S (29)
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so that in the original objective function (1) we have
mini∈S ri (T ) =ri (T ) for any i ∈ S. Since maxU (t) ri (T ) =
maxU (t)

∑N
i=1 ri (T ) in light of (29), we can rewrite (1) as

min
U (t)

−
N∑

i=1

ri (T ). (30)

As for the integral constraint (8), we define an additional state
variable q(t) and replace (8) by

q̇(t) =
N∑

i=1

ui (t), q(0) = 0, q(T ) = Q. (31)

Now the original max-min problem becomes a typical optimal
control problem with terminal state constraints. However, there
are 2N + 1 states in total such that the problem is not
easy to solve if N is large. Thus, we will start with the
N = 2 case which provides insights allowing us to tackle
the higher-dimensional cases.

A. Solution of the N = 2 Case

When N = 2 we index the batteries so that ρ1(0, T ) ≥
ρ2(0, T ). Accordingly, the control is U(t) = (u1(t), h1(t),
u2(t), h2(t))T. Moreover, in order to satisfy (29) it follows
from (11) that U(t) must be such that

ρ1(0, T ) − ρ2(0, T ) =
∫ T

0

(
c1(u1(r) − u2(r))

1 + e2k(r−T )

2

−c2(h1(r) − h2(r))
1 − e2k(r−T )

2

)
dr.

Based on the definition of � in Theorem 1, we denote the
set of feasible policies in � satisfying (29) by �0. Subject
to the control constraints (5)–(8), no feasible solution exists
if ρ1(0, T ) − ρ2(0, T ) > ᾱ where ᾱ is determined from the
above equation

ᾱ = max
π∈�0

∫ T

0

(
c1(u1(r) − u2(r))

1 + e2k(r−T )

2

− c2(h1(r) − h2(r))
1 − e2k(r−T )

2

)
dr.

Since 1 + e2k(t−T ) is monotonically increasing in t , ᾱ is
attained by letting u1(t) = 0 over [0, T − Q) and u1(t) = 1
over [T − Q, T ], h1(t) = 0, u2(t) = 0, h2(t) = 1 over [0, T ]

ᾱ =
∫ T

T −Q
c1

1 + e2k(r−T )

2
dr +

∫ T

0
c2

1 − e2k(r−T )

2
dr. (32)

Then, ρ1(0, T ) − ρ2(0, T ) ≤ ᾱ must be satisfied to ensure a
feasible solution.

1) Unconstrained Case: In order to obtain an explicit
optimal control U∗(t), we proceed as in [29] by first analyzing
the unconstrained case in which (4) is relaxed and the
optimal state trajectories for both batteries consist of an
interior arc over the entire interval [0, T ]. Let x(t) =
(r1(t), b1(t), r2(t), b2(t), q(t))T and λ(t) = (λ1(t), λ2(t),

λ3(t), λ4(t), λ5(t))T denote the state and costate vector respec-
tively. The Hamiltonian for this problem is then

H (x, λ, u1, h1, u2, h2) = λ(t)T ẋ(t)

= [−c1λ1(t) + λ5(t)]u1(t) + c2λ2(t)h1(t)

+ [−c1λ3(t) + λ5(t)]u2(t) + c2λ4(t)h2(t)

+ k[λ1(t) − λ2(t)][b1(t) − r1(t)]
+ k[λ3(t) − λ4(t)][b2(t) − r2(t)]. (33)

The costate equations λ̇ = − ∂ H
∂x give

λ̇1(t) = k(λ1(t) − λ2(t)), λ̇2(t) = −k(λ1(t) − λ2(t))

λ̇3(t) = k(λ3(t) − λ4(t)), λ̇4(t) = −k(λ3(t) − λ4(t))

λ̇5(t) = 0 (34)

and, due to (29) and (31), we must satisfy λ(T ) =
(∂�(x(T )))/∂x where �(x(T )) = −r1(T ) − r2(T ) +
ν1(r1(T ) − r2(T )) + ν2(q(T ) − Q) and ν1, ν2 are unknown
multipliers, so that

λ1(T ) = −1 + ν1, λ2(T ) = 0

λ3(T ) = −1 − ν1, λ4(T ) = 0, λ5(T ) = ν2. (35)

Solving (34) with the boundary conditions (35), we get
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1(t) = ν1−1
2 [1 + e2k(t−T )]

λ2(t) = ν1−1
2 [1 − e2k(t−T )]

λ3(t) = −ν1−1
2 [1 + e2k(t−T )]

λ4(t) = −ν1−1
2 [1 − e2k(t−T )]

λ5(t) = ν2.

(36)

Looking at (33), we define the switching functions s1(t), s2(t)
and s3(t), s4(t) corresponding to u1(t), h1(t) and u2(t), h2(t)
respectively

s1(t) = −c1λ1(t) + λ5(t), s2(t) = c2λ2(t)

s3(t) = −c1λ3(t) + λ5(t), s4(t) = c2λ4(t) (37)

and apply the Pontryagin minimum principle: H (x∗, λ∗,
u∗

i , h∗
i ) = min(ui ,hi ) H (x, λ, ui , hi ), where u∗

i (t), h∗
i (t) for

i = 1, 2, t ∈ [0, T ), denote the optimal controls. We can
then see that

u∗
1(t) =

{
1 s1(t) < 0
0 s1(t) > 0,

h∗
1(t) =

{
1 s2(t) < 0
0 s2(t) > 0

u∗
2(t) =

{
1 s3(t) < 0
0 s3(t) > 0,

h∗
2(t) =

{
1 s4(t) < 0
0 s4(t) > 0.

Singular cases may arise when ν2 = 0 and ν1 = 1 or −1,
making s1(t) = s2(t) = 0 or s3(t) = s4(t) = 0 respectively.
Let us proceed by setting these aside for the time being. Given
the constraint ui (t)hi (t) = 0, as well as the already excluded
u∗

i (t) = h∗
i (t) = 0 (see Section III), we can set h∗

i (t) =
1−u∗

i (t) in this unconstrained case and rewrite H (x, λ, ui , hi )
as follows:

H (x, λ, ui , hi ) = σ1(t)u1(t) + σ2(t)u2(t) + c2λ2(t)

+c2λ4(t) + k[λ1(t) − λ2(t)][b1(t) − r1(t)]
+k[λ3(t) − λ4(t)][b2(t) − r2(t)] (38)
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where σ1(t) = −c1λ1(t) + λ5 − c2λ2(t), σ2(t) = −c1λ3(t) +
λ5 −c2λ4(t) are the new switching functions of u1, u2 respec-
tively. Using (36), σ1, σ2 become

σ1(t) = 1−ν1
2

[
c1 + c2 + (c1 − c2)e2k(t−T )

] + ν2 (39)

σ2(t) = 1+ν1
2

[
c1 + c2 + (c1 − c2)e2k(t−T )

] + ν2. (40)

Thus, to minimize (38), the optimal control on the interior arc
is {

u∗
i (t) = 0, h∗

i (t) = 1 if σi (t) > 0
u∗

i (t) = 1, h∗
i (t) = 0 if σi (t) < 0

(41)

for i = 1, 2. We immediately observe in (41) that u∗
1(t) =

u∗
2(t) = 1 when σ1(t) < 0 and σ2(t) < 0, which violates the

constraint (7). In this case, 1) u∗
1(t) = 1, u∗

2(t) = 0 if σ1(t) <
σ2(t) < 0; 2) u∗

1(t) = 0, u∗
2(t) = 1 if σ2(t) < σ1(t) < 0;

and 3) either u∗
1(t) = 1, u∗

2(t) = 0 or u∗
1(t) = 0, u∗

2(t) = 1
if σ1(t) = σ2(t) < 0. Correspondingly, h∗

i (t) = 1 − u∗
i (t),

i = 1, 2. In other words, the optimal control in the interior
arc depends on the sign of σ1(t) − σ2(t) when σ1(t) <
0, σ2(t) < 0. By (39) and (40)

σ1(t) − σ2(t) = −ν1

(
c1 + c2 + (c1 − c2)e

2k(t−T )
)
. (42)

Therefore, along with (41), the optimal control can be summa-
rized as

U∗(t) = (0, 1, 0, 1)T if σ1(t) > 0, σ2(t) > 0 (43)

U∗(t) = (0, 1, 1, 0)T if
σ2(t) < 0 < σ1(t) or

σ2(t) < σ1(t) < 0
(44)

U∗(t) = (1, 0, 0, 1)T if
σ1(t) < 0 < σ2(t) or
σ1(t) < σ2(t) < 0.

(45)

Note that by (39) and (40), σ1(t) = σ2(t) when ν1 = 0,
but one can see that σ1(t) = σ2(t) = 0 is not possible for
any finite-length time interval. Thus, when σ1(t) = σ2(t), we
only need to consider the solution with σ1(t) = σ2(t) > 0
or σ1(t) = σ2(t) < 0. The solution to the former is given in
(43) and for the latter it is either (1, 0, 0, 1)T or (0, 1, 1, 0)T

as already analyzed earlier for the case where σ1(t) < 0 and
σ2(t) < 0. Now, in view of (39) and (40), we can determine
the optimal solution by considering all possible values of the
unknown constants ν1, ν2.

Case 1, ν1 = 0: By (42), σ1(t) − σ2(t) = 0, implying
that the optimal control U∗(t) can be either (0, 1, 1, 0)T or
(1, 0, 0, 1)T if σ1(t) = σ2(t) < 0; and (0, 1, 0, 1)T if σ1(t) =
σ2(t) > 0 according to (43). Moreover, in terms of (39) and
(40) we have

σ1(t) = σ2(t) = 1

2

(
(c1 + c2) + (c1 − c2)e

2k(t−T )
)

+ ν2.

Now, by analyzing ν2, we can determine the solution as
follows.

1) If ν2 ≥ − 1
2

(
(c1 + c2) + (c1 − c2)e−2kT

)
, then σ1(t) =

σ2(t) > 0 over (0, T ] such that U∗(t) = (0, 1, 0, 1)T

over [0, T ]. However, this solution violates the constraint
(8) and thus can be excluded.

2) If −c1 < ν2 < − 1
2

(
(c1 + c2) + (c1 − c2)e−2kT

)
, then

σ1(t) = σ2(t) < 0 over [0, ts) and σ1(t) = σ2(t) > 0
over (ts , T ], where ts is the switching time, such that

U∗(t) =
{

(1, 0, 0, 1)T or (0, 1, 1, 0)T t ∈ [0, ts ]
(0, 1, 0, 1)T t ∈ (ts, T ].

Since u∗
1(t)+u∗

2(t) = 1 over [0, ts) and u∗
1(t)+u∗

2(t) = 0
over (ts, T ], the constraint (8) requires ts = Q. Despite
the nonuniqueness of the solution over [0, Q], U∗(t)
over [0, Q] should be such that (29) is satisfied, i.e.,
r∗

1 (T ) = r∗
2 (T ).

3) If ν2 ≤ −c1, then σ1(t) = σ2(t) < 0 over [0, T ),
implying U∗(t) = (1, 0, 0, 1)T or (0, 1, 1, 0)T at any
time t ∈ [0, T ). Furthermore, since u∗

1(t) + u∗
2(t) = 1

over [0, T ), this implies that T = Q so as to satisfy (8)
while U∗(t) is still subject to (29). Since T = Q is a
special case, this solution is of little interest.

Remark 2: Cases (b) and (c) determine a class of solutions
in which the two batteries cooperatively discharge in order to
satisfy the total load requirement specified by Q. We shall
refer to this as a type I solution. Moreover, according to (11),
in order to satisfy (29) ρi (0, T ) must be such that

ρ1(0, T ) − ρ2(0, T ) = ∫ T
0 c1(u1(t) − u2(t))

1+e2k(t−T )

2

− c2(h1(t) − h2(t))
1−e2k(t−T )

2 dt . (46)

Regarding the solutions in cases (b) and (c), h∗
i (t) = 1−u∗

i (t)
over [0, T ] and h∗

1(t) − h∗
2(t) = 0 over (Q, T ] for both cases

[for case (c), (Q, T ] is a null set since T = Q]. Accordingly,
for this type of solution, (46) becomes

ρ1(0, T ) − ρ2(0, T ) = 1
2

∫ Q
0 (c1 + c2)(u∗

1(t) − u∗
2(t))

+ (c1 − c2)e2k(t−T )dt .

Furthermore, for all possible type I solutions, u∗
1(t)− u∗

2(t) =
±1 over [0, Q]. If u∗

1(t) − u∗
2(t) = 1 over [0, Q], implying

u∗
2(t) = 0 all the time, then ρ1(0, T ) − ρ2(0, T ) = α, where

α = 1
2

∫ Q
0 (c1+c2)+(c1−c2)e2k(t−T )dt . Otherwise, ρ1(0, T )−

ρ2(0, T ) < α.
Case 2, 0 < ν1 < 1: Given (42), σ1(t) < σ2(t) over [0, T ],

which makes the solution only depend on the sign of σ1(t) by
(43) and (45). The optimal control in this case can be derived
by examining all possible values of ν2.

1) If ν2 ≥ ν1−1
2

(
(c1 + c2) + (c1 − c2)e−2kT

)
, then 0 <

σ1(t) < σ2(t) over (0, T ] such that U∗(t) = (0, 1, 0, 1)T

over (0, T ] by (43). Thus, this solution can be excluded
for the same reason as Case 1(a).

2) If (ν1 − 1)c1 < ν2 < ν1−1
2

(
(c1 + c2) + (c1 − c2)e−2kT

)
,

then σ1(t) < 0 over [0, ts) and σ1(t) > 0 over
(ts, T ]. Accordingly, referring to (43) and (45), when
σ1(t) < σ2(t), we have

U∗(t) =
{

(1, 0, 0, 1)T t ∈ [0, ts]
(0, 1, 0, 1)T t ∈ (ts, T ] (47)

where ts = Q due to (8). Moreover, substituting (47)
into (11), we require ρi (0, T ) to meet the following
equation in order to satisfy r∗

1 (T ) = r∗
2 (T )

ρ1(0, T ) − ρ2(0, T )

= 1

2

∫ Q

0
(c1 + c2) + (c1 − c2)e

2k(r−T )dr = α.

(48)

3) If ν2 ≤ (ν1 − 1)c1, then σ1(t) < 0 over [0, T ). Since
σ1(t) < σ2(t), U∗(t) = (1, 0, 0, 1)T throughout [0, T ]
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by (45). This is a special case of (47) where ts = T .
Hence, ρi (0, T ) should satisfy (48) with Q = T .

Case 3, ν1 = 1: In this case, σ1(t) = ν2 and σ1(t) < σ2(t)
over [0, T ]. Similar to case (2), we only need to consider the
sign of σ1(t) to determine the optimal solution in terms of
(43) and (45).

1) If ν2 > 0, then σ1(t) > 0 over [0, T ], implying u∗
1(t) =

u∗
2(t) = 0 throughout. Thus, due to the constraint (8),

this case is excluded.
2) If ν2 = 0, then referring to (36) and (37), s1(t) =

s2(t) = 0 over [0, T ], which is the singular case for
u∗

1(t), h∗
1(t) as seen in (33). Since the entire optimal

state trajectory of battery 1 is a singular arc, then
u∗

1(t), h∗
1(t) can be any feasible control satisfying the

control constraints (6) and (5). On the other hand, since
ν1 = 1, ν2 = 0, then σ2(t) > 0 over [0, T ], which
indicates u∗

2(t) = 0, h∗
2(t) = 1 throughout. This requires∫ T

0 u∗
1(t)dt = Q due to (8). Therefore, the optimal

control U∗(t) = (u∗
1(t), h∗

1(t), 0, 1)T over [0, T ] where
u∗

1(t), h∗
1(t) is any feasible control satisfying (5) and (6),∫ T

0 u∗
1(t)dt = Q and r∗

1 (T ) = r∗
2 (T ).

In this case, still owing to (29), we also need to
determine the range of ρ1(0, T ) − ρ2(0, T ) preserving
the feasibility of this solution. Since U∗(t) =
(u∗

1(t), h∗
1(t), 0, 1)T over [0, T ], then ᾱ determined

in (32) automatically becomes the upper bound of
ρ1(0, T ) − ρ2(0, T ). Moreover, as a special case of
(u∗

1(t), h∗
1(t), 0, 1)T , (47) achieves the lower bound of

this solution type as in (48), because when ρ1(0, T ) −
ρ2(0, T ) < α, the solution becomes of type I (see
Remark 2.) Consequently, α ≤ ρ1(0, T ) − ρ2(0, T ) ≤ ᾱ
for U∗(t) = (u∗

1(t), h∗
1(t), 0, 1)T over [0, T ].

3) If ν2 < 0, then σ1(t) < 0 over [0, T ], implying U∗(t) =
(1, 0, 0, 1)T throughout, which is the same as Case 2(c).

Case 4, ν1 > 1: According to (42), σ1(t) < σ2(t) over
[0, T ]. Similarly, the solution only depends on the sign of
σ1(t).

1) If ν2 ≥ (ν1 − 1)c1, then σ1(t) > 0 over (0, T ], which
makes U∗(t) = (0, 1, 0, 1)T over [0, T ] by (43). As
before, this solution can be immediately excluded due
to (8).

2) If ν1−1
2

[
(c1 + c2) + (c1 − c2)e−2kT

]
< ν2 < (ν1 −1)c1,

then σ1(t) > 0 over [0, ts) and σ1(t) < 0 over (ts , T ].
Thus, since σ1(t) < σ2(t), the optimal control can be
derived by (43) and (45) as

U∗(t) =
{

(0, 1, 0, 1)T t ∈ [0, ts)
(1, 0, 0, 1)T t ∈ (ts , T ]. (49)

Similar to the case (b) of 0 < ν1 < 1, battery 2 recharges
at full rate throughout [0, T ]. In the meantime, battery 1
recharges at full rate first and then fully discharges until
the end so as to attain the required workload Q and
achieve r∗

1 (T ) = r∗
2 (T ). Therefore, in order to make

this solution feasible, we not only require ts = T − Q
in light of (8), but also need to substitute (49) into (11)

to satisfy r∗
1 (T ) = r∗

2 (T ) so that

ρ1(0, T ) − ρ2(0, T ) =
∫ T

T −Q

1

2

[
(c1 + c2) + (c1 − c2)e

2k(r−T )
]

dr.

This solution is included in Case 3(b).
3) If ν2 ≤ ν1−1

2

[
(c1 + c2) + (c1 − c2)e−2kT

]
, then σ1(t) <

0 over (0, T ], which renders U∗(t) = (1, 0, 0, 1)T

throughout [0, T ] and become the same as Case 2(c).
Remark 3: The optimal solutions derived in Case 2–4 can

be classified as type II solutions, in which α ≤ ρ1(0, T ) −
ρ2(0, T ) ≤ ᾱ and battery 2 recharges at full rate all the
time while battery 1 serves the load alone by any feasible
control u1(t), h1(t) satisfying (5) and (6),

∫ T
0 u1(t)dt = Q

and r1(T ) = r2(T ). Moreover, in all type II solutions, a fixed
value of r2(T ) is achieved based on a given ρ2(0, T ) due to
u∗

2(t) = 0, h∗
2(t) = 1 over [0, T ].

As for the analysis of ν1 < 0, since the dynamics of batteries
1 and 2 are identical and σ1 and σ2 are symmetric with respect
to ν1 = 0 by (39) and (40), then the result of analyzing ν1 < 0
will lead to the same solution as ν1 > 0 but with the roles of
batteries 1 and 2 reversed. Thus, a detailed analysis is omitted.

To sum up, following Remarks 2 and 3, the optimal solution
to the unconstrained case can be expressed as follows:
type I

if 0 ≤ ρ1(0, T ) − ρ2(0, T ) ≤ α (50)

then

U∗(t) =
{

(1, 0, 0, 1)T or (0, 1, 1, 0)T t ∈ [0, Q]
(0, 1, 0, 1)T t ∈ (Q, T ]

s.t. r∗
1 (T ) = r∗

2 (T ) (51)

type II

if α < ρ1(0, T ) − ρ2(0, T ) ≤ ᾱ (52)

then

U∗(t) = (u∗
1(t), h∗

1(t), 0, 1)T t ∈ [0, T ] (53)

s.t. constraints (5)−(8) and (29).

When ρ1(0, T ) − ρ2(0, T ) > ᾱ, as discussed earlier, there is
no feasible solution satisfying the constraint r1(T ) = r2(T )
and we resort to Theorem 2. Note that the solution of type II
corresponds to a situation where the initial energy difference
of the two batteries, expressed by ρ1(0, T ) − ρ2(0, T ), is so
large that it is optimal for battery 2 to recharge at full rate
all the time while only battery 1 is utilized; this is similar
to the solution determined by Theorem 2. From a practical
standpoint, type I solutions are of greater interest, since they
provide an insight as to how multiple batteries cooperate to
serve a common load.

Obviously, the optimal solution is nonunique in both solu-
tion types shown in (51)–(53). We provide two numerical
examples in Fig. 2(a) and (b) to verify this feature, where
the parameters give rise to a type I solution. The solu-
tion in Fig. 2(a) was obtained using the generic numerical
solver Tomlab/PROPT [31], where U∗(t) = (1, 0, 0, 1)T and
(0, 1, 1, 0)T alternate in some arbitrary fashion over [0, Q]
and switch to U∗(t) = (0, 1, 0, 1)T over (Q, T ]. Alternating
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Fig. 2. (a) and (b) Optimal solution under r1(0) = 250, b1(0) = 250, r2(0) = 200, b2(0) = 200, c1 = 30, c2 = 10, k = 0.05, T = 40, and Q = 15.

between (1, 0, 0, 1)T and (0, 1, 1, 0)T ensures the constraint
(29) is satisfied, which renders r∗

1 (T ) = r∗
2 (T ) = 221.4762 in

this example. In Fig. 2(b), we present another optimal solution,
in which, based on the knowledge that any U∗(t) of the form
(51) is optimal, the way of alternating between (1, 0, 0, 1)T

and (0, 1, 1, 0)T over [0, Q] is chosen to be much simpler, i.e.,
U∗(t) = (1, 0, 0, 1)T over [0, t1] and U∗(t) = (0, 1, 1, 0)T

over (t1, Q] while U∗(t) over (Q, T ] is still (0, 1, 0, 1)T .
The value of t1 is 8.7804, leading to r∗

1 (T ) = r∗
2 (T ) =

221.7324, almost identical to the first (and different) solution,
i.e., 221.4762. Note that the nonuniqueness of solutions is
due to the assumption that batteries are identical. Thus, it is
possible to obtain unique optimal solutions when c1, c2 in (2)
and (3) are replaced by distinct parameters for each battery
ci1 �= c j1 and ci2 �= c j2 for i �= j .

2) Constrained Case, ri (t) ≥ 0: Similar to the analysis
presented in [29], when we incorporate the state constraint
ri (t) ≥ 0 into the unconstrained case, chattering may occur
depending on the values of the parameters ρi (0, T ). First,
let us consider the two types of solutions (51)–(53) in the
unconstrained case. In the type II solution, battery 1 processes
all the workload Q while battery 2 recharges at full rate
throughout [0, T ]. Thus, r∗

2 (t) > 0 over (0, T ]. Regarding
r∗

1 (t), since ρ2(0, T ) > 0, by (53)

ρ1(0, T ) >

∫ Q

0

1

2

[
(c1 + c2) + (c1 − c2)e

2k(r−T )
]

dr. (54)

Denote the set of type II solutions by �∗
2. Then, in view

of (11) with
∫ T

0 u∗
1(t)dt = Q, we can achieve the lowest

value of r∗
1 (t) over t ∈ [0, T ] among all U∗(t) ∈ �∗

2
by taking U∗(t) as (47) where the lowest value is r∗

1 (Q)
under (47)

min
t∈[0,T ], U∗∈�∗

2

r∗
1 (t) = ρ1(0, T ) −

∫ Q

0
c1

1 + e2k(r−T )

2
dr

which is >
∫ Q

0 c2[(1−e2k(r−T ))/2]dr > 0 by (54). Therefore,
the constraint ri (t) ≥ 0 is not active in a type II solution.

As for a type I solution, note that U∗(t) = (1, 0, 0, 1)T

or (0, 1, 1, 0)T during [0, Q], which implies that if r∗
1 (t)

reaches 0 we can switch the control to (0, 1, 1, 0)T and
correspondingly increase r∗

1 (t) but decrease r∗
2 (t). A similar

scheme applies when r∗
2 (t) reaches 0. However, when r∗

1 (t) =
r∗

2 (t) = 0 at some time tc ∈ [0, Q), it is impossible
for U∗(t) to keep either (1, 0, 0, 1)T or (0, 1, 1, 0)T over
[t1, Q] without violating ri (t) ≥ 0. At this time, referring
to our analysis of this case in [29], chattering will also
occur due to the same state dynamics (2)–(3) and constraints
(5)–(6). This is further complicated by the presence of the
constraint (7). Therefore, in practice it is desirable to avoid
chattering and several approaches to achieving this goal are
discussed in [29]. In addition, we can determine whether
chattering will occur depending on the value of Q as follows.
Note that in (51),

∑
i u∗

i (t) = ∑
i h∗

i (t) = 1 over [0, Q).
Moreover, despite the freedom of switching U∗(t) between
(1, 0, 0, 1)T and (0, 1, 1, 0)T , chattering is still inevitable
when r∗

1 (t) = r∗
2 (t) = 0 at tc ∈ [0, Q), i.e., the starting time

of chattering. Therefore, by solving the following differential
equations:

∑

i

ṙi (t) = −c1

∑

i

ui (t) + k

[
∑

i

bi(t) −
∑

i

ri (t)

]
(55)

∑

i

ḃi (t) = c2

∑

i

hi (t) − k

[
∑

i

bi (t) −
∑

i

ri (t)

]
(56)

with
∑

i u∗
i (t) = ∑

i h∗
i (t) = 1 over [0, tc], the given initial

conditions ri (0), bi (0) and the boundary conditions r∗
1 (tc) =

r∗
2 (tc) = 0, we can determine tc through

−1

2

[
∑

i

bi (0) −
∑

i

ri (0) − c1 + c2

2k

]
(e−2ktc − 1)

+
∑

i

ri (0) − c1 − c2

2
tc = 0. (57)
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Thus, if Q ≤ tc, the optimal solution is the one obtained for
the unconstrained problem. If Q > tc, chattering occurs in the
optimal trajectory. Therefore, if it is possible to select Q such
that Q ≤ tc, where tc can be calculated through (57), we can
avoid chattering.

3) Constrained Case, bi (t) ≤ B: Next, we assume that
the constraint bi (t) ≤ B is active on the optimal trajec-
tory, but do not impose the constraint ri (t) ≥ 0. We can
employ the indirect adjoining approach to explicitly solve the
state-constrained optimal control problem as in [29] for the
single battery problem, where the optimal control when b(t) =
B turns out to be a boundary control u∗(t) = 0, h∗(t) =
[(k(B − r∗(t)))/c2] throughout the remaining time interval.
Thus, when the optimal control switches to the recharging
mode, the battery can no longer discharge and remains in
recharging mode. The analysis is similar in our multibattery
problem and leads to the following solution.

First, if a type I solution (51) applies, the nonuniqueness
and the freedom to switch the control during [0, Q] allows
us to avoid bi (t) = B over [0, Q). For the interval [Q, T ],
the optimal control is fixed at (0, 1, 0, 1)T , i.e., both batteries
recharge at full rate; hence bi (t) ≤ B is active over (Q, T ].
As in [29], when b∗

i (t) = B at some time ti ∈ (Q, T ), then
the optimal control turns to be u∗

i (t) = 0, h∗
i (t) = [(k(B −

r∗
i (t))/c2] over [ti , T ] for i = 1, 2.

On the other hand, if a type II solution (53) applies, then
u∗

2(t) = 0, h∗
2(t) = 1 is fixed over [0, T ]. Therefore, when

b∗
2(t) = B at some time t2 ∈ [0, T ], we turn to a boundary

control u∗
2(t) = 0, h∗

2(t) = [(k(B − r∗
2 (t)))/c2] to continue

recharging battery 2. As for battery 1, since we can select any
feasible (u∗

1(t), h∗
1(t)) satisfying (53), it is possible to keep

b∗
1(t) ≤ B inactive throughout [0, T ].
4) Constrained Case, ri (t) ≥ 0, bi (t) ≤ B: Finally, we

allow both constraints ri (t) ≥ 0, bi (t) ≤ B to become active
on an optimal trajectory. If that does not happen, then the
optimal solution reduces to one of the above two constrained
cases or the unconstrained case. Similar to the analysis in
[29], when the state constraints are both active, the solution
is simply a combination of the solutions to the above two
constrained cases.

An example of a type I solution where both constraints
become active at some points over [0, T ] is shown in Fig. 3.
From the trajectory of q∗(t), we can see that u∗

1(t)+u∗
2(t) = 1

over [0, tc], where tc = 8.5260 calculated through (57) and
r∗

1 (tc) = r∗
2 (tc) = 0. Since the required workload Q = 10

is not achieved yet, the batteries start to chatter over the
boundary arc ri (t) = 0 until a point t = 13 when the
full load requirement is met. After this point, both batteries
recharge at full rate until some time when the boundary control
u∗

i (t) = 0, h∗
i (t) = [(k(B − r∗

i (t)))/c2] continues recharging
and terminates with r∗

1 (T ) = r∗
2 (T ).

B. Solution of the N > 2 Case

We begin by setting U(t) = (u1(t), h1(t), . . . , uN (t),
hN (t))T and consider the unconstrained case in which (4)
is relaxed. Since the state vector x(t) = (r1(t), b1(t), . . . ,
rN (t), bN (t), q(t))T has 2N + 1 components in total, we let

Fig. 3. Optimal solution under r1(0) = 100, b1(0) = 100, r2(0) = 100,
b2(0) = 100, c1 = 30, c2 = 10, k = 0.05, T = 50, Q = 10, and B = 200,
with r(t) ≥ 0 and b(t) ≤ B .

λ(t) = (λ11(t), λ12(t), . . . , λN1(t), λN2(t), λ2N+1(t))T be the
costate vector and the Hamiltonian becomes

H (x, λ, U) = ∑N
i=1

(
[−c1λi1(t) + λ2N+1(t)]ui (t) + c2λi2(t)

hi (t) + k[λi1(t) − λi2(t)][bi (t) − ri (t)]
)

.

The costate equations λ̇ = −(∂ H/∂x) are now

λ̇i1(t) = k(λi1(t) − λi2(t)), λ̇i2(t) = −k(λi1(t) − λi2(t))

λ̇2N+1(t) = 0, i = 1, . . . , N. (58)

We can proceed with the terminal costate λ(T ) =
[(∂�(x(T )))/∂x] and then obtain λ(t) over [0, T ] by solving
(58). However, besides q(T ) = Q, the terminal state
constraints (29) result in (1/2)N(N−1) (i.e., the combinatorial
coefficient C2

N ) conditions, which gives rise to (1/2)N(N −
1) + 1 unknown multipliers νi in �(x(T )). Thus, unlike the
N = 2 case, it is intractable to analyze all possible values
for each νi . We proceed, as described next, by constructing
aggregate states and formulating an equivalent problem.

1) Solution Using Aggregate States: First sum up (2) and
(3) over 1 to N and set

N∑

i=1

ri (t) = R(t),
N∑

i=1

bi (t) = B(t)

N∑

i=1

ui (t) = X (t),
N∑

i=1

hi (t) = Y (t) (59)

such that Ṙ(t) = −c1 X (t) + k(B(t) − R(t)), and Ḃ(t) =
c2Y (t) − k(B(t) − R(t)). Accordingly, the objective (30) can
be transformed into maxX (t),Y (t) R(T ). Moreover, by (5)–(7),
we have 0 ≤ X (t) ≤ 1 and 0 ≤ Y (t) ≤ N − n(S, t), where
n(S, t) denotes the number of i ∈ S such that ui (t) > 0 at
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time t . Along with the substitution of (59) into (8), we obtain
an equivalent formulation of our N-battery optimal control
problem based on these aggregate states

max
X (t),Y (t)

R(T ) (60)

s.t. Ṙ(t) = −c1 X (t) + k(B(t) − R(t))

Ḃ(t) = c2Y (t) − k(B(t) − R(t))

0 ≤ X (t) ≤ 1, 0 ≤ Y (t) ≤ N − n(S, t)∫ T

0
X (t)dt = Q

ri (T ) = r j (T ) ∀i, j ∈ S.

Note that if we relax the terminal conditions ri (T ) =
r j (T ), ∀ i, j ∈ S for the time being, then (60) can be viewed
as a simple single-battery optimal control problem without the
control constraints (5). We can employ the Euler-Lagrange
approach where, similar to (31), we add a state q(t) such that
q̇(t) = X (t). Then, the constraint

∫ T
0 X (t)dt = Q becomes

q(T ) = Q. Henceforth, we set x(t) = (R(t), B(t), q(t))T and
λ(t) = (λ1(t), λ2(t), λ3(t))T as the state and costate vector
respectively. Then, the Hamiltonian for (60) is

H = k(λ1(t) − λ2(t))[B(t) − R(t)]
+(−c1λ1(t) + λ3(t))X (t) + c2λ2(t)Y (t) (61)

and the costate equations λ̇ = −(∂ H/∂x) give

λ̇1(t) = k(λ1(t) − λ2(t)), λ̇2(t) = −k(λ1(t) − λ2(t))

λ̇3(t) = 0.

Also, given the state boundary equation q(T ) = Q, we must
satisfy λ(T ) = [(∂�(x(T )))/∂x] where �(x(T )) = ν(q(T ) −
Q) − r(T ) and ν is an unknown multiplier, so that λ1(T ) =
−1, λ2(T ) = 0, λ3(T ) = ν. Solving the costate equations,
we get

λ1(t) = −1 + e2k(t−T )

2
, λ2(t) = −1 − e2k(t−T )

2
, λ3(t) = ν.

In (61), the optimal controls X∗(t) and Y ∗(t) have associated
switching functions −c1λ1(t)+λ3(t) and c2λ2(t) respectively.
This is similar to the single-battery case analyzed in [29] for
all possible values of ν and it immediately leads to the optimal
control

X∗(t) =
{

1 t ∈ [0, ts ]
0 t ∈ (ts , T ]

Y ∗(t) = N − n∗(S, t), t ∈ [0, T ]
(62)

where ts is a switching time given by ts = Q in view
of the constraint

∫ T
0 X (t)dt = Q. Obviously, (62) indicates

that in order to maximize R(T ) in (60), the control Y (t)
should be maximized (see also (10), which implies n∗(S, t) =
minui ,hi n(S, t). Now given the definition of n(S, t) and X (t),
to satisfy X∗(t) in (62) and minimize n(S, t) over [0, T ],
we can select a single arbitrary i ∈ S such that u∗

i (t) = 1,
t ∈ [0, Q], and u∗

i (t) = 0 for all i ∈ S over (Q, T ], which also
satisfies the control constraints (5). Thus, the optimal control

can be summarized as⎧
⎨

⎩

u∗
i (t) = 1, h∗

i (t) = 0, any arbitrary i ∈ S
u∗

j (t) = 0, h∗
j (t) = 1 ∀ j ∈ S/{i}, t ∈ [0, Q

u∗
i (t) = 0, h∗

i (t) = 1 ∀ i ∈ S, t ∈ (Q, T ].
]

(63)

As a result

n∗(S, t) = 1, t ∈ [0, Q]; n∗(S, t) = 0, t ∈ (Q, T ].
(64)

As a last step, in order to make (63) feasible in problem
(60), we need to satisfy the terminal conditions ri (T ) =
r j (T ), ∀ i, j ∈ S. This constrains the arbitrary selection of
i ∈ S such that u∗

i (t) = 1, h∗
i (t) = 0 at any t ∈ [0, Q] in (63).

However, satisfying the terminal conditions also depends on
the initial parameters R(0), B(0), i.e., ρi (0, T ) in the original
optimal control problem. Consequently, there are two cases:
1) the solution (63) is able to satisfy ri (T ) = r j (T ), ∀ i, j ∈ S
under the initial condition values ρi (0, T ), i ∈ S and 2) the
constraint ri (T ) = r j (T ), ∀ i, j ∈ S cannot be met for all the
solutions of (63) under the initial condition values ρi (0, T ),
i ∈ S.

For case 1), the optimal solution to problem (60) is simply
(63) subject to ri (T ) = r j (T ), ∀ i, j ∈ S and is referred to as
a type I solution, expressed as

U∗(t) =(
u∗

k(t) = 1, h∗
k(t) = 0, any k ∈ S

u∗
i (t) = 0, h∗

i (t) = 1, all i ∈ S/{k}
)

t ∈ [0, Q]
u∗

i (t) = 0, h∗
i (t) = 1 ∀ i ∈ S t ∈ (Q, T ]

s.t. r∗
i (T ) = r∗

j (T ) ∀i, j ∈ S. (65)

The condition under which this is indeed an optimal solution
depends on the values of ρi (0, T ), i ∈ S. The following
theorem provides a necessary and sufficient condition for (65)
to be optimal.

Theorem 3: A necessary and sufficient condition for the
optimality of a type I solution (65) to the N-battery optimal
control problem is

N∑

i=1

ρi (0, T ) ≤ αN (66)

αN =
∫ Q

0

[
c1

1 + e2k(r−T )

2
+ c2

1 − e2k(r−T )

2

]
dr

+ Nρm (0, T ), m = arg min
i∈S

{ρi (0, T )}. (67)

Proof: To establish necessity, note that if type I solution
is optimal, then all type I solutions are feasible. To ensure
feasibility,

∑
i∈S r∗

i (T ) subject to (29) must be guaranteed not
to exceed

∑
i∈S ρi (0, T ). Unlike the N = 2 case, we have

N initial conditions ρi (0, T ) to consider. However, due to
(29), the largest value of

∑
i∈S r∗

i (T ) depends only on the
largest value of r∗

m(T ) under all type I solutions, which can
be obtained by letting battery m recharge at full rate all the
time, i.e., u∗

m(t) = 0, h∗
m(t) = 1over [0, T ]. Let �∗

1 denote
the set of all optimal controls of type I. Then, based on (11)

max
U∈�

r∗
m(T ) = ρm(0, T ) +

∫ T

0
c2

1 − e2k(r−T )

2
dr (68)
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where � is the feasible control set defined in Theorem 1.
Accordingly

max
U∗∈�∗

1

∑

i∈S

r∗
i (T )< N

(
ρm(0, T )+

∫ T

0
c2

1−e2k(r−T )

2
dr

)

(69)

where the left-hand side cannot equal the right-hand side
because in (65) there is one arbitrary k ∈ S such that
u∗

k(t) = 1, h∗
k (t) = 0. Furthermore, note that in (65) we

have
∑

i∈S u∗
i (t) = 1,

∑
i∈S h∗

i (t) = N − 1 over [0, Q] and∑
i∈S u∗

i (t) = 0,
∑

i∈S h∗
i (t) = N over (Q, T ]. Then, in view

of (11), for a type I solution we have

∑

i∈S

r∗
i (T ) =

∑

i∈S

ρi (0, T ) + N
∫ T

0
c2

1 − e2k(r−T )

2
dr

−
∫ Q

0

[
c1

1 + e2k(r−T )

2
+ c2

1 − e2k(r−T )

2

]
dr.

Combining this with (69), we obtain
∑N

i=1 ρi (0, T ) ≤ αN and
prove necessity.

To establish sufficiency, we have already shown that the
condition

∑N
i=1 ρi (0, T ) ≤ αN ensures the feasibility of all

type I solutions. On the other hand, since a type I solution is
optimal as long as it is feasible, then sufficiency immediately
follows.

We now turn our attention to case 2), which applies when
the constraint ri (T ) = r j (T ), ∀ i, j ∈ S cannot be met in (63).
Extrapolating from the type II solution of the N = 2 case in
(53), we consider

U∗(t) =
⎛
⎜⎝

u∗
m(t) = 0, h∗

m(t) = 1
m = argmin

i∈S
{ρi (0, T )}

u∗
i (t), h∗

i (t), i ∈ S/{m}

⎞
⎟⎠, t ∈ [0, T ] (70)

s.t. constraints (5)−(8) and (29)

where, as in (53), the solution is is nonunique. To verify
the optimality of (70), observe that um(t) = 0, hm(t) = 1
over [0, T ], which implies that ri (T ) = maxU∈� rm(T ) for
all i ∈ S, thus maximizing

∑
i∈S ri (T ) subject to (29).

The following theorem provides a necessary and sufficient
condition for (70) to be optimal.

Theorem 4: A necessary and sufficient condition for the
optimality of a type II solution (70) to the N-battery optimal
control problem is

αN <

N∑

i=1

ρi (0, T ) ≤ ᾱN (71)

ᾱN = Nρm(0, T ) + (N − 1)

∫ T

0
c2

1 − e2k(r−T )

2
dr

+
∫ T

T −Q
c1

1 + e2k(r−T )

2
dr.

Proof: To establish necessity, first note that when∑N
i=1 ρi (0, T ) > αN in (67) then, obviously, a type I solution

can no longer satisfy (29). Subject to (29) and (68), the

following inequality still applies to a type II solution:
∑

i∈S

r∗
i (T ) ≤ N max

U∈�
r∗

m(T )

= N

(
ρm(0, T ) +

∫ T

0
c2

1 − e2k(r−T )

2
dr

)
. (72)

Moreover, in view of (11), we have

∑

i∈S

r∗
i (T ) =

∑

i∈S

ρi (0, T ) +
∫ T

0

(
c2

∑

i∈S

h∗
i (r)

1 − e2k(r−T )

2

−c1

∑

i∈S

u∗
i (r)

1 + e2k(r−T )

2

)
dr.

(73)

Let �∗
2 denote the set of all optimal controls of type II. Using

(70) and given the increasing monotonicity of the exponential
term in the integrand above, we get

min
U∗∈�∗

2

∫ T

0

(
c2

∑

i∈S

h∗
i (r)

1 − e2k(r−T )

2

−c1

∑

i∈S

u∗
i (r)

1 + e2k(r−T )

2

)
dr

=
∫ T

0
c2

1 − e2k(r−T )

2
dr −

∫ T

T −Q
c1

1 + e2k(r−T )

2
dr.

(74)

Thus, along with (72) and (73), under solution type II we have

∑

i∈S

ρi (0, T ) ≤ Nρm (0, T ) + (N − 1)

∫ T

0
c2

1 − e2k(r−T )

2
dr

+
∫ T

T −Q
c1

1 + e2k(r−T )

2
dr

which proves necessity.
The proof of sufficiency is similar to that of Theorem 3. �

Based on Theorems 3 and 4, we can now summarize the
solution to problem (60) as follows:

type I

if
N∑

i=1

ρi (0, T ) ≤ αN , then

U∗(t) =(
u∗

k(t) = 1, h∗
k(t) = 0, any k ∈ S

u∗
i (t) = 0, h∗

i (t) = 1, all i ∈ S/{k}
)

, t ∈ [0, Q]
u∗

i (t) = 0, h∗
i (t) = 1 ∀ i ∈ S, t ∈ (Q, T ]

s.t. r∗
i (T ) = r∗

j (T ) ∀i, j ∈ S (75)

type II

if αN <

N∑

i=1

ρi (0, T ) ≤ ᾱN , then

U∗(t) =
⎛
⎜⎝

u∗
m(t) = 0, h∗

m(t) = 1
m = argmin

i∈S
{ρi (0, T )}

u∗
i (t), h∗

i (t), i ∈ S/{m}

⎞
⎟⎠ , t ∈ [0, T ]

s.t. constraints (5)−(8) and (29). (76)
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Furthermore, when
∑N

i=1 ρi (0, T ) > ᾱN , it follows that∑
i∈S ri (T ) > N maxU∈� rm(T ), which cannot satisfy the

constraint (29) for any U ∈ �. Thus, there exists no feasible
policy π0 ∈ � such that ri (T ) = r j (T ) for all i, j ∈ S,
so that the determination of the optimal objective is obtained
from Theorem 2. Note that setting N = 2 in conditions (66)
and (71), it is easy to check that they reduce to conditions
(50) and (52) respectively that were derived in our analysis of
the N = 2 case.

Remark 4: Type I solutions are clearly the ones of most
interest. in this case, the initial energy values ri (0), bi(0) are
relatively balanced to satisfy (66), requiring all the batteries
to serve the load cooperatively in a way prescribed by (75). In
contrast, the remaining cases indicate that when ρi (0, T ) are
so unbalanced as to satisfy (71), then battery m recharges at
full rate all the time while the remaining N −1 batteries carry
out the task of meeting the load requirement Q; this, however,
is a more unusual situation. �

V. CONCLUSION

We used a KBM to study the problem of optimally control-
ling the discharge and recharge processes of multiple nonideal
batteries so as to maximize the minimum residual energy
among all batteries at the end of a given time period [0, T ]
while performing a prescribed amount of work Q over this
period. Based on the use of a KBM for each battery, we
showed that the optimal policy has the property that the
residual energies of all batteries are equal at T as long as
such a policy is feasible. This helps transform the original
max-min optimization problem to a more standard optimal
control problem with terminal state constraints. Moreover,
through the analysis of the N = 2 case exploiting this
property, we can characterize the optimal policy and show
that it is generally not unique. We were also able to extend our
analysis to the general N ≥ 2 case through a state aggregation
approach and obtain explicit expressions for two possible
types of solutions characterized by associated necessary and
sufficient conditions on the initial battery energy levels. Note
that repeatedly discharging and recharging a battery in practice
reduces its lifetime; therefore, a solution based on the structure
(65)–(70) should be chosen so as to impose as few switches
on the same battery as possible. This is easily achievable, as
shown in using the solution of Fig. 2(b), rather that that of
Fig. 2(a), without affecting performance.

Determining models for nonideal batteries such that they
combine accuracy with computational efficiency remains a
crucial open problem. Although we adopted the KBM for our
analysis, it is possible to formulate similar optimal control
problems for some of the more elaborate models mentioned in
the Introduction, a research direction we plan to further pursue.
Moreover, identifying the proper parameter values for any such
model is a challenging process in itself. Additional future work
will aim at extending the approach in this paper to problems
where the batteries are not all shared at a single location,
but rather distributed over a network of devices with one or
more batteries placed on board and powering each device. This
leads to resource allocation and network lifetime maximization

problems where a nonideal battery model is employed. We
also plan to extend our analysis to nonidentical batteries and
to incorporate explicit switching costs between recharging and
discharging any of the batteries.
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