
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998 635

Design and Implementation of an Adaptive
Dispatching Controller for Elevator

Systems During Uppeak Traffic
David L. Pepyne and Christos G. Cassandras,Fellow, IEEE

Abstract—We design a dispatching controller for elevator
systems during uppeak passenger traffic with the ability to adapt
to changing operating conditions. The design of this controller
is motivated by our previous paper where we proved that for
a queuing model of the uppeak dispatching problem athresh-
old policy is optimal (in the sense of minimizing the average
passenger waiting time) with threshold parameters that depend
on the passenger arrival rate. The controller, which we call
the concurrent estimation dispatching algorithm (CEDA), uses
concurrent estimation techniques for discrete-event systems. The
CEDA allows us to observe the elevator system while it operates
under some arbitrary thresholds, and concurrently estimate, in
an unobtrusive way, what the waiting time would have been
had the system operated under a set of different thresholds.
These concurrently estimated waiting times are used to adapt
the operating thresholds to match the elevator service rate to a
changing passenger arrival rate. Implementation issues relating
to the limited state information provided by actual elevator
systems are resolved in a way that maintains modest computa-
tional requirements and avoids the need for supplemental sensors
beyond those already typically provided. Numerical performance
results show the advantages of the CEDA over currently used
dispatching algorithms for uppeak.

Index Terms—Adaptive control, bulk-service queueing net-
works, concurrent estimation, discrete-event dynamic systems,
optimization problems, perturbation analysis, queueing theory,
thresholds, transportation systems.

I. INTRODUCTION

T HIS paper is a companion to our previous paper [15],
where we proved that the structure of the optimal dis-

patching policy for elevator systems in uppeak traffic is a
threshold-based policy with threshold parameters that change
as a function of the passenger arrival rate. In this paper, we
demonstrate how concurrent estimation techniques can be used
to implement such a threshold dispatching policy in a realistic
elevator system.

In our previous paper [15], we give a detailed introduction
to the difficult problem of elevator dispatching (see also [17]).
Briefly, passenger traffic in an office building can be described
as combinations of the three basic components shown in
Fig. 1 [16]. Incoming traffic represents passengers arriving

Manuscript received September 30, 1996; revised August 14, 1997.
D. L. Pepyne is with the Department of Electrical and Computer Engineer-

ing, University of Massachusetts, Amherst, MA 01003 USA.
C. G. Cassandras is with the Department of Manufacturing Engineering,

Boston University, Boston, MA 02215 USA.
Publisher Item Identifier S 1063-6536(98)06134-X.

Fig. 1. Basic passenger traffic components in an office building.

only at the main lobby and traveling to destination floors up in
the building; outgoing traffic represents passengers traveling
down from the upper floors to the main lobby; andinterfloor
traffic is due to passengers moving randomly between floors
other than the first. For example, the lunchtime traffic mode,
which occurs in the middle of the day, can be described as
a combination of outgoing traffic caused by workers going to
lunch, and incoming traffic caused by workers returning from
lunch. Similarly, the downpeak traffic mode, which occurs at
the end of the day, consists almost exclusively of outgoing
traffic caused by the workers as they leave the building. The
uppeak traffic mode, which is the focus of this paper, occurs
first thing in the morning, and is dominated by incoming traffic
caused by the workers as they arrive and take the elevators up
to their offices.

During uppeak, passengers arrive only at the first floor,
there is no interfloor or outgoing traffic. The elevators take the
passengers up to their destinations, and then make an express
run back down to the first floor to serve more passengers.
In practice, most elevator systems employ what is called the
next car strategyduring the uppeak mode [2]. When using the
next car strategy, only one car is loaded at a time. This car
is referred to as thedesignated next carto be dispatched. All
other cars which may be waiting at the first floor keep their
doors closed or otherwise discourage passengers from entering
(by dimming the lights inside the car, failing to signal the
travel direction, and so forth). During the uppeak traffic mode,
the dispatching question is reduced from deciding when and
where to dispatch each elevator car, to one of simply deciding
when to dispatch the designated next car. In many elevator
systems, the number of passengers in a car can be estimated

1063–6536/98$10.00 1998 IEEE

636 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

by weight sensors or by sensors which count passengers
as they enter and exit the cars. Given that the number of
passengers in a car can be determined, the simplest uppeak
dispatching policy is athreshold policywith a threshold of
one: dispatch the designated next car when the number of
passengers inside is nonzero (lettingdenote the threshold
parameter, we will refer to this as the policy). Another
uppeak dispatching policy, termedhalf-capacity plus time-
out, dispatches an elevator when half its capacity is reached
or when a timer, started when the first passenger enters the
elevator, expires (usually a 20-s timer is used). For a more
detailed discussion on these see [15]. The basic problem with
both of these approaches is theiropen-loopnature. During
uppeak, which lasts for about an hour each morning in a typical
office building, the passenger arrival rate can double from one
five-minute interval to the next. It is, therefore, difficult for
open-loop dispatching policies to perform well over the entire
hour-long uppeak period.

In [15] we developed a Markov decision problem (MDP)
formulation of an elevator system in uppeak traffic, and
showed that the solution that minimizes the average passenger
waiting time at the lobby over an infinite horizon is a dynamic
threshold policy where the threshold parameter is a function of
the passenger arrival rate. Motivated by that work, we design
in this paper an on-line, adaptive threshold-based dispatcher
which adapts its threshold to the changing passenger arrival
rate that occurs during the uppeak period. To evaluate the
approach, we compare its performance to the two open-
loop policies described above. To design the dispatching
algorithm, we useconcurrent estimationtechniques (see [5]).
Concurrent estimation allows us to observe the elevator system
while it is operating under some threshold and estimate
what the passenger waiting time would have been had we
operated the system under all other admissible threshold
values (without actually having to explicitly try them out).
Using these estimated passenger waiting times, we adapt the
threshold to the passenger arrival rate. Starting with arbitrary
threshold settings, we have found that our strategy rapidly
settles down to a set of thresholds that perform much better
than the open-loop policies described previously.

The remainder of this paper is organized as follows. In
Section II we describe the uppeak elevator dispatching prob-
lem and review previous results on optimal dispatching con-
trol that motivate the controller design presented in this
paper. Sections III and IV describe the concurrent estimation
methodology we adopt for designing an adaptive dispatching
controller. Section V deals with the implementation issues
involved in applying our dispatching control algorithm to an
actual elevator system. Section VI gives performance results
to demonstrate the efficacy of our algorithm compared to the
state of the art. Finally, we conclude in Section VII.

II. PROBLEM FORMULATION

For a typical office building, the uppeak traffic mode occurs
in the morning when the building’s occupants arrive for work
[2]. The uppeak period lasts for about an hour, during which
time virtually the entire population of the building will arrive at

Fig. 2. Typical arrival rate of incoming passengers during the uppeak period.

Fig. 3. Queueing model of an elevator system during uppeak.

the main lobby and request elevator service. A typical variation
in the arrival rate of incoming passengers during uppeak in
such buildings is shown in Fig. 2. The start of the workday
(say 9 A.M.) might be somewhere between 30–40 min into
the uppeak period. The passenger arrival rate is low at the
beginning of the period (8:20 A.M.) as the “early” workers
are arriving. The arrival rate is very high just before 9:00
A.M. as most workers will try to arrive “just in time.” At
the end of the period (9:20 A.M.), the arrival rate tails off as
the “late” workers finally arrive. We will return to the issue
of modeling the passenger arrival process during the uppeak
period in Sections IV-B and V-B.

Viewed as a DES, an elevator system during uppeak may
be represented by the queueing model in Fig. 3. Incoming
passengers arrive to a lobby queue where some dispatching
control policy is used to decide how the elevators (also
referred to as “cars”) will be loaded (e.g., through thenext
car strategydescribed in the introduction). The passengers
are served by identical cars, each with a finite capacity
of passengers. The state space of this DES is given by

where
is the length of the lobby queue and is the number of
cars waiting at the main lobby. The dynamics are driven by
passenger arrival (pa) events, which occur when a passenger
arrives at the lobby queue, and by car arrival (ca) events, which

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 637

Fig. 4. State transition diagram for two-car elevator system operating under a threshold policy during uppeak.

occur when an elevator returns to the main lobby after serving
passengers (for the detailed state transition structure see [15]).
Control actions are taken only when an event occurs and they
define a set , where implies that
all available cars are held at the lobby, and implies
that cars () are allowed to be loaded and dispatched
simultaneously.

A. Optimal Dispatching Control

For the system in Fig. 3 with Poisson passenger arrivals
and exponentially distributed elevator service time (the time
for an elevator to deliver a load of passengers and return to the
lobby), the main result of [15] was to show that the optimal
dispatching policy minimizing the average passenger waiting
time is a threshold-based policy.Specifically, let the control
action be the optimal number of
cars to be dispatched when the lobby queue length isand
the number of available cars is. Associated with each control
action are threshold parameters which we will denote by

, where . These thresholds are functions
of the passenger arrival rateand the elevator service rate,
and are such that , where is the
elevator capacity. Furthermore, the optimal number of cars to
dispatch is given by (see [15])

...
(1)

In addition, it was also shown in [15] that the following
relationship holds:

(2)

Notice, however, that since , the situation where more
than one car is available and the queue length exceedsis
never encountered. Thus, in practice, only thethresholds

need to be determined. This fact has an

important practical implication: instead of needing to know the
lobby queue length (which is difficult to measure), we only
need to know the number of passengers inside the designated
next car (which is much easier to measure).

1) Example: To illustrate the above threshold-based dis-
patching policy, consider the case of cars with a
capacity of passengers each, and a threshold policy
with . Then

Fig. 4 shows a state transition diagram for this system
operating under the above dispatching policy.

The analysis in [15] did not provide a closed-form ex-
pression for the optimal threshold values. To implement the
threshold policy, therefore, two problems remain: : For
given and , we need to determine the threshold values; and

: As changes throughout the uppeak period, a mechanism
is needed for adapting the thresholds. Theoretically, these
problems can be dealt with by solving a Markov chain corre-
sponding to the system of Fig. 4 and evaluating the average
passenger waiting time as a function of different thresholds
to determine the values yielding the minimum average wait
for a range of passenger arrival rates. This is clearly not a
simple computational task, even if stationary solutions are
desired; in our case, we will be interested in determining
optimal thresholds over 5-min estimation intervals, so that the
transient behavior of the Markov chain needs to be analyzed,
an even more difficult task. In addition, the results provided
by such analysis may still be inadequate because, in an actual
elevator system, some of the modeling assumptions may not
hold (e.g., the elevator service times may not be exponentially
distributed).

We see the main value of the results in [15] as identifying
the structureof the optimal policy. Motivated by the simple
threshold-based structure, our objectives in the remainder of
the paper are to 1) design an on-line approach for estimating
optimal threshold values without having complete knowledge

638 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

of the state of the system and without being able to detect
all events and 2) compare the performance of our dispatching
controller to currently used policies; in particular, the
and thehalf-capacity plus time-outpolicies mentioned in the
introduction.

III. CONCURRENT ESTIMATION

In this section, we present a design approach based on
“concurrent estimation” (see [5]) which allows us to estimate
on-line the average passenger waiting time for any admissi-
ble dispatching threshold. The main idea is to observe the
evolution of a sample path of an actual elevator system
as it operates under some preselected thresholds. As the
sample path evolves, observed data (e.g., event occurrences
and their corresponding occurrence times) are processed to
concurrently construct the set of sample paths that would
have resulted if the system had operated under a set of
different (hypothetical) dispatching thresholds. Using these
“concurrently constructed” hypothetical sample paths, it is
possible to “concurrently estimate” the corresponding average
passenger waiting times. A simple scheme is then used to
adjust the threshold used in the actual elevator system to the
one that gives the best estimated waiting time. This cycle of
concurrent sample path construction, waiting time estimation,
and threshold adjustment is done continuously, aiming not
only to identify the best thresholds for the present operating
conditions, but also to adapt the thresholds to track changes
in the operating conditions. As will be seen, this process of
constructing sample paths does not interfere in any way with
the normal operation of the actual elevator system.

To explain the principles of concurrent estimation, some
notation, definitions, and background material will be pre-
sented first. We start by describing what is known as the
“sample path constructability problem.” Then, after reviewing
the concept of a stochastic timed state automaton as a mod-
eling framework for general DES, we describe the general
procedure for constructing sample paths of DES. Concurrent
estimation is then described as a solution to the sample path
constructability problem. With this background, we present
the general concurrent estimation scheme, and explain how
the scheme is specialized to the uppeak dispatching problem.

A. Sample Path Constructability

Consider a DES and a finite discrete parameter set
, where each parameter is

in general vector valued. Suppose the sample path generated by
the DES is a function of the parameter(e.g., the dispatching
threshold), and designate the sample path generated under
parameter by the sequence of pairs , where

is an event-counting index, is the th event (e.g.,
a pa or ca event), and is the occurrence time of the

th event (equivalently, a sample path can be defined by
, where is the state entered when

the th event occurs at time). Now, assume that the DES
is operating under and that all events and event times

for , are directly observable. The problem,
then, is to use the observations of the sample path

Fig. 5. The sample path constructability problem.

to construct the sample paths , for any
, as shown in Fig. 5. This problem is referred

to as thesample path constructability problem[7]. To obtain
an on-line algorithm, we will perform this construction in real
time while the observed sample path evolves. Moreover, we
will perform the construction of all sample paths for

concurrently.
Note that any sample performance metric (e.g.,

the average waiting time for some dispatching threshold
) is obtained as a function of the corresponding sample

path . The importance of the sample
path constructability problem, therefore, becomes clear when
placed in the context of the following basic optimization
problem:

find to minimize (3)

where we are careful to distinguish between , the per-
formance obtained over aspecific sample pathof the system
and , the expectation over all possible sample paths.The
solution to the sample path constructability problem, if it
exists, enables us to learn about the behavior of a DES under
all possible parameter values infrom a single “trial,” i.e., a
single sample path obtained under one parameter value. Most
importantly, if performance estimates are
all available at the conclusion of one trial, we can immediately
select a candidate optimal parameter .
This is potentially the true optimal choice, depending of course
on the statistical accuracy of the estimates
of . In practice, the statistical properties of
the DES and the size of the parameter setmay make it
necessary to use an iterative process to ultimately identify
the true optimal parameter value. If is very large, for
example, parameter space partitioning or random-search types
of algorithms may need to be used (e.g., see [1], [9], and
[18]). However, when the parameter set is small, it is possible
to obtain all estimates concurrently, which
gives rise to the term “concurrent estimation” associated with
solving the sample path constructability problem and the basic
optimization problem (3). In this case, much simpler and faster
schemes may be used to identify the optimal parameter (e.g.,
see [4]). In practice, however, optimality is usually traded for

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 639

speed, andad hocschemes are often used to quickly identify
a parameter which gives satisfactory, rather than optimal,
performance.

B. Stochastic Timed State Automata

To explain the principles of concurrent sample path con-
struction and estimation, it is useful to review how a single
sample path is formally constructed for any DES. To do this we
will make use of thestochastic timed-state automaton(e.g., see
[3]), which provides a general framework for modeling DES.

We begin by reviewing the concept of astate automaton.
A state automatonis defined by (), where
is a countableevent set, is a countablestate space,
is a set offeasibleor enabledevents, is a state transition
function,and is an initial state.The feasible event set

and is defined for all states . The feasible
event set reflects the fact that it is not always physically
possible for some events to occur. The state transition function

, is defined only for the feasible events
; it is undefined for . It is also possible to

replace the state transition function by a state transition
probability function representing the probability
that the next state is given that the current state iswhen
event occurs.

A timed state automaton () is obtained
when the model above is endowed with aclock structure,

. This clock structure associates with every event
a real-valued clock sequence ,

where, is the th lifetime of event . The th lifetime
is the amount of time between the instant when this event is
enabled for the th time and its next occurrence.

Finally, in a stochastic timed state automaton
(), the clock structure is replaced by a
set of probability distribution functions .
In this case, the clock sequences
are random processes. For simplicity, we usually assume
that the lifetimes are i.i.d. random variables
with distribution . Thus, to generate a sample path of the
system, whenever a lifetime for eventis needed we obtain
a sample from . The state sequence generated through this
mechanism is a stochastic process known as ageneralized
semi-Markov process(GSMP) (see also [8] and [10]).

It will be helpful later on if we summarize the exact steps
involved in generating a sample path of a stochastic timed
state automaton. In addition to the stateof the underlying
automaton, let us define two more state variables as follows.
First, let us associate with each feasible event a state variable

to denote the next occurrence time of event. The usefulness
of this variable, is that, given the occurrence times for each
feasible event, the next event to occur, called thetriggering
event, is given by

and the time at which the event occurs is immediately given
by . The other state variable which we will find useful
is the scoreof event which we will denote by : after
total events have been observed in a sample path, the score

is the number of events of type that have occurred.
We can now construct a sample path of any DES modeled as
a stochastic timed automaton as follows.

1) Sample Path Construction (SPC) Procedure:
Step 1: Given the current state and next event times

for all feasible events , determine the next event time

(4)

Step 2: Determine the triggering event

(5)

Step 3: Determine the next state

(6)

Step 4: Update the next event times for all events

if and
if or

(7)

Step 5: Update the event scores

if
otherwise. (8)

Step 6: Increment and continue from Step 1.
For some given state , this procedure is initialized by

setting for all and for all
. For those familiar with DES simulation, the SPC

procedure above is nothing more than the standard event
scheduling simulation scheme. Some readers may have noticed
that the formalism we have used here to define the GSMP is
slightly different than the usual one (e.g., see [3], [8], and
[10]), but it will prove more useful for our purposes as we
will subsequently explain.

2) Example: Let us illustrate the SPC procedure for the
two car elevator system operating under a threshold policy

whose state transition diagram was introduced
in Fig. 4. In this case, the event set is , and the
state set is where

is the length of the lobby queue andis the number of
cars waiting at the main lobby. Feasible events at each state
are shown in Fig. 4 by the corresponding outgoing arrows.
Note that we do not differentiate between distinct car arrivals
because of the assumption that the cars are identical. Suppose
that we do not have any information regarding the lifetime
distributions of and events. Thus, we cannot generate
the event lifetimes needed in (7). If we are
observing an actual elevator system, however, we can simply
observe events as they occur and record their occurrence
times . Since we know the state transition function for the
system, we can then use (6) to update the state, and through (8)
we can update the event scores. Again, in the absence of event
lifetimes we cannot explicitly update the next
event times, but we can evaluate them through (7) after the
events occur and their lifetimes have been determined.

640 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

At the beginning of our sample path construction, let us
assume that the initial state is (0, 2). Referring to Fig. 4,
the only feasible event in this state is and we have

. Let us now see how the SPC procedure applies
to the first few events in a typical sample path:

• First Event : Suppose this is observed at time.
Since only a event was feasible, this is necessarily a

event, and, by (4), it is understood that .
Applying (6) as specified through the state transition
diagram in Fig. 4, the next state is (1, 2) and a second

event becomes feasible. By (7) this nextevent will
occur at time , and by (8), we update
the score from one to two.

• Second Event : Suppose this second event is
observed at time . Repeating the process, we must now
have , the new state is (0, 1), a third

event becomes feasible, and since we have reached
the dispatching threshold and a car was dispatched, a
event also becomes feasible. By (7) the occurrence time
for the third event will be and
the occurrence time for the event will be

.
• Third Event : Suppose this is observed at time

. In this case, the event may have been either aor
, since both were feasible at state (0, 1). Let us assume

that the event occurred first; this implies, from (4),
that . The event causes
a transition into state (0, 2) where the feasible event set
is reduced to , which from (7) will occur at time

.

The sample path constructed thus far is
. As the sample path evolves, any

performance metric of interest can be estimated as a
function of . Sample path construction
is terminated when the performance estimates have been
obtained to some desired degree of statistical accuracy.

The example above serves to illustrate how to formally
construct a sample path of a DES when event lifetimes are
not available, but rather directly observed. This will facilitate
the understanding of the concurrent estimation technique in
the next section.

C. Concurrent Sample Path Construction

A considerable amount of work is currently being directed
toward solving the sample path constructability problem. For
DES in which all event processes are Markovian (memory-
less), the standard clock method [19] and augmented system
analysis [6] provide two very efficient solutions. Most recently,
Cassandras and Panayiotou [5] have proposed a general-
purpose approach for DES; while their approach is not as
efficient as the above two, it is applicable to DES with arbitrary
event lifetime distributions. We will review this approach next
and then specialize it to the uppeak dispatching problem.

The starting point is to consider a given DES operating
under a specific parameter value. Assume that all events
and their occurrence times are observable. Now recall that
associated with every event is a real-valued clock

sequence , where is the th
lifetime of event . Then, define

(9)

to be the sequence of observed lifetimes of eventafter
total events have been observed.

The objective is to use the observed event lifetime sequences
(9) and the SPC procedure to construct the hypothetical sample
path that would result if the same DES were operating under
some different parameter value . Let be the
total number of events in this hypothetical sample path that
we are constructing. Denote the corresponding event lifetime
sequences in the constructed sample path by

(10)

where is the corresponding score of event in the
constructed sample path. Next define

(11)

to be sequences of those observed event lifetimes which have
not yet been used in the construction of the hypothetical
sample path; that is, these sequences contain all event lifetimes
which are in but not in . We associate with
a set

(12)

consisting of the subset of eventsfor which contains
at least one element, i.e., there is at least one observed lifetime
available that has not yet been used in the constructed sample
path. This set is referred to as theavailable event
set because it contains the set of events whose lifetimes are
available to be used to construct the hypothetical sample
path after observed events. Last, we define one more set
as follows. Let denote the state after events on the
constructed sample path, and let be the triggering event
at the ()th state visited on this sample path. Then, define

(13)

That is, contains all those events that are feasible
in state that were not feasible in state . Note that
the triggering event is also in this set if it happens that

. Intuitively, consists of all those events
whose occurrence times are missing from the perspective of
the constructed sample path when it enters the state: the
occurrence times for events in are already known and
remain available to be used in the sample path construction if
they are still feasible; those events not feasible in which
have become feasible in the state, on the other hand, are
missingas far as their occurrence times are concerned. We
shall refer to as themissing event setafter observed
events.

It is clear from Steps 3.2) and 3.3) of the SPC procedure
in the last section, that in order to continue sample path
construction from state in the hypothetical sample path,
we must have lifetimes (equivalently, occurrence times) for
all events in the feasible event set . A key result from
[5] is a necessary and sufficient condition for sample path

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 641

construction: when event is observed in the actual DES,
construction of the hypothetical sample path can continue if
and only if

(14)

otherwise, construction of the hypothetical sample path is
“suspended” in state until some future observed event
causes (14) to be satisfied. Thus, with every observed event,
condition (14) is checked: if it is satisfied, the SPC procedure
is invoked to update the state of the constructed sample path;
otherwise, construction is suspended atuntil some future
observed event causes (14) to be satisfied. Note that with
every observed event the set is updated and possibly
enlarged, while the set remains fixed, since it depends
only on .

An explicit algorithm for constructing concurrent sample
paths under parameter values based on observed data
from a sample path under is given in [5], where a detailed
discussion of the conditions for which the approach is applica-
ble may also be found. Briefly, the conditions for meaningful
concurrent sample path construction are the following: 1) we
assume that does not affect the event lifetime distributions
in the DES, but only the state transition structure. If that is
not the case, the algorithm described next requires certain
modifications that we will not dwell on here; 2) changes in
should not introduce new types of events into the event set;
and 3) the state transition structure of the observed system is
assumed irreducible. More generally, there should be no state
transition causing an event to become permanently disabled
(since this implies that (14) may never be satisfied).

The algorithm in [5] is referred to as the time warping
algorithm (TWA). We reproduce it here with minor changes to
suit our purposes. In the algorithm, the operatorsand are
applied to both scalars and sequences. When applied to scalars,
they denote the usual addition and subtraction operations.
When applied to sequences, indicates the addition of an
element to the end of the sequence andindicates removal
of the first element of the sequence.

Time Warping Algorithm (TWA):

1) INITIALIZE:
Given
Set , ; for all set

; for all set
Set ,

2) WHEN EVENT IS OBSERVED:

2.1) Add the observed lifetime of to

if
otherwise.

2.2) Update available event set
.

2.3) Update missing event set .
2.4) If , then go to 3). Else,

set and repeat from 2).

3) TIME WARPING OPERATION:

3.1) Obtain from for all
missing events and use the
SPC procedure to determine , , , and

, for all .
3.2) Discard all used event lifetimes

for all .
3.3) Update available event set

3.4) Update missing event set

3.5) If then set
and go to 3.1). Else, set and

and go to 2).

Note that the time warping operation [i.e., Steps 3.1)–3.5)]
may result in several state updates in the constructed sample
path in response to a single observed event in the actual
DES: as long as the sample path construction condition (14)
is satisfied, construction of the hypothetical sample path will
proceed; otherwise, the constructed sample path’s clock is
stopped, while the observed system’s clock keeps moving
ahead. When the missing lifetimes become available and (14)
is satisfied, the constructed sample path “instantaneously”
processes as many events as possible causing its clock to
“warp” forward. This process of moving backward in time
to revisit suspended sample paths and then forward in time by
one or more events lends itself to the termtime warping[5].

It should be clear that by a simple modification to the TWA,
any number of hypothetical sample paths can be concurrently
constructed: instead of a single sample path under a parameter
value , we can have many sample paths each indexed by

and each operating under a different parameter value
. Computationally, the requirements of the TWA are min-

imal: adding/subtracting elements to sequences, simple arith-
metic, and checking condition (14). It is usually the memory
requirements that limit the number of concurrent sample paths
that can be constructed, since the event lifetimes
need to be stored for each constructed sample path. The
advantage of simultaneously constructing many sample paths,
however, lies in the fact that from the full state history gener-
ated for each constructed sample path, it is possible to evaluate
and compare any desired performance measure of interest.
In this way the TWA can be used to solve the sample path
constructability problem and the optimization problem (3).

642 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

D. Specialization of the TWA to the Uppeak
Elevator Dispatching Problem

Our objective is to observe an actual elevator system while it
is operating under some arbitrary dispatching threshold during
the uppeak traffic period and use the TWA to construct the
hypothetical sample paths and estimate the passenger waiting
times that would have resulted if the elevator system had
been operating under the various thresholds . There are

such thresholds, and each one may take any value in the
set . Thus, a total of sample paths need
to be constructed and the passenger waiting time under each
needs to be estimated. Here we describe how we specialize
the TWA to accomplish these objectives.

We begin by introducing some notation. First, let

sample path index, with denoting the

observed sample path and

denoting the th constructed sample path.

For the uppeak dispatching problem we need to store
observed lifetimes for two types of events, events and
events (recall that we do not differentiate among cars since
they are all identical). To do this we define two vectors.

A vector for storing observed event lifetimes.
A vector for storing observed event lifetimes.

Now we define the following.

An index into where the most recent
lifetime observed in the actual elevator

system is stored.
An index into where the most recent

lifetime observed in the actual elevator
system is stored.
The index into where the next lifetime
will be obtained for constructing sample path

.
The index into where the next lifetime
will be obtained for constructing sample path

.

Finally, we define two indicator functions for each constructed
sample path.

1) if a event is needed to continue
sample path construction, zero otherwise.

2) if a event is needed to continue
sample path construction, zero otherwise.

With the definitions above, we can obtain any of the
sets involved in the TWA. Clearly, the vectors and
correspond to , . It is also easy to see that the set of

event lifetimes already used in constructing sample path
is given by

(15)

and the set of available event lifetimes which have not yet
been used is given by

(16)

The sets and are formed similarly. In addition, the
available event set is given by

if

and

if

and

if

and

if

and

(17)

and the missing event set is given by

if and

if and

if and

if and

(18)

As for the subset test in (14): The construction of sample
path must be suspended when

and

or when

and

(19)

In the first case, we need a lifetime and no lifetime is
available (either because none have yet been observed to have
occurred in the actual system, or because we have used them
all up). In the second case, we need alifetime, and no
lifetime is available (again, either because none have yet been
observed to have occurred in the actual system, or because we
have used them all up).

In terms of the above definitions, we now specialize the
TWA to the uppeak elevator dispatching problem. In what
follows, we use and to denote the state variables
for the observed system, i.e., the queue length at the first floor
and the number of cars available to dispatch, respectively.

and are used to denote the same state variables in
the th constructed sample path.

IV. CONCURRENT ESTIMATION

DISPATCHING ALGORITHM (CEDA)

1) Initialize:

for all

for all

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 643

Start observing when the lobby queue is empty, and all cars
are parked at the first floor lobby:

No events have been observed yet. Each concurrent estima-
tor is initially suspended; each one awaiting aevent. No
event is needed, since all cars are assumed initially available
at first floor lobby:

The above are clocks for recording event lifetimes.

All clocks (observed and constructed sample paths) are
initially zero.
2) When an Event is Observed in the Actual Elevator System:

1) Get the event type (or) and the time

1.1) Based on the time , update the operating
threshold. The threshold is updated every 5 min
as described in Section V.

2.1) If event is :

2.1.1) . Record
lifetime and insert into .

2.1.2) . Increment
pointer in .

2.1.3) . Start clock for next event
lifetime.

2.2) If event is :

2.2.1) Determine car index:
2.2.2)

. Record lifetime and
insert into .

2.2.3) . Increment
pointer in .

3) Dispatching policy decides if car should be dispatched
in observed elevator system. Here we assume the des-
ignated next car is dispatched when the number of
passengers inside exceeds a certain operating threshold.

3.1) Determine car index:
3.2) . Start clock for next

event lifetime.
3.3) Estimate the waiting time for those passengers who

were served by the car that was just dispatched.
Update the average passenger waiting time. The
waiting time for a passenger is the time between
a passenger’s arrival for elevator service and the
time when the elevator that serves the passenger
actually departs.

3) Time Warping Operation:

4) For . For each concurrent constructed
sample path.

5.1) If . A event is needed to continue
construction.

5.1.1) If , go to 4). Suspend
construction of sample path.

5.1.2) . Else, determine
next event time.

5.1.3) . Increment
pointer in .

5.1.4) . Reset the flag.

5.2) If . A event is needed to continue
construction.

5.2.1) If , go to 4). Suspend
construction of sample path.

5.2.2) . Else, determine
next event time.

5.2.3) . Increment
pointer in .

5.2.4) . Reset flag.

6) Use the SPC procedure to determine next event, and
next event time, and set

6.1) If event is :

6.1.1) . Increment lobby queue
length.

6.1.2) . Set flag to indicate a
lifetime is needed to continue sample path
construction.

6.2) If event is :

6.2.1) . Increment number of cars
at lobby.

7) If and . Check car
availability and dispatching threshold.

7.1) . Decrement the
lobby queue by the number of passengers that are
served when the car is dispatched. The car capacity
is limited to passengers.

7.2) . Decrement the number of
available cars.

7.3) . Set flag to indicate a lifetime
is needed to continue sample path construction.

7.4) Update the average waiting time for this con-
structed sample path.

8) Go to Step 5.1). Continue sample path construction until
suspended.

As the algorithm above is running, we are estimating the
passenger waiting time for both the actual system and for
each constructed sample path. In Step 3.3) we update an
estimate of the passenger waiting time each time a car is
dispatched in the actual system. Similarly, in Step 7.4) we
update estimates of the passenger waiting time each time

644 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

a car is dispatched in a constructed sample path. We use
these passenger waiting time estimates in Step 1.1) to adjust
the operating threshold in the actual elevator system in an
effort to improve the passenger waiting time performance. To
reflect this fact, we refer to each constructed sample path as a
concurrent estimator and the algorithm itself as the concurrent
estimation dispatching algorithm (CEDA). Note that the output
of CEDA is the set of all concurrently constructed sample
paths, estimates of passenger waiting times for each con-
structed sample path, and an estimate of the actual passenger
waiting time in the real elevator system. Most importantly, the
algorithm generates the suggested operating threshold used by
the dispatching controller to decide when each car should be
dispatched.

V. IMPLEMENTATION ISSUES

To use the CEDA in a actual elevator system, some im-
plementation issues need to be resolved. In the subsections
that follow, we address issues relating to: computational
requirements (Section V-A), event lifetimes (Section V-
B), passenger waiting time estimation (Section V-C),event
lifetimes (Section V-C), and threshold adaptation (Section V-
D). A summary of the adjustments made to the CEDA for
implementation are then given (Section V-E). We should em-
phasize that our objective throughout is to resolve each issue
in the simplestway possible, and then compare the results
of the simplest possible implementation to those obtained
through the state-of-the-art dispatching schemes mentioned in
the introduction.

A. Computational Requirements

As we have seen, an optimal policy is defined by
different thresholds, where is the elevator capacity and
is the total number of elevators. Thus, for example, if we
have four cars each with a capacity of 20 passengers, we
would need concurrent estimators to choose
the best threshold. While it is certainly possible to concurrently
construct 160 000 sample paths, given the necessary computer
memory, our approach here is to ignore the fact that the
threshold is a function of both the number of passengers
in the designated next car and the number of empty cars
waiting at the first floor [recall (1)] and simply choose the
threshold only as a function of the number of passengers
in the designated next car. While this obviously results in a
suboptimal solution, experiments in our previous paper [15],
show that the numerical values of the thresholds are not
particularly sensitive to the number of empty cars waiting
at the first floor. With this simplification, we only need
concurrent estimators, and our problem reduces to choosing
the threshold that matches, as best as
possible, the elevator service rate to the passenger arrival
rate.

To deal with the fact that the passenger arrival rate is
changing throughout the uppeak period (as seen in Fig. 2),
we will use the following strategy. We will partition the hour-
long uppeak period into 12, 5-min long estimation intervals
indexed by . We will use the CEDA to find

the best threshold to use during each interval. That is, for
each interval , we will observe the actual elevator system as it
operates under , and we will construct sample paths. At
the end of interval , we will estimate the waiting time for both
the actual elevator system and for each of theconstructed
sample paths. We will use these waiting time estimates to
choose the threshold to be used during interval on the
next day. If the passenger arrival profile has the same general
statistics from one day to the next, this strategy is expected
to work well.

B. Event Lifetimes

The CEDA requires event lifetimes for sample path
construction. The problem here is that elevator systems usually
do not have sensors to detect every passenger arrival event.
Typical elevator systems, however, can obtain a reasonable
estimate of the number of passengers inside a car when it is
dispatched, since most elevator systems have weight sensors
in each car or light beams which count passengers as they
enter and exit the cars.

Given an estimate of the number of passengers inside a car
at the time it is dispatched, we can use the rate at which
passengers are being carried away from the first floor to
estimate the passenger arrival rate. The estimate
is computed for the th time an elevator is dispatched during
the th 5-min estimation interval by dividing the total number
of passengersserved so farduring interval by the time since
interval began. The estimate is limited to a prespecified
maximum value to deal with the large estimation errors that
could otherwise result when a car is dispatched immediately
after an interval change. Using this passenger arrival rate
estimate, each time a event is needed for sample path
construction during interval, we will generate one according
to a Poisson process at rate using a standard random
variate generation technique (e.g., see [3]). The rate itself is
assumed to vary according to a function such as that shown in
Fig. 2, obtained from extensive empirical data collected in the
elevator industry. The underlying Poisson assumption is also
based on extensive empirical studies for elevator systems [11].
For the performance results contained in Section VI, it was
important to adopt this widely used passenger arrival model in
order to compare the CEDA with other dispatching algorithms
used in the elevator industry.

C. Passenger Waiting Time Estimation

The threshold adaptation scheme we develop in Section V-E
requires an estimate of the passenger waiting time in the actual
elevator system. The passenger waiting time is measured from
the instant a passenger arrives to the first floor lobby queue
to the instant the car that serves the passenger is dispatched
from the first floor. Although we know the time when a car is
dispatched, we do not know the time each passenger arrived.

To estimate passenger waiting times, we will use the fol-
lowing strategy. Assume the first floor lobby queue is served
first come first served (FCFS). Define the arrival time of
the passenger at the front of the queue as . This will
be the first passenger to enter a designated next car when

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 645

Fig. 6. Strategy for estimating passenger waiting times.

one becomes available for theth time during interval .
The designated next car will serve all or part of the lobby
queue. Define the arrival time of the last passenger who
is able to load into the car as . As in Section V-B,
assume the elevator system can determine the number of
passengers in a car, and define to be the number of
passengers served theth time an elevator is dispatched during
interval . Finally, define to be the time the elevator
is dispatched. Now partition the time interval
uniformly as in Fig. 6. Then an estimate of the wait for the
last passenger is , for the second to last it is

, for the third to
last it is , and
so on until finally the wait for the first passenger is estimated
as .

The total passenger wait theth time an elevator is dis-
patched during interval is, therefore, estimated as

(20)

And the average passenger wait for intervalis estimated as

(21)

Notice that we are estimating the average wait for those
passengers who areservedduring interval . In this extremely
simplistic estimation procedure, we choose to disregard the
fact that some of these passengers may havearrived during a
previous interval. Clearly the strategy above assumes Poisson
arrivals, and we justify it by noting again that Poisson arrivals
have been shown to be a good model of passenger arrivals in
elevator systems [11].

In (20) and (21), and can be directly measured.
It is and that must be estimated. There are three
dispatching situations that determine how these estimates are
obtained.

Case I: The designated next car is already waiting at the
first floor with its doors open when the first passenger arrives.
In this case, can be directly observed as the time the
first passenger enters the car (detected by a weight sensor or
a light beam in the car). In addition, we set ,
since the car is expected to be dispatched upon arrival of the
last passenger (i.e., the passenger that reaches the specified
dispatching threshold, or the last passenger able to enter just
before the doors close).

Case II: All cars are busy when the first passenger arrives.
In this case, can be directly observed as the time the first
passenger pushes the elevator call button. The arrival time of

the last passenger, however, is not known. The last passenger
may have already been waiting when the next car became
available, or the last passenger may have arrived and entered
just as the doors closed and the car was dispatched. To estimate

we use our arrival rate estimate as follows:

(22)

Here, of course, we must check that . If not, we
set .

Case III: The th dispatching event leaves part of the
lobby queue behind because the car becomes full.In this case,
when the th dispatching occurs, we cannot observe either

or . What we will do in this case is the following:
when the th car departs full, we will estimate the arrival
time of the first passenger in the lobby queue that remains as

(23)

Then, when the th dispatching occurs, we will proceed as in
Case II above to estimate the arrival time of the last passenger.

Clearly, the waiting time estimation procedure above is quite
crude. As already stated, however, our first goal is to examine
whether our overall approach provides a significant perfor-
mance improvement over state-of-the-art dispatching policies
despite such crude estimation methods and rough approxima-
tions. Seeking more sophisticated methods is something we
can pursue to provide further improvements as necessary.

Experimental results show that the quality of the waiting
time estimate is best for Case I and worst for Case III. This is
to be expected since the accuracy of the information on which
the estimation is based, and , becomes increasingly
unreliable in going from Case I to Case III. Fortunately, Case
III occurs only rarely (unless the arrival rate is very high in
which case the dispatching threshold is), so that the
waiting time estimation error for a 5-min interval typically
only amounts to a few seconds as shown in Fig. 7. The large
estimation error during the ninth estimation interval is caused
by the high arrival rate during the eighth interval: this high
arrival rate leaves a large residual queue of passengers which
do not get served until the ninth interval. Because
is based on the number of passengers served during interval,
a large queue at the beginning of an interval biases the arrival
rate estimate, which in turn biases the waiting time estimate for
the Cases II and III dispatching situations during that interval.

D. Event Lifetimes

Although elevator systems have sensors for detecting
events, there are two implementation issues we must resolve.
The first issue concerns the passenger loading time and the
second issue is a technical one concerning the TWA. Both of
these issues can bias the waiting time estimates produced by
the concurrent estimators.

Until now we have been assuming that the passenger loading
time is negligible. That is, when constructing sample paths,
an elevator returning to a lobby queue loads instantly and
is dispatched immediately. This has the effect of decreasing
the apparent service time, increasing the apparent handling

646 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

Fig. 7. Comparison between true wait and estimated wait for the uppeak
arrival profile.

capacity, and changing the estimated optimal threshold. One
way to deal with the passenger loading time is to introduce
another event, apassenger transfer event,which occurs when
a passenger enters an elevator at the first floor. Lifetimes for
such events can be detected via weight sensors or counting
devices in the cars. A simpler method, and the one we use,
is to redefine the event lifetime to include the passenger
loading time. That is, we will define the lifetime to be
the time from when the first passenger enters the car up until
the time that the car returns to the first floor after service. In
this way we account for the passenger loading time without
increasing the complexity of the dispatching algorithm.

Recall that the TWA algorithm, upon which the CEDA is
based, requires all event lifetimes to be independent of the
parameter , which in our case is the dispatching threshold.
Generally, however, event lifetimes depend on the passen-
ger load, and hence indirectly on the dispatching threshold.
The most obvious way to deal with this issue is to keep a
separate lifetime array for each passenger load. That is,
instead of a single lifetime array, we would have such
arrays. Then when a lifetime is needed during sample
path construction, we check the passenger load in the car
being dispatched, and get the lifetime from the appropriate
lifetime array. This approach, however, greatly increases the
probability that sample path construction will get suspended
at Step 5.2.1 of the CEDA. Another possible approach is to
make observations of the system as it operates to find the
mean lifetime as a function of the passenger load and use
these means to appropriately scale thelifetimes used in the
concurrent estimators. The drawback of this approach is the
extensive data collection required.

In the spirit of our goal to start with an implementation
which is as simple as possible, we have simply neglected the
influence of the passenger load altogether. This approximation
allows us to work with a single lifetime array, and it reduces
the chance that a concurrent estimator will become suspended
waiting for a lifetime.

E. Threshold Adaptation

The goal of threshold adaptation is to choose the best
threshold to use for each of the 12 5-min estimation intervals in

an uppeak traffic period. The simplest scheme is to determine
the index of the best performing concurrent estimator during
interval and choose the threshold associated with that
concurrent estimator. That is, if concurrent estimator(which
in our implementation uses a dispatching threshold of)
gives the best estimated waiting time for interval, then
set as the threshold to be used during interval
on the next day. A potential problem with this approach is
that the threshold that gives the best wait for the concurrent
estimators may not be the one that gives the best wait
for the actual elevator system. The reason has to do with
the various approximations we use to generateand
lifetimes for concurrent sample path construction. To deal
with this potential problem, we propose a simple adaptation
algorithm. To describe the algorithm, let be the operating
threshold that was used in the actual system on theth day
during interval , and let [obtained using (21)] be the
estimated average wait in the actual system during interval.
Let be the estimated wait for concurrent estimator
during interval , and let be the best
estimated wait over all of the concurrent estimators during
interval . Let be the threshold
used by the best performing concurrent estimator. Finally,
define and adapt the threshold
according to

sgn
.

(24)

Here and are scalars. These scalars were chosen with the
following intention in mind. When the difference between
the best estimated wait and the actual wait is “small,” we
leave the threshold unchanged. When this difference is “large,”
we immediately switch to the best threshold given by our
concurrent estimators. When is in mid-range, we adjust
the threshold in the appropriate direction by a small amount.
As we will see in the next section, we obtained this type of
behavior with the values and .

F. Implementation Adjustments

Here we summarize the adjustments made to specific steps
of the CEDA for implementation purposes (each step below
refers to the corresponding step with the same number shown
in the detailed algorithm in Section IV).

Step 1.1: Check to see if the time interval has
changed. If it has, update the threshold [by either setting it
to the threshold of the best performing concurrent estimator, or
by using the adaptation algorithm (24)], and then set .

Step 2.1: If this event is for the “first” passenger (as
defined in Section V-C), then determine the dispatching case
and compute . When the first passenger arrives to an
empty car, we have Case I, and is the time the passenger
enters the car. If the first passenger arrives when all the cars
are busy, we have Case II, and is the time the passenger
pushes the elevator call button.

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 647

Step 3: Dispatch when the number of passengers inside the
designated next car reaches the threshold. When a car is
dispatched, determine the load , and update
and . When a car departs full, we have dispatching
Case III, and is estimated using (23).

Step 4: Replace by for the number of constructed
sample paths: one for each threshold .

Steps 5.1.1–5.1.3:We will not suspend sample path con-
struction to wait for passenger arrival events. Instead, when
we need a lifetime for sample path construction, we will
generate one according to a Poisson process at rate .

Step 7: Dispatch in a concurrent estimator when
and , i.e., the threshold for theth concurrent
estimator is .

VI. PERFORMANCE RESULTS

In this section we provide explicit numerical results obtained
by applying the CEDA to a detailed elevator system simulator
developed at the University of Massachusetts in collaboration
with the OTIS Elevator Co. The simulator models a ten-
floor office building served by four elevator cars, each with a
capacity of 20 passengers. Details regarding the simulator can
be found in [12] and [13].

A. CEDA Performance Under a Fixed Passenger Arrival Rate

As a test of the accuracy of the CEDA, we performed the
following experiment. We fixed the arrival rate of incoming
passengers to 20 pass/min. Then we obtained a response curve
describing the true average passenger waiting time for each
of the 20 dispatching thresholds . We did this
by performing 30 runs of one simulated hour apiece at each
threshold. At the completion of each run, the true waiting
time was determined (since the complete state information
is available in the simulator, the true passenger wait can be
determined). The waiting time for each threshold was then
averaged over the 30 runs at that threshold. The results are
shown in Fig. 8, where the best dispatching threshold for this
arrival rate is seen to be passengers with a wait of
14.56 s. Notice that the curve has one local minimum and one
local maximum. Also notice the importance of choosing the
correct threshold. For example, if we were to use the simple

policy the wait is 18.86 s, some 30% longer than the
best. Alternatively, the half-capacity plus 20-s timeout policy
discussed in the introduction gives a waiting time of 16.84 s,
some 16% longer than the best. As seen from Fig. 8, this is
worse than simply using a half-capacity policy which gives a
wait of 14.91 s. The reason for the difference is that the 20 s
timeout acts like a threshold of 6.67 passengers (6.6720 s

20 pass/min 1/60 min/s).
Next we performed 30 additional runs for the same arrival

rate of 20 incoming pass/min. Our interest here was to see
what threshold the CEDA would choose. For the first run, the
threshold was initialized to . For subsequent runs, the
threshold changed as the CEDA adapted it to the 20 pass/min
arrival rate. At the end of the first run, the threshold to be used
for the second run was set to the threshold of the concurrent

Fig. 8. Response curve describing the true average wait as a function of the
dispatching threshold for a fixed arrival rate of 20 incoming pass/min (no
outgoing or interfloor).

estimator that gave the best estimated wait for the first run.
For subsequent runs, the threshold was tuned using (24).

In comparison to the response curve obtained above using
brute force simulation, we observed that the concurrent esti-
mators did not give a particularly good estimate of the wait
in the actual system. Those concurrent estimators operating
at low thresholds tended to overestimate the wait, while those
operating at higher thresholds tended to underestimate the wait.
The reasons for these estimation errors can be traced back
to inaccuracies in the arrival rate estimate which is used to
generate events for sample path construction (Section V-B),
and inaccuracies in the event lifetimes used to generate
events for sample path construction (Section V-D). Despite the
fact that the concurrent estimators are really not that accurate,
however, the CEDA did converge to a mean threshold of

passengers, which is essentially equal to the true
best threshold of obtained by brute force simulation.
This is a feature of algorithms, such as the CEDA, that are
based on ordinal comparisons: although modeling errors may
yield poor estimates of the performance of the actual system,
the strategy that optimizes performance can be very robust
with respect to such errors. The robustness of solutions to
optimization problems with respect to modeling errors is not
unusual (e.g., see [14]).

B. CEDA Performance in Uppeak Traffic

In this section, incoming passengers arrive to the first floor
with a mean rate that varies as shown in Fig. 2. As mentioned
in Section V-B, this passenger arrival model is widely used
in the elevator industry and was adopted here for the sake
of meaningful comparisons with other schemes (see Table I).
There are no outgoing or interfloor passengers. This traffic
simulates the uppeak traffic mode. Recall, the CEDA uses
12 different thresholds , one for each 5-min interval.
On the first day, the thresholds were arbitrarily initialized to

for . At the end of the first day, the
threshold to be used during intervalon the next day was
set to the threshold of the concurrent estimator that gave the
best estimated wait for that interval. On subsequent days, the

648 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

TABLE I
WAITING TIME PERFORMANCE FORUPPEAK PASSENGER TRAFFIC

threshold adaptation scheme (Section V-E) was used to further
adapt and fine tune the threshold. All results are averages over
30 runs of one simulated hour apiece.

Table I compares the performance of the CEDA to several
open-loop threshold policies. It is interesting to notice that all
of the open loop policies give essentially the same waiting
time performance. The CEDA which adapts the threshold
to the changing arrival rate, however, gives far superior
performance—some 35% better than the best static, open-loop
policy.

A better way to compare dispatching policies during the
uppeak period is to examine the average wait during each
5-min interval as shown in Fig. 9. As expected, the
policy does well at the beginning and end of the uppeak period
when the arrival rate is low. Similarly, the policy
does well for medium arrival rates, and the does well
for high arrival rates. No static, open-loop policy, however,
does well for all intervals. In comparison, the CEDA, which
uses a different threshold for each 5-min interval, does very
well—essentially giving lower bound performance.

Table II below shows a typical evolution of the CEDA
thresholds. As can be seen, a drastic threshold adjustment
takes place immediately after the first day, with few changes
occurring after about one week of operation. The rapid initial
adjustment was achieved by setting the thresholds to those
giving the best concurrently estimated wait. This put the
thresholds close to their optimal values. Because of errors in
the concurrent estimators, the threshold adaptation algorithm
(24) was then needed to fine tune the thresholds. As expected,

Fig. 9. True wait for each 5-min interval during the hour-long uppeak period.

where the arrival rate is low, the threshold is low, and where
the arrival rate is high, the threshold is high. The thresholds for
intervals 10 and 11, however, are higher than we would expect
them to be (in comparison to the thresholds for intervals 1 and
2). This causes the somewhat poor waiting time performance
during these intervals in Fig. 9. The reason can be traced to
day eight, where, something about the sample path on that day
caused the threshold for interval 10 to get set to 20 passengers
(the car capacity). Subsequent correction was so gradual that
the threshold remained too high for most of the 30 days.
This in turn caused the average wait for interval ten to be
high. Then, because the threshold during interval ten was too
high, this resulted in residual queues at the end of the interval.

PEPYNE AND CASSANDRAS: DESIGN AND IMPLEMENTATION OF AN ADAPTIVE DISPATCHING CONTROLLER 649

TABLE II
EVOLUTION OF THE CEDA THRESHOLDS

This biased the apparent passenger arrival rate for interval 11,
causing an increase in the threshold and the waiting time for
that interval as well. This behavior, however, actually serves
well to illustrate the adaptive capability of our CEDA-based
controller.

VII. CONCLUSION

In this paper an on-line adaptive dispatching control al-
gorithm was designed for use in elevator systems during
uppeak passenger traffic. The design of the algorithm was
motivated by our previous paper [15] where we proved that
for a queueing model of the uppeak dispatching problem the
structure of the optimal dispatching control policy minimizing
the average passenger waiting time is a threshold-based policy
with threshold parameters that depend on the passenger arrival
rate. The CEDA presented in Section IV is based on the TWA
from [5]. The CEDA allows us to observe the elevator system,
in a unobtrusive way, while it operates under some arbitrary
thresholds and concurrently estimate what the waiting time
would have been had we operated the system under a set
of different thresholds. These concurrently estimated waiting
times are then used to adapt the operating threshold to the
changing passenger arrival rate. The implementation of our
algorithm is simple and does not require anything more than
most elevator systems can already supply, viz.: the ability
to detect button push events and car arrival events, and the

ability to provide a reasonable estimate of the number of
passengers inside the elevator cars. In addition, our algorithm
requires only modest memory, and the most complicated
calculation is the generation of event lifetime samples from
a Poisson process.

Conceptually, the CEDA is trying to adapt the operating
threshold so that the elevator service rate tracks the passenger
arrival rate. In this respect, the CEDA is similar to an algorithm
from the literature called the rate matching algorithm (RMA)
[13]. Like the CEDA, RMA partitions the uppeak period into
12 5-min long intervals. Then given historical information
regarding the passenger arrival rate, the best threshold to
use for each interval is determined off-line as the smallest
threshold for which the elevator service rate (obtained by
dividing the passenger load by the predicted service time) first
exceeds the arrival rate. To predict the service time, RMA
gives each floor a probability as a passenger destination and
uses probability arguments, based on the number of passengers
in the car, to predict how high the car will go and the number
of stops it will make. Once the thresholds have been chosen,
they are fixed, and RMA operates open-loop. As far as we
know, however, RMA is not used in practice. The algorithms
that are most often used seem to be static, open-loop policies
similar to the half-capacity plus timeout policy described in
the body of the paper. As we showed, the CEDA performs
much better than any static, open-loop policy and is thus well

650 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 6, NO. 5, SEPTEMBER 1998

suited when the arrival rate profile has similar statistics from
one day to the next.

ACKNOWLEDGMENT

The authors wish to thank Dr. Bruce A. Powell of the
OTIS Elevator Company for his input in this work, including
the traffic data that was used for the implementation results
reported in Section VI.

REFERENCES

[1] E. Aarts and J. Korst,Simulated Annealing and Boltzmann Machines.
Chichester, U.K.: Wiley, 1989.

[2] G. C. Barney and S. M. dos Santos,Elevator Traffic Analysis Design
and Control,2nd ed. London, U.K.: Peter Peregrinus, 1985.

[3] C. G. Cassandras,Discrete-Event Systems: Modeling and Performance
Analysis. Boston, MA: Richard D. Irwin and Aksen Associates, 1993.

[4] C. G. Cassandras and J. Pan, “Parallel sample path generation for
discrete-event systems and the traffic smoothing problem,”J. Discrete-
Event Dynamic Syst.,vol. 5, no. 2/3, pp. 187–217, 1995.

[5] C. G. Cassandras and C. Panayiotou, “Concurrent sample path esti-
mation for discrete-event systems,” inProc. 35th Conf. Decision and
Contr., 1996, pp. 3332–3337.

[6] C. G. Cassandras and S. G. Strickland, “On-line sensitivity analysis of
Markov chains,”IEEE Trans. Automat. Contr.,vol. 34, pp. 76–86, 1989.

[7] , “Observable augmented systems for sensitivity analysis of
Markov and semi-Markov processes,”IEEE Trans. Automat. Contr.,
vol. 34, pp. 1026–1037, 1989.

[8] P. Glasserman, Gradient Estimation Via Perturbation Analysis.
Boston, MA: Kluwer, 1991.

[9] W. B. Gong, Y. C. Ho, and W. Zhai, “Stochastic comparison algorithm
for discrete optimization with estimation,” inProc. 31st IEEE Conf.
Decision Contr.,1992, pp. 795–802.

[10] Y. C. Ho and X. R. Cao,Perturbation Analysis of Discrete-Event
Dynamic Systems.Boston, MA: Kluwer, 1991.

[11] G. T. Hummet, T. D. Moser, and B. A. Powell, “Real time simulation of
elevators,” inWinter Simulation Conf.,Miami Beach, Dec. 4–6, 1978,
pp. 393–402.

[12] J. Lewis, “An elevator simulator with a relative system response group
control algorithm,” Tech. Rep. CCS-88-102, Dept. Elect. Comput. Eng.,
Univ. Mass., Amherst, 1988.

[13] J. Lewis, “A dynamic load balancing approach to the control of multi-
server polling systems with applications to elevator system dispatching,”
Doctoral dissertation, Dept. Elect. and Comput. Eng., Univ. Mass.,
Amherst, 1991.

[14] B. Mohanty and C. G. Cassandras, “The effect of model uncertainty on
some optimal routing problems,”J. Optimization Theory and Applicat.,
vol. 77, pp. 257–290, 1993.

[15] D. L. Pepyne and C. G. Cassandras, “Optimal dispatching control
for elevator systems during uppeak traffic,”IEEE Trans. Contr. Syst.
Technol.,vol. 5, pp. 629–643, 1997.

[16] M. L. Siikonen, “Elevator traffic simulation,”Simulation,vol. 61, no.
4, pp. 257–267, 1993.

[17] G. R. Strakosch,Vertical Transportation: Elevators and Escalators.
New York: Wiley, 1983.

[18] A. Torn and A. Zilinskas,Global Optimization, Lecture Notes in Com-
puter Science. Berlin, Germany: Springer-Verlag, 1987.

[19] P. Vakili, “A standard clock technique for efficient simulation,”Oper-
ations Res. Lett.,vol. 10, pp. 445–452, 1991.

David L. Pepyne received the B.S.E.E. degree from the University of
Hartford, CT, in 1986. In 1991, he entered the University of Massachusetts,
Amherst, where he is currently completing the Ph.D. degree.

From 1986 to 1990, he was a Flight Test Engineer with the U.S. Air Force
at Edwards AFB, CA. His current research interests include the performance
optimization of discrete-event and hybrid systems and nonlinear optimization
techniques.

Christos G. Cassandras(S’82–M’82–SM’91–F’96) received the B.S. degree
from Yale University, New Haven, CT, in 1977, the M.S.E.E degree from
Stanford University, CA, in 1978, and the S.M. and Ph.D. degrees from
Harvard University, Cambridge, MA, in 1979 and 1982, respectively.

From 1981 to 1984, he was with ITP Boston, Inc., where he worked on
control systems for computer-integrated manufacturing. In 1984, he joined
the faculty of the Department of Electrical and Computer Engineering,
University of Massachusetts at Amherst, until 1996. He is currently Professor
of Manufacturing Engineering and Professor of Electrical and Computer
Engineering at Boston University. His research interests include discrete-
event systems, stochastic optimization, computer simulation, and performance
evaluation and control of computer networks and manufacturing systems. He
is the author of more than 100 technical publications in these areas, including
a textbook.

Dr. Cassandras is on the Board of Governors of the IEEE Control Systems
Society and is Editor–in–Chief of the IEEE TRANSACTIONS ON AUTOMATIC

CONTROL. He serves on several other editorial boards and has guest-edited
for various journals. He was awarded a Lilly Fellowship in 1991. He is a
member of Phi Beta Kappa and Tau Beta Pi.

