
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997 629

Optimal Dispatching Control for Elevator
Systems During Uppeak Traffic

David L. Pepyne and Christos G. Cassandras,Fellow, IEEE

Abstract—In this paper we develop optimal dispatching con-
trollers for elevator systems during uppeak traffic. An uppeak
traffic period arises when the bulk of the passenger traffic is
moving from the first floor up into the building (e.g., the start of a
business day in an office building). The cars deliver the passengers
and then return empty to the first floor to pick up more passen-
gers. We show that the structure of the optimal dispatching policy
minimizing the discounted or average passenger waiting time is a
threshold-basedpolicy. That is, the optimal policy is to dispatch an
available car from the first floor when the number of passengers
inside the car reaches or exceeds a threshold that depends on
several factors including the passenger arrival rate, elevator
performance capabilities, and the number of elevators available
at the first floor. Since most elevator systems have sensors to
determine the car locations and the number of passengers in
each car, such a threshold policy is easily implemented. Our
analysis is based on a Markov decision problem formulation
with a batch service queueing model consisting of a single queue
served by multiple finite-capacity bulk servers. We use dynamic
programming techniques to obtain the structure of the optimal
control policy and to derive some of its important properties.
Several numerical examples are included to illustrate our results
and to compare the optimal threshold policy to some knownad
hoc approaches. Finally, since many transportation systems can
be modeled as multiserver batch service queueing systems, we
expect our results to be useful in controlling those systems as
well.

Index Terms—Bulk-service queueing networks, dynamic pro-
gramming, Markov decision problems, optimal control, opti-
mization problems, queueing theory, thresholds, transportation
models.

I. INTRODUCTION

ELEVATOR systems form a class of discrete-event sys-
tems (DES’s) whose complexity makes them difficult to

model, analyze, and optimize. In multiple-car elevator systems,
particularly those designed to serve large buildings, a major
challenge is that of developing adispatching control policy,
i.e., a scheme for systematically decidingwhen and where
each car should move, stop, or switch direction based on the
current state and available past history. While in general, the
objective of an elevator dispatching policy depends on the

Manuscript received January 31, 1996; revised December 16, 1996. Rec-
ommended by Assocaite Editor, C. C. Lee. This work was supported in part
by the National Science Foundation under Grants ECS-93-11776 and EID-
92-12122, by AFOSR under Contract F49620-95-1-0131, and by a grant from
United Technologies/OTIS Elevator.

D. L. Pepyne is with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts, Amherst, MA 01003 USA.

C. G. Cassandras was with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA 01003 USA. He is
now with the Department of Manufacturing Engineering, Boston University,
Boston, MA 02215 USA.

Publisher Item Identifier S 1063-6536(97)07780-4.

particular building, for office buildings, the usual goal is to
minimize the average passenger waiting time [20]. Achieving
this objective is difficult for a number of reasons, including
the need to: 1) coordinate multiple cars; 2) satisfy constraints
on elevator movement (e.g., a car must stop at a floor where
a passenger wants to exit); 3) operate with incomplete state
information (e.g., while it is known whether an elevator has
been called to a particular floor, it is generally not known
how many passengers are waiting at that floor); 4) make
decisions in the presence of uncertainty (e.g., passenger arrival
(pa) times and destinations are uncertain); and 5) handle
nonstationary passenger traffic (e.g., for an office building,
passenger traffic varies continuously throughout the day, from
morning up-traffic, to heavy two-way lunchtime traffic, to
evening down-traffic). Even without difficulties 4) and 5), the
dispatching control problem is combinatorially explosive due
to the enormous size of the state space.

A systematic study of the elevator dispatching control
problem begins by decomposing passenger traffic into four
different situations: 1)uppeak traffic; 2) lunchtime traffic; 3)
downpeak traffic; and 4) interfloor traffic [20]. The uppeak
traffic situation arises when all passengers are moving up from
the first floor (e.g., the start of the business day in an office
building). Lunchtime traffic is a characterization in which
passengers are going to and returning from the first floor (e.g.,
as they go to and return from lunch in an office building). The
downpeak traffic situation is observed when all passengers are
moving down to the first floor (e.g., the end of the business day
when an office building is emptied). Finally, interfloor traffic
is a characterization in which passengers are moving equally
likely between floors.

In this paper we limit ourselves to the uppeak traffic
situation and develop the theory for optimal dispatching.
During uppeak, passengers arrive only at the first floor. The
elevators carry them up to their requested destinations and
then make an express run returning empty to the first floor to
serve additional passengers. While the uppeak traffic situation
is arguably the simplest one to model, it is the most difficult
one for an elevator system to handle from the standpoint
of passenger handling capacity [19]. Because passengers are
arriving to a single floor during uppeak, it is possible for a very
high pa intensity to cause cars to fill up and the lobby queue
to grow unbounded. In fact, the anticipated pa intensity during
uppeak is used in planning the size of the elevator system that
will be needed to serve a building [4].

Historically, when the first passenger elevators were intro-
duced in the 1890’s, each car was individually controlled by
an attendant riding the car. As building heights rose, however,

1063–6536/97$10.00 1997 IEEE

630 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997

so did the number and speed of the cars and it soon became
impossible for the attendants to provide effective coordination
and control. With the introduction of the first semiautomatic
elevator controllers in the 1920’s, the attendant’s job was
reduced to one of simply closing the doors and starting the car.
By 1950, fully automated elevator controllers eliminated the
attendant altogether. The first automated elevator controllers
were simple electromechanical relay systems. By the 1970’s,
microprocessor based elevator controllers were in common
use. Since that time, increases in processor speed and memory
capacity have allowed for the implementation of increasingly
complicated dispatching algorithms. Modern dispatching al-
gorithms employ fuzzy logic [2], [14], expert systems [22],
sophisticated rule-based and search-based strategies [3], [16],
artificial intelligence with learning [13], dynamic programming
[10], [15], and reinforcement learning [7], [17]. In general,
different dispatching algorithms are used for the different
traffic situations defined earlier. While modern dispatching
algorithms give good performance, most aread hoc and
heuristic, designed using experience, intuition, and simulation,
as opposed to formal techniques based on optimal control
theory.

For the uppeak situation, the dispatching objective is re-
duced to the question of when to dispatch an elevator from
the first floor. The simplest algorithm for uppeak dispatches an
elevator as soon as the first passenger boards. Another, termed
half-capacity plus time-out, dispatches an elevator whenever
half its capacity is reached or when a timer, started when
the first passenger enters the elevator, expires (usually a 20-
s timer is used). The main contribution of this paper is to
show that the structure of the optimal dispatching policy,
minimizing the discounted or average passenger waiting time
for uppeak traffic, is athreshold-basedpolicy. That is, the
controller should dispatch an elevator when the number of
passengers inside a car reaches or exceeds a certain threshold.
In practice the number of passengers in a car is estimated by an
on-board scale measuring the total weight of passengers; more
sophisticated systems use light beams to detect passengers
entering and exiting the cars. Since most elevator systems have
some method to determine the number of passengers in each
car as well as sensors to determine the car locations, such
a threshold policy is easily implemented. In contrast to the
ad hocdispatching algorithms described above, our analysis
will show that the thresholds are not fixed, but depend on
the pa rate, the performance capabilities of the elevators, and
the number of elevators available at the first floor. Although
our analysis does not provide explicit numerical values for
the thresholds, parameterizing the control policy in terms
of a few thresholds, allows us to use any of a number of
recently developed methods based on perturbation analysis
and sample path constructability techniques for DES [6], [9],
[11] to determine them on-line from actual observable system
data. A detailed scheme for determining the thresholds will
be given in a follow-up paper, where a dispatching controller
is developed with the ability to adapt the threshold values as
operating conditions (such as the pa rate) in the system change.

Our analysis is based on modeling the dispatching problem
in uppeak traffic as a Markov decision problem (MDP) [5],

[18] and applying dynamic programming techniques to derive
the structural properties of the optimal control policy. The
basic model is that of a queueing system consisting of a
single queue (representing the first-floor lobby where arriving
passengers wait for a car) served by multiple, finite capacity
bulk servers (representing the cars). In [1] a similar model
was used to analyze the uppeak traffic situation. No control
strategy, however, was developed. The optimality of a thresh-
old policy has been shown for a single server batch service
queueing system [8]. In this paper, however, we consider a
multiple-server system in which each server is limited to a
finite capacity. We note that since many transportation systems,
in addition to the uppeak elevator dispatching problem, can
be modeled as multiple bulk server queueing systems (for
example, airport shuttle busses, shipment of parcels or military
supplies, etc.) we expect our results to be useful in controlling
those systems as well.

The remainder of this paper is organized as follows. In the
next section, we formulate an MDP model for the uppeak
elevator dispatching problem. In Section III, we consider the
discounted cost problem and derive the associated dynamic
programming equations. In Section IV we present properties
of the value function and use these properties to show the
optimality of a threshold policy for the discounted cost prob-
lem. In Section V we extend the optimality of a threshold
policy to the average cost problem. Several examples are
presented in Section VI to verify our analysis. Finally, we
end in Section VII with a summary and discussion. Two
appendixes provide proofs for the lemmas and corollaries used
in the body of the paper.

II. PROBLEM FORMULATION

In this section, we first present a queueing model for the
uppeak traffic situation (Section II-A) and then develop a MDP
for the corresponding dispatching control problem (Section II-
B). We consider the case of an elevator system with two cars
to keep the analysis manageable. As will be seen, however,
extensions to the car case follow naturally and in a
straightforward way.

A. The Queueing Model

For the elevator system we consider, we assume that the
uppeak traffic originates from a single floor (the first floor),
and that each elevator serves every floor (i.e., “zoning” [4] is
not used). Then we can model the uppeak traffic situation as
a single queue of infinite capacity (representing the first-floor
lobby), served by two identical bulk servers (corresponding to
two identical elevator cars), each with a finite capacity of
passengers. Fig. 1 illustrates this model, in which passengers
arrive one at a time to the queue according to a Poisson process
with intensity . Each pa generates a pa event. The passengers
are admitted into the cars and the cars are dispatched by
the dispatching control. Exactly how dispatching control is
exercised in this model is discussed in the next section. The
passengers are served by the cars in batches of size no greater
than the car capacity . The time for a car to serve a batch
of passengers is exponentially distributed with parameter,

PEPYNE AND CASSANDRAS: OPTIMAL DISPATCHING CONTROL 631

a constant, which is the same for each car, and independent
of the state. After a car has delivered all of its passengers, it
makes an immediate express run returning empty to the first
floor lobby to serve more uppeak passengers. The completion
of service generates a “car arrival” (ca) event indicating that
one of the two elevators has become available for service.
Since the two elevators are identical, there is no need to
distinguish between them.

It is worth making a few remarks regarding this model. First,
experience has shown the Poisson process to be a good model
of pa’s [12], particularly for the case of a medium-sized office
building (one with 10–15 floors) in a suburban office park,
where the building’s occupants will typically drive to work
alone. Next, modeling service times through an exponential
distribution with a constant rate is intended to aggregate
random effects due to travel time, number of stops, passenger
unloading time, door opening and closing time, and the door
holding time. Although it is possible to use a more elaborate
service time model (e.g., using a distribution from the Erlang
family or taking into account the destination floors already
selected by passengers inside an elevator that is waiting to
be dispatched), doing so greatly increases the complexity of
the problem and makes analysis intractable. More importantly,
from a practical standpoint, our purpose here is to derive the
structureof an optimal dispatching policy, structure which can
be used to develop dispatching controllers that do not depend
on modeling assumptions regarding the distributions of the
arrival and service processes.

B. The Markov Decision Problem

An MDP formulation is now introduced to rigorously define
the uppeak dispatching problem (see [5], [6], and [18] for a
general background on MDP’s). The state-spacefor the
model is obtained by defining to denote
the queue length at the first floor lobby at timeand

to denote the number of elevators available at the first
floor at time Thus,
When needed, we will denote the state by State
transitions in this model are the result of event occurrences;
in particular, pa events or ca events. Control actions are
taken only when any such event occurs and they define a set

where

Action do nothing, hold all available cars at
the first floor;

Action load one car and dispatch it;
Action allow both cars to load and dispatch

them simultaneously.

Since cars returning to the lobby are assumed to be empty,
each available car can serve up to passengers from the
lobby. Those passengers which would cause a car to overflow
will remain at the lobby to wait for another one. If we define

(1)

then dispatching one elevator serves passengers
and leaves behind a lobby queue of length passengers

Fig. 1. Queueing model for the two-car uppeak dispatching problem.

(i.e., dispatching control only allows passengers to load into
one car at a time), while dispatching both elevators serves

passengers and leaves behind a lobby queue of
length passengers.

Observe that not all actions are admissible at every state.
In particular, let (a subset of denote the set of
admissible actions from the state and we have

dispatching is not allowed when no
cars are available;

two cars cannot be dispatched
when only one is available;

when both cars are available;
all actions in are admissible.

To implement the control action when both cars are
available implies the ability to load one car before loading
the other car. This is typically implemented using the popular
“next car” feature [4]. Since returning cars are empty, they do
not need to open their doors when they reach the main lobby;
thus, to force passengers to load one car at a time, only one
car opens its doors. This car is referred to as the “next car” to
be dispatched. Note, even when a car returns to the first floor
with down passengers and must open its doors to discharge
them, it is still possible to implement the “next car” feature
by discouraging passengers from entering the car by dimming
its lights and making it appear as if the car is out of service.

Next, we use the standard uniformization technique [5], [6]
to convert the continuous-time MDP above into an equiva-
lent discrete-time MDP. This is accomplished by choosing a
uniform rate the total event rate in our two-car
model (this obviously extends to for an -car
model). In this uniformized model, fictitious ca events (causing
no state change) are included to account for states where the
feasible event rate is less than Without loss of generality,
we can assume the time scale has been normalized so that

Control actions are taken at the beginning of each
time step. Let denote the conditional probability that
the state at the next time step is given that the state
at the current time step is and the control action taken
at the beginning of the current time step is . These
state transition probabilities are given by

(2a)

632 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997

(2b)

(2c)

(2d)

(2e)

(2f)

For each (2a)–(2f), the first row corresponds to a state tran-
sition induced by a pa event. All remaining transitions are
induced by a ca event, including fictitious ca events introduced
by uniformization. In (2b), for example, the last ca event is
fictitious because one of the cars is available at the lobby
and, therefore, cannot generate an actual ca event. In (2c),
both ca events are fictitious because both cars are available
at the lobby. In (2e) the last ca event is fictitious. In this
case, it may appear that this fictitious ca event causes a state
change, which is not the case. Here, the state at the beginning
of the time step is . Taking the action at the
beginning of the time step causes an immediate state change to
an “intermediate” state . When the fictitious
ca event occurs, there is no state change with respect to the
“intermediate” state, i.e., . It is the control action taken
at the beginning of the time step that causes the state change,
and not this fictitious ca event. In the remaining (2a), (2d),
and (2f) all ca events are real.

Notice that although we are taking control actions at the
beginning of each time step, we would never take an action
(other than) when a fictitious event occurs. This is
because actions are only taken in response to state changes,
and fictitious events do not cause state changes. Therefore, if
a state is such that an action should have been taken,
the action would have been taken in response to the real event
that caused the system to transition to the state, and not in
response to fictitious events occurring at later time steps.

To complete the MDP formulation, we introduce the fol-
lowing cost structure. Let us denote the cost for theth time
step by where is the control action taken at
the beginning of the time step when the state is . Our
objective then is to obtain the optimal stationary policy
that minimizes the total discounted cost to be incurred over
the infinite-horizon

(3)

where denotes the expectation operator, and
is a given discount factor. Obtaining the optimal stationary

policy minimizing the average cost

(4)

will be considered later in Section V.
We will take the one-step cost to be proportional to the

queue length resulting from the control action taken at the
beginning of the time step. Letting be some given positive
and bounded holding cost, we have

(5a)

(5b)

(5c)

where the actions reduce the lobby queue length in
accordance with (1). This cost structure is motivated by the fact
that the minimization of the average queue length is equivalent
to the minimization of the average passenger waiting time in
the sense that at steady state

queue length passenger waiting time

by Little’s Law [6, p. 345].
The following lemma establishes the fact thatany policy

yields a finite cost.
Lemma 2.1: for and all policies

provided and
Proof: Since customers arrive one at a time, for any

initial queue length and any policy , the lobby queue
length at time step satisfies . Hence

(6)

III. T HE DYNAMIC PROGRAMMING EQUATIONS

Given that all policies yield a finite cost by Lemma 2.1,
we wish to find the one that gives the least cost in (3). In
this section we develop the dynamic programming equations
satisfied by such a policy. Let denote the optimal cost-
to-go over time steps starting with state Then, since the
one-step costs defined in (5) are nonnegative and the action
set is finite, it is well known (see, for example,
[5] and [6]) that, for , the dynamic programming
algorithm

(7)

PEPYNE AND CASSANDRAS: OPTIMAL DISPATCHING CONTROL 633

with converges to the optimal value function, i.e.,

(8)

and that satisfies the optimality equation

(9)

Moreover, under the same conditions, there is an optimal
stationary policy obtained through

(10)

Using the state transition probabilities (2a)–(2f) and the state
transition costs (5a)–(5c), we can obtain dynamic program-
ming equations of the form (7) as follows. First, for states of
the form no cars are available so the only admissible
action is (do nothing), i.e.,

(11a)

In (11a), as will be the case in all the dynamic programming
equations to follow, the first term is the one-step cost, the
second term corresponds to a pa event, and all remaining terms
correspond to ca events.

Similarly, for states of the form , there is one car
available and the control action is to either hold it waiting for
more passengers to arrive or dispatch it , i.e.,

(11b)

The first term in the bracket in (11b) corresponds to holding the
car, and the second corresponds to dispatching the car. Also,
note that in the first term, one of the ca events is fictitious
and causes no state change, since only one car is busy. In the
second term, however, both ca events are real: one car was
already busy at the beginning of the time step, and the other
was made busy when it was dispatched at the beginning of
the time step.

Finally, for states of the form , all actions are admis-
sible, i.e., hold both cars , load and dispatch one of
them , or load and dispatch both of them ,
and we get

(11c)

The first term in the bracket above corresponds to holding
both cars (hence, both ca events are fictitious), the second
to dispatching one of the cars (in which case only the ca
event corresponding to the elevator that was dispatched at
the beginning of the time step is a real one), and the third
to dispatching both cars (hence, both ca events are real).

Using the dynamic programming equations (11a)–(11c)
above, the optimal dispatching policy can be obtained from
the dynamic programming algorithm (7) by letting .
Finding the optimal dispatching policy this way, however, is
prohibitive in terms of the computational and memory require-
ments, especially since the dynamic programming algorithm
must be solved, and the optimal policy stored, for each set of
system parameters of interest. In what follows,
we show that the optimal policy for each such set can be
parameterized in terms a few thresholds.

IV. STRUCTURE OF THEOPTIMAL POLICY

In this section we use the dynamic programming equations
(11a)–(11c) to show that the structure of the optimal policy
minimizing the total discounted cost in (3) is a threshold
policy. In the next section we extend the result to the av-
erage cost case. We begin (Section IV-A) by presenting some
lemmas and corollaries concerning properties of the optimal
value function . The optimality of a threshold policy
follows directly from the corollaries (Section IV-B). To save
space and aid readability, proofs for the lemmas and corollaries
are contained in the Appendixes.

In the discussion to follow, we will use a simplified notation
for the dynamic programming equations (11a)–(11c). To do
so, set

so that (11a) is rewritten as

(12a)

Similarly, in (11b) let and denote the two
terms in the bracket, respectively, and in (11c) let

and denote the three terms in the
bracket, respectively, so that we can write

(12b)

and

(12c)

In addition, we will find it useful to define

(13)

634 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997

so that, in view of (8), the optimality (9) for states of the form
and becomes

(14a)

(14b)

(14c)

We use the notation above with the understanding that
each term on the right in (12) and (14) is also dependent on

and For notational compactness, however, we
will omit these dependencies.

A. Properties of the Value Function

We begin by presenting five lemmas concerning the proper-
ties of the optimal value function in (9). Proofs for the lemmas
are contained in Appendix A.

Lemma 4.1: for all
This lemma states that the value function is non-

decreasing in the queue length. Intuitively, the greater
the number of waiting passengers, the greater the rate of
cost accumulation, and, therefore, the greater the cost-to-go
becomes.

Lemma 4.2: for all
This lemma indicates that there is an ordering among the

value functions, imposed by For a fixed queue length, the
greater the number of available carsthe smaller the cost-to-
go is. This is a consequence of the fact that the queue length,
and thus the rate of cost accumulation, can be reduced as more
cars become available: by dispatching, the queue length and
hence the rate of cost accumulation is reduced.

Lemma 4.3: for all .
Lemma 4.4: for all .
Lemma 4.5: for all .
These three lemmas show a relationship between the number

of available cars and the car capacity Consider Lemma 4.3
for example: taking the action from the state
immediately puts the system in the state from which the
only admissible action is to hold the car. Thus, the cost-to-go
for the state can never be less than the cost-to-go
for the state , and if from the state
the cost can only be greater. The other two lemmas have a
similar interpretation.

A set of corollaries can be derived from the above lemmas.
These corollaries serve to reveal the structure of the optimal
dispatching policy. Proofs for the corollaries are contained in
Appendix B.

Corollary 4.1: is strictly increasing for all
.

Corollary 4.2: for all .
These two corollaries give the structure of the optimal policy

for states of the form as illustrated in Fig. 2. When
the queue length is less than the car capacity, Corollary 4.1
asserts that is strictly increasing in the queue
length . From (14b), recall that the optimal control action
is if and otherwise.
These facts imply the existence of a threshold such that if

then is negative and hence

Fig. 2. Summarizing Corollaries 4.1 and 4.2.

(Region I), and if then is positive and
hence (Region II). For queue lengths greater than
the car capacity, i.e., Corollary 4.2 simply asserts that

(Region III), i.e., a car should always be dispatched
in this case.

The next five corollaries give the structure of the optimal
policy for states of the form .

Corollary 4.3: is a nonnegative constant
independent of for all .

Corollary 4.4: is strictly increasing for all
.

Corollary 4.5: for all .
Corollary 4.6: is strictly increasing for all

Corollary 4.7: and for all

The corollaries above can be interpreted with the help of
Fig. 3. As was the case for states of the form Fig. 3
illustrates how states of the form also admit a threshold
policy. These states, however, have two thresholds, one for
dispatching one car, and another for dispatching both cars.
When the queue length is less than the car capacity,
Corollary 4.3 asserts that i.e., is never
the smallest term in (14c). By Corollary 4.4, we also have that

is increasing in . This implies the existence
of a threshold below which is the smallest term
in (14c) and (Region I), and above which,
is the smallest and (Region II). For queue lengths
in the range , we have by Corollary 4.5 that

is always smaller than , and by Corollary 4.6
that is increasing in This gives a threshold

below which is the smallest term in (14c) and
(Region III), and above which is the smallest

and (Region IV). Finally, by Corollary 4.7, when
the queue length exceeds twice the elevator capacity, we have

and , which implies that
is the smallest term, i.e., (Region V).

B. Optimality of a Threshold Policy

Based on the lemmas and their corollaries above, we are
now in a position to formally state the optimality of a threshold
policy for the discounted cost criterion (3).

Theorem: For and a bounded positive holding
cost , the optimal dispatching policy yielding the minimal

PEPYNE AND CASSANDRAS: OPTIMAL DISPATCHING CONTROL 635

Fig. 3. Summarizing Corollaries 4.3–4.7.

total discounted cost in (3) is a threshold policy. That is,
for and there exist thresholds

such that and

...
(15)

Moreover, only thresholds are required, since the following
holds:

(16)

Proof (2-car case):For the two-car case, we have
and

(17)

Moreover,

(18)

The proof of (17) follows directly from Corollaries 4.1–4.7.
To prove (18), we note that the threshold is the value
of corresponding to the zero crossing of
(Fig. 2), and is the value of corresponding to the zero
crossing of (Fig. 3). Then, comparing (11c)
with (11b) we observe that and

, and the result follows.
Although the proof above is only for the case of two cars,

it should be clear at this point how to extend the result to the
car case. Each additional car adds an extra admissible

control action and corresponding dynamic programming equa-
tion. In each dynamic programming equation there will be an
additional ca term for each car added. The method of proof is
exactly the same. The only complication in extending to the

car case is the inevitable notational burden.
The optimality of a threshold policy is an intuitively appeal-

ing result. For instance, when only one car is available and

the queue length exceeds the car’s capacity, it makes sense to
dispatch this car immediately. It also makes sense to dispatch
only one car when the number of waiting passengers is less
than the elevator capacity: dispatching with both cars only
partially full, when one elevator could have served the entire
queue, would leave those passengers who arrive before the
cars return waiting longer and accumulating costs. For such
situations, the optimal policy is obvious. The intuition behind
the general threshold policy lies in seeking to match the service
rate to the pa rate.

Several remarks about the theorem are in order. First,
throughout our analysis, we have assumed that a measure
of the queue length is available, and that only one car is
loaded at a time. To implement the threshold policy in practice,
however, one does not need to measure the queue length.
All that is needed is the number of passengers in each
car, and as mentioned in Section I, many elevator systems
already have on-board scales or light sensors to count the
number of passengers in each car. In addition, as explained in
Section II-B, the requirement that one car is loaded at a time
is easily enforced using the so called “next car” feature. Next,
(16) is a very attractive property of the optimal dispatching
policy. In general, the total number of thresholds is given by

As indicated by (16), however, only of
these thresholds actually need to be determined to implement
the policy. When using the “next car’” feature, the most
convienient set of thresholds to use is
because these are the thresholds that tell us when to dispatch
the designated “next car.”

V. EXTENSION TO THE AVERAGE COST CASE

In this section our objective is to find the optimal stationary
policy minimizing the average cost criterion defined in (4).
Under certain conditions, this can be done by showing that
the properties of the optimal policy derived for the discounted
cost criterion in (3) are retained as the discount factor .
In particular, it is known [23, p. 289] that if the one-step costs
are nonnegative, and there is an initial state and some
finite constant such that

(19)

for all and all states then, 1) there is a optimal
stationary policy ; 2) the average cost for the optimal policy
is given by

(20)

and 3) there is a bounded function that satisfies the
following optimality equation:

(21)

where

(22)

For the uppeak dispatching problem, defined in the previous
sections, the one step costs (5a)–(5c) are nonnegative, and

636 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997

Lemma 2.1 guarantees that condition (19) is satisfied. Hence,
we can use the results above to obtain the optimal stationary
policy for the average cost case. Equation (21) implies that

has the same properties as the value function
for the discounted case. Specifically, satisfies Lemmas
4.1–4.5. Moreover, the optimality equation (21), is nothing
more than the dynamic programming (9) for the discounted
cost case with a discount factor and a constant added
to the left-hand side. Since each of the corollaries, which give
the structure of the optimal policy, involve taking differences,
it is not hard to see that also satisfies Corollaries 4.1–4.7.
We conclude, therefore, that the structure of the optimal policy
for the average cost case is also a threshold policy. In general,
however, the thresholds for the average cost case are different
than the thresholds for the discounted cost case.

VI. EXAMPLES

In this section we present several examples to illustrate our
previous analysis. For the first example (Section VI-A) we
numerically solve the dynamic programming algorithm for a
two-car discounted cost case and generate plots analogous
to Figs. 2 and 3. For the second example (Section VI-B)
we simulate the two-car case and perform an exhaustive
search for the optimal values of the thresholds minimizing
the average passenger waiting time for two different pa rates.
This example shows that the thresholds change with different
pa rates, and that there can be a significant performance penalty
when the thresholds are chosen arbitrarily. As a final example
(Section VI-C), we solve the dynamic programming equations
for a four-car discounted cost case to show how the results
extend to the car situation.

A. Two-Car Discounted Cost Example

In this example we numerically solve the dynamic program-
ming algorithm (7) for the case of two identical cars each
with capacity passengers and service rates of
trips each 5 min, a pa rate of passengers each 5
min, a total event rate of , and a holding
cost . To numerically solve the algorithm, we had to
assume a finite lobby queue limited to 100 waiting passengers.
Passengers arriving when the lobby queue is full, are turned
away. Because the pa rate is relatively low, limiting the queue
length to 100 passengers does not seriously affect the infinite
capacity assumption.

With a discount factor of , the dynamic program-
ming algorithm is well converged after 200 iterations. Fig. 4(a)
shows a plot of the “switching function” (c.f.,
Fig. 2) from which it can be seen that the optimal threshold
for dispatching an elevator when for this example
is . Fig. 4(b) shows plots of and

(c.f., Fig. 3) from which it can be seen that
the threshold for dispatching one elevator when is

and the threshold for dispatching both elevators is
as expected from (16).

A point to notice is that the thresholds for dispatching one
car are usually different depending on the number of available
cars. In this example, as is often the case, we have .

(a)

(b)

Fig. 4. Plots giving the optimal thresholds for a two car example obtained
by numerically solving the dynamic programming algorithm (compare with
Figs. 2 and 3, respectively).

B. Two-Car Average Cost Example

For this two-car example, brute-force simulation is used
to find the optimal thresholds minimizing the average pas-
senger waiting time. To perform the example, we developed
a discrete-event simulator of a two-car elevator system. In
the simulator, passengers arrive one at a time according to
a Poisson process at rateto a finite lobby queue capable
of holding 100 passengers. The time of arrival of each pas-
senger is recorded. Each elevator has a capacity of
passengers. A dispatching policy with two thresholds
is used. The dispatching policy works as follows: When one
car is available and the queue length , then
up to passengers are immediately loaded and one
elevator is dispatched; when and , then if
one car is immediately loaded and dispatched, otherwise up
to passengers are immediately loaded and both cars
are dispatched. For each car, the service time is a random
variable drawn from an exponential distribution with a rate of

trips each 5-min interval. Passengers load first in–first
out (FIFO) into the cars. The passenger waiting time is the time
interval from the passenger’s time of arrival to the lobby queue
up until the time the car serving the passenger is dispatched.
At the beginning of each run, and .

Response surfaces showing the average passenger waiting
time for arrival rates of passengers each 5 min and

passengers each 5 min are shown in Figs. 5 and 6,
respectively. The response surfaces are plots of the

PEPYNE AND CASSANDRAS: OPTIMAL DISPATCHING CONTROL 637

average passenger waiting time on theaxis, the threshold
on the axis, and the threshold on the axis. Each point
on the response surface is obtained by averaging the passenger
waiting times over ten simulation runs, with each simulation
run serving 10 000 passengers (i.e., each point represents the
waiting times averaged over 100 000 passengers).

From Fig. 5, the optimal thresholds minimizing the average
passenger waiting time occur at This differs from
the discounted cost case in Example 1 where the thresholds for
the same arrival rate were found to be . This
is to be expected, because although the value functions in the
average and discounted cost case have the same properties, in
general, they do not have the same numerical values and the
corresponding thresholds are different.

At the optimal thresholds, the average passenger waiting
time is 23.61 s. The worst waiting time at this arrival rate, is
45.46 s when 93% longer than the optimal wait.
In Section I we mentioned two simple uppeak dispatching
policies, one that dispatches as soon as one passenger enters an
elevator, and another that waits for an elevator to fill to half its
capacity or a 20-s timer to expire. Dispatching when the first
passenger enters is equivalent to a policy with
which gives a waiting time of 29.15 s, 23% longer than
the optimal wait. For the half-capacity plus 20-s time-out
policy, we cannot exactly estimate the waiting time from Fig. 5
because it is not possible to asses the effect the 20-s time-out
would have. Choosing equal thresholds ,
however, gives a waiting time of 25.72 s, 9% longer than the
optimal wait.

Fig. 6 shows that the optimal thresholds for a higher pa rate
of passengers each 5 min is . At this
arrival rate, we have which is often the case.

At the optimal thresholds, the average waiting time for the
higher arrival rate is 26.77 s. The worst waiting time is 36.58
s when , 37% longer than the optimal wait.
Comparing with the simple policy of dispatching when the
first passenger enters an elevator (i.e., gives a
waiting time of 35.99 s, 34% longer than the optimal wait.
The half capacity plus 20-s time-out (neglecting the effect of
the time-out, i.e., gives a waiting time of
28.33 s, 6% longer than the optimal wait. To summarize, this
example demonstrates that 1) the optimal thresholds change
with the pa rate and 2) the “bowl” shape of the response
curve suggests a potentially substantial penalty for choosing
the wrong thresholds. This points to the need for a dispatching
controller with the ability toadaptthe thresholds to changes in
the system operating conditions (i.e., the pa rate). In a follow-
up paper, we will demonstrate such an adaptive dispatching
controller based on the theory and the ideas of sample path
constructability [6].

C. Four-Car Discounted Cost Example

For this final example, we numerically solve the dynamic
programming algorithm for a four-car system to show how
the results developed in this paper extend to the car
case. In this example, each car has a capacity of
passengers and a service rate of trips each 5 min, the

Fig. 5. Response surface for a pa rate of� = 30 passengers each 5 min.
Here, the minimum waiting time of 23.61 s is obtained with��

1
= ��

2
= 4:

Fig. 6. Response surface for a pa rate of� = 45 passengers each 5 min.
Here, the minimum waiting time of 26.77 s is obtained with��

1
= 7; ��

2
= 4:

pa rate is passengers each 5 min, the total event rate is
the holding cost is , and the discount

factor is . The reader can verify that the optimality
equations for the four-car case are given by

638 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997

Fig. 7(a)–(d) show the plots of all the switching functions
involved to determine the thresholds for the four-car case.
Fig. 7(a) gives the threshold , Fig. 7(b) gives the
thresholds , Fig. 7(c) gives the thresholds

, and Fig. 7(d) gives the
thresholds Note
that (16) is satisfied in all cases.

VII. CONCLUSIONS

In this paper we represented the uppeak elevator dispatching
problem as a batch service queueing system and used dynamic
programming to show that the optimal policy minimizing the
discounted or average passenger waiting time is a threshold-
based policy. An attractive property of the policy is that the
number of thresholds that must be determined is linear in the
number of cars. Also attractive is that implementation of the
policy does not require knowledge of the lobby queue length.
All that is required is knowledge of the number of available
cars at the first floor and the number of passengers inside
one car. Since most elevator systems have sensors giving the
locations of the cars, and since many also have weight sensors
or light sensors to estimate the number of passengers inside
each car, the threshold policy can be easily implemented. Since
our results do not give numerical values for the thresholds,
the remaining challenge is to determine them. One way to
obtain the thresholds is by solving the dynamic programming
equations. Since the thresholds change as a function of several
parameters including the pa rate, this would require solving
many dynamic programming problems for each anticipated pa
rate. Another approach is to use one of several reinforcement
learning algorithms such as [21] or -learning [24].
A potential problem with these methods, however, is their
slow convergence. The method we suggest for determining
the thresholds is a scheme based on perturbation analysis and
sample path constructability [6], [9], [11]. In a forthcoming
paper, we will present such a scheme and show how it can be
used to rapidly determine the optimal thresholds on-line in a
model-free manner that uses only observable state information.
Finally, we note that since many transportation systems can be
modeled as multiple bulk server queueing systems (for exam-
ple, airport shuttle busses, or the shipment of parcels or mili-
tary supplies) our results can also be applied to those systems.

APPENDIX A
PROOFS OFLEMMAS 4.1–4.5

This appendix contains the proofs for Lemmas 4.1–4.5.
We know from Section III that the dynamic programming

PEPYNE AND CASSANDRAS: OPTIMAL DISPATCHING CONTROL 639

(a) (b)

(c) (d)

Fig. 7. Switching curves giving the optimal thresholds for a four-car example.

algorithm (7) converges to the optimal value function as
. To prove the properties of the optimal value function
therefore, it suffices to establish that satisfies

the same properties for all. This is accomplished through
mathematical induction on the update stepof the dynamic
programming algorithm.

Proof of Lemma 4.1:Since
it suffices to show that for all

This is accomplished by induction on.
First, for , since , we immediately have

from (11a)

Observing that and that
it follows from

(11b) and (11c) that

Next, for some the induction hypothesis is
for all and it remains to show that

for all .
1) For , (11a) gives

from which it immediately follows that
.

2) For , (11b) with the notation of (12b) gives

(A.1)

Using the induction hypothesis we have

(A.2)

Recalling that we also get

(A.3)

We will make use of (A.2)–(A.3) to show that (A.1) is
nonnegative (i.e., There are
four possible cases.

1) and
From (A.2) it follows immediately that (A.1) is nonnegative,
i.e., .

640 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997

2) and . From
(A.3) it follows that (A.1) is nonnegative, i.e.,

.
3) and In

this case

where the first inequality follows from (A.2) and the second
holds by assumption.

4) and . In
this case

where the first inequality follows from (A.3) and the second
holds by assumption.

Given 1)–4) above, it follows, as in part 1), that,
for all .

5) Finally, for (11c) with the notation of (12c) gives

(A.4)

Using the induction hypothesis we have

(A.5)

Recalling that and
we also get

(A.6)

and

(A.7)

Given (A.5)–(A.7), we proceed as in part 2) to show that the
expression (A.4) is nonnegative for all nine possible cases.

1)
and . It fol-

lows immediately from (A.5) that (A.4) is nonnegative.
2)

and . It fol-
lows immediately from (A.6) that (A.4) is nonnegative.

3)
and . It fol-

lows immediately from (A.7) that (A.4) is nonnegative.
4)

and . In this
case, using (A.5) we get

5)
and . Pro-

ceeding exactly as in 4) we get

6)
and . In this

case, using (A.6) we get

7)
and . Pro-

ceeding exactly as in 6) we get

8)
and . In this case,

using (A.7) we get

9)
and . Pro-

ceeding exactly as in 8) we get

Given 1)–9) above it follows that
for all . Combining parts 1)–3) completes the proof of the
lemma.

Proof of Lemma 4.2:As in Lemma 4.1, it suffices to
show that for all

. This is accomplished by induction on.
First, for , since , and

, combining (11a)–(11c) we immediately get
.

For the induction hypothesis is
for all and it remains to show that

for all .
1) We begin by comparing the value functions for the states

and using the notation of (12a) and (12b)

(A.8)

PEPYNE AND CASSANDRAS: OPTIMAL DISPATCHING CONTROL 641

From (11a), (11b), and the induction hypothesis we get

from which it follows that:

which establishes the fact that (A.8) is nonnegative.
2) Next we compare the value functions for the states

and

(A.9)

As in part 1), it is straightforward to show using (11b) and
(11c) that

Then, we can show that (A.9) is nonnegative for all six
possible cases that can arise. This is done exactly as in Lemma
4.1 except for the two cases where

For the case where we
have

and for the case where we
have

Combining parts 1) and 2) completes the proof.
Proof of Lemma 4.3:As in the previous lemmas, we will

use induction on to establish that
for all and all .

For , since , from (11a) and (11b) we
immediately get .

For the induction hypothesis is
for all , and it remains to show that

for all .
In the notation of (12a)–(12b), we have

(A.10)

From (11a) and (11b), we get

where we have used the induction hypothesis and the mono-
tonicity in of established in Lemma 4.1. Similarly

The last two relationships immediately yield the fact that
(A.10) is nonnegative and the proof is complete.

Proof of Lemma 4.4:The proof is similar to that of
Lemma 4.3, i.e., we proceed by induction to show that

for all for all .
First, for since from (9b)–(9c) we get

.
For , the induction hypothesis is

for all , and it remains to show that

Using the notation of (12b)–(12c), we have

(A.11)

Using (11b) and (11c) it is straightforward to show using
arguments similar to those in the previous lemmas that

It now remains to check that (A.11) is nonnegative for all
six possible cases that can arise. All cases are straightforward
to check, except for the one where

(A.12)

Comparing (11c) with (11b) we observe that
and When (A.12) holds, we

must have which implies that
and (A.11) becomes

and the proof is complete.
Proof of Lemma 4.5:The result follows directly from the

previous two lemmas: For we have

APPENDIX B
PROOFS FORCOROLLARIES 4.1–4.7

This appendix contains the proofs for Corollaries 4.1–4.7.
The corollaries use the notation in (13) and follow from the
dynamic programming equations (11) and the lemmas proved
in Appendix A.

642 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997

Proof of Corollary 4.1: For we have
and Let

It then suffices to show that for From
the definitions of [see (11)–(13)] we get

where the inequality is established by using Lemma 4.1.
Proof of Corollary 4.2: Since for

the difference becomes

where the inequality is established by applying Lemmas 4.1,
4.3, and 4.4.

Proof of Corollary 4.3: Recalling that and
when taking the difference, and using

Lemma 4.2 gives

which is clearly a nonnegative constant.
Proof of Corollary 4.4: Again when

If we define
then

where the inequality is established by applying Lemma 4.1.
Proof of Corollary 4.5: Since

and for we can take the difference
and use Lemmas 4.1 and 4.4 to establish the inequality

Proof of Corollary 4.6: Recall
and

for . If we define
then, using Lemma 4.1 we get

Proof of Corollary 4.7: Since and
for we get

where the inequality is established by applying Lemmas 4.4,
and 4.5. Similarly, using Lemmas 4.1, 4.3, and 4.4 gives

REFERENCES

[1] N. A. Alexandris, G. C. Barney, and C. J. Harris, “Multicar lift system
analysis and design,”Appl. Math. Modeling, vol. 3, pp. 269–274, Aug.
1979.

[2] H. Aoki and K. Sasaki, “Group supervisory control system assisted by
artificial intelligence,”Elevator World, pp. 70–80, Feb. 1990.

[3] G. Bao, C. G. Cassandras, T. E. Djaferis, A. D. Gandhi, and D. P.
Looze, “Elevator dispatchers for down-peak traffic,” Elec. and Comp.
Eng. Dept., Univ. Mass., Amherst, Tech. Rep., 1994.

[4] G. C. Barney and S. M. dos Santos,Elevator Traffic Analysis Design
and Control, 2nd ed. London: Peter Peregrinus, 1985.

[5] D. P. Bertsekas,Dynamic Programming: Deterministic and Stochastic
Models. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[6] C. G. Cassandras,Discrete-Event Systems: Modeling and Performance
Analysis. Boston, MA: R. D. Irwin, Inc., and Aksen Asso., Inc., 1993.

[7] R. H. Crites and A. G. Barto, “Improving elevator performance using
reinforcement learning,”Neural Information Processing Society(NIPS-
8), 1995, submitted.

[8] R. K. Deb and R. F. Serfozo, “Optimal control of batch service queues,”
Adv. Appl. Prob., vol. 5, pp. 340–361, 1973.

[9] Discrete-Event Dynamic Systems: Theory and Applications, Special issue
on parallel simulation and optimization of discrete-event systems, vol.
5, no. 2/3, Apr./June 1995.

[10] A. D. Gandhi and C. G. Cassandras, “Optimal control of polling models
for transportation applications,”J. Math. Computer Modeling, vol. 23,
pp. 1–23, 1996.

[11] Y. C. Ho and X. R. Cao,Perturbation Analysis of Discrete-Event
Dynamic Systems. Boston, MA: Kluwer, 1991.

[12] G. T. Hummet, T. D. Moser, and B. A. Powell, “Real-time simulation
of elevators,” inWinter Simulation Conf., Miami Beach, FL, Dec. 4–6,
1978, pp. 393–402.

[13] N. Kameli and K. Thangavelu, “Intelligent elevator dispatching sys-
tems,” AI Expert, Sept. 1989, pp. 32–37.

[14] C. B. Kim, K. A. Seong, H. Lee-Kwang, J. O. Kim, and Y. B. Lim, “A
fuzzy approach to elevator group control system,”IEEE Trans. Syst.,
Man, Cybern., vol. 25, pp. 985–990, 1995.

[15] D. Levy, M. Yadin, and A. Alexandrovitz, “Optimal control of eleva-
tors,” Int. J. Syst. Sci., vol. 8, no. 3, pp. 301–320, 1977.

PEPYNE AND CASSANDRAS: OPTIMAL DISPATCHING CONTROL 643

[16] J. Lewis, “A dynamic load balancing approach to the control of multi-
server polling systems with applications to elevator system dispatching,”
Ph.D. dissertation, Dept. Elec. Comp. Eng., Univ. Mass., Amherst, 1991.

[17] D. L. Pepyne, D. P. Looze, C. G. Cassandras, and T. E. Djaferis,
“Application of Q-learning to elevator dispatching,” inProc. IFAC’96
World Congr., 1996.

[18] S. Ross,Introduction to Stochastic Dynamic Programming. New York:
Academic, 1983.

[19] M. L. Siikonen, “Elevator traffic simulation,”Simulation, vol. 61, no.
4, pp. 257–267, 1993.

[20] G. R. Strakosch,Vertical Transportation: Elevators and Escalators.
New York: Wiley, 1983.

[21] R. Sutton, “Learning to predict by the method of temporal differences,”
Machine Learning, vol. 3, pp. 9–44, 1988.

[22] S. Tsuji, M. Amano, and S. Hikita, “Application of the expert system to
elevator group supervisory control,” inIEEE Proc. 5th Conf. Artificial
Intell. Applicat., 1989, pp. 287–294.

[23] J. Walrand,An Introduction to Queueing Networks. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

[24] C. J. C. H. Watkins, “Learning from delayed rewards,” Doctoral
dissertation, Psych. Dept., Cambridge Univ., U.K., 1989.

David L. Pepynereceived the B.S.E.E. degree from
the University of Hartford, CT, in 1986. In 1991, he
entered the University of Massachusetts, Amherst,
where he received the M.S.E.C.E. degree in 1995,
and is currently completing the Ph.D. degree.

From 1986 to 1990, he was a Flight Test Engineer
with the U.S. Air Force at Edwards A.F.B., CA.
From 1995 to 1996, he was a Staff Engineer with
Alphatech, Inc., Burlington, MA. His research inter-
ests include the control of discrete-event systems,
optimization methods, optimal control, intelligent

control, and learning control.

Christos G. Cassandras (S’82–M’82–SM’91–
F’96) received the B.S. degree from Yale University,
New Haven, CT, in 1977, the M.S.E.E. degree from
Stanford University, CA, in 1978, and the S.M. and
Ph.D. degrees in 1979 and 1982, respectively, from
Harvard University, Cambridge, MA.

In 1982–1984, he was with ITP Boston, Inc.,
where he worked on control systems for computer-
integrated manufacturing. He is currently Professor
of Manufacturing Engineering and Professor of
Electrical and Computer Engineering at Boston

University, MA. He is the author of more than 100 technical publications
in these areas, including a textbook. His research interests include discrete-
event systems, stochastic optimization, computer simulation, and performance
evaluation and control of computer networks and manufacturing systems.

Dr. Cassandras is on the Board of Governors of the Control Systems
Society, and Editor, Technical Notes and Correspondence, of the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL. He serves on several other editorial
boards and has guest edited for various journals. He was awarded a Lilly
Fellowship in 1991. He is a member of Phi Beta Kappa and Tau Beta Pi.

