IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998 635

Design and Implementation of an Adaptive
Dispatching Controller for Elevator
Systems During Uppeak Traffic

David L. Pepyne and Christos G. Cassandfaslow, IEEE

Abstract—We design a dispatching controller for elevator
systems during uppeak passenger traffic with the ability to adapt
to changing operating conditions. The design of this controller
is motivated by our previous paper where we proved that for Hggf:
a queuing model of the uppeak dispatching problem ahresh-)
old policy is optimal (in the sense of minimizing the average
passenger waiting time) with threshold parameters that depend
on the passenger arrival rate. The controller, which we call
the concurrent estimation dispatching algorithm (CEDA), uses
concurrent estimation techniques for discrete-event systems. The
CEDA allows us to observe the elevator system while it operates
under some arbitrary thresholds, and concurrently estimate, in
an unobtrusive way, what the waiting time would have been
had the system operated under a set of different thresholds. Fig. 1. Basic passenger traffic components in an office building.
These concurrently estimated waiting times are used to adapt
the operating thresholds to match the elevator service rate to a

changing passenger arrival rate. Implementation issues relating only at the main lobby and traveling to destination floors up in

to the limited state information provided by actual elevator o 1y jiiding: outgoing traffic represents passengers traveling
systems are resolved in a way that maintains modest computa-

tional requirements and avoids the need for supplemental sensors dOW_n from the upper floors to th? main lobby; anderfloor
beyond those already typically provided. Numerical performance traffic is due to passengers moving randomly between floors
results show the advantages of the CEDA over currently used other than the first. For example, the lunchtime traffic mode,
dispatching algorithms for uppeak. which occurs in the middle of the day, can be described as
Index Terms—Adaptive control, bulk-service queueing net- a combination of outgoing traffic caused by workers going to
works, concurrent estimation, discrete-event dynamic systems, lunch, and incoming traffic caused by workers returning from
optimization problems, perturbation analysis, queueing theory, | nch. Similarly, the downpeak traffic mode, which occurs at
thresholds, transportation systems. : . .
the end of the day, consists almost exclusively of outgoing
traffic caused by the workers as they leave the building. The
|. INTRODUCTION uppeak traffic mode, which is the focus of this paper, occurs

HIS paper is a companion to our previous paper [15{rSt thing in the morning, and is dominated by incoming traffic
T where we proved that the structure of the optimal di&aused by the workers as they arrive and take the elevators up
patching policy for elevator systems in uppeak traffic is ¥ their offices.
threshold-based policy with threshold parameters that changdUring uppeak, passengers arrive only at the first floor,
as a function of the passenger arrival rate. In this paper, #ere is no interfloor or outgoing traffic. The elevators take the
demonstrate how concurrent estimation techniques can be uBagsengers up to their destinations, and then make an express
to implement such a threshold dispatching policy in a realistign back down to the first floor to serve more passengers.
elevator system. In practice, most elevator systems employ what is called the

In our previous paper [15], we give a detailed introductiof€Xt car strategyluring the uppeak mode [2]. When using the
to the difficult problem of elevator dispatching (see also [17]next car strategy, only one car is loaded at a time. This car
Briefly, passenger traffic in an office building can be describé#i referred to as thedesignated next caio be dispatched. All
as combinations of the three basic components shown diher cars which may be waiting at the first floor keep their
Fig. 1 [16]. Incoming traffic represents passengers arrivingoors closed or otherwise discourage passengers from entering

(by dimming the lights inside the car, failing to signal the
Manuscript received September 30, 1996; revised August 14, 1997. travel_ dlreCthn’ and S(? fOI’.th). During the uppeellk. traffic mode,
D. L. Pepyne is with the Department of Electrical and Computer Enginedie dispatching question is reduced from deciding when and

Upper Upper
floors floors

Main Lobby

Main Lobby = Main Lobby

Incoming Outgoing Interfloor

ing, University of Massachusetts, Amherst, MA 01003 USA. _where to dispatch each elevator car, to one of simply deciding
C. G. Cassandras is with the Department of Manufacturing Engmeerlr{%h to di tch the desi ted t | | t

Boston University, Boston, MA 02215 USA. ento dispatc € designate nex_ car. In many e e_/a or
Publisher Item Identifier S 1063-6536(98)06134-X. systems, the number of passengers in a car can be estimated

1063-6536/98$10.001 1998 IEEE

636 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

by weight sensors or by sensors which count passengers
as they enter and exit the cars. Given that the number of
passengers in a car can be determined, the simplest uppeakg35
dispatching policy is ahreshold policywith a threshold of 230
one: dispatch the designated next car when the number of &

40 ! ! ! ! !

passengers inside is nonzero (lettifigdenote the threshold %25
parameter, we will refer to this as tife= 1 policy). Another 520
o

uppeak dispatching policy, termedalf-capacity plus time- ~
out, dispatches an elevator when half its capacity is reached E >
or when a timer, started when the first passenger enters theE 104
elevator, expires (usually a 20-s timer is used). For a more
detailed discussion on these see [15]. The basic problem with 820 830 840 850 900 9:10 920 AM

both of these approaches is th@ipen-loopnature. During

uppeak, which lasts for about an hour each morning in a typid;ééll~ 2. Typical arrival rate of incoming passengers during the uppeak period.
office building, the passenger arrival rate can double from one
five-minute interval to the next. It is, therefore, difficult for
open-loop dispatching policies to perform well over the ent
hour-long uppeak period.

In [15] we developed a Markov decision problem (MDF
formulation of an elevator system in uppeak traffic, a pa
showed that the solution that minimizes the average passe —#*
waiting time at the lobby over an infinite horizon is a dynarr I
threshold policy where the threshold parameter is a functior

L). 1 L 1

the passenger arrival rate. Motivated by that work, we des disparching

in this paper an on-line, adaptive threshold-based dispatt rongrod

which adapts its threshold to the changing passenger ar

rate that occurs during the uppeak period. To evaluate lobby identical
approach, we compare its performance to the two op queue elevators
loop policies described above. To design the dispatch capacity C each

algorithm, we useconcurrent estimatioiechniques (see [5]).
Concurrent estimation allows us to observe the elevator systEith 3. Queueing model of an elevator system during uppeak.
while it is operating under some threshold and estimate
what the passenger waiting time would have been had we
operated the system under all other admissible threshdi§ main lobby and request elevator service. A typical variation
values (without actually having to explicitly try them out)in the arrival rate of incoming passengers during uppeak in
Using these estimated passenger waiting times, we adapt $H€h buildings is shown in Fig. 2. The start of the workday
threshold to the passenger arrival rate. Starting with arbitra(gay 9 A.M.) might be somewhere between 30-40 min into
threshold settings, we have found that our strategy rapidlye uppeak period. The passenger arrival rate is low at the
settles down to a set of thresholds that perform much bettgginning of the period (8:20 A.M.) as the “early” workers
than the open-loop policies described previously. are arriving. The arrival rate is very high just before 9:00
The remainder of this paper is organized as follows. IA.M. as most workers will try to arrive “just in time.” At
Section Il we describe the uppeak elevator dispatching prdbe end of the period (9:20 A.M.), the arrival rate tails off as
lem and review previous results on optimal dispatching cotfie “late” workers finally arrive. We will return to the issue
trol that motivate the controller design presented in thisf modeling the passenger arrival process during the uppeak
paper. Sections Ill and IV describe the concurrent estimatiperiod in Sections IV-B and V-B.
methodology we adopt for designing an adaptive dispatchingViewed as a DES, an elevator system during uppeak may
controller. Section V deals with the implementation issudse represented by the queueing model in Fig. 3. Incoming
involved in applying our dispatching control algorithm to ampassengers arrive to a lobby queue where some dispatching
actual elevator system. Section VI gives performance resuttsntrol policy is used to decide how the elevators (also
to demonstrate the efficacy of our algorithm compared to theferred to as “cars”) will be loaded (e.g., through thext
state of the art. Finally, we conclude in Section VII. car strategydescribed in the introduction). The passengers
are served byN identical cars, each with a finite capacity
of C passengers. The state space of this DES is given by
Il. PROBLEM FORMULATION X ={y,2):y=01--,2=0,1,---, N} wherey
For a typical office building, the uppeak traffic mode occuris the length of the lobby queue andis the number of
in the morning when the building’s occupants arrive for workars waiting at the main lobby. The dynamics are driven by
[2]. The uppeak period lasts for about an hour, during whighassenger arrivalpg) events, which occur when a passenger
time virtually the entire population of the building will arrive atarrives at the lobby queue, and by car arriv) events, which

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 637

Legend:

pa = passenger arrival
ca = car arrival

y = lobby queue length
z = number of cars available at lobby

Fig. 4. State transition diagram for two-car elevator system operating under a threshold policy during uppeak.

occur when an elevator returns to the main lobby after serviimgportant practical implication: instead of needing to know the
passengers (for the detailed state transition structure see [18Ppby queue lengthy (which is difficult to measure), we only
Control actions are taken only when an event occurs and thesed to know the number of passengers inside the designated
define a setV, = {0, 1, ---, =z}, whereu = 0 implies that next car (which is much easier to measure).

all available cars are held at the lobby, and= n implies 1) Example: To illustrate the above threshold-based dis-
thatn cars @ < z) are allowed to be loaded and dispatchegatching policy, consider the case &f = 2 cars with a

simultaneously. capacity of C = 4 passengers each, and a threshold policy
with 67 ; = 63 | = 2. Then
A. Optimal Dispatching Control) (1 g2) (1 oyz2
For the system in Fig. 3 with Poisson passenger arrivals * (4 1) =1 g y<2 U (n:2) =19 y<2

and exponentially distributed elevator service time (the time _ -))
for an elevator to deliver a load of passengers and return to th&19- 4 shows a state transition diagram for this system
lobby), the main result of [15] was to show that the optim&lP€rating under the above dispatching policy.

dispatching policy minimizing the average passenger waiting "€ analysis in [15] did not provide a closed-form ex-
time is athreshold-based policySpecifically, let the control Pression for the optimal threshold values. To implement the
actionu*(y, z) € {0, 1, ---, z} be the optimal number of threshold policy, therefore, two.problems remalP1: For
cars to be dispatched when the lobby queue length asd given A andu, we need to determine the thres_hold values; a_nd
the number of available cars s Associated with each control £'2: AS A changes throughout the uppeak period, a mechanism
action arez threshold parameters which we will denote byS neéeded for adapting the thresholds. Theoretically, these
6 .(\, p), wherei = 1, -- -, z. These thresholds are functionsPrOble_mS can be dealt with b.y solving a Markt_Jv chain corre-
of the passenger arrival rateand the elevator service rate SPonding to the system of Fig. 4 and evaluating the average
and are such thdi — 1)C < 8% ,(\, 1) < iC, whereC' is the Passenger waiting time as a function of different thresholds

elevator capacity. Furthermore, the optimal number of cars { détermine the values yielding the minimum average wait
dispatch is given by (see [15]) for a range of passenger arrival rates. This is clearly not a

simple computational task, even if stationary solutions are

z y 20z, desired; in our case, we will be interested in determining

. z=1 0. 1Sy<6:. optimal thresholds over 5-min estimation intervals, so that the
u(y, 2) = : (1) transient behavior of the Markov chain needs to be analyzed,
0 y <6 an even more difficult task. In addition, the results provided

by such analysis may still be inadequate because, in an actual
In addition, it was also shown in [15] that the followingelevator system, some of the modeling assumptions may not
relationship holds: hold (e.g., the elevator service times may not be exponentially
0 =0 +C z=2- - Ni=2 -, 2 (2) distributed). . . ' o
’ ’ We see the main value of the results in [15] as identifying
Notice, however, that singg ;, < C, the situation where more the structure of the optimal policy. Motivated by the simple
than one car is available and the queue length excéeds threshold-based structure, our objectives in the remainder of
never encountered. Thus, in practice, only thethresholds the paper are to 1) design an on-line approach for estimating
¢z 1,2 =1,---, N need to be determined. This fact has aoptimal threshold values without having complete knowledge

638 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

of the state of the system and without being able to detect
all events and 2) compare the performance of our dispatching DES
controller to currently used policies; in particular, the= 1 6,)
and thehalf-capacity plus time-oupolicies mentioned in the
introduction.

I1l. CONCURRENT ESTIMATION

In this section, we present a design approach based on — DES > {e2, r}
“concurrent estimation” (see [5]) which allows us to estimate ©y
on-line the average passenger waiting time for any admissi- l
ble dispatching threshold. The main idea is to observe the .
evolution of a sample path of an actual elevator system
as it operates under some preselected thresholds. As the - DES L (e
sample path evolves, observed data (e.g., event occurrences @,
and their corresponding occurrence times) are processed to
concurrently construct the set of sample paths that woufiy- 5. The sample path constructability problem.

Cierent (hypothetcal drspatching thresholcs. Using thedg cOTSTuct the sample paths] o).k = 1,2, for any
. N . j . Bi, 7=2, ..., m,asshowninFig. 5. This problem is referred
concurrently constructed” hypothetical sample paths, it {%’ as thesample path constructability problefif]. To obtain

possible to “concurrently estimate” the corresponding average yp :

- i . . n on-line algorithm, we will perform this construction in real
passenger waiting times. A simple scheme is then used, o

; : me while th rvi mpl h evolves. Moreover, wi
adjust the threshold used in the actual elevator system to Hnﬁe e the observed sampre path evolves. Moreover, we
wi perform the construction of altn — 1 sample paths for

one that gives the best estimated waiting time. This cycle 0 9 ... m concurrentl
concurrent sample path construction, waiting time estimatioh,ﬁoté th:at an sampley.performance metdd6,) (e.g
and threshold adjustment is done continuously, aiming ek y . . 7 &

) . .the average waiting time for some dispatching threshold
only to identify the best thresholds for the present operatn@g is obtained as a function of the corresponding sample
conditions, but also to adapt the thresholds to track chan%éﬁ%

JoP k= i
in the operating conditions. As will be seen, this process hic, ti}, k = 1,2, The importance of the sample

) . . ath constructability problem, therefore, becomes clear when
constructing sample paths does not interfere in any way w . : : N
. placed in the context of the following basic optimization
the normal operation of the actual elevator system.

To explain the principles of concurrent estimation, sorr%mblem:

notation, definitions, and background material will be pre- find # € © to minimize J(6) = E[L(9)] (3)
fented first. We start by_ .descrlbmg ,\,Nhat is known .as.tr\]/v%ere we are careful to distinguish betweB(®), the per-
sample path constructability problem.” Then, after reviewin . o
7 mance obtained over gpecific sample patbf the system
the concept of a stochastic timed state automaton as a mod- . .
: . and J(6), the expectation over all possible sample patfibe
eling framework for general DES, we describe the general,
) solution to the sample path constructability problem, if it
procedure for constructing sample paths of DES. Concurrent :
NS) . exists, enables us to learn about the behavior of a DES under
estimation is then described as a solution to the sample pa - . i
o . . possible parameter values @ from a single “trial,” i.e., a
constructability problem. With this background, we presen)
L -~ single sample path obtained under one parameter value. Most
the general concurrent estimation scheme, and explain how

. L . . importantly, if performance estimatd€(¢,), ---, L(©,,) are
the scheme is specialized to the uppeak dispatching prObIearﬂ'available at the conclusion of one trial, we can immediately

select a candidate optimal paramefér= arg minges L(6).

This is potentially the true optimal choice, depending of course
Consider a DES and a finite discrete parameter@&et on the statistical accuracy of the estimalg®,), ---, L(6,,)

{61, ---, 6}, where each parametéy € 6, j =1, ---, mis of J(61), ---, J(6,). In practice, the statistical properties of

in general vector valued. Suppose the sample path generatethey DES and the size of the parameter €etmay make it

the DES is a function of the parametgr(e.g., the dispatching necessary to use an iterative process to ultimately identify

threshold), and designate the sample path generated uritler true optimal parameter value. & is very large, for

parameter; by the sequence of pairs;,, ¢}, wherek = example, parameter space partitioning or random-search types

1, 2, --- is an event-counting indexy, is the kth event (e.g., of algorithms may need to be used (e.g., see [1], [9], and

a pa or ca event), andt; is the occurrence time of the[18]). However, when the parameter set is small, it is possible

kth event (equivalently, a sample path can be defined byobtain all estimated(6,), ---, L(#,,) concurrently, which

{z},t.}, k =1, 2,---, wherez; is the state entered whengives rise to the term “concurrent estimation” associated with

the kth event occurs at time,). Now, assume that the DESsolving the sample path constructability problem and the basic

is operating undei; and that all events and event time®ptimization problem (3). In this case, much simpler and faster

er, t) fork =1, 2, ---, are directly observable. The problemschemes may be used to identify the optimal parameter (e.g.,

then, is to use the observations of the sample dafh ¢1.} see [4]). In practice, however, optimality is usually traded for

A. Sample Path Constructability

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 639

speed, ancd hocschemes are often used to quickly identify; ,, is the number of events of tygec £ that have occurred.
a parameter which gives satisfactory, rather than optim&lle can now construct a sample path of any DES modeled as

performance. a stochastic timed automaton as follows.
1) Sample Path Construction (SPC) Procedure:
B. Stochastic Timed State Automata Step 1: Given the current state;, and next event times ;.

To explain the principles of concurrent sample path cofor all feasible events € I'(z,), determine the next event time

struction and estimation, it is useful to review how a single
sample path is formally constructed for any DES. To do this we
will make use of thestochastic timed-state automat(®g., see
[3]), which provides a general framework for modeling DES.

We begin by reviewing the concept ofstate automataon err1 = argmin {7; 1 }. (5)
A state automatoris defined by £, X, I, f, z¢), where E i€l (k)
is a countableevent set,X is a countablestate spacel'(x)
is a set offeasibleor enabledevents, f is a state transition
function,and zq € X i_s aninitial state. The feasible even_t set Trq1 = @k, Cry1)- (6)
I'(z) C E and is defined for all states € X. The feasible
event set reflects the fact that it is not always physically Step 4: Update the next event times for all eventse
possible for some events to occur. The state transition functib(es+1)
f(z, 1), f: Xx E — X, is defined only for the feasible events .)
i € I'(z); it is undefined fori ¢ I'(x). It is also possible to 7; 4, = {T”“ i) f Cht1 ansiz € [lax)
replace the state transition functigh by a state transition topr Hvi(sin+1) if i =epqr ori ¢ I'ag).
probability function p(2’; x, ¢) representing the probability (7)
that the next state is’ given that the current state iswhen
eventi occurs.

A timed state automatonH, X, I', f, =, V) is obtained sin+1 ifi=epp
when the model above is endowed witklack structureV = 54, k1 = { SiLk otherwise. (8)
{vi, ¢ € E'}. This clock structure associates with every event)
i € E a real-valued clock sequensg = {v;(1), v;(2), - -}, Step 6: Incre_mentk and continue from St_ep_l_._ _
where, v;(j) is the jth lifetime of eventi. The jth lifetime ~ FOr some given state,, this procedure is initialized by

is the amount of time between the instant when this eventS8tting si o = 0 for all i € F and 7 o = v;(1) for all

Finally, in a stochastic timed state automatonProcedure above is nothing more than the standard event
(E, X, T, f, zo, G), the clock structurd’ is replaced by a Scheduling simulation scheme. Some readers may have noticed
set of probability distribution functions? = {G;, i € E}. thatthe formalism we have used here to define the GSMP is

In this case, the clock sequences = {v;(1), v:(2), ---} slightly dif_fere.nt than the usual one (e.g., see [3], [8], and
are random processes. For simplicity, we usually assufd®]), but it will prove more useful for our purposes as we
that the lifetimesu;(1), v;(2), - -- are i.i.d. random variables Will subsequently explain.
with distribution G;. Thus, to generate a sample path of the 2) Example: Let us illustrate the SPC procedure for the
system, whenever a lifetime for evenis needed we obtain two car elevator system operating under a threshold policy
a sample from3,. The state sequence generated through tifls 1 = 03,1 = 2 whose state transition diagram was introduced
mechanism is a stochastic process known agemeralized in Fig. 4. In this case, the event setfis= {pa, ca}, and the
semi-Markov procesgGSMP) (see also [8] and [10]). state set isX' = {(y, z): y =0, 1,---, 2 =0, 1, 2} where

It will be helpful later on if we summarize the exact stepd IS the length of the lobby queue andis the number of
involved in generating a sample path of a stochastic tim&@rs waiting at the main lobby. Feasible events at each state
state automaton. In addition to the statef the underlying @ré shown in Fig. 4 by the corresponding outgoing arrows.
automaton, let us define two more state variables as folloW¥ote that we do not differentiate between distinct car arrivals
First, let us associate with each feasible event a state variadBgeause of the assumption that the cars are identical. Suppose
7; to denote the next occurrence time of everfthe usefulness that we do not have any information regarding the lifetime
of this variable, is that, given the occurrence times for eaélistributions ofpa and ca events. Thus, we cannot generate

trol = mi 4
k1 icrp(lgk){f,k} (4)

Step 2: Determine the triggering event

Step 3: Determine the next state

Step 5: Update the event scores

feasible event, the next event to occur, called tifiggering the event lifetimes;(1), vi(2), --- needed in (7). If we are
event,is given by observing an actual elevator system, however, we can simply
) _ observe events;; as they occur and record their occurrence
¢ = atg‘rlgll)n{Ti} timest;.41. Since we know the state transition function for the
el (z

system, we can then use (6) to update the state, and through (8)
and the time at which the event occurs is immediately givewe can update the event scores. Again, in the absence of event
by ¢ = 7.,. The other state variable which we will find usefulifetimes;(1), v;(2), - - - we cannot explicitly update the next

is the scoreof eventi which we will denote bys; ,,: aftern event times, but we can evaluate them through (7) after the
total events have been observed in a sample path, the sa@rents occur and their lifetimes have been determined.

640 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

At the beginning of our sample path construction, let usequencev; = {v;(1), v;(2), ---}, where v;(j) is the jth
assume that the initial state is (0, 2). Referring to Fig. #fetime of eventi. Then, define
the only feasible event in this state j& and we have)
Tpa,0 = Vpa(1). Let us now see how the SPC procedure applies Vi) = {ui1), -y wilsin)y, EE ©)
to the first few events in a typical sample path: to be the sequence of observed lifetimes of evieafter n

* First Event(k = 1): Suppose this is observed at tifie total events have been observed.

Since only apa event was feasible, this is necessarily a The objective is to use the observed event lifetime sequences
pa event, and, by (4), it is understood that= v,,(1). (9) and the SPC procedure to construct the hypothetical sample
Applying (6) as specified through the state transitiopath that would result if the same DES were operating under

diagram in Fig. 4, the next state is (1, 2) and a secosdme different parameter valuk £ 6. Let k¥ < n be the

pa event becomes feasible. By (7) this nextevent will total number of events in this hypothetical sample path that

occur at timer,,, 1 = £1 + v.(2), and by (8), we update we are constructing. Denote the corresponding event lifetime

the pa score from one to two. sequences in the constructed sample path by
» Second Eventk = 2): Suppose this secongh event is .))
observed at time,. Repeating the process, we must now Vi(k) = {wi(1), - vil8i, 1)} LEE (10)

havet, = t1 + va(2), the new state is (0, 1), a third yhere 3;1, is the corresponding score of eveitin the
pa event becomes feasible, and since we have reachggsiructed sample path. Next define

the dispatching threshold and a car was dispatched, a _
event also becomes feasible. By (7) the occurrence timeVi(n, k) = {vi(3; x + 1), -+, vi(si,n)}, i€ E (11)

for the third pa event will be g, » = 5 + up(3) and to be sequences of those observed event lifetimes which have

the occurrence time for thea event will be 7e,,> = not yet been used in the construction of the hypothetical

t? + Uca(l)' . H H H .
- Third Event(k = 3): Suppose this is observed at timesample path; that is, these sequences contain all event lifetimes

ts. In this case, the event may have been either @r which are iV (n) but notinV; (k). We associate with';(n, k)

ca, since both were feasible at state (0, 1). Let us assumes'et

that the ca event occurred first; this implies, from (4), Aln, k) ={i:i € E, si,n > 3,1} (12)
thatts = t2 + 1.0 (1) < t2 + vpe(3). Theca event causes

a transition into state (0, 2) where the feasible event sg@nsisting of the subset of everntfor which Vi(n, k) contains
is reduced to{pa}, which from (7) will occur at time atleastone element, i.e., there is at least one observed lifetime

available that has not yet been used in the constructed sample
path. This setA(n, k) is referred to as thavailable event

fet because it contains the set of events whose lifetimes are
agailable to be used to construct the hypothetical sample

function of {ex, tx}, k = 1, 2, ---. Sample path construction path aftern observed events. Last, we define one more set

is terminated when the performance estimates have bé’;'é‘hfollowsa Lem’“l deno;[]e thz statbe af;df e.zvent_s on the
obtained to some desired degree of statistical accuracy. constructed sample path, an ket be the triggering event

The example above serves to illustrate how to formal@lt the & — 1)th state visited on this sample path. Then, define

construct a sample path of a DES when event lifetimes are M(n, k) =T(i1) — (D(Zr_1) — {éx})- (13)
not available, but rather directly observed. This will facilitate

the understanding of the concurrent estimation technique TiRat is, M (n, k) contains all those events that are feasible
the next section. in state #; that were not feasible in statgé,_;. Note that

the triggering eveng, is also in this set if it happens that
ér € I'(#). Intuitively, M (n, k) consists of all those events
whose occurrence times are missing from the perspective of
A considerable amount of work is currently being directethe constructed sample path when it enters the dtatehe
toward solving the sample path constructability problem. Foccurrence times for eventsii{i;_;) are already known and
DES in which all event processes are Markovian (memoryemain available to be used in the sample path construction if
less), the standard clock method [19] and augmented systémay are still feasible; those events not feasiblé;jn; which
analysis [6] provide two very efficient solutions. Most recentlhave become feasible in the statg, on the other hand, are
Cassandras and Panayiotou [5] have proposed a genemdbksingas far as their occurrence times are concerned. We
purpose approach for DES; while their approach is not akall refer toM(n, k) as themissing event setftern observed
efficient as the above two, it is applicable to DES with arbitrargvents.
event lifetime distributions. We will review this approach next It is clear from Steps 3.2) and 3.3) of the SPC procedure
and then specialize it to the uppeak dispatching problem. in the last section, that in order to continue sample path
The starting point is to consider a given DES operatingpnstruction from state:;, in the hypothetical sample path,
under a specific parameter valde Assume that all events we must have lifetimes (equivalently, occurrence times) for
and their occurrence times are observable. Now recall ttedk events in the feasible event sBfz). A key result from
associated with every event € F is a real-valued clock [5] is a necessary and sufficient condition for sample path

Tpa,3 = Tpa,2-
The sample path constructed thus far {$pa, t1),
(pa, t2), (ca, t3),---}. As the sample path evolves, an
performance metric of interest can be estimated as

C. Concurrent Sample Path Construction

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 641

construction: when evert, ., is observed in the actual DES, 3) TIME WARPING OPERATION:
construction of the hypothetical sample path can continue if 3.1) Obtain, (4, + 1) from f/i(n + 1, k) for all
and only if missing eventsi € M(n + 1, k) and use the
SPC procedure to determifgy 1, éxy1, £141, and
M(TL + 17 k) - A(TL + 17 k) (14) 7A'i7k+1, §i,k+1 for all <.

)))) 3.2) Discard all used event lifetimes
otherwise, construction of the hypothetical sample path is
“suspended” in stater; until some future observed event V(n+1 k4 1)
causes (14) to be satisfied. Thus, with every observed event, ¢ ’

condition (14) is checked: if it is satisfied, the SPC procedure =Viln+1, k) —vi(3i,1 + 1)
is invoked to update the state of the constructed sample path;
otherwise, construction is suspendedzatuntil some future forall i € M(n+1, k).

observed event causes (14) to be satisfied. Note that with 3.3) Update available event set
every observed event the sétn, k) is updated and possibly
enlarged, while the sét/(n, k) remains fixed, since it depends

. Aln+1,k+1)
only on Z. o
An explicit algorithm for constructing concurrent sample =An+1, k) —{ii € M(n+1, k),
paths under parameter valugésZ 6 based on observed data Si k41 = Si,nt1)

from a sample path undéris given in [5], where a detailed
discussion of the conditions for which the approach is applica- ~ 3.4) Update missing event set
ble may also be found. Briefly, the conditions for meaningful
concurrent sample path construction are the following: 1) we

assume thafl does not affect the event lifetime distributions M(n + 1A’ k1)))

in the DES, but only the state transition structure. If that is =T(@r41) = ((@0) = {8k41})-

not the case, the algorithm described next requires certain

modifications that we will not dwell on here; 2) changedin 35) fMn+1,k4+1) C Aln+ 1, k+ 1) then set
should not introduce new types of events into the eventset k — k+1andgoto 3.1). Else, sét— k+1 and
and 3) the state transition structure of the observed system is n «— n+ 1 and go to 2).

assumed irreducible. More generally, there should be no statéote that the time warping operation [i.e., Steps 3.1)-3.5)]
transition causing an event to become permanently disabl@gy result in several state updates in the constructed sample
(since this implies that (14) may never be satisfied). path in response to a single observed event in the actual
The algorithm in [5] is referred to as the time warpin@ES: as long as the sample path construction condition (14)
algorithm (TWA). We reproduce it here with minor changes t satisfied, construction of the hypothetical sample path will
suit our purposes. In the algorithm, the operaterand— are proceed; otherwise, the constructed sample path’s clock is
applied to both scalars and sequences. When applied to scakgspped, while the observed system’s clock keeps moving
they denote the usual addition and subtraction operatioagiead. When the missing lifetimes become available and (14)
When applied to sequences, indicates the addition of anis satisfied, the constructed sample path “instantaneously”
element to the end of the sequence andndicates removal processes as many events as possible causing its clock to

of the first element of the sequence. “warp” forward. This process of moving backward in time

Time Warping Algorithm (TWA): to revisit suspended sample paths and then forward in time by

1) INITIALIZE: one or more events lends itself to the tetime warping[5].
Given zq, Zg It should be clear that by a simple modification to the TWA,
Setn = k =0,¢, = t, = 0; for all ¢ € E set any number of hypothetical sample paths can be concurrently
Sin =258 0=0;forall i € ['(z,) setr; o = 1;(1) constructed: instead of a single sample path under a parameter
Set M (0, 0) = I'(&9), A(0,0) =0 valued, we can have many sample paths each indexedy

2) WHEN EVENT e,41 IS OBSERVED: 1, 2, --- and each operating under a different parameter value

2.1) Add the observed lifetime ef,,; to V(n+1, k) . Computationally, the requirements of the TWA are min-
imal: adding/subtracting elements to sequences, simple arith-

Viln +1, k) metic, and checking condition (14). It is usually the memory
V(n B) 4 0s(sim +1) i i = ensa requirements that limit the n.umber of concur.ren.t sample paths
= { ‘;(n’ 5 AT otherwréz that can be constructed, since the event lifetim&sn, k)

T ' need to be stored for each constructed sample pathhe
advantage of simultaneously constructing many sample paths,
however, lies in the fact that from the full state history gener-
ated for each constructed sample path, it is possible to evaluate
and compare any desired performance measure of interest.
In this way the TWA can be used to solve the sample path
constructability problem and the optimization problem (3).

2.2) Update available event seti(n + 1,%k) =
A(n, k) U epqr.

2.3) Update missing event séf(n+1, k) = M(n, k).

2.4) f M(n+1, k) C A(n+1, k), then go to 3). Else,
setn «— n + 1 and repeat from 2).

642 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

D. Specialization of the TWA to the Uppeak The setsVe, and V¢, are formed similarly. In addition, the
Elevator Dispatching Problem available event set is given by

Our objective is to observe an actual elevator system while it
is operating under some arbitrary dispatching threshold during Ale) ={pa, ca} if palndex(c) < palndex(0)
the uppeak traffic period and use the TWA to construct the andcalndex(c) < calndex(0)
hypothetical sample paths and estimate the passenger waiting <—

times that would have resulted if the elevator system had A(c) = {pa} if palndex(c)

palndex(0)

been operating under the various threshalds. There are andcalndex(c) > calndex(0)
N such thresholds, and each one may take any value in the A(¢) ={ca} if palndez(c) > palndex(0)
set{l, ---, C}. Thus, a total ofk = C" sgmple_ paths need and calndex(c) < calndez(0)
to be constructed and the passenger waiting time under each ,
needs to be estimated. Here we describe how we specialize 4 c) =9 if palndex(c) > palndex(0)
the TWA to accomplish these objectives. and calndex(c) > calndex(0).
We begin by introducing some notation. First, let (17)

¢ =sample path index, with = 0 denoting the
observed sample path aed=1, ---, K
denoting thecth constructed sample path.

and the missing event set is given by

M(c) ={pa, ca} if paFlag(c) =1 andcaFlag(c) =1

For the uppeak dispatching problem we need to stork(c) ={pa} if paFlag(c) =1 andcaFlag(c) =0

observed lifetimes for two types of evenis; events ancca M (c) ={ca} if paFlag(c) =0 andcaFlag(c) =1

events (recgll thgt we do not Qifferentiqte among cars sinq@l(c) -y if pallag(c) =0 andcaFlag(c) =0
they are all identical). To do this we define two vectors. (18)

Vee A vector for storing observegda event lifetimes.
V.e A vector for storing observeda event lifetimes.
Now we define the following.
palndex(0) An index into V,, where the most recent path ¢ must be suspended when

pa lifetime observed in the actual elevator

system is stored. paFlag(c) =1 and palndex(c) > palndez(0)
calndex(0) An index into V., where the most recent o, \when

ca lifetime observed in the actual elevator

system is stored.

As for the subset test in (14): The construction of sample

caFlag(c) =1 and calndex(c) > calndez(0).

palndex(c) The index intoV,, where the nexpa lifetime (19)
will be obtained for constructing sample path
c=1-- K In the first case, we needa lifetime and nopa lifetime is

calndex(c) The index intoV., where the nexta lifetime 4yajlaple (either because none have yet been observed to have
will be obtained for constructing sample pathyccyrred in the actual system, or because we have used them

c=1-- K. all up). In the second case, we needaalifetime, and noca
Finally, we define two indicator functions for each constructgietime is available (again, either because none have yet been
sample path. observed to have occurred in the actual system, or because we
1) paFlag(c) = 1 if a pa event is needed to continuehave used them all up).
sample path construction, zero otherwise. In terms of the above definitions, we now specialize the
2) caFlag(c) = 1 if a ca event is needed to continueTWA to the uppeak elevator dispatching problem. In what
sample path construction, zero otherwise. follows, we useY (0) and Z(0) to denote the state variables

With the definitions above, we can obtain any of thor the observed system, i.e., the queue length at the first floor
sets involved in the TWA. Clearly, the vectoF, and V., and the number of cars available to dispatch, respectively.
correspond td;, ¢ € E. It is also easy to see that the set of (¢) and Z(c) are used to denote the same state variables in
pa event lifetimes already used in constructing sample paife cth constructed sample path.
¢ is given by

IV. CONCURRENT ESTIMATION
Vie = {Vpa(1), - -+, Via(palndex(c) — 1)} (15) DISPATCHING ALGORITHM (CEDA)

pa
. i i 1) Initialize:
and the set of availablga event lifetimes which have not yet
been used is given by
forallc=1, - ---, K

=0
ﬁfa = {Vyu(palndex(c)), - - -, Vpa(palndex(0))}. (16) Z(0)=Z(c)=N foralle=1, -, K.

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER

643

Start observing when the lobby queue is empty, and all cars3) Time Warping Operation:

are parked at the first floor lobby: 4) Forc = 1,---, K. For each concurrent constructed
sample path.
V.o —V. =0 5.1) If paFlag(c) = 1. A pa event is needed to continue
pa — Yca — .
construction.
palndex(0

(0)

palndex(c) = calndex(c)
paFlag(c) =1
caFlag(c) =0.

No events have been observed yet. Each concurrent estima-
tor is initially suspended; each one awaitingaaevent. Noca

event is needed, since all cars are assumed initially availabl
at first floor lobby:

paClock =0
caClock(l) = --- = caClock(N) = 0.

The above are clocks for recording event lifetimes.

All clocks (observed and constructed sample paths) are
initially zero.

7(0) = T(c) = 0.

6)

2) When an Event is Observed in the Actual Elevator System:

1)

Get the event typepg or ca) and the timeT(0)

1.1) Based on the timg’(0), update the operating
threshold. The threshold is updated every 5 min
as described in Section V.

2.1) If event ispa:

2.1.1) Ve(palndex(0)+1) = T(0)—paClock. Record
pa lifetime and insert intoV,,.

2.1.2) paIndex(0) = palndex(0) + 1. Increment
pointer in V.

2.1.3) paClock = T(0). Start clock for nexipa event
lifetime.

2.2) If event isca:

5.1.1) Ifpalndex(c) > palndex(0), go to 4). Suspend
construction of sample path.

5.1.2) 75, = T(c) + Vya(palndex(c)). Else, determine
next pa event time.

5.1.3) palndex(c) palndex(c) + 1. Increment
pointer in V.

5.1.4) paFlag(c) = 0. Reset thepa flag.

E'5.2) If caFlag(c) = 1. A ca event is needed to continue

construction.

5.2.1) Ifcalndexz(c) > calndex(0), go to 4). Suspend
construction of sample path.

5.2.2) 75, = T(c) + Voo (calndex(c)). Else, determine
next ca event time.

5.2.3) calndex(c) calndex(c) + 1.
pointer inV,,.

5.2.4) caFlag(c) = 0. Resetca flag.

Use the SPC procedure to determine next eygrand

next event timeysS and set

Increment

6.1) If event ispa:

6.1.1) Y(c)
length.

6.1.2) paFlag(c) = 1. Setpa flag to indicate ga
lifetime is needed to continue sample path
construction.

6.2) If event isca:

6.2.1) Z(c) = Z(c) + 1. Increment number of cars

at lobby.

Y(c) + 1. Increment lobby queue

2.2.1) Determine car indexheCar 7) If Z(e) > 0 and Y(c) > 8z, 1(c). Check car
2.2.2) Voo(calndex(0) + 1) = 7(0) — availability and dispatching threshold.
gaClocﬁ(tthm‘). Record ca lifetime and 7.1) Y(¢) = Y(c) — min(Y(c), C). Decrement the
insert into V. lobby queue by the number of passengers that are
2.2.3) calndex(0) = calndex(0) + 1. Increment served when the car is dispatched. The car capacity
pointer in V. is limited to C' passengers.
3) Dispatching policy decides if car should be dispatched 7.2) Z(c) = Z(¢) — 1. Decrement the number of

in observed elevator system. Here we assume the des-
ignated next car is dispatched when the number of
passengers inside exceeds a certain operating threshold.
3.1) Determine car indextheCar

3.2) caClock(theCar) = T(0). Start clock for nexta
event lifetime.

Estimate the waiting time for those passengers who

8)
3.3)

available cars.
7.3) cal'lag(c) = 1. Setea flag to indicate aaq lifetime
is needed to continue sample path construction.
7.4) Update the average waiting time for this con-
structed sample path.
Go to Step 5.1). Continue sample path construction until
suspended.
we are estimating the

were served by the car that was qu_t dis_patched.AS the algorithm above is running,
Updgte t.he average passenger waltl_ng time. T'ﬂ)%ssenger waiting time for both the actual system and for
waiting time for a passenger is the time betweeg, e constructed sample path. In Step 3.3) we update an
a passenger’s arrival for elevator service and theimate of the passenger waiting time each time a car is
time when the elevator that serves the passenggioaiched in the actual system. Similarly, in Step 7.4) we
actually departs. update estimates of the passenger waiting time each time

644 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

a car is dispatched in a constructed sample path. We uke best thresholé(p) to use during each interval. That is, for
these passenger waiting time estimates in Step 1.1) to adjeath intervap, we will observe the actual elevator system as it
the operating threshold in the actual elevator system in aperates undé(p), and we will construcC' sample paths. At
effort to improve the passenger waiting time performance. Toe end of intervap, we will estimate the waiting time for both
reflect this fact, we refer to each constructed sample path atha actual elevator system and for each of theonstructed
concurrent estimator and the algorithm itself as the concurresample paths. We will use these waiting time estimates to
estimation dispatching algorithm (CEDA). Note that the outpehoose the thresholé{p) to be used during interval on the

of CEDA is the set of all concurrently constructed sampleext day. If the passenger arrival profile has the same general
paths, estimates of passenger waiting times for each catatistics from one day to the next, this strategy is expected
structed sample path, and an estimate of the actual passemngewrork well.

waiting time in the real elevator system. Most importantly, the

algorithm generates the suggested operating threshold useggby,, Event Lifetimes

the dispatching controller to decide when each car should b

dispatched. QI'he CEDA requirespa event lifetimes for sample path

construction. The problem here is that elevator systems usually
do not have sensors to detect every passenger arrival event.
V. IMPLEMENTATION ISSUES Typical elevator systems, however, can obtain a reasonable
To use the CEDA in a actual elevator system, some irgstimate of the number of passengers inside a car when it is
plementation issues need to be resolved. In the subsectidigpatched, since most elevator systems have weight sensors
that follow, we address issues relating to: computationél each car or light beams which count passengers as they
requirements (Section V-A)pa event lifetimes (Section V- enter and exit the cars.
B), passenger waiting time estimation (Section V-€2)gvent Given an estimate of the number of passengers inside a car
lifetimes (Section V-C), and threshold adaptation (Section \&t the time it is dispatched, we can use the rate at which
D). A summary of the adjustments made to the CEDA fdgpassengers are being carried away from the first floor to
implementation are then given (Section V-E). We should erastimate the passenger arrival rate. The estimate(p, d)
phasize that our objective throughout is to resolve each isg@ecomputed for thelth time an elevator is dispatched during
in the simplestway possible, and then compare the result§e pth 5-min estimation interval by dividing the total number
of the simplest possible implementation to those obtain@fi passengerserved so faduring intervalp by the time since
through the state-of-the-art dispatching schemes mentionedniterval p began. The estimate is limited to a prespecified

the introduction. maximum value to deal with the large estimation errors that
could otherwise result when a car is dispatched immediately
A. Computational Requirements after an interval change. Using this passenger arrival rate

A h timal policy is defined &Y estimate, each time ga event is needed for sample path
S W€ have seen, an optimal policy IS define construction during interval, we will generate one according

fj'ﬁtirentt :hlr esholSs, wperlé* 'St the (_arlﬁvatofr capacity Ianb_l; to a Poisson process at ratg,;(p, d) using a standard random
IS the lfotal number ot eevalors. Thus, Tor example, It Wo, qie generation technique (e.g., see [3]). The rate itself is
have four cars each with a capacity of 20 passengers,

" . Wsumed to vary according to a function such as that shown in
would need20* = 160000 concurrent estimators to chooseg1l
t

the best threshold. While it i cain ible t ig. 2, obtained from extensive empirical data collected in the

N tes tlrgg 0%0' |e|| IS fher ainly pi)hs5| € to concurrentfeyator industry. The underlying Poisson assumption is also
construc sampie paihs, given the necessary COMPYIeLoy o extensive empirical studies for elevator systems [11].
memory, our approach here is to ignore the fact that t

threshold | functi f both th b ¢ r the performance results contained in Section VI, it was
reshold s a ftunction of bo € number o passengEiFﬁportant to adopt this widely used passenger arrival model in

in _the designat_ed next car and the number of empty “Yrdler to compare the CEDA with other dispatching algorithms
waiting at the first floor [recall (1)] and simply choose th%sed in the elevator industry

threshold only as a function of the number of passengers

in the designated next car. While this obviously results in a -)))

suboptimal solution, experiments in our previous paper [15f; Passenger Waiting Time Estimation

show that the numerical values of the thresholds are notThe threshold adaptation scheme we develop in Section V-E
particularly sensitive to the number of empty cars waitingequires an estimate of the passenger waiting time in the actual
at the first floor. With this simplification, we only need elevator system. The passenger waiting time is measured from
concurrent estimators, and our problem reduces to choosthg instant a passenger arrives to the first floor lobby queue

the threshold® € {1,---, C} that matches, as best ado the instant the car that serves the passenger is dispatched
possible, the elevator service rate to the passenger arrifraim the first floor. Although we know the time when a car is
rate. dispatched, we do not know the time each passenger arrived.

To deal with the fact that the passenger arrival rate isTo estimate passenger waiting times, we will use the fol-
changing throughout the uppeak period (as seen in Fig. B)wing strategy. Assume the first floor lobby queue is served
we will use the following strategy. We will partition the hourfirst come first served (FCFS). Define the arrival time of
long uppeak period into 12, 5-min long estimation intervalhe passenger at the front of the queueZasd). This will
indexed byp = 1, ---, 12. We will use the CEDA to find be the first passenger to enter a designated next car when

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 645

the last passenger, however, is not known. The last passenger

lst Z?d 3rd A S(pl,d) diSPlatCh may have already been waiting when the next car became
I | 1 available, or the last passenger may have arrived and entered
I(d) T,(d) d) just as the doors closed and the car was dispatched. To estimate
T;(d) we use our arrival rate estimate..(p, d) as follows:
Fig. 6. Strategy for estimating passenger waiting times. S(p, d) _1
tTl(d) Tf(d) +)‘est(pv d) ' (22)

one becomes available for théh time during intervalp.
The designated next car will serve all or part of the lobbi€reé; of course, we must check tha(d) < 7(d). If not, we

gueue. Define the arrival time of the last passenger whst Tu(d) = (d). . .
is able to load into the car a%(d). As in Section V-B, Case lll: The(d — 1)th dispatching event leaves part of the

assume the elevator system can determine the number/@}Py queue behind because the car becomesliuthis case,
passengers in a car, and defifiés, d) to be the number of when thedth dispatching occurs, we cannot observe either
passengers served tteh time an elevator is dispatched during! £ (&) 0 Ti(d). What we will do in this case is the following:
interval p. Finally, definer(d) to be the time the elevator When the(d—1)th car departs full, we will estimate the arrival

is dispatched. Now partition the time interv&i(d) — T (d) time of the first passenger in the lobby queue that remains as

uniformly as in Fig. 6. Then an estimate of the wait for the (23)
last passenger is(d) — T;(d), for the second to last it is
7(d) — Ty(d) + (T;(d) — T§(d)) /(S (p, d) — 1), for the third to
last it is 7(d) — Ti(d) + 2(T7(d) — Ty(d))/(S(p, d) — 1), and
so on until finally the wait for the first passenger is estimat
as 7(d) — Ty(d).

The total passenger wait théh time an elevator is dis-
patched during intervab is, therefore, estimated as

1
Tf(d) tTl(d 1) +)\est(pv d - 1) '
Then, when thelth dispatching occurs, we will proceed as in
eCéase Il above to estimate the arrival time of the last passenger.
Clearly, the waiting time estimation procedure above is quite
crude. As already stated, however, our first goal is to examine
whether our overall approach provides a significant perfor-
mance improvement over state-of-the-art dispatching policies
S, d)—1 T(d) — T4(d) despite such crude estimation methods and rough approxima-
Wolp, d)= > {(T(d) —Ti(d)) +k<ﬁ>} tions. Seeking more sophisticated methods is something we
k=0 P, d) = can pursue to provide further improvements as necessary.
(20) Experimental results show that the quality of the waiting
time estimate is best for Case | and worst for Case Ill. This is
to be expected since the accuracy of the information on which
(21) the estimation is basef; (d) andT;(d), becomes increasingly
unreliable in going from Case | to Case lll. Fortunately, Case
Ill occurs only rarely (unless the arrival rate is very high in
g@ich case the dispatching thresholdfis= C), so that the

And the average passenger wait for interyas estimated as

1
Walp) = ———— > Walp, d).
(p) ZS(pvd)Z (p, d)
d

d

Notice that we are estimating the average wait for thos€' - . SRS o :
passengers who aservedduring intervalp. In this extremely waiting time estimation error for a 5-min _mte_rval typically
simplistic estimation procedure, we choose to disregard tﬂ@ly amounts to a f_ew SeCOUdS as s_hovyn n Fig. 7._The large
fact that some of these passengers may leaiged during a estimation error during the ninth estimation interval is caused
previous interval. Clearly the strategy above assumes Poisgéfnthe high arrival rate du””g the eighth interval: this h'gh_
arrivals, and we justify it by noting again that Poisson arriva rival rate leaves a large residual queue of passengers which

have been shown to be a good model of passenger arrival fhnot get served until the ninth interval. Becat)sgt(p_, d)
elevator systems [11]. is based on the number qf passengers served _durlng m;ervgl
In (20) and (21)7(d) andS(p, d) can be directly measured. & large queue at _the_begmnmg of an |nte_r_/al b_|ases the arrival
It is T}(d) andT3(d) that must be estimated. There are threi@te estimate, which in turn b.|ase§ the.wamng time estimate for
dispatching situations that determine how these estimates Cases Il and Il dispatching situations during that interval.
obtained.
Case I: The designated next car is already waiting at tHe-
first floor with its doors open when the first passenger arrives. Although elevator systems have sensors for detecting
In this caseI;(d) can be directly observed as the time thevents, there are two implementation issues we must resolve.
first passenger enters the car (detected by a weight sensofloe first issue concerns the passenger loading time and the
a light beam in the car). In addition, we s&(d) = 7(d), second issue is a technical one concerning the TWA. Both of
since the car is expected to be dispatched upon arrival of these issues can bias the waiting time estimates produced by
last passenger (i.e., the passenger that reaches the spedifiecconcurrent estimators.
dispatching threshold, or the last passenger able to enter justntil now we have been assuming that the passenger loading
before the doors close). time is negligible. That is, when constructing sample paths,
Case II: All cars are busy when the first passenger arrivean elevator returning to a lobby queue loads instantly and
In this caseT’s(d) can be directly observed as the time the firgs dispatched immediately. This has the effect of decreasing
passenger pushes the elevator call button. The arrival timetloé apparent service time, increasing the apparent handling

ca Event Lifetimes

646 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

an uppeak traffic period. The simplest scheme is to determine

45 ' : : il\x : the indexc of the best performing concurrent estimator during
40 : : : ; : interval p and choose the threshold associated with that
G| SUURRTS SURSURRNRRE SRR .__‘%__.; ___________ concurrent estimator. That is, if concurrent estimat@which
2 ' : : % : \ : in our implementation uses a dispatching thresholdcpf
530 : TUETUUNY P gives the best estimated waiting time for interval then
o5 A SRR T setf(p) = c as the threshold to be used during interyal
2020 A _____________________ on the next day. A potential problem with this approach is
% . : that the threshold that gives the best wait for the concurrent
& 15 T W estimators may not be the one that gives the best wait
10 xEsrg?natcaatWaﬂ __________ for the actual elevator system. The reason has to do with
: _ : : the various approximations we use to generateand ca
3 2 4 3 3 10 1o lifetimes for concurrent sample path construction. To deal

Estimation Interval with this potential problem, we propose a simple adaptation
Fig. 7. Comparison between true wait and estimated wait for the uppe%I orithm. To describe the_algorlthm, @(p) be the operating
arrival profile. threshold that was used in the actual system onritheday
during intervalp, and letiW,(p) [obtained using (21)] be the
capacity, and changing the estimated optimal threshold. Of&imated average wait in the actual system during interval
way to deal with the passenger loading time is to introdu¢®t W (p) be the estimated wait for concurrent estimator
another event, passenger transfer evenhich occurs when qyring intervalp, and letW - (p) = min.[W,(p)] be the best
a passenger enters an elevator at the first floor. Lifetimes {0fiimated wait over all of the concurrent estimators during
such events can be detected via weight sensors or counti@rval p. Let 6*(p) = arg min.[W.(p)] be the threshold
devices in the cars. A simpler method, and the one we Ugged by the best performing concurrent estimator. Finally,

is to redefine thera event lifetime to include the passengefiefineA = |W,(p) — W (p)|/Wa(p) and adapt the threshold
loading time. That is, we will define thea lifetime to be according to ‘

the time from when the first passenger enters the car up until

the time that the car returns to the first floor after service. In 0" (p) B<A

this way we account for the passenger loading time Withoutegﬂ(p) - 92(1’) Fsgn(e(p) — 07(p)) a <A<

increasing the complexity of the dispatching algorithm. 6™ (p) A< a.
Recall that the TWA algorithm, upon which the CEDA is - (24)

based, requires all event lifetimes to be independent of the

parameterd, which in our case is the dispatching threshold. .
Generally, howeverca event lifetimes depend on the passert'ere"‘ and g are scalars. These scalars were chosen with the

ger load, and hence indirectly on the dispatching threshof@!loWing intention in mind. When the differenca between

The most obvious way to deal with this issue is to keep (3¢ Pest estimated wait and the actual wait is “S”_"a!("” we
separateca lifetime array for each passenger load. That ié(,aave the threshold unchanged. When this difference is “large,

instead of a singlea lifetime array, we would have’ such W€ immediately switch to the best threshold given by our
arrays. Then when aa lifetime is needed during sampleConcurrent estimators. Whea is in mid-range, we adjust
path construction, we check the passenger load in the & threshold in the appropriate direction by a small amount.
being dispatched, and get the lifetime from the appropriate AS We Wil see in the next section, we obtained this type of
lifetime array. This approach, however, greatly increases tRghavior with the values: = 0.2 and § = 0.8.

probability that sample path construction will get suspended

at Step 5.2.1 of the CEDA. Another possible approach is Fa Implementation Adjustments

make 0b§eryat|ons of the_ system as it operates to find thEHere we summarize the adjustments made to specific steps
meanca lifetime as a function of the passenger load and ug¢ \he CEDA for implementation purposes (each step below
these means to appropriately scale dhdifetimes used in the \oters 1 the corresponding step with the same number shown
concur_rent estimators.l The drr_:waack of this approach is qﬁethe detailed algorithm in Section V).
extensive data collection required. , _ Step 1.1:Check 7°(0) to see if the time intervap has

I_n th_e Sp'”_t of our goal _to start with an |mplementat|orbhanged_ If it has, update the threshé{d) [by either setting it
which is as simple as possible, we have simply neglected &6 threshold of the best performing concurrent estimator, or
influence of the passenger load altogether. This approxmaﬂ&musing the adaptation algorithm (24)], and theryset p+1.
allows us to work with a singleq lifetime array, and it reduces tep 2.1: If this pa event is for the “first’ passenger (as
the' c;hance that a cqncurrent estimator will become suspen% ned in Section V-C), then determine the dispatching case
waiting for a ca lifetime. and computels(d). When the first passenger arrives to an

) empty car, we have Case |, afigl(d) is the time the passenger

E. Threshold Adaptation enters the car. If the first passenger arrives when all the cars

The goal of threshold adaptation is to choose the best busy, we have Case Il, affifl(d) is the time the passenger
threshold to use for each of the 12 5-min estimation intervalsjpushes the elevator call button.

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 647

Step 3: Dispatch when the number of passengers inside the

designated next car reaches the thresl#¢id. When a car is 0 : ? :
dispatched, determine the lo&dp, d), and update\.,,(p, d) 28
and W(p, d). When a car departs full, we have dispatching __2¢
Case lll, andT;(d + 1) is estimated using (23). 2
Step 4: Replace K by C for the number of constructed %24
sample paths: one for each threshélg {1, ---, C}. B 22
Steps 5.1.1-5.1.3We will not suspend sample path con- %20
struction to wait for passenger arrival events. Instead, when2 ! : ;
we need gpa lifetime for sample path construction, we will <18 : :
generate one according to a Poisson process abtat@, d). 16 5 \////
Step 7: Dispatch in a concurrent estimator whEffc) > ¢ ? No4 :
and Z(c) > 0, i.e., the threshold for theth concurrent 145 3 10 15 20
estimator isc. Dispatching Threshold
Fig. 8. Response curve describing the true average wait as a function of the
dispatching threshold for a fixed arrival rate of 20 incoming pass/min (no
VI. PERFORMANCE RESULTS outgoing or interfloor).

In this section we provide explicit numerical results obtained

by applying the CED_A to a detailed elevator sy_stem SimUIat_ggtimator that gave the best estimated wait for the first run.
developed at the University of Massachusetts in collaboratw‘gr(]Jr subsequent runs, the threshold was tuned using (24)

with the OTIS Elevator Co. The simulator models a ten- In comparison to the response curve obtained above using

floor qffice building served by fOl.Jr elevatqr cars, e_ach with Brute force simulation, we observed that the concurrent esti-
capacity of 20 passengers. Details regarding the simulator $A8tors did not give a particularly good estimate of the wait

be found in [12] and [13]. in the actual system. Those concurrent estimators operating
at low thresholds tended to overestimate the wait, while those
A. CEDA Performance Under a Fixed Passenger Arrival Ratperating at higher thresholds tended to underestimate the wait.

As a test of the accuracy of the CEDA, we performed th‘ghg reasons for. these e;timation errors can pe t_raced back
following experiment. We fixed the arrival rate of incomingto inaccuracies in the arrival rate esumatg which is used to
passengers to 20 pass/min. Then we obtained a response cHRAET@i@a events for sample path construction (Section V-B),
describing the true average passenger waiting time for e inaccuracies in the: event lifetimes used to generate
of the 20 dispatching thresholds— 1, - - -, 20. We did this events for sample path con_structlon (Section V-D). Despite the
by performing 30 runs of one simulated hour apiece at ealdft that the concurrent.estlmators are really not that accurate,
threshold. At the completion of each run, the true waitingowever' the CEDA did converge to a mean threshold of
time was determined (since the complete state informatién™ 9.26 passengers, Whlch is essentially equal'to thg true
is available in the simulator, the true passenger wait can BgSt threshold o = 9 obtained by brute force simulation.
determined). The waiting time for each threshold was thef!iS IS @ feature of algorithms, such as the CEDA, that are
averaged over the 30 runs at that threshold. The results Q?éed on ordl_nal comparisons: although modeling errors may
shown in Fig. 8, where the best dispatching threshold for th{€!d Poor estimates of the performance of the actual system,
arrival rate is seen to bé = 9 passengers with a wait 0fth'e strategy that optimizes performance can be very robust
14.56 s. Notice that the curve has one local minimum and of#" respect to such errors. The robustness of solutions to
local maximum. Also notice the importance of choosing th@ptimization problems with respect to modeling errors is not
correct threshold. For example, if we were to use the simd‘l'@usual (e.g., see [14]).

6 = 1 policy the wait is 18.86 s, some 30% longer than the . ,

best. Alternatively, the half-capacity plus 20-s timeout policy- CEDA Performance in Uppeak Traffic

discussed in the introduction gives a waiting time of 16.84 s, In this section, incoming passengers arrive to the first floor

some 16% longer than the best. As seen from Fig. 8, thisvisth a mean rate that varies as shown in Fig. 2. As mentioned
worse than simply using a half-capacity policy which gives im Section V-B, this passenger arrival model is widely used

wait of 14.91 s. The reason for the difference is that the 20rs the elevator industry and was adopted here for the sake
timeout acts like a threshold of 6.67 passengers (&&0 s of meaningful comparisons with other schemes (see Table 1).
x 20 pass/minx 1/60 min/s). There are no outgoing or interfloor passengers. This traffic

Next we performed 30 additional runs for the same arrivalmulates the uppeak traffic mode. Recall, the CEDA uses
rate of 20 incoming pass/min. Our interest here was to sé2 different threshold®(p), one for each 5-min intervap.
what threshold the CEDA would choose. For the first run, th@n the first day, the thresholds were arbitrarily initialized to
threshold was initialized t@ = 1. For subsequent runs, thef(p) = 1 for p = 1, ---, 12. At the end of the first day, the
threshold changed as the CEDA adapted it to the 20 pass/ritireshold to be used during intervalon the next day was
arrival rate. At the end of the first run, the threshold to be usedt to the threshold of the concurrent estimator that gave the
for the second run was set to the threshold of the concurrdmgst estimated wait for that interval. On subsequent days, the

648 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

TABLE |
WAITING TIME PERFORMANCE FORUPPEAK PASSENGER TRAFFIC

True average wait

Policy over entire hour- Remarks
long uppeak period
(sec.)
6=1 33.20 This policy tries to dispatch as soon as a

passenger enters a car.

0 =5 34.50

6 =10 36.33 This is a half-capacity policy.

6 =15 35.16

6 =20 35.94 This policy dispatches when a car becomes
full.

half capacity plus 20 34.85 This is a commonly used uppeak dispatching

second timeout policy.

CEDA 24.61 This is our Concurrent Estimation
Dispatching Algorithm.

threshold adaptation scheme (Section V-E) was used to further 7
adapt and fine tune the threshold. All results are averages over
30 runs of one simulated hour apiece. 60

Table | compares the performance of the CEDA to several
open-loop threshold policies. It is interesting to notice that all £
of the open loop policies give essentially the same waiting 8 40
time performance. The CEDA which adapts the threshold 7,
to the changing arrival rate, however, gives far superior ?3"30
performance—some 35% better than the best static, open-loorﬁ 20
policy.

A better way to compare dispatching policies during the 10 et : : : :
uppeak period is to examine the average wait during each ; j i ; :
5-min interval as shown in Fig. 9. As expected, the= 1 0 2 4 6 8 10 12

. L . Time Interval
policy does well at the beginning and end of the uppeak period
when the arrival rate is low. Similarly, thé = 10 policy Fig. 9. True wait for each 5-min interval during the hour-long uppeak period.
does well for medium arrival rates, and the= 20 does well
for high arrival rates. No static, open-loop policy, howeveiyhere the arrival rate is low, the threshold is low, and where
does well for all intervals. In comparison, the CEDA, whichhe arrival rate is high, the threshold is high. The thresholds for
uses a different threshold for each 5-min interval, does veiptervals 10 and 11, however, are higher than we would expect
well—essentially giving lower bound performance. them to be (in comparison to the thresholds for intervals 1 and

Table Il below shows a typical evolution of the CEDA?). This causes the somewhat poor waiting time performance
thresholds. As can be seen, a drastic threshold adjustmeuting these intervals in Fig. 9. The reason can be traced to
takes place immediately after the first day, with few changesy eight, where, something about the sample path on that day
occurring after about one week of operation. The rapid initighused the threshold for interval 10 to get set to 20 passengers
adjustment was achieved by setting the thresholds to thd@gee car capacity). Subsequent correction was so gradual that
giving the best concurrently estimated wait. This put thine threshold remained too high for most of the 30 days.
thresholds close to their optimal values. Because of errorsThis in turn caused the average wait for interval ten to be
the concurrent estimators, the threshold adaptation algorittmigh. Then, because the threshold during interval ten was too
(24) was then needed to fine tune the thresholds. As expecteidh, this resulted in residual queues at the end of the interval.

o Threshold = 1
».. Threshold = 1
+ Threshold =2
+ CEDA :

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 649

TABLE 1
EvoLuTion oF THE CEDA THRESHOLDS
interval
1 2 3 4 5 6 7 8 9 10 11 12
mean passenger arrival rate (pass/min)
9 12 14 22 29 34 36 34 19 12 9 9
day dispatching threshold
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 3 3 6 9 14 18 12 12 4 1 2
5 2 3 4 8 11 15 17 13 11 7 3 2
7 3 3 4 8 12 13 17 13 9 8 4 3
8 3 4 4 8 13 14 18 12 10 20 3 3
10 3 4 2 9 13 15 19 13 11 18 8 3
15 3 4 4 9 15 16 18 12 11 13 7 4
20 3 4 5 9 15 17 17 14 10 ld 6 2
25 3 4 6 8 15 17 16 15 9 6 9 5
30 2 2 6 7 13 18 11 19 11 6 5 3

This biased the apparent passenger arrival rate for interval &bjlity to provide a reasonable estimate of the number of
causing an increase in the threshold and the waiting time fesissengers inside the elevator cars. In addition, our algorithm
that interval as well. This behavior, however, actually servesquires only modest memory, and the most complicated
well to illustrate the adaptive capability of our CEDA-basedalculation is the generation pf: event lifetime samples from
controller. a Poisson process.

Conceptually, the CEDA is trying to adapt the operating

VII. CONCLUSION threshold so that the elevator service rate tracks the passenger

rrival rate. In this respect, the CEDA is similar to an algorithm
rom the literature called the rate matching algorithm (RMA)

uppeak passenger traffic. The design of the algorithm]. Like the CEDA, RMA partitions the uppeak period into

motivated by our previous paper [15] where we proved that S-mln long intervals. The'n given historical information
for a queueing model of the uppeak dispatching problem tfegarding the.passenger arrlva.I rate, the best threshold to
structure of the optimal dispatching control policy minimizing/Se for each interval is determined off-line as the smallest
the average passenger waiting time is a threshold-based polfjgshold for which the elevator service rate (obtained by
with threshold parameters that depend on the passenger arf4iding the passenger load by the predicted service time) first
rate. The CEDA presented in Section IV is based on the TWgceeds the arrival rate. To predict the service time, RMA
from [5]. The CEDA allows us to observe the elevator systerfiives each floor a probability as a passenger destination and
in a unobtrusive way, while it operates under some arbitra#pes probability arguments, based on the number of passengers
thresholds and concurrently estimate what the waiting tintié the car, to predict how high the car will go and the number
would have been had we operated the system under a @estops it will make. Once the thresholds have been chosen,
of different thresholds. These concurrently estimated waitilgey are fixed, and RMA operates open-loop. As far as we
times are then used to adapt the operating threshold to ¥m®w, however, RMA is not used in practice. The algorithms
changing passenger arrival rate. The implementation of diat are most often used seem to be static, open-loop policies
algorithm is simple and does not require anything more thaimilar to the half-capacity plus timeout policy described in
most elevator systems can already supply, viz.: the abilitlye body of the paper. As we showed, the CEDA performs
to detect button push events and car arrival events, and thach better than any static, open-loop policy and is thus well

In this paper an on-line adaptive dispatching control
gorithm was designed for use in elevator systems duri

650

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

suited when the arrival rate profile has similar statistics frof4] B. Mohanty and C. G. Cassandras, “The effect of model uncertainty on
one day to the next. some optimal routing problemsJ. Optimization Theory and Applicat.,

vol. 77, pp. 257-290, 1993.
[15] D. L. Pepyne and C. G. Cassandras, “Optimal dispatching control
ACKNOWLEDGMENT for elevator systems during uppeak traffi¢EE Trans. Contr. Syst.
Technol.,vol. 5, pp. 629-643, 1997.

The authors wish to thank Dr. Bruce A. Powell of thd16] M. L. Siikonen, “Elevator traffic simulation,'Simulation,vol. 61, no.

OTIS Elevator Company for his input in this work, includin

4, pp. 257-267, 1993.
G. R. StrakoschVertical Transportation: Elevators and Escalators.

the traffic data that was used for the implementation results”™ New York: Wiley, 1983.
reported in Section VI. [18] A. Torn and A. ZilinskasGlobal Optimization, Lecture Notes in Com-

(1]
(2]
(3]
(4]

(5]

(6]
(7]

(8]
(9]

[20]

(11]

[12]

[13]

puter Science. Berlin, Germany: Springer-Verlag, 1987.
[19] P. Vakili, “A standard clock technique for efficient simulatior@per-
REFERENCES ations Res. Lettyol. 10, pp. 445-452, 1991.

E. Aarts and J. KorstSimulated Annealing and Boltzmann Machines.

Chichester, U.K.: Wiley, 1989.

G. C. Barney and S. M. dos Santdslevator Traffic Analysis Design

and Control,2nd ed. London, U.K.: Peter Peregrinus, 1985. David L. Pepyne received the B.S.E.E. degree from the University of
C. G. Cassandrafiscrete-Event Systems: Modeling and Performancpyaiford, CT, in 1986. In 1991, he entered the University of Massachusetts,
Analysis. Boston, MA: Richard D. Irwin and Aksen Associates, 1993amnerst, where he is currently completing the Ph.D. degree.

C. G. Cassandras and J. Pan, “Parallel sample path generation fogom 1986 to 1990, he was a Flight Test Engineer with the U.S. Air Force
discrete-event systems and the traffic smoothing problembiscrete- 5 qwards AFB, CA. His current research interests include the performance

Event Dynamic Systvol. 5, no. 2/3, pp. 187-217, 1995. it ; ~ ; ; i ot
C. G. Cassandras and C. Panayiotou, “Concurrent sample path eo g;]mn:éﬁt(lecsm of discrete-event and hybrid systems and nonlinear optimization

mation for discrete-event systems,” Rroc. 35th Conf. Decision and
Contr., 1996, pp. 3332-3337.

C. G. Cassandras and S. G. Strickland, “On-line sensitivity analysis of
Markov chains,”IEEE Trans. Automat. Contrvol. 34, pp. 76—86, 1989.
, “Observable augmented systems for sensitivity analysis
Markov and semi-Markov processedEEE Trans. Automat. Contr.

?{hristos G. CassandragS'82—-M'82—-SM’'91-F'96) received the B.S. degree

' from Yale University, New Haven, CT, in 1977, the M.S.E.E degree from
vol. 34, pp. 1026-1037, 1989. . o . e ’
P. Glasserman, Gradient Estimation Via Perturbation Analysis. Stanford University, CA, in 1978, and the S.M. and Ph.D. degrees from
Boston, MA: Kluwer, 1991. Harvard University, Cambridge, MA, in 1979 and 1982, respectively.

W. B. Gong, Y. C. Ho, and W. Zhai, “Stochastic comparison algorithm From 1981 to 1984, he was with ITP Boston, Inc., where he worked on
for discrete optimization with estimation,” ifroc. 31st IEEE Conf. control systems for computer-integrated manufacturing. In 1984, he joined

Decision Contr.,1992, pp. 795-802. the faculty of the Department of Electrical and Computer Engineering,
Y. C. Ho and X. R. Cao,Perturbation Analysis of Discrete-Event University of Massachusetts at Amherst, until 1996. He is currently Professor
Dynamic Systems.Boston, MA: Kluwer, 1991. of Manufacturing Engineering and Professor of Electrical and Computer

G. T. Hummet, T. D. Moser, and B. A. Powell, “Real time simulation ofEngineering at Boston University. His research interests include discrete-
elevators,” inWinter Simulation Conf.Miami Beach, Dec. 4-6, 1978, event systems, stochastic optimization, computer simulation, and performance
pp. 393-402. evaluation and control of computer networks and manufacturing systems. He
J. Lewis, “An elevator simulator with a relative system response group the author of more than 100 technical publications in these areas, including
control algorithm,” Tech. Rep. CCS-88-102, Dept. Elect. Comput. Engg, textbook.

Univ. Mass., Amherst, 1988. Dr. Cassandras is on the Board of Governors of the IEEE Control Systems
J. Lewis, “A dynamic load balancing approach to the control of multiSociety and is Editor—in—Chief of the IEEERANSACTIONS ON AUTOMATIC
server polling systems with applications to elevator system dispatchingGoNTROL. He serves on several other editorial boards and has guest-edited
Doctoral dissertation, Dept. Elect. and Comput. Eng., Univ. Masdgr various journals. He was awarded a Lilly Fellowship in 1991. He is a
Amherst, 1991. member of Phi Beta Kappa and Tau Beta Pi.

