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Optimal Dispatching Control for Elevator
Systems During Uppeak Traffic

David L. Pepyne and Christos G. CassandFraslow, IEEE

Abstract—in this paper we develop optimal dispatching con- particular building, for office buildings, the usual goal is to
trollers for elevator systems during uppeak traffic. An uppeak minimize the average passenger waiting time [20]. Achieving

traffic period arises when the bulk of the passenger traffic is s gpjective is difficult for a number of reasons, including
moving from the first floor up into the building (e.g., the start of a '

business day in an office building). The cars deliver the passengersthe need to: 1) coordinate multiple cars; 2) satisfy constraints
and then return empty to the first floor to pick up more passen- On €levator movement (e.g., a car must stop at a floor where
gers. We show that the structure of the optimal dispatching policy a passenger wants to exit); 3) operate with incomplete state

minimizing the discounted or average passenger waiting time is a jnformation (e.g., while it is known whether an elevator has

threshold-basegbolicy. That is, the optimal policy is to dispatch an been called to a particular floor, it is generally not known
available car from the first floor when the number of passengers h L hat fl ) K
inside the car reaches or exceeds a threshold that depends onOW Many passengers are waiting at that floor); 4) make

several factors including the passenger arrival rate, elevator decisions in the presence of uncertainty (e.g., passenger arrival
performance capabilities, and the number of elevators available (pa) times and destinations are uncertain); and 5) handle
at the first floor. Since most elevator systems have sensors tongnstationary passenger traffic (e.g., for an office building,

determine the car locations and the number of passengers in - : :
each car, such a threshold policy is easily implemented. Our passenger traffic varies continuously throughout the day, from

analysis is based on a Markov decision problem formulation MOrning up-traffic, to heavy two-way lunchtime traffic, to

with a batch service queueing model consisting of a single queue€vening down-traffic). Even without difficulties 4) and 5), the
served by multiple finite-capacity bulk servers. We use dynamic dispatching control problem is combinatorially explosive due
programming techniques to obtain the structure of the optimal g the enormous size of the state space.

control policy and to derive some of its important properties. - A g stematic study of the elevator dispatching control
Several numerical examples are included to illustrate our results

and to compare the optimal threshold policy to some knowred ~Problem begins by decomposing passenger traffic into four
hoc approaches. Finally, since many transportation systems can different situations: 1uppeak traffic 2) lunchtime traffic 3)
be modeled as multiserver batch service queueing systems, wedownpeak traffic and 4) interfloor traffic [20]. The uppeak
expect our results to be useful in controlling those systems as {raffic situation arises when all passengers are moving up from
well. the first floor (e.g., the start of the business day in an office
Index Terms—Bulk-service queueing networks, dynamic pro- building). Lunchtime traffic is a characterization in which
gramming, Markov decision problems, optimal control, opti- npassengers are going to and returning from the first floor (e.g.,
mlzgtllon problems, queueing theory, thresholds, transportation as they go to and return from lunch in an office building). The
mocess. downpeak traffic situation is observed when all passengers are
moving down to the first floor (e.g., the end of the business day
|. INTRODUCTION when an office building is emptied). Finally, interfloor traffic

LEVATOR systems form a class of discrete-event sygs a characterization in which passengers are moving equally

tems (DES's) whose complexity makes them difficult thkely between floors.
model, analyze, and optimize. In multiple-car elevator systemsn this paper we limit ourselves to the uppeak traffic
particularly those designed to serve large buildings, a maj@fuation and develop the theory for optimal dispatching.
challenge is that of developing dispatching control policy During uppeak, passengers arrive only at the first floor. The
i.e., a scheme for systematically decidimhen and where e€levators carry them up to their requested destinations and
each car should move, stop, or switch direction based on #€n make an express run returning empty to the first floor to
current state and available past history. While in general, thgrve additional passengers. While the uppeak traffic situation

objective of an elevator dispatching policy depends on th@ arguably the simplest one to model, it is the most difficult
one for an elevator system to handle from the standpoint

Manuscript received January 31, 1996; revised December 16, 1996. R@F-passenger hand"ng Capacity [19] Because passengers are
ommended by Assocaite Editor, C. C. Lee. This work was supported in part

by the National Science Foundation under Grants ECS-93-11776 and E@_’-”V'ng t_o a smgle floor during uppe_ak, itis possible for a very
92-12122, by AFOSR under Contract F49620-95-1-0131, and by a grant fréitgh pa intensity to cause cars to fill up and the lobby queue

United Technologies/OTIS Elevator. _ __to grow unbounded. In fact, the anticipated pa intensity during
D. L. Pepyne is with the Department of Electrical and Computer Engineer- Ki di | ing the si f th | t ¢ that
ing, University of Massachusetts, Amherst, MA 01003 USA. uppeak I1s used In planning the size o € elevator system tha

C. G. Cassandras was with the Department of Electrical and Compuwill be needed to serve a building [4].
Engineering, UanerSlty of Massachusetts, Amherst, MA 01003 USA. He is Hlstorlca”y, When the flrst passenger elevators were Intro_

now with the Department of Manufacturing Engineering, Boston Universit . , S
Boston, MA 02215 USA. Yuced in the 1890 s, each car Wgs'lndlwaually controlled by
Publisher Item Identifier S 1063-6536(97)07780-4. an attendant riding the car. As building heights rose, however,

1063-6536/97$10.001 1997 IEEE



630 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 5, NO. 6, NOVEMBER 1997

so did the number and speed of the cars and it soon becdi®] and applying dynamic programming techniques to derive
impossible for the attendants to provide effective coordinatidhe structural properties of the optimal control policy. The
and control. With the introduction of the first semiautomatibasic model is that of a queueing system consisting of a
elevator controllers in the 1920's, the attendant’s job waingle queue (representing the first-floor lobby where arriving
reduced to one of simply closing the doors and starting the cpassengers wait for a car) served by multiple, finite capacity
By 1950, fully automated elevator controllers eliminated thieulk servers (representing the cars). In [1] a similar model
attendant altogether. The first automated elevator controllevas used to analyze the uppeak traffic situation. No control
were simple electromechanical relay systems. By the 1970&rategy, however, was developed. The optimality of a thresh-
microprocessor based elevator controllers were in commold policy has been shown for a single server batch service
use. Since that time, increases in processor speed and mengmgueing system [8]. In this paper, however, we consider a
capacity have allowed for the implementation of increasingultiple-server system in which each server is limited to a
complicated dispatching algorithms. Modern dispatching dinite capacity. We note that since many transportation systems,
gorithms employ fuzzy logic [2], [14], expert systems [22]in addition to the uppeak elevator dispatching problem, can
sophisticated rule-based and search-based strategies [3], [h6],modeled as multiple bulk server queueing systems (for
artificial intelligence with learning [13], dynamic programmingexample, airport shuttle busses, shipment of parcels or military
[10], [15], and reinforcement learning [7], [17]. In generalsupplies, etc.) we expect our results to be useful in controlling
different dispatching algorithms are used for the differethose systems as well.
traffic situations defined earlier. While modern dispatching The remainder of this paper is organized as follows. In the
algorithms give good performance, most aad hoc and next section, we formulate an MDP model for the uppeak
heuristic, designed using experience, intuition, and simulatigglevator dispatching problem. In Section Ill, we consider the
as opposed to formal technigues based on optimal contgi$counted cost problem and derive the associated dynamic
theory. programming equations. In Section IV we present properties
For the uppeak situation, the dispatching objective is ref the value function and use these properties to show the
duced to the question of when to dispatch an elevator fropptimality of a threshold policy for the discounted cost prob-
the first floor. The simplest algorithm for uppeak dispatches &m. In Section V we extend the optimality of a threshold
elevator as soon as the first passenger boards. Another, terp@ity to the average cost problem. Several examples are
half-capacity plus time-outdispatches an elevator whenevepresented in Section VI to verify our analysis. Finally, we
half its capacity is reached or when a timer, started wh@mnd in Section VII with a summary and discussion. Two
the first passenger enters the elevator, expires (usually a appendixes provide proofs for the lemmas and corollaries used
s timer is used). The main contribution of this paper is th the body of the paper.
show that the structure of the optimal dispatching policy,
minimizing the discounted or average passenger waiting time Il. PROBLEM FORMULATION
for uppeak traffic, is ahreshold-basedolicy. That is, the . . , .
controller should dispatch an elevator when the number ofIn this se.ctlo.n, we first pfese”t a queueing model for the
passengers inside a car reaches or exceeds a certain thres BRFHak traiffic S|tua_t|on (_Sectlor_1 Il-A) and then develop a_MDP
In practice the number of passengers in a car is estimated b %r the corre_spondmg dispatching control problem (_Sectlon Il-
on-board scale measuring the total weight of passengers; m% We consider the_ case of an elevator gystem with two cars
sophisticated systems use light beams to detect passen cep the analysis manageable. As will be seen, hqwever,
entering and exiting the cars. Since most elevator systems h %e_nsmns to theV>2 car case follow naturally and in a
some method to determine the number of passengers in eagﬁlghtforward way.
car as well as sensors to determine the car locations, such _
a threshold policy is easily implemented. In contrast to tHfe The Queueing Model
ad hocdispatching algorithms described above, our analysisFor the elevator system we consider, we assume that the
will show that the thresholds are not fixed, but depend arppeak traffic originates from a single floor (the first floor),
the pa rate, the performance capabilities of the elevators, auttl that each elevator serves every floor (i.e., “zoning” [4] is
the number of elevators available at the first floor. Althoughot used). Then we can model the uppeak traffic situation as
our analysis does not provide explicit numerical values fer single queue of infinite capacity (representing the first-floor
the thresholds, parameterizing the control policy in termsbby), served by two identical bulk servers (corresponding to
of a few thresholds, allows us to use any of a number ofo identical elevator cars), each with a finite capacityCof
recently developed methods based on perturbation analysissengers. Fig. 1 illustrates this model, in which passengers
and sample path constructability techniques for DES [6], [9yrive one at a time to the queue according to a Poisson process
[11] to determine them on-line from actual observable systewith intensity A. Each pa generates a pa event. The passengers
data. A detailed scheme for determining the thresholds wéle admitted into the cars and the cars are dispatched by
be given in a follow-up paper, where a dispatching controll¢he dispatching control. Exactly how dispatching control is
is developed with the ability to adapt the threshold values asgercised in this model is discussed in the next section. The
operating conditions (such as the pa rate) in the system changgessengers are served by the cars in batches of size no greater
Our analysis is based on modeling the dispatching problahan the car capacit¢’. The time for a car to serve a batch
in uppeak traffic as a Markov decision problem (MDP) [5]of passengers is exponentially distributed with paramgter
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a constant, which is the same for each car, and independent
of the state. After a car has delivered all of its passengers, it
makes an immediate express run returning empty to the first /
floor lobby to serve more uppeak passengers. The completion ra o,

ca

of service generates a “car arrival” (ca) event indicating that /

one of the two elevators has become available for service. ) )

Since the two elevators are identical, there is no need to d”p“’d;’”g
distinguish between them contro .
ISting : lobby identical

Itis worth making a few remarks regarding this model. First, et elevators
experience has shown the Poisson process to be a good model q capacity C each
of pa’s [12], particularly for the case of a medium-sized office _ _ _
building (one with 10-15 floors) in a suburban office pa”&lg. 1. Queueing model for the two-car uppeak dispatching problem.
where the building’s occupants will typically drive to work

alone. Next, modeling service times through an exponentigl dispatching control only allows passengers to load into
distribution with a constant rate is intended to aggregagie car at a time), while dispatching both elevators serves
random effects due to travel time, number of stops, passenggh {;, 2C} passengers and leaves behind a lobby queue of
unloading time, door opening and closing time, and the dogingth [y — 2C]* passengers.

holding time. Although it is possible to use a more elaborate Opserve that not all actions are admissible at every state.
service time model (e.g., using a distribution from the Erlang particular, letU(y,z) (a subset oft/) denote the set of

family or taking into account the destination floors alreadydmissible actions from the state= (y, z) and we have
selected by passengers inside an elevator that is waiting to

be dispatched), doing so greatly increases the complexity df(y,0) = {0}: dispatching is not allowed when no
the problem and makes analysis intractable. More importantly, cars are available;

from a practical standpoint, our purpose here is to derive thé/(y,1) = {0,1}: two cars cannot be dispatched
structureof an optimal dispatching policy, structure which can when only one is available;

be used to develop dispatching controllers that do not depenid(y,2) = {0,1,2}: when both cars are available;

on modeling assumptions regarding the distributions of the all actions inU are admissible.

arrival and service processes.

To implement the control action = 1 when both cars are
B. The Markov Decision Problem available implies the ability to load one car before loading
An MDP formulation is now introduced to rigorously define‘t‘he other"car. This is typically impl_emented using the popular
the uppeak dispatching problem (see [5], [6], and [18] for e(JeXt car” feature [4]._S|nce returning cars are empty, .they do
general background on MDP’s). The state-spatefor the not need to open their doors when they reach thg main lobby;
model is obtained by defining(t) € {0,1,---} to denote thus, to for_ce passengers to _Ioad one car at a time, only one
the queue length at the first floor lobby at timand =(t) € car opens its doors. This car is referred to as the “nexF car’ to
{0, 1,2} to denote the number of elevators available at the fillg? dispatched. Note, even when a car r?tu”‘s to the ﬂ.rSt floor
floor at timet. Thus, X = {(y,2): y =0,1,---,2 = 0,1,2}. with dqwn passengers anq must open |ts“doors to" discharge
When needed, we will denote the state by= (y, z). State the”." Itis St.'” possible to implement the next car fgaturg
transitions in this model are the result of event occurrenc@é’; cﬁscouragmg Passengers from gntermg the car by d|mm|ng
in particular, pa events or ca events. Control actions ar lights and making it appear as i t_he caris OUt.Of Service.
taken only when any such event occurs and they define a se[t\leXt’ we use the §tandarq| uniformization tephmque [5]’. [6]
U = {0,1,2} where to cor_1vert thg contmuous-ym_e MDP abpve into an equiva-

lent discrete-time MDP. This is accomplished by choosing a
Action v = 0:  do nothing, hold all available cars at  uniform ratey = A + 2y, the total event rate in our two-car

the first floor; model (this obviously extends tp = A + Ny for an N-car
Actionu =1: load one car and dispatch it; model). In this uniformized model, fictitious ca events (causing
Action = 2:  allow both cars to load and dispatch  no state change) are included to account for states where the

them simultaneously. feasible event rate is less than Without loss of generality,

. . we can assume the time scale has been normalized so that
Since cars returning to the lobby are assumed to be emply,_ 1. Control actions are taken at the beginning of each
each available car can serve up @ passengers from the, .. step. LetP;;(u) denote the conditional probability that
Io_b by. Th_ose passengers Wh'(.:h would cause a car to OVe_”'&"éé state at the next time stepjsc X given that the state
will remain at the lobby to wait for another one. If we def'n%t the current time step isc X and the control action taken

[y — C]T = max {y — C,0} at the beginning of the current time stepusc U(4). These
[y — 201" = max {y — 2C, 0} (1) state transition probabilities are given by

then dispatching one elevator servesn {y, C} passengers P,(0) = { A i=(y,0),) = (y+1,0) (2a)
and leaves behind a lobby queue of length C]* passengers 2, i =(y,0),5 = (y,1)
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A i=(y 1), =(y+1,1) policy ¢* minimizing the average cost
P 0) =4 n i=(y, 1Z,j ? (v,2) (2b) -
py, t=g=(y1 V4 = inf [limsu —F C zuH 4
A s (2= (4 12) o =l \limsup- B kz=o (Yn, 255 Uk) 4)
’ ) J ’ . will be considered later in Section V.
Py(1) = { A - (v, 1)’J - ([v = C]+ +1,0) We will take the one-step cost to be proportional to the
2p, i=(y, 1) = (v = C1", 1) gueue length resulting from the control action taken at the
(2d) beginning of the time step. Lettind be some given positive
A, 1= (,2),5=(ly— C]i +1,1) and bounded holding cost, we have
Py(1) = 1, L:y727: y—C 72
e mi:éﬁj:&—ﬁtg Cly,0,u) =y (5a)
(2e) Cly,1,u) = { Bly-ClIT u=1 (5b)
P(m:{& i=(y,2),j = ([y - 2C]* +1,0) Py u=0
! 2”7 = (y72)7J: ([y_20]+71) /3[y—20]+ u=2
(2f) Cly:2,u) =4 Bly-CIt  u=1 (5¢)
By u =20

For each (2a)—(2f), the first row corresponds to a state traghere the actions = 1,2 reduce the lobby queue length in
sition induced by a pa event. All remaining transitions argccordance with (1). This cost structure is motivated by the fact
mduced by_a ca event, including fictitious ca events mtroducmbt the minimization of the average queue length is equivalent
by uniformization. In (2b), for example, the last ca event i the minimization of the average passenger waiting time in
fictitious because one of the cars is available at the lobltye sense that at steady state
and, therefore, cannot generate an actual ca event. In (2c), o
both ca events are fictitious because both cars are available £[queue lengthy] = AE[passenger waiting tinje
at the_ lobby. In (2e) the I{;\st_cg_ event is fictitious. In thIFJ Little’s Law [6, p. 345].
case, it may appear that this fictitious ca event causes a s . . .
L . . The following lemma establishes the fact tlaay policy «
change, which is not the case. Here, the state at the beginnin L
. - : ! yields a finite cost.
of the time step is = (y, 2). Taking the action, = 1 at the o . -
L . . ; Lemma 2.1: V2(i) < oo for ¢ € X and all policiesr,
beginning of the time step causes an immediate state change to0".
S all " - provideda € (0,1) and 3 < .
an “intermediate” stat¢ = ([y — C]*, 1). When the fictitious e . .
. . Proof: Since customers arrive one at a time, for any
ca event occurs, there is no state change with respect to .th? .
o ST ) initial queue lengthy, < oo and any policyr, the lobby queue
intermediate” state, i.e;j = ¢'. It is the control action taken length at time stefi: satisfiesy;, < yo + k. Hence
at the beginning of the time step that causes the state changeg Ik = Yo '
and not this fictitious ca event. In the remaining (2a), (2d), .
and (2f) all ca events are real. (i) =Ex
Notice that although we are taking control actions at the

Zﬁa%%mmwﬂ

k=0

beginning of each time step, we would never take an action 2 . 2

(other thanu, = 0) when a fictitious event occurs. This is SEx |y o*Burlwo =i| <Y o*Byo + k)

because actions are only taken in response to state changes, k=0 k=0

and fictitious events do not cause state changes. Therefore, if —g| % o 6
: X e + 5 | <oo. (6)

a state is such that an actienZ 0 should have been taken, l—a  (I-a)

the action would have been taken in response to the real event ¢

that caused the system to transition to the state, and not in
response to fictitious events occurring at later time steps.

To complete the MDP formulation, we introduce the fol-
lowing cost structure. Let us denote the cost for itie time ~ Given that all policies yield a finite cost by Lemma 2.1,
step byC(yx, zx, ux) Wherew, is the control action taken atwe wish to find the one that gives the least cost in (3). In
the beginning of the time step when the statéyjs, z;,). Our this section we develop the dynamic programming equations
objective then is to obtain the optimal stationary policy satisfied by such a policy. Lét* (i) denote the optimal cost-
that minimizes the total discounted cost to be incurred ovi-go overn time steps starting with state Then, since the

Ill. THE DYNAMIC PROGRAMMING EQUATIONS

the infinite-horizon one-step costs defined in (5) are nonnegative and the action
setU = {0, 1,2} is finite, it is well known (see, for example,
o 0 N . [5] and [6]) that, forae € (0,1), the dynamic programming
V(i) = inf Bx | > o*Olyn, 2 un)|wo = i (3)  algorithm
k=0
whereE[-] denotes the expectation operator, arfd < a < 1) Vi () = ugtll(lz) Cli,u) +a ) PV () ()
J

is a given discount factor. Obtaining the optimal stationary
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with V(i) = 0 converges to the optimal value function, i.e.;The first term in the bracket above corresponds to holding
both cars (hence, both ca events are fictitious), the second

Vet = nh_l,go V(@) ®) to dispatching one of the cars (in which case only the ca
o L L . event corresponding to the elevator that was dispatched at
and thatV: (i) satisfies the optimality equation the beginning of the time step is a real one), and the third

to dispatching both cars (hence, both ca events are real).
. (9 Using the dynamic programming equations (1la)—(11c)
above, the optimal dispatching policy can be obtained from

the dynamic programming algorithm (7) by lettimg— .
Moreover, under the same conditions, there is an optinRihding the optimal dispatching policy this way, however, is
stationary policy obtained through prohibitive in terms of the computational and memory require-
ments, especially since the dynamic programming algorithm
must be solved, and the optimal policy stored, for each set of

system parameters?, A, i, C, o} of interest. In what follows,
we show that the optimal policy for each such set can be

Using the state transition probabilities (2a)—(2f) and the sta@rameterized in terms a few thresholds.

transition costs (5a)—(5c), we can obtain dynamic program-
ming equations of the form (7) as follows. First, for states of
the form (y,0), no cars are available so the only admissible
action isu = 0 (do nothing), i.e., In this section we use the dynamic programming equations
(11a)-(11c) to show that the structure of the optimal policy
Vi (9, 0) = By + AVl (y + 1,0) + 204V, (y, 1), (118)  minimizing the total discounted cost in (3) is a threshold
’%)Iicy. In the next section we extend the result to the av-

S
(1) min,

Cliyu) +a ) Py(u)Ve: ()

(10)

u* (i) = arg uIenbu(lz)

Cliyu) +a ) PV ()|

IV. STRUCTURE OF THEOPTIMAL PoLicy

In (11a), as will be the case in all the dynamic programmi
equations to follow, the first term is the one-step cost, t
second term corresponds to a pa event, and all remaining te
correspond to ca events.

Similarly, for states of the form(y,1), there is one car
available and the control action is to either hold it waiting f
more passengers to arriye = 0) or dispatch it(x = 1), i.e.,

age cost case. We begin (Section 1V-A) by presenting some
mas and corollaries concerning properties of the optimal
value functionV*(z). The optimality of a threshold policy
follows directly from the corollaries (Section IV-B). To save
oppace and aid readability, proofs for the lemmas and corollaries
are contained in the Appendixes.
In the discussion to follow, we will use a simplified notation

Vit (v, 1) for the dynamic programming equations (11a)—(11c). To do
=min{By + aAV,2(y + 1,1) + auV,*(y, 2) so, set
Fouvaly 1 Aon(y) = Py + oAV (y +1,0) + 20pV,X (y, 1)

Bly = CTF + AV ([y= O +1,0)+ 2auV,X ([y=C]*, 1)}
(11b) so that (11a) is rewritten as

The first term in the bracket in (11b) corresponds to holding the V&1 (y,0) = Aon(y). (12a)

car, and the second corresponds to dispatching the car. Also,

note that in the first term, one of the ca events is fictitiousimilarly, in (11b) letA, ,.(y) and By ,,(y) denote the two

and causes no state change, since only one car is busy. Iniliths in themin bracket, respectively, and in (11c) let

second term, however, both ca events are real: one car W8S, (v), B2 »(y), and Ca »(y) denote the three terms in the

already busy at the beginning of the time step, and the oth@m bracket, respectively, so that we can write

was made busy when it was dispatched at the beginning of

the time step. Vi(y ) = min{Asa(n). Bin()}  (12b)
Finally, for states of the fornfy, 2), all actions are admis-

sible, i.e., hold both caréu = 0), load and dispatch one of and

them (u = 1), or load and dispatch both of thefm = 2),

and we get(u = 2) V1 (1,2) = min {4z (), Ban (), Con(y)}.  (120)
V"a+1(y’ 2) In addition, we will find it useful to define
= min {By + aAV (v + 1,2) + 2apV, (v, 2)
Bly = CTM + AV ([y — CT +1,1) Ao(y) = lim Ao n(y)
+apV(ly - C1%,2) Ai(y) = lim Ay ,(y), Bi(y) = lim By ,(y)
FanV(ly=C1" 1) Ao(y) = lUim Az, (y), Bo(y)= lim Byn(y)
Bly—2C1 +adV,X ([y—2CT + 200V, ([y—2C]F, 1)} neo noee
Co(y) = lim Cs,(y) (13)

(11C) n—oo
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so that, in view of (8), the optimality (9) for states of the form

(y7 0)7 (y7 1)7 and (y, 2) becomes Region I Region I1 Region I

Va(y,0) = Ao(y) (14a) A1<B1 A1 >B) AL >By
Va(y,1) = min {4;(y), Bi(y)} (14b) u*=0 w=1 u*=
Ve (y,2) = min {A2(y), B2(y), C2(y)} (14c) A1-B,

\‘

We use the notation above with the understanding that
each term on the right in (12) and (14) is also dependent on *
8, A, C, i, and . For notational compactness, however, we 0 on ¢
will omit these dependencies.

A

Fig. 2. Summarizing Corollaries 4.1 and 4.2.

A. Properties of the Value Function ) ) ) .
(Region 1), and ify > 67 ; then A, (y) — By (y) is positive and

~We begin by presenting fivg Iemmas concerning the propgfsnce,* (y) = 1 (Region II). For queue lengths greater than
ties of the_optlmal value fu_nct|on in (9). Proofs for the lemmag,q ooy capacity, i.ey > C, Corollary 4.2 simply asserts that
are contained in Appendix A. u*(y) = 1 (Region lll), i.e., a car should always be dispatched
Lemma 4.1:Va(y + 1,2) > V2 (y,z) for all y, z. in this case.
This lemma states that the value functibff () is non- he next five corollaries give the structure of the optimal
decreasing in the queue length Intuitively, the greater policy for states of the fornty, 2).

the number of_waiting passengers, the greater the rate Oborollary 4.3: Cs(y) — Bo(y) is a nonnegative constant
cost accumulation, and, therefore, the greater the COSt'tOTHHependent ofy for all y < C.

becomes. . ; ; ; ;
Corollary 4.4: A - B is strictly increasing for all
Lemma 4.2: V2 (y,0) > Va(y,1) > Va(y,2) for all y. <C. Y 2(9) 2(9) Y 9
This lemma indicates that there is an ordering among t?‘lec:orollary 4.5 Ay(y) > Bo(y) forally > C.

value functions, imposed _by. For a fixed queue length, the Corollary 4.6: Bz (y) — Ca(y) is strictly increasing for all
greater the number of available catghe smaller the cost-to- C<y<2C.

go is. This is a consequence of the fact that the queue IengthCOm"ary 4.7: Ax(y) > Ca(y) and By(y) > Cs(y) for all
and thus the rate of cost accumulation, can be reduced as more o~

cars become available: by dispatching, the queue length ange corollaries above can be interpreted with the help of

hence the rate Oaf cost accumulzifion is reduced. Fig. 3. As was the case for states of the fofm1), Fig. 3
Lemma 4-3:V7r(; (y+C1) > Vwa* (,0) forally > C. illustrates how states of the forty, 2) also admit a threshold
Lemma 4.4: V2 (y + C,2) >V (y, 1) forall y > C. policy. These states, however, have two thresholds, one for

Lemma 4.5: V2 (y +2C,2) 2 Vi (y,0) forall y > 2C. gigpatching one car, and another for dispatching both cars.
These three lemmas show a relationship between the nu en the queue length is less than the car capa€iy

of available carg.and the car capacity. Consider Lemma 4.3 Corollary 4.3 asserts that,(y) < Ca(y), i.e., Ca(y) is never
for example: taking the action = 1 from the statey +-C, 1) the smallest term in (14c). By Corollary 4.4, we also have that
|mmed|at_ely_puts th_e system in the st&ge0) from which the Ay(y) — Ba(y) is increasing iny. This implies the existence
only admissible action is to hold the car. Thus, the cost-to-gg thresholdd ; below which A, (y) is the smallest term
for the state(y + C, 1) can never be less than the cost-to-gg, (14c) andu*(g)) = 0 (Region 1), and above whichB,(y)
for the state(y,0), and if u = 0 from the state(y + C,1) s the smallest and* () = 1 (Region Il). For queue lengths
the cost can only be greater. The other two lemmas havgnaie rangeC’ < 4 < 20, we have by Corollary 4.5 that
similar interpretation. _ Bs(y) is always smaller tham,(y), and by Corollary 4.6
A set of corqllanes can be derived from the above Iemnjaﬁ;rat Bs(y) — Ca(y) is increasing iny. This gives a threshold
These corollaries serve to reveal the structure of the optmysxl2 below which B,(y) is the smallest term in (14c) and
dispatching policy. Proofs for the corollaries are contained iﬁ;(y) = 1 (Region Ill), and above whicli,(y) is the smallest
Appendix B. o _ andu*(y) = 2 (Region IV). Finally, by Corollary 4.7, when
Corollary 4.1 A, (y) — Bi(y) is strictly increasing for all he queue length exceeds twice the elevator capacity, we have
0 < y<C. As(y) > Ca(y) and Bz (y) > Ca(y), which implies thatCs(y)

Corollary 4.2: A (y) > B(y) for all y > C. _ _is the smallest term, i.ey*(y) = 2 (Region V).
These two corollaries give the structure of the optimal policy

for states of the form(y,1) as illustrated in Fig. 2. When
the queue length is less than the car capacity, Corollary P1
asserts thatd; (y) — By (y) is strictly increasing in the queue Based on the lemmas and their corollaries above, we are
length 5. From (14b), recall that the optimal control actiomow in a position to formally state the optimality of a threshold
is u*(y) = 0if A;(y) < Bi(y) andu*(y) = 1 otherwise. policy for the discounted cost criterion (3).

These facts imply the existence of a thresh#ild such that if Theorem: For « € (0,1) and a bounded positive holding

y < 67 ; then A, (y) — Bi(y) is negative and hence*(y) =0 cost 3, the optimal dispatching policy yielding the minimal

Optimality of a Threshold Policy
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A . . _ . . the queue length exceeds the car’s capacity, it makes sense to
Region RegionIl  RegionIll  RegionIV. Region V. gisnatch this car immediately. It also makes sense to dispatch
Ay<Bs Ay>Bs Ay>By Ay>Bs ty>Cy only one car when the n_umbe_zr of ngting passengers is less
By<Cy By<Co By<Ca By>Co By>Co than_ the elevator capacity: dispatching with both cars or_wly
u=0 wF=1 uF=1 u=2 WF=2 partially full, when one elevator could have served the entire

queue, would leave those passengers who arrive before the
Ar—B L By cars return waiting longer and accumulating costs. For such
\\ N situations, the optimal policy is obvious. The intuition behind
\ the general threshold policy lies in seeking to match the service
>y rate to the pa rate.

0 o c ok 2 Several remarks about the theorem are in order. First,

21 2 throughout our analysis, we have assumed that a measure
of the queue length is available, and that only one car is
Fig. 3. Summarizing Corollaries 4.3-4.7. loaded at a time. To implement the threshold policy in practice,

however, one does not need to measure the queue length.
total discounted cost in (3) is a threshold policy. That ié”r thitd IS nrenedntiid nlsdtri]ne Snurtr;bsrl Orfn pnass?n\glaetrsr n ?ar%h
for » = 1,---,N and¢ = 1,---,z there exist thresholds ¢@- @nd as mentione ection 1, many €levator sysiems

B , 8 ) already have on-board scales or light sensors to count the
. 7 — . < 1
024(B; A, @) such thatli — 1)C < 0,(f, A, i, @) < i€ and number of passengers in each car. In addition, as explained in

z y=> 07, Section 1I-B, the requirement that one car is loaded at a time
z=1 07, <y<éb:, is easily enforced using the so called “next car” feature. Next,
uw(y,2) =9 - (15) (16) is a very attractive property of the optimal dispatching

policy. In general, the total number of thresholds is given by
(14+2+4---+ N). As indicated by (16), however, onlyy of
Moreover, onlyN thresholds are required, since the followinghese thresholds actually need to be determined to implement
holds: the policy. When using the “next car” feature, the most

. . ) convienient set of thresholds to use {i&f ,,05,---,60% 1},

0. =011 +C, 2=2 N =202 because these are the thresholds that tell us when to dispatch
(16) the designated “next car.”

0 y<6:,.

Proof (2-car case):For the two-car case, we have

0<67, < C,0<], < C,C<b, <2C and V. EXTENSION TO THE AVERAGE COST CASE
. In this section our objective is to find the optimal stationary
w(y,1) = { 1y=> 9*1,1 policy ¢* minimizing the average cost criterion defined in (4).
0 y<oi, Under certain conditions, this can be done by showing that
2 y>03, the properties of the optimal policy derived for the discounted
w(y,2)=< 1 05, <y<b5, (17) cost criterion in (3) are retained as the discount fagter 1.
0 y<63;. In particular, it is known [23, p. 289] that if the one-step costs

are nonnegative, and there is an initial stgte X and some
finite constantX such that

|‘/71'Oi (L) - Vﬂ'oi (L0)| <K (19)

Moreover,
9;72 = 9{71 + C. (18)

The proof of (17) follows directly from Corollaries 4147400 all e
To prove (18), we note that the threshdld, is the value
of y corresponding to the zero crossing 4f (y) — B1(y)
(Fig. 2), andé; , is the value ofy corresponding to the zero

B

(0,1) and all state$ € X then, 1) there is a optimal
stationary policyp*; 2) the average cost for the optimal policy
is given by

crossing of Bo(y) — Ca(y) (Fig. 3). Then, comparing (11c) c=V(¢*) = ili)nl (1 - )V (o) (20)
with (11b) we observe thaB,(y + C) = A ,(y) and . _ o
Con(y + C) = By ,.(y), and the result follows. ¢ and 3) there is a bounded function(¢) that satisfies the

Although the proof above is only for the case of two cardollowing optimality equation:
it should be clear at this point how to extend the result to the
N >2 car case. Each additional car adds an extra admissible . p(;) = min | O, u) + Z-Pij(u)h(j) (21)
control action and corresponding dynamic programming equa- ucl(i) ;
tion. In each dynamic programming equation there will be an
additional ca term for each car added. The method of proofidere
exactly the same. The only complication in extending to the h(i) = lim [V (5) — V2 (40)]. (22)
N >2 car case is the inevitable notational burden. a—l
The optimality of a threshold policy is an intuitively appeal- For the uppeak dispatching problem, defined in the previous
ing result. For instance, when only one car is available aséctions, the one step costs (5a)-(5c) are nonnegative, and
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Lemma 2.1 guarantees that condition (19) is satisfied. Hence, 2
we can use the results above to obtain the optimal stationary
policy for the average cost case. Equation (21) implies that
h(i) has the same properties as the value funcfitth(s) 100
for the discounted case. Specifically(i) satisfies Lemmas
4.1-4.5. Moreover, the optimality equation (21), is nothing 35t
more than the dynamic programming (9) for the discounted 0
cost case with a discount factar= 1 and a constant added

to the left-hand side. Since each of the corollaries, which give '5'/
the structure of the optimal policy, involve taking differences, \ \ . .
it is not hard to see that(:) also satisfies Corollaries 4.1-4.7. 0 5 015 20 25
We conclude, therefore, that the structure of the optimal policy Queue Length y

for the average cost case is also a threshold policy. In general, @)

however, the thresholds for the average cost case are different
than the thresholds for the discounted cost case.

—Aly) - BI(y)

VI. EXAMPLES
In this section we present several examples to illustrate our

previous analysis. For the first example (Section VI-A) we 0
numerically solve the dynamic programming algorithm for a / i

- i 7| —A2(y) - B2(y)
two-car discounted cost case and generate plots analogous 5 P -B26) - caty)
to Figs. 2 and 3. For the second example (Section VI-B) Y Y
we simulate the two-car case and perform an exhaustive 105 : n G 55 25
search for the optimal values of the thresholds minimizing Queue Length y

the average passenger waiting time for two different pa rates.

This example shows that the thresholds change with differant 4 Plots diving the obtimal thresholds for a t o obtained
H e | . 0ots giving the optima resnolds for a two car exampie obtaine

parates, and that there can be a S|gn_|f|cgnt performance pen Iqxumerically solving the dynamic programming algorithm (compare with

when the thresholds are chosen arbitrarily. As a final exampigs. 2 and 3, respectively).

(Section VI-C), we solve the dynamic programming equations

for a four-car discounted cost case to show how the resull?’ts Two-Car A c E |
extend to theN > 2 car situation. - Two-Car Average Cost Example

(b)

For this two-car example, brute-force simulation is used

A. Two-Car Discounted Cost Example to find the optimal thresholds minimizing the average pas-

. . ; senger waiting time. To perform the example, we developed
In this example we numerically solve the dynamic program-_,: )

discrete-event simulator of a two-car elevator system. In

ming algorithm (7) for the case of two identical cars each imulator ngers arrive one at a tim ding t
with capacityC = 10 passengers and service ratesuof 5 € simulator, passengers arrive one at a time according to
a Poisson process at raketo a finite lobby queue capable

trips each 5 min, a pa rate of = 30 passengers each 5 i : :
mﬁ] a total event ratz of = X+ 2 :Fle anél;a holding of holding 100 passengers. The time of arrival of each pas-

cost 8 = 1. To numerically solve the algorithm, we had tooenger is recorded. Each elevator has a capaciy & 10

assume a finite lobby queue limited to 100 waiting passengdf@ssengers. A dispatching policy with two threshofdse,
Passengers arriving when the lobby queue is full, are turngused- The dispatching policy works as follows: When one
away. Because the pa rate is relatively low, limiting the que& 1S available(z = 1) and the queue length > 6,, then
length to 100 passengers does not seriously affect the infidiie ©© €' = 10 passengers are immediately loaded and one
capacity assumption. elevator is dispatched; when= 2 andy > 6, thenify < C

With a discount factor ofv = 0.99, the dynamic program- One car is immediately loaded and dispatched, otherwise up
ming algorithm is well converged after 200 iterations. Fig. 4(d§ 2C = 20 passengers are immediately loaded and both cars
shows a plot of the “switching function; (y) — Bx(y) (c.f., are dispatched. For each car, the service time is a random
Fig. 2) from which it can be seen that the optimal threshokgriable drawn from an exponential distribution with a rate of
for dispatching an elevator whea = 1 for this example # = 5 trips each 5-min interval. Passengers load first in—first
is 7, = 4. Fig. 4(b) shows plots ofds(y) — By(y) and out (FIFO) into the cars. The passenger waiting time is the time
Bs(y) — Ca(y) (c.f., Fig. 3) from which it can be seen thatinterval from the passenger’s time of arrival to the lobby queue
the threshold for dispatching one elevator when= 2 is up until the time the car serving the passenger is dispatched.
03, = 3 and the threshold for dispatching both elevators it the beginning of each rury = 0 andz = 2.

5, = 14 = 6] ; + C as expected from (16). Response surfaces showing the average passenger waiting
A point to notice is that the thresholds for dispatching oréme for arrival rates ofA = 30 passengers each 5 min and
car are usually different depending on the number of available= 45 passengers each 5 min are shown in Figs. 5 and 6,

cars. In this example, as is often the case, we Ifdye> 63 ;. respectively. The response surfack,6,) are plots of the
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average passenger waiting time on thaxis, the threshold,

on thex axis, and the threshol@, on they axis. Each point

on the response surface is obtained by averaging the passenger
waiting times over ten simulation runs, with each simulation

run serving 10000 passengers (i.e., each point represents thgp.
waiting times averaged over 100000 passengers).

From Fig. 5, the optimal thresholds minimizing the averagés 0y
passenger waiting time occur@t = 65 = 4. This differs from 230 z
the discounted cost case in Example 1 where the thresholds f"éfgrzo
the same arrival rate were found to Bg = 4,63,= 3. This &~ | .
is to be expected, because although the value functions in tkglo4-
average and discounted cost case have the same properties, irh>
general, they do not have the same numerical values and thelo
corresponding thresholds are different.

At the optimal thresholds, the average passenger waiting
time is 23.61 s. The worst waiting time at this arrival rate, is
45.46 s whert; = 6> = 10, 93% longer than the optimal wait.

In Section | we mentioned two simple uppeak dispatching
policies, one that dispatches as soon as one passenger entegyasl Rresponse surface for a pa ratexot= 30 passengers each 5 min.
elevator, and another that waits for an elevator to fill to half itgere, the minimum waiting time of 23.61 s is obtained with= 63 = 4.
capacity or a 20-s timer to expire. Dispatching when the first
passenger enters is equivalent to a policy with= 6, = 1,

which gives a waiting time of 29.15 s, 23% longer than

the optimal wait. For the half-capacity plus 20-s time-out
policy, we cannot exactly estimate the waiting time from Fig. 5
because it is not possible to asses the effect the 20-s time-out
would have. Choosing equal thresholtls= 6, = 5 = C/2, 50+
however, gives a waiting time of 25.72 s, 9% longer than th% 20
optimal wait. <

Fig. 6 shows that the optimal thresholds for a higher pa ratg
of A = 45 passengers each 5 minf$ = 7,605 = 4. At this %“20\,.--""’:
arrival rate, we havéj > 85 which is often the case. v
At the optimal thresholds, the average waiting time for the< 10y
higher arrival rate is 26.77 s. The worst waiting time is 36.58 0,
s whené; = 1,6, = 2, 37% longer than the optimal wait. 10
Comparing with the simple policy of dispatching when the
first passenger enters an elevator (itg.= 6, = 1) gives a
waiting time of 35.99 s, 34% longer than the optimal wait.
The half capacity plus 20-s time-out (neglecting the effect of
the time-out, i.e.¢; = 8; = 5 = C/2) gives a waiting time of
28.33 s, 6% longer than the optimal wait. To summarize, thig. 6. Response surface for a pa raterof= 45 passengers each 5 min.
example demonstrates that 1) the optimal thresholds charit§&: the minimum waiting time of 26.77 s is obtained véith= 7,65 = 4.
with the pa rate and 2) the “bowl” shape of the response
curve suggests a potentially substantial penalty for choosing
the wrong thresholds. This points to the need for a dispatchifg rate is\ = 30 passengers each 5 min, the total event rate is
controller with the ability taadaptthe thresholds to changes iny = A + 4 = 50, the holding cost i3 = 1, and the discount
the system operating conditions (i.e., the pa rate). In a follofiactor isa = 0.99. The reader can verify that the optimality
up paper, we will demonstrate such an adaptive dispatchigguations for the four-car case are given by
controller based on the theory and the ideas of sample path

constructability [6]. V2 (y,0) =By + a_)‘vg* (y+1,0)+ 4%V7;£ (y,1)
v v
= Ao(y)
. aA
Ve(y,1) = min {/33; + TV: (y+1,1)

30

C. Four-Car Discounted Cost Example
For this final example, we numerically solve the dynamic

programming algorithm for a four-car system to show how QAo

the results developed in this paper extend to Me- 2 car

case. In this example, each car has a capacity’of 10 +3%V% (1,2),
passengers and a service rateuof 5 trips each 5 min, the vy T
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Bly - CT* + "‘—AVW% (- CT* +1,)

+ 4—V“ ([y = C]t, 1)}
= min {Al(y)vBl(y)}
Va(y,2) = min {ﬁy—i- a—)\Vf (y+1,2)
—+2——V“( y+2——va( 3),
Bly - CI* + %V;i([y —Cf 1)
V-t
+3—V“<[ - C1F,2),

Bly — 201" + %vw%qy -

2C1T +1,0)
+ 4%y (g - 207 1)
= min {A2(y), B2(y), C2(y) }
Va(y,3) = min {/3y+ a—)‘Vﬁ* (y+1,3)
TV )+ TV (0 4)
fly= I + V2l - I + 1.2
+22 VR = % 2)
+22V2 = IF3),
Bly — 2C) + %Av;i (ly=2C]* +1,1)
+ %Vﬁ([g —20]*,1)

+3%v7:i<[y — 2CT*,2),

Bly = 30T + SV [y - 31 + 1,0)

2y (-5t
= min {Ag(y), Bs(y), C3(y), D3(y)}

Vii(y,4) = min {/33; + %)\Vw‘i (y+1,4)+ 4%Vﬁ (y,4),

Bly— CT* + “—Avmy -

Clt +1,3)
+3—V“([ -C)*,3)
+ 7V7$([y - CI*.4),

Bly — 20T + %)\Vﬁ([y -2C1T +1,2)

+2%v;i([y— 20T+, 2)

+ 22V (ly - 2017,9),

Bly - 30T + %Avmy _301F 4 1,1)
+ %Vﬁqy—w}tn

+3%v;i<[y— 301+, 2),

aA

Bly —4CT" + — Ve - 4C1* +1,0)

+ 4—V“ ([y — 40T, 1)}

= min {A4(y), Ba(y), Ca(y), Daly), Ea(y)}

Fig. 7(a)—(d) show the plots of all the switching functions
involved to determine the thresholds for the four-car case.
Fig. 7(a) gives the thresholdf, = 2, Fig. 7(b) gives the
thresholdsf3 ; = 2,65, = 12, Fig. 7(c) gives the thresholds
05, = 1,05, = 12,05, = 22, and Fig. 7(d) gives the
threshold5941 = 1,05, = 11,053 = 22,07, = 32. Note
that (16) is satlsﬂed in all cases.

VIl. CONCLUSIONS

In this paper we represented the uppeak elevator dispatching
problem as a batch service queueing system and used dynamic
programming to show that the optimal policy minimizing the
discounted or average passenger waiting time is a threshold-
based policy. An attractive property of the policy is that the
number of thresholds that must be determined is linear in the
number of cars. Also attractive is that implementation of the
policy does not require knowledge of the lobby queue length.
All that is required is knowledge of the number of available
cars at the first floor and the number of passengers inside
one car. Since most elevator systems have sensors giving the
locations of the cars, and since many also have weight sensors
or light sensors to estimate the number of passengers inside
each car, the threshold policy can be easily implemented. Since
our results do not give numerical values for the thresholds,
the remaining challenge is to determine them. One way to
obtain the thresholds is by solving the dynamic programming
equations. Since the thresholds change as a function of several
parameters including the pa rate, this would require solving
many dynamic programming problems for each anticipated pa
rate. Another approach is to use one of several reinforcement
learning algorithms such &@D(A) [21] or Q-learning [24].

A potential problem with these methods, however, is their
slow convergence. The method we suggest for determining
the thresholds is a scheme based on perturbation analysis and
sample path constructability [6], [9], [11]. In a forthcoming
paper, we will present such a scheme and show how it can be
used to rapidly determine the optimal thresholds on-line in a
model-free manner that uses only observable state information.
Finally, we note that since many transportation systems can be
modeled as multiple bulk server queueing systems (for exam-
ple, airport shuttle busses, or the shipment of parcels or mili-
tary supplies) our results can also be applied to those systems.

APPENDIX A
PROOFS OFLEMMAS 4.1-4.5

This appendix contains the proofs for Lemmas 4.1-4.5.
We know from Section lll that the dynamic programming
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Fig. 7. Switching curves giving the optimal thresholds for a four-car example.

algorithm (7) converges to the optimal value function as 2) For z = 1, (11b) with the notation of (12b) gives
n — oo. To prove the properties of the optimal value function

V& (x), therefore, it suffices to establish thEf*(x) satisfies
the same properties for all. This is accomplished through
mathematical induction on the update stepf the dynamic

programming algorithm.

Proof of Lemma 4.1:Since V2 (z) = lim,—o V,¥(x),
it suffices to show that/>(y + 1,2) > V,2(y,z) for all
n = 1,2,... This is accomplished by induction on

First, forn = 1, sinceV(z) = 0, we immediately have

from (11a)

Vi(y+1,0) = By +1)> By = (y,0).
Observing thaty > [y — C]t > [y — 2C]* and thatly + 1 —
CIT > y—-Ct, [y+1-2C1" > [y —2C]t it follows from
(11b) and (11c) that
Vi +1L1) =0y +1-CI" <Bly—CIY =V (y,1)
Vi(y+1,2) =ply +1 - 201" > ply - 2CT" = V{*(y, 2).

Next, for somer > 1, the induction hypothesis i¥*(y +
1,2)
Vr?—l—l(y + 172) Z na-l—l(yv Z) for all Y, z.

1) For z = 0, (11a) gives

Vi +1,0) = Vi, (v, 0)
=B+ [V (y+2,0) - VX (y + 1,0)]
+ 2C¥N[Vna(y + 17 1) - Vr?(yv 1)] >0
from which it immediately follows thatVe (y + 1,0) >
Ve (y,0).

< V*(y,z) for all y,z and it remains to show that

V7?+1(y +1, 1) - na-l-l(yv 1)
=min{A;(y+ 1), Bin(y+ 1)}

— min {41, (), Bin ()} (A1)

Using the induction hypothesis we have

AL (y+1)— Ay (y)
=B+aAVi(y+21) - Vi¥(y+1,1)]
+oauVi(y+1,2) = Vii(y, 2)]

+apVi(y+1,1) -V, D]1>0. (A2

Recalling thaly + 1 — C]* > [y — C]T we also get

Biw(y+1) = Bin(y)
=By +1-C" = ply-OF
+aA[V*([y+1-C]t+1,0)
- VX(ly = O +1,0)
+ 2oV ([y+1-C]*", 1)

-Vily-CIt iz o. (A.3)

We will make use of (A.2)—(A.3) to show that (A.1) is

o 1 (y,1)). There are

nonnegative (i.e.V,® (y + 1,1) > V&,

four possible cases.
1) Ain(y +1) < Bia(y + 1) and Ay n(y) < Bin(y)-

From (A.2) it follows immediately that (A.1) is nonnegative,

e, Vi (w+1,1) =V (y,1) = Ain(y+1)— A n(y) > 0.
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2) A n(y+1)> By n(y+1) and Ay ,(y) > By »(y). From 3) Con(y+1)=min{Asn(y+1),Ban(y+1), Con(y+
(A.3) it follows that (A.1) is nonnegative, i.e\,, ; (y+1,1)— 1)} and Cz,(y) = min {A2,(y), B2.n(y), Con(y)}. It fol-

Vieoi(y,1) = Bia(y +1) — Bro(y) > 0. lows immediately from (A.7) that (A.4) is nonnegative.
3) Ain(y+1) < Bin(y+1) and Ay, (y) > Bia(y). I 4) Aoy +1) =min {4z (y+1), Bon(y+1), Con(y+
this case 1)} and By, (y) = min {As (), B2, (¥), C2.»(y)}. In this
e (+1,1) = V2 (y,1) case, using (A.5) we get
= Al,n(y + 1) - Bl,n(y) Z Al,n(y) - Bl,n(y) Z 0 na+1(y + 17 2) - r?—l—l(yv 2)
where the first inequality follows from (A.2) and the second =A2n(y+1) = B2n(y) 2 A2,n(y) — B2n(y) 2 0.
holds by assumption. 5) Agp(y+1) = min {As n(y + 1), Bon(y+ 1), Conly+

A) Ava(y +1) > Braly + 1) and Ain(y) < Bia(®)- N 1))y and Oy (y) = min {Asn(y), Ban(y), Canly)}. Pro-
fhis case ceeding exactly as in 4) we get
"+1(y +1, 1) T~ V4l (yv 1) Vna+1(y +1, 2) - Vna+1(y7 2)
= Bunly+ 1) = Aunle) 2 Buny) = Aunly) 2.0 = Apn(y+1) — Con(y) > Agn(y) — Con(y) > 0.
where the first inequality follows from (A.3) and the second ’ ’ - ’ =

holds by assumption. 6) Ban(y+1) = In.in {Agn(y+1), Bop(y+ 1)702,n(y‘.i‘
Given 1)-4) above, it follows, as in part 1), thate (y + 1)J and Az, (y) = min {A2,(y), B2,n(y), Co.n(y)}- In this
1,1) > Va(y,1) for all 4. case, using (A.6) we get
5) Finally, forz = 2, (11c) with the notation of (12c) gives v (;+1,2) — V%, (y,2)
Vi (w+1,2) = Vit (v,2) = By n(y+1) = Agn(y) > Banly) — Asn(y) > 0.
N min.{AQ’"(y 1) Ban(y 1), Conly + 1)} 7) Ban(y+1) =min{Azn(y+1), Ban(y+1),Can(y+
— min {A2,,,(y), B2,n(y), Con(y)}- (A4) 1)} and Con(y) = min{Asn(y), B2n(y) Conly)}. Pro-
Using the induction hypothesis we have ceeding exactly as in 6) we get
Ve (y+1,2) = Vo (y,2
Azn(y+1) = Azn(y) iy +1,2) - Vil (v, 2)

— /3+ Oé)\[Vna(y + 272) _ Vna(y+ 172)] = BQ,n(y + 1) - 02 n(y) > BQ,”(y) - CQ,”(y) 2> 0.

+20u[VO(y+1,2) = V(y,2)]>0. (A5) 8 Conly+1)=min{As,(y+1),B2n(y+1), Conly+
_ 1)} andA; ,(y) = min{As »(y), B2.n, C2n(y)}. In this case,
Recalling thatly + 1 — C]* > [y — C]* and[y +1-2C]* > using (A.7) we get

[y — 2C]* we also get N N
n—l—l(y + 17 2) - n+l(y7 2)

Ban(y+1) = Ban(v) = Con(y+1) = Agn(y) = Canly) — Asm(y) > 0.
=ply+1-CI" - ply—-CI*

o 9) Con(y+1) =min{Azn(y+1), B2n(y +1), C2n(y+
+a VX [y+1-C]T+1,1 ’ L Ve Y
aa[ (o + ] ) D} and By, (y) = min{Azx(y), B2,n(y), Co,n(y)}. Pro-
- Vally—CI" +1,1)] ceeding exactly as in 8) we get

+ap[Vi(ly+ 1,017, 2) - VX (ly - €17, 2)]
+ap[(Vi(ly+1-C1F,1) = VX (ly - €17, 1)]
>0 (A.6)

Viri(y+1,2) = Vil (y,2)
= Con(,2) — Bon(y) > Co.n(y) — Ban(y) > 0.

Given 1)-9) above it follows thate (y + 1,2) > V. (y,2)
for all . Combining parts 1)-3) completes the proof of the
Conly 1) = Conly) Iemrga' f of L 4.2:As in L 4.1, it suff ¢
- o+ o+ roof of Lemma 4.2:As in Lemma 4.1, it suffices to
=fly+1-20]" = fily - 2] show thatV2(y,0) > V*(y,1) > V*(y,2) for all n =

and

+a Vi (fy+1-201" +1 1,2,---. This is accomplished by induction on
—V*([y =201 +1,0)] + 2au[V([y + 1 = 20T, 1) First, forn = 1, sinceV@(z) = 0, andy > [y—C]T > [y—
—V¥(y-201%,1)] > 0. (A7) 2C|*, combining (11a)—(11c) we immediately géf'(y,0) =

_ _ By > Bly - CI* =V*(y,1) 2 Bly - 21T = Vi*(y, 2).
Given (A.5)—(A.7), we proceed as in part 2) to show that the For 5, >1, the induction hypothesis isV(y,0) >
expression (A.4) is nonnegative for all nine possible cases.ye(y 1) > V(y,2) for all y, and it remains to show that
1) Asn(y+1) =min{Azn(y+1), Bon(y+1), Con(y+ V&, (y,0) > Vi (y,1) > Ve (y,2) for all y.
1)} and Az ,,(y) = min{A2 ,(y), B2,n (), C2,n(y)}. It fol- 1) We begin by comparing the value functions for the states
lows immediately from (A.5) that (A.4) is nonnegative. (3,0) and (y, 1) using the notation of (12a) and (12b)
2) BQ,n(y+1) = Inin{AQ,n(y+1)7B2,n(y+ 1)702,n(y+ o o
1)} and By () = min{ A ,(y), B2.n(y), Can(y)}. It fol- Vi (w,0) = Vit (w, 1)
lows immediately from (A.6) that (A.4) is nonnegative. = Aopn(y) —min{4; ,(y), B1.(y)}. (A.8)
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From (11a), (11b), and the induction hypothesis we get  where we have used the induction hypothesis and the mono-
tonicity in y of V,%(y, z) established in Lemma 4.1. Similarl
o) = As(y) = oAV +1,0) = V(g + 1, 1)] yiny ofiin2) g

+apVi(y, 1) = Vi(y,2)] 2 0 Bin(y+C) = Aon(y)
= oAV (y +1,0) = V¥ (y + 1,0)]
+ QCW[Vna(yv 1) - Vr?(yv 1)] =0.

from which it follows that:

Aon(y) — min{A1,,(y), Bin(y)} 2 Aon(y) — Arn(y) 20
The last two relationships immediately yield the fact that

which establishes the fact that (A.8) i§ nonnegative. (A.10) is nonnegative and the proof is complete. ¢
2) Nextwe compare the value functions for the staies) Proof of Lemma 4.4:The proof is similar to that of
and (y,2) Lemma 4.3, i.e., we proceed by induction to show that
« 1y vy Vi(y+ C2) > VXy, ) forally > Cforalln=1,2,.--
Vil _1) Vi (v:2) First, for n = 1, since V{*(z) = 0, from (9b)—(9c) we get
= min {A1n(y), Bun(v)} Ve(y+C.2) = Bly — CIF = Ve(y. 1),

—min{A4s ,(y), B2 »(y), Con(¥)}.  (A.9) For n > 1, the induction hypothesis i¥%(y + C,2) >

) o ) . V&(y,1) for all y > C, and it remains to show that
As in part 1), it is straightforward to show using (11b) and

(11c) that Vi +C.2) 2 Vil (y, 1) Vy = C.

Aun(y) = A2n(y) 20, Bun(y) = Ban(y) 2 0. Using the notation of (12b)—(12c), we have

Then, we can show that (A.9) is nonnegative for all six o o o
possible cases that can arise. This is done exactly as in LemmaVn (y+C,2) =V (y,1)
4.1 except for the two cases where =min{Az,.(y + C), B2n(y + C),Can(y + C)}

Co () = min { Az (y), Ban (). Con(4)}. ~ min {41 (9) Buaw))- (A.11)

For the case wherel; ,,(y) = min{A4; ,,(y),B1.(y)} we
have

Vna-l—l(yv 1) - na+1(yv 2) AQ,n(y + C) - Al,n(y) 20, BQ,n(y + C) - Bl,n(y) 2 0.

= Al,n(y7 2) - CQ,n(y) 2> AQ,n(y) - CQ,n(y) > 0
It now remains to check that (A.11) is nonnegative for all
and for the case wheB, ,,(y) = min {4, »(y), B1,».(¥)} we six possible cases that can arise. All cases are straightforward
have to check, except for the one where

Vna+1 (yv 1) - Vna-l-l (y’ 2) Cy n(y + C)

= Bl,n(y) - CQ,n(y) Z BQ,n(y) - CQ,n(y) Z 0. — min {AQ,n(y + C),ngn(y + 0)7 Can(y + C)}
Combining parts 1) and 2) completes the proof. ¢ (A.12)
Proof of Lemma 4.3:As in the previous lemmas, we will
use induction om to establish thav,*(y + C,1) > V,*(y,0) Comparing (11c) with (11b) we observe th@§ ,,(y + C) =

Using (11b) and (11c) it is straightforward to show using
arguments similar to those in the previous lemmas that

forally > C and alln =1,2,---. By »(y) andBs ,(y+ C) = A1 »(y). When (A.12) holds, we
Forn = 1, since Vg*(z) = 0, from (11a) and (11b) we must haveCs ,(y + C) < B ,(y + C) which implies that
immediately getV*(y + C,1) = gy = V*(y,0). By n(y) < A;n(y) and (A.11) becomes

For n>1, the induction hypothesis i¥%(y + C,1) >
V,*(y,0) for all 4 > C, and it remains to show th&{®,; (v + Viy+C,2) = VX (y,1) = Copn(y+C)— Bro(y) =0
C1)-V2i(y,0) >0foraly>C.

In the notation of (12a)—(12b), we have and the proof is complete. ¢
N N Proof of Lemma 4.5:The result follows directly from the
Vil +C 1) = Vi (y,0) previous two lemmas: Foy > 2C we have
=min {4 n(y+ C), Bin(y+C)} — Aon(y)- . . .
From (11a) and (11b), we get APPENDIX B
A (y+C) = Ao n(y) PROOFS FORCOROLLARIES 4.1-4.7
=BC+ a\Vi(y+C+1,1) = V*(y+1,0)] This appendix contains the proofs for Corollaries 4.1-4.7.

@  ta The corollaries use the notation in (13) and follow from the
+ a“[v’;(y +C2) V"a(y’ L] dynamic programming equations (11) and the lemmas proved
+apVi(y+C, 1) -V (y, )] >0 in Appendix A.
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Proof of Corollary 4.1: For 0 < y<C we have[y — Proof of Corollary 4.6: Recall[y — C]T =y — C,[y +
Clt =0and[y+1—C]" = 0. Let 1-Clt=y+1-Candly—2C]T =0,[y+1-2C]" =0
for C<y<2C. If we defineAy(y) = [Bo(y+ 1) — Coly +

Ai(y) = [A(y +1) = Bi(y + 1)] = [A1(y) — Bi(w)]. 1)] — [B2(y) — Ca(y)] then, using Lemma 4.1 we get

It then suffices to show thah(y) > 0 for 0 < y < C. From ~ 22(%) =/ + oAV (y+2-C 1) = Va(y+1-C 1)
the definitions of4;(y), B1(y) [see (11)—(13)] we get +oauVi(y+1-C.2) =V (y— C,2)]

Av(y) =B+ Ve (y+2,1) = Vo (y+1,1) + V2 (1,0) Izzgﬁ Ey +)1 _VC; (11) O)F" (y=C 1)
— VA(LO)] + ap[VE (y + 1,2) e o
SV (5,2) + VE(0,1) — V2 (0,1)] 20V (0,1) = V2 (0,1)] > 0.

FapVe(y+1,1) = V2 (y,1) + V(0,1 ¢4
Vli[ 0 1(y 0 ) (1) (1) Proof of Corollary 4.7: Since[y — C]* = y — C and

- Va0, 11> ly — 201t =y — 2C for y > 2C we get

where the inequality is established by using Lemma 4.% As(y) — Caly)

Proof of Corollary 4.2: Since [y — C]* = y — C for o o vag,
y > C, the differenceA,(y) — B1(y) becomes =200+ AV (y +1,2) = Ve (y = 20+ 1,0)]
+ 204/1[‘/71'0i (y7 2) - VTfoi (y —-2C, 1)] >0

A(y) = Bu(y) . . where the inequality is established by applying Lemmas 4.4,
=pC+aAVA(y+1,1) - Vi(y-C+1,0)] and 4.5. Similarly, using Lemmas 4.1, 4.3, and 4.4 gives

+aulVe (1,2) = Vi (y — C,1)] Baly) = Cel)
+ o[V (y,1) = V2 (y = C.1)] > 0 = A0+ AV (y = C4 1,1) = Ve (y = 20+ 1,0)]

where the inequality is established by applying Lemmas 4.1, +ap(Vei(y—C,2) = Vi (y—2C,1)]
4.3, and 4.4. M +ap[Va(y - C,1) = V2 (y - 2C,1)] > 0.
Proof of Corollary 4.3: Recalling thafy — C]* = 0 and
[y — 2C]T = 0 wheny < C, taking the difference, and using ¢

Lemma 4.2 gives
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