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Optimal Energy-Efficient Downlink Transmission
Scheduling for Real-Time Wireless Networks

Lei Miao, Jianfeng Mao, and Christos G. Cassandras, Fellow, IEEE

Abstract—It has been shown that by using appropriate channel
coding schemes in wireless environments, transmission energy can
be significantly reduced by controlling the packet transmission
rate. This paper seeks optimal solutions for downlink transmission
control problems, motivated by this observation and by the need to
minimize energy consumption in real-time wireless networks. Our
problem formulation deals with a more general setting than the
paper authored by Gamal et al., in which the MoveRight algorithm
is proposed. The MoveRight algorithm is an iterative algorithm
that converges to the optimal solution. We show that even under
the more general setting, the optimal solution can be efficiently
obtained through an approach decomposing the optimal sample
path through certain “critical tasks” which, in turn, can be effi-
ciently identified. We include simulation results showing that our
algorithm is significantly faster than the MoveRight algorithm. We
also discuss how to utilize our results and receding horizon con-
trol to perform online transmission scheduling where future task
information is unknown.

Index Terms—Energy efficiency, optimization, real-time sys-
tems, receding horizon control, wireless networks.

I. INTRODUCTION

B ECAUSE wireless nodes are normally powered by batter-
ies and are expected to remain in operation for extended

periods of time, how to conserve energy in order to extend
node lifetime and network lifetime is a major research issue in
most wireless networks. One way to save energy is to operate
these nodes at low power as long as possible. However, this
will also significantly downgrade their functionality. Therefore,
there is a tradeoff between energy and the “quality” delivered
by wireless nodes. When “quality” is measured in terms of
latency, the tradeoff is between energy and time. Examples
arise in real-time computing, where a processor trades off the
processing rate for energy [1]; and in wireless transmission,
where a transmitter trades off transmission speed for energy [2].
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When the energy of a wireless node is consumed mostly by
communication tasks, scheduling a radio-frequency (RF) trans-
mission efficiently becomes extremely important in conserving
the energy of the node. It is well known that there exists an ex-
plicit relationship between transmission power and channel ca-
pacity [3]; transmission power can be adjusted by changing the
transmission rate, provided that appropriate coding schemes are
used. This provides an option to conserve the transmission en-
ergy of a wireless node by slowing down the transmission rate.
Increased latency is a direct side effect caused by the low trans-
mission rate and it can affect other quality-of-service (QoS)
metrics as well. For example, excessive delay may cause buffer
overflow, which increases the packet dropping rate. The ex-
istence of this tradeoff between energy and latency motivates
dynamic transmission scheduling (DTS) techniques for design-
ing energy-efficient wireless systems.

To the best of our knowledge, the earliest work that captures the
tradeoff between energy and latency in transmission scheduling
is [4], in which Collins and Cruz formulated a Markov decision
problem for minimizing transmission cost subject to some power
constraints. By assuming a linear dependency between trans-
mission cost and time, their model did not consider the potential
of more energy savings by varying the transmission rate. Berry[5]
considered a Markov decision process in the context of wireless
fading channels to minimize the weighted sum of average trans-
mission power and a buffer cost, which corresponds to either
average delay or the probability of buffer overflow. Using dy-
namic programming and assuming the transmission cost to be a
convex function of time, Berry discovered some structural pro-
perties of the optimal adaptive control policy, which relies on
information on the arrival state, the queue state, and the channel
state. In [6] and [7], Ata developed optimal dynamic power con-
trol policies subject to a QoS constraint for Markovian queues
in wireless static channels and fading channels, respectively. In
his work, the optimization problem was formulated to minimize
the long-term average transmission power, given a constraint of
buffer overflow probability in equilibrium; dynamic program-
ming, and Lagrangian relaxation approaches were used in
deriving the optimal policies, which can be expressed as func-
tions of the packet queue length and the channel state. Neely
utilized a Lyapunov drift technique in [8] to develop a dynamic
power allocation and routing algorithm that minimizes the aver-
age power of a cell-partitioned wireless network. It was shown
that the online algorithm operates without knowledge of traffic
rates or channel statistics, and yields average power that is ar-
bitrarily close to the offline optimal solution. A related problem
of maximizing throughput subject to peak and average power
constraints was also discussed in [8].
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Today’s real-time data communications require a quality-of-
service (QoS) guarantee for each individual packet. Another
line of research aims at minimizing the transmission energy
over a single wireless link while providing QoS guarantee. In
particular, it is assumed that each packet is associated with an
arrival time (generally random), a number of bits, a hard dead-
line that must be met, and an energy function. This line of work
was initially studied in [9] with follow-up work in [2] where a
“homogeneous” case is considered assuming all packets have
the same deadline and number of bits. By identifying some
properties of this convex optimization problem, Gamal et al.
proposed the “MoveRight” algorithm in [2] to solve it iter-
atively. However, the rate of convergence of the MoveRight
algorithm is only obtainable for a special case of the problem
when all packets have identical energy functions; in general, the
MoveRight algorithm may converge slowly. Zafer et al. [10]
studied an optimal rate control problem over a time-varying
wireless channel, in which the channel state was considered
to be a Markov process. In particular, they considered the
scenario that B units of data must be transmitted by a common
deadline T , and they obtained an optimal rate-control policy
that minimizes the total energy expenditure subject to short-
term average power constraints. In [11] and [12], the case of
identical arrival time and individual deadline is studied by Zafer
et al. In [13], the case of identical packet size and identical delay
constraint is studied by Neely et al. They extended the result for
the case of individual packet size and identical delay constraint
in [14]. In [15], Zafer et al. used a graphical approach to analyze
the case that each packet has its own arrival time and deadline.
However, there were certain restrictions in their setting, for
example, the packet that arrives later must have later deadlines.
Wang and Li [16] analyzed scheduling problems for bursty
packets with strict deadlines over a single time-varying wireless
channel. Assuming slotted transmission and changeable packet
transmission order, they are able to exploit structural properties
of the problem to come up with an algorithm that solves the
offline problem. In [17], Poulakis et al. also studied energy-
efficient scheduling problems for a single time-varying wireless
channel. They considered a finite-horizon problem where each
packet must be transmitted before Dmax. Optimal stopping
theory was used to find the optimal start transmission time
between [0, Dmax] in order to minimize the expected energy
consumption and the average energy consumption per unit
of time. In [18], an energy-efficient and deadline-constrained
problem was formulated in lossy networks to maximize the
probability that a packet is delivered within the deadline mi-
nus a transmission energy cost. Dynamic programming-based
solutions were developed under a finite-state Markov channel
model. Shan et al. [19] studied discrete rate scheduling prob-
lems for packets with individual deadlines in energy harvesting
systems. Under the assumption that later packet arrivals have
later deadlines, they established connections between continu-
ous rate and discrete rate algorithms. A truncation algorithm
was also developed to handle the case that harvested energy
is insufficient to guarantee all packets’ deadlines are met.
Tomasi et al. [20] developed transmission strategies to deliver
a prescribed number of packets by a common deadline T
while minimizing transmission attempts. Modeling the time-

varying correlated wireless channel as a Markov chain, they
used dynamic programming and a heuristic strategy to address
three systems, in which the receiver provides the channel state
information to the transmitter differently. Zhong and Xu [21]
formulated optimization problems that minimize the energy
consumption of a set of tasks with task-dependent energy
functions and packet lengths. In their problem formulation, the
energy functions include both transmission energy and circuit
power consumption. To obtain the optimal solution for the
offline case with backlogged tasks only, they developed an
iterative algorithm RADB whose complexity is O(n2) (n is the
number of tasks). The authors show via simulation that the
RADB algorithm achieves good performance when used in
online scheduling. In [22], Vaze derived the competitive ratios
of online transmission scheduling algorithms for single-source
and two-source Gaussian channels in energy harvesting sys-
tems. In Vaze’s problem formulation, the goal is to minimize
the transmission time of fixed B bits using harvested energy,
which arrive in chunks randomly.

In the aforementioned papers, the closest ones to this paper
are [2], [14], and [15]. In this paper, we consider the transmis-
sion control problem in the scenario that each task has arbitrary
arrival time, deadline, and number of bits. Therefore, the prob-
lem we study in this paper is more generic and challenging.

Our model also allows each packet to have its own energy
function. This makes our results especially applicable to DTS
scenarios, where a transmitter transmits to multiple receivers
over slow-fading channels. Our contributions are as follows: by
analyzing the structure of the optimal sample path, we solve
the DTS problem efficiently using a two-fold decomposition
approach. First, we establish that the problem can be reduced to
a set of subproblems over segments of the optimal sample path
defined by “critical tasks.” Secondly, we establish that solving
each subproblem boils down to solving nonlinear algebraic
equations for the corresponding segments. Based on the above
decomposition approach, an efficient algorithm that solves the
DTS problem is proposed and compared to the MoveRight al-
gorithm. Simulation results show that our algorithm is typically
an order of magnitude faster than the MoveRight algorithm.

The main results of the paper were previously published in
[23]. In this journal version, we have added Sections III-C and
IV, and moved the proofs to an Appendix. The structure of this
paper is as follows: in Section II, we formulate our DTS prob-
lem and discuss some related work; the main results of DTS
are presented in Section III, where an efficient algorithm is pro-
posed and is shown to be optimal; in Section IV, we discuss
how our main results can be used to perform online transmis-
sion control; finally, we conclude in Section V.

II. DOWNLINK TRANSMISSION SCHEDULING PROBLEM

AND RELATED WORK

We assume that the channel between the transmitter and the
receiver is an additive white Gaussian noise (AWGN) channel
and the interference to the receiver is negligible. The received
signal at time t can be written as

Y (t) =
√
g(t)X(t) + n(t) (1)
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where g(t) is the channel gain, X(t) is the transmitted signal,
and n(t) is additive white Gaussian noise [24]. We consider
the case that the transmitter is in isolation from other trans-
mitters so that the interference is negligible. Due to channel
fading, g(t) is time varying in general. We will consider
g(t) to be time-invariant during the transmission of a single
packet. Although in practice the channel state may change
during the transmission of a packet, our results are still helpful,
since it is valid to estimate the unknown future channel state
to be static for each packet in an online setting. Note that
our results can be possibly extended to fast fading channels
as well.

The DTS problem arises when a wireless node has a set of
N packets that need to be sent to different neighboring nodes.
The goal is to minimize the total transmission energy con-
sumption while guaranteeing hard deadline satisfaction for each
individual packet. Since each packet can be considered as a
communication task, we use the terms “task” and “packet”
interchangeably in what follows. We model the transmitter as
a single-server queueing system operating on a non-preemptive
and first-come-first-served (FCFS) basis, whose dynamics are
given by the well-known max-plus equation

xi = max(xi−1, ai) + si (2)

where ai is the arrival time of task i = 1, 2, . . . , xi is the time
when task i completes service, and si is its (generally random)
service time.

Note that although preemption is often easy and straightfor-
ward in computing systems, it is very costly and also technically
hard in wireless transmissions. Therefore, we assume a non-
pre-emptive model in this paper. Transmission rate control
typically occurs in the physical layer, and changing packet
order may cause problems in the upper layers of the network
stack. Thus, we use a simple FCFS model to avoid packet
out-of-sequence problems. It is also worth noting that even if
the packet order is changeable, determining the optimal packet
order is a separate problem. Once the order of transmission is
decided by a specific scheduling policy, our work can be used
to minimize the energy expenditure for that specific order.

The service time si is controlled by the transmission rate,
which is determined by transmission power and coding scheme.
However, it turns out that it is more convenient to use the
reciprocal of the transmission rate as our control variable in the
DTS problem. Thus, we define τ to be the transmission time per
bit and ωi(τ) to be the energy cost per bit for task i. Clearly,
ωi(τ) is a function of τ . Since the channel gain g(t) in (1) is
constant, ωi(τ) is kept fixed during the transmission of task i.

We formulate the offline DTS problem as follows:

P1 : min
τ1,...,τN

N∑
i=1

viωi(τi)

s.t. xi = max(xi−1, ai) + viτi ≤ di, i = 1, . . . , N

τi > 0, x0 = 0

where di and vi are the deadline and the number of bits of task
i, respectively.

In realistic scenarios, the maximum transmission power of
a wireless system puts a constraint on each τi, that is, τi ≥
τi_ min, where τi_ min is the minimum amount of time used for
transmitting one bit in task i. For ease of analysis, we omitted
this constraint in P1. However, it is important to note that
special handling is needed in real-world systems for the case
that the optimal solution τ∗i is below the minimum value τi_min.
For example, the system may simply choose to drop the packet
or transmit the packet using control τi_ min. We will discuss the
problem that includes this constraint in Sections III-C and IV.

Note that in the offline setting, we consider ai, di, and vi
are known. The downlink scheduling problem formulated in
[2] is a special case of P1 above: in [2], each task has the
same deadline and number of bits, that is, di = T , vi = v, for
all i. Note that transmission-rate constraints are omitted in P1
and we assume the transmission rate can vary continuously.
In practical systems, the control can always be rounded to the
nearest achievable value [25].

Problem P1 above is similar to the general class of problems
studied in [26] and [27] without the constraints xi ≤ di, where
a decomposition algorithm called the Forward Algorithm (FA)
was derived. As shown in [26] and [27], instead of solving this
complex nonlinear optimization problem, we can decompose
the optimal sample path into a number of busy periods. A
busy period (BP) is a contiguous set of tasks {k, . . . , n} such
that the following three conditions are satisfied: xk−1 < ak,
xn < an+1, and xi ≥ ai+1, for every i = k, . . . , n− 1. Notice
that P1 above exploits static control (τi was kept fixed during
the service time of task i). This is straightforward in wireless
transmission control since the transmission rate of a single
packet/task is often fixed. In addition, it has been shown in [28]
that when the energy functions ωi(τ), i = 1, . . . , N , are strictly
convex and monotonically decreasing in τ , there is no benefit in
applying dynamic control (τi varies over time during the service
time of task i). It has also been shown in [29] that when the
energy functions are identical in P1, its solution is obtained by
an efficient algorithm (Critical Task Decomposition Algorithm)
that decomposes the optimal sample path even further and does
not require solving any convex optimization problem at all.
In this paper, we will consider the much harder case that the
energy functions are task dependent. When the energy functions
are homogeneous, it is shown in [29] that the exact form of
the energy function does not matter in finding the optimal
solutions. The main challenge of having heterogeneous energy
functions is that these energy functions will be used to identify
the optimal solutions, and this adds an extra layer of complexity.
We shall still use the decomposition idea in [29], and we will
use {τ∗i } and {x∗

i}, i = 1, . . . , N , to denote the optimal solution
of P1 and the corresponding task departure times, respectively.

Typically, ωi(τ) is determined by factors including the chan-
nel gain g(t), transmission distance, signal-to-noise ratio, and
so on. Therefore, when a wireless node transmits to different
neighbors at different times, different ωi(τ) are involved. We
begin with an assumption that will be made throughout our
analysis.

Assumption 1: In AWGN channels, ωi(τ) is non-negative,
strictly convex, monotonically decreasing, differentiable, and
limτ→0 ω̇i(τ) = −∞.
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Assumption 1 is justified in [2] and channel coding schemes
supporting this assumption can be found in [9]. Note that the
result obtained in [28] can be readily applied here: the unique
optimal control to P1 is static. This means that we do not need to
vary the transmission rate of task i during its transmission time.

III. MAIN RESULTS OF DTS

A. Optimal Sample Path Decomposition

The following two lemmas help us decompose the optimal
sample path of P1. Their proofs are very similar to the proofs
for Lemmas 1 in [29], and only monotonicity of ωi(τ) is
required. We omit the proofs here.

Lemma 3.1: If di < ai+1, then x∗
i = di.

Lemma 3.2: If di ≥ ai+1, then ai+1 ≤ x∗
i .

Recalling the definition of a BP, Lemmas 3.1, 3.2 show that
the BP optimal structure can be explicitly determined by the
deadline-arrival relationship, that is, a sequence of contiguous
packets {k, . . . , n} is a BP if and only if the following is satis-
fied: dk−1 < ak, dn < an+1, di ≥ ai+1, for all i ∈ {k, . . . , n−
1}. After identifying each BP on the optimal sample path,
problem P1 is reduced to solving a separate problem over each
BP. We formulate the following optimization problem for BP
{k, . . . , n}:

Q(k, n) : min
τk,...,τn

n∑
i=k

viωi(τi)

s.t. xi = ak +

i∑
j=k

viτi ≤ di, i = k, . . . , n

τi > 0, i = k, . . . , n

xi ≥ ai+1, i = k, . . . , n− 1.

Although Q(k, n) is easier than P1 (since it does not contain
max-plus equations, which are nondifferentiable), it is still a
hard convex optimization problem. Naturally, we would like to
solve Q(k, n) efficiently. As we will show, this is indeed pos-
sible by further decomposing a BP {k, . . . , n} through special
tasks called “critical tasks,” which are defined as follows:

Definition 1: Suppose both task i and i+ 1 are within a
BP {k, . . . , n} on the optimal sample path of P1. If ω̇i(τ

∗
i ) �=

ω̇i+1(τ
∗
i+1), task i is critical. If ω̇i(τ

∗
i ) > ω̇i+1(τ

∗
i+1), then

task i is left-critical. If ω̇i(τ
∗
i ) < ω̇i+1(τ

∗
i+1), then task i is

right-critical.
These critical tasks are special because the derivatives of

the energy function change after these tasks are transmitted on
the optimal sample path. Therefore, identifying critical tasks is
crucial in solving Q(k, n). In fact, Gamal et al. [2] observed
the existence of left-critical tasks. However, they did not make
use of them in characterizing the optimal sample path. In order
to accomplish this, we need to study the relationship between
critical tasks and the structure of the optimal sample path. An
auxiliary lemma will be introduced first.

Lemma 3.3: If v1τ1 + v2τ2 = v1τ
′
1 + v2τ

′
2, τ ′1 < τ1, τ

′
2 >

τ2, and ω̇1(τ
′
1) > ω̇2(τ

′
2), then v1ω1(τ1) + v2ω2(τ2) >

v1ω1(τ
′
1) + v2ω2(τ

′
2).

Fig. 1. Illustration of the optimal structure of BP {k, . . . , n}.

Lemma 3.3 implies that under Assumption 1 (especially, the
convexity assumption), it takes the least amount of energy to
transmit two tasks in a given amount of time when the deriva-
tives of the two energy functions have the least amount of dif-
ference. As we will see later, this auxiliary lemma will be used
to establish other important results. Next, we will discuss what
exactly makes the critical tasks (defined in Definition 1) special.

Lemma 3.4: Suppose both task i and i+ 1 are within a BP
{k, . . . , n} on the optimal sample path of P1. i) If task i is left-
critical, then x∗

i =ai+1. ii) if task i is right-critical, then x∗
i =di.

This result shows that if a task is left-critical or right-
critical on the optimal sample path, its optimal departure time is
given by the next arrival time or its deadline, respectively. The
lemma implies that when ai+1 < x∗

i < di, task i is neither left-
critical nor right-critical. In our next step, we will study the
commonality among a block of consecutive noncritical tasks,
which are in the middle of two adjacent critical tasks. The
result will help us better understand the structure of the optimal
sample path, using which we will develop an efficient algorithm
to solve Q(k, n).

Remark 3.1: For any two neighboring tasks i and i+ 1 in a
BP {k, . . . , n} on the optimal sample path of P1, if task i is not
a critical task, then ω̇i(τ

∗
i ) = ω̇i+1(τ

∗
i+1).

This remark is the direct result of Definition 1. Using this
remark and Lemma 3.4, we can obtain the structure of BP {k,
. . . , n} on the optimal sample path of P1 as follows: {k, . . . , n}
is characterized by a sequence of tasks S = {c0, . . . , cm+1},
in which c0 = k, {c1, . . . , cm} contains all critical tasks in
{k, . . . , n} (the optimal departure times of these critical tasks
are given by Lemma 3.4), and task cm+1 = n. Moreover, let ci,
ci+1 be adjacent tasks in S. Then, the segment of tasks{

{ci, . . . , ci+1}, if i = 0

{ci + 1, . . . , ci+1}, if 0 < i ≤ m
(3)

operates at some τ such that the derivatives of their energy
functions are all the same. To have a better understanding of
this optimal structure, see Fig. 1. In this example, task 2 is left-
critical and task 4 is right-critical. Their optimal departure times
are a3 and d4, respectively. In the set S = {1, 2, 4, . . .}, tasks
{1, 2} and {3, 4} are examples of the segments defined above.
Invoking Remark 3.1, τ∗1 , . . . , τ

∗
4 are characterized by ω̇1(τ

∗
1 ) =

ω̇2(τ
∗
2 ), ω̇3(τ

∗
3 )= ω̇4(τ

∗
4 ), and ω̇2(τ

∗
2 )>ω̇3(τ

∗
3 ), ω̇4(τ

∗
4 )<ω̇5(τ

∗
5 ).
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In order to obtain our main result of this section and the
explicit algorithm that solves Q(k, n), we next define a system
of nonlinear algebraic equations as follows with i < j, 0 ≤
t1 ≤ t2, and unknown variables τi, . . . , τj

NE(i, j; t1, t2) :

j∑
m=i

τmvm = t2 − t1

ω̇m(τm) = ω̇m+1(τm+1)

m = i, . . . , j − 1.

Its solution minimizes the total energy of transmitting tasks
{i, . . . , j} that do not contain critical tasks within time interval
t2 − t1. Note that when i = j, the above nonlinear algebraic
equations reduce to a single linear equation τivi = t2 − t1.

In Fig. 1, we illustrated the structure of a BP on the optimal
sample path of P1. In fact, given all critical tasks in the BP,
the optimal solution can be obtained by solving a set of NE
systems, one for each segment defined in (3). For example,
in Fig. 1, the optimal controls of tasks {1, 2} and {3, 4} can
be obtained by solving NE(1, 2; a1, a3) and NE(3, 4; a3, d4),
respectively.

At this point, we have established that solving problem
Q(k, n) boils down to identifying critical tasks on its optimal
sample path. This relies on some additional properties of the
optimal sample path. To obtain them, we need to first study the
properties of NE(i, j; t1, t2).

We denote the solution to NE(i, j; t1, t2) by τi(t1, t2), . . . ,
τj(t1, t2). We define the common derivative in NE(i, j; t1, t2)

σi,j(t1, t2) = ω̇m (τm(t1, t2)) , for any m, i ≤ m ≤ j

and note that σi,j(t1, t2) is the derivative of the energy function
of any task in {i, . . . , j}. When t1 = t2, we set σi,j(t1, t2) to
−∞. Later, when invoking the definition of critical tasks, we
will use σi,j(t1, t2) instead of the derivative of the energy func-
tion of a single task.

Now, we are ready to introduce the properties of NE(i, j;
t1, t2) in the next lemma.

Lemma 3.5: When t1 < t2, NE(i, j; t1, t2) has the follow-
ing properties:

i) It has a unique solution.
ii) The common derivative σi,j(t1, t2) is a monotonically

increasing function of Δ = t2 − t1, that is, σi,j(t1, t2) <
σi,j(t3, t4), if t4 − t3 > t2 − t1.

iii) For any p, i ≤ p < j, define the partial sum Sip ≡∑p
m=iτm(t1, t2)vm. Then, σi,p(t1, t1+Sip)=σp+1,j(t1+

Sip, t2) = σi,j(t1, t2).
iv) For any p, i ≤ p < j, t1 < t3 < t2, let c1 = σi,p(t1, t3),

c2 = σp+1,j(t3, t2), c3 = σi,j(t1, t2). If cq �= cr ∀ q, r ∈
{1, 2, 3}, q �= r, then min(c1, c2) < c3 < max(c1, c2).

B. Left and Right-Critical Task Identification

Based on the aforementioned results, we have characterized
the special structure of the optimal sample path of P1. To
summarize, Lemmas 3.1 and 3.2 show that the BP structure of
the optimal sample path can be explicitly determined by the
deadline-arrival relationship. This transforms P1 into a set of

simpler convex optimization problems with linear constraints.
Although the problem becomes easier to solve, it is still compu-
tationally hard for wireless devices without powerful processors
and sufficient energy. Note that in the homogeneous case, when
all tasks have the same arrival time and deadline, they should
be transmitted with the same derivatives of their cost functions.
In this case, the optimal solution can be obtained by solving
the nonlinear system NE(i, j; t1, t2). With the presence of
inhomogeneous real-time constraints, we showed in Lemma 3.4
and Remark 3.1 that a set of “critical tasks” plays a key role to
determine the optimal sample path, that is, the derivatives of the
cost functions only change at these critical tasks. Once they are
determined, the original problem Q(k, n) boils down to a set of
nonlinear algebraic equations.

Having obtained the properties of NE(i, j; t1, t2), we will
next develop an efficient algorithm to identify critical tasks.
Without loss of generality, we only prove the correctness of
identifying the first critical task. Other critical tasks can be
identified iteratively. In addition, our proof will focus on right-
critical tasks only, and we omit the proof for left-critical tasks,
which is very similar.

We will first give some definitions. For tasks (p, i) within a
BP {k, . . . , n}, that is, k ≤ p < i ≤ n, define

T1(k, p) =

{
ak, p = k

x∗
p−1, p > k

, T2(n, i) =

{
ai+1, i < n

dn, i = n.

Recalling the definition of a BP, T1(k, p) is defined as the
optimal starting transmission time for task p, which is within a
BP starting with task k. Recalling Lemmas 3.1 and 3.2, T2(n, i)
is defined as the earliest possible transmission ending time for
task i, which is within a BP ending with task n. Note that in
order to guarantee the real-time constraints, task i must be done
by its deadline di. We will use T1(k, p), T2(n, i), and di later to
identify critical tasks.

We further define

Ri = argmax
s∈{p,...,i−1}

{
σp,s (T1(k, p), ds)

≤ σp,j (T1(k, p), dj) ,

for i, p < i ≤ n, and all j ∈ {p, . . . , i− 1}} (4)

Li = argmax
s∈{p,...,i−1}

{
σp,s (T1(k, p), T2(n, s))

≥ σp,j (T1(k, p), T2(n, j)) ,

for i, p < i ≤ n, and all j ∈ {p, . . . , i− 1}}. (5)

Note that Ri and Li are the tasks with the largest index in {p,
. . . , i− 1} that satisfy the inequalities in (4) and (5), respec-
tively. It is clear that p ≤ Ri < i, p ≤ Li < i.

A special case of (4) and (5) arises when p is the first task of a
BP {k, . . . , n}, that is, p = k. Then, according to the definitions
above, we obtain the following inequalities, which will be used
in our later results:

σk,Ri
(ak, dRi

) ≤ σk,m(ak, dm),

for i, k < i ≤ n, and all m ∈ {k, . . . , i− 1} (6)

σk,Li
(ak, T2(n, Li)) ≥ σk,m (ak, T2(n,m)) ,

for i, k < i ≤ n, and all m ∈ {k, . . . , i− 1}. (7)
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After introducing the above definitions and notations, we are
now ready to introduce three important lemmas, which will be
used to prove our main theorem.

Lemma 3.6: Let tasks {k, . . . , n} form a BP on the optimal
sample path of P1 and task r > k be the first right-critical task
in {k, . . . , n}. If σk,r(ak, dr) ≥ σk,Lr

(ak, aLr+1), then there is
no left-critical task in {k, . . . , r − 1}.

Lemma 3.7: Let tasks {k, . . . , n} form a BP on the opti-
mal sample path of P1. Consider task Ri, for i, k < i ≤ n. If
σk,j(ak, dj)≥σk,Lj

(ak, aLj+1) and σk,j(ak, aj+1)≤σk,Rj
(ak,

dRj
), for all j, k < j < i, then there is no right-critical task

before task Ri.
Lemma 3.8: Let tasks {k, . . . , n} form a BP on the optimal

sample path of P1. If σk,i(ak, ai+1) > σk,Ri
(ak, dRi

), σk,j(ak,
dj)≥ σk,Lj

(ak, aLj+1), and σk,j(ak, aj+1) ≤ σk,Rj
(ak, dRj

),
for i, k<i≤ n, and for all j, k < j < i, thenRi is right-critical.

Before we introduce the main theorem, we would like to first
summarize the above three lemmas.

Lemma 3.6 provides the conditions under which there are no
left-critical tasks before the first right-critical task r in a BP.

Lemma 3.7 provides the conditions under which there are no
right-critical tasks before a given task Ri in a BP.

Lemma 3.8 provides the conditions under which task Ri in a
BP is right-critical.

With the help of the aforementioned auxiliary results, we are
able to establish the following theorem, which can identify the
first critical task in a BP on the optimal sample path of P1:

Theorem 3.1: Let tasks {k, . . . , n} form a BP on the optimal
sample path of P1.

i) If

σk,j(ak, dj) ≥ σk,Lj
(ak, aLj+1) (8)

σk,j(ak, aj+1) ≤ σk,Rj
(ak, dRj

) (9)

σk,i(ak, ai+1) > σk,Ri
(ak, dRi

) (10)

for i, k < i ≤ n, and all j, k < j < i, then Ri is the first
critical task in {k, . . . , n}, and it is right-critical.

ii) If

σk,j(ak, dj) ≥ σk,Lj
(ak, aLj+1)

σk,j(ak, aj+1) ≤ σk,Rj
(ak, dRj

)

σk,i(ak, di) < σk,Li
(ak, aLi+1)

for i, k < i ≤ n, and all j, k < j < i, then Li is the first
critical task in {k, . . . , n}, and it is left-critical.

Let us look at the first part of Theorem 3.1 again. The first
right-critical task of a BP on the optimal sample path of P1 can
be correctly identified if we can find i and Ri which satisfy
(8)–(10). In essence, (8) guarantees that there is no left-critical
task before Ri, (9) guarantees that there is no right-critical task
before Ri, and (10) guarantees that Ri is a right-critical task.
A similar argument applies to the second part of the theorem.
Therefore, the conditions in Theorem 3.1 are not only sufficient
but also necessary for identifying the first critical task.

After obtaining the first critical task, either left-critical or
right-critical, the rest of the BP, can be considered as a new

BP. Invoking Lemma 3.4, the new BP starts at either the first
critical task’s deadline (if it is right-critical) or the arrival time
of the next task after the first critical task (if it is left-critical).
Applying Theorem 3.1 on the next BP, we are able to identify its
first critical task, which is the second critical task of the original
BP. Iteratively applying Theorem 3.1 helps us find all critical
tasks on the original optimal sample path. This leads directly
to an efficient algorithm which can identify all critical tasks
in BP {k, . . . , n} on the optimal sample path of P1. Mean-
while, as we have illustrated in Fig. 1, after identifying all
critical tasks in BP {k, . . . , n} on the optimal sample path of
P1, we can find all segments in {k, . . . , n}with the same energy
function derivatives. Solving a NE problem for each segment
and combining the solutions gives us the optimal solution
to Q(k, n).

The generalized critical task decomposition algorithm
(GCTDA), which identifies critical tasks and solves Q(k, n) is
as follows:

step 1 p = k;
step 2 i = p+ 1, Solve NE(p, p;T1(k, p), T2(n, p))
and NE(p, p;T1(k, p), dp);

Identify the first critical task in (p, n)
while (i ≤ n)
{Solve NE(p, i;T1(k, p), T2(n, i))
and NE(p, i;T1(k, p), di);
Compute Ri;
if (σp,i(T1(k, p), T2(n, i)) > σp,Ri

(T1(k, p), dRi
)

{Ri is the first right-critical task in (p, n);
τ ∗j = τj(T1(k, p), dRi

), j = p, . . . , Ri;
xR∗

i
= dRi

;
aj = dRi

, for all j, s.t., j > Ri, aj < dRi
;

p = Ri + 1; go to step 2;}
Compute Li;
if (σp,i(T1(k, p), di) < σp,Li

(T1(k, p), aLi+1)
{Li is the first left-critical task in (p, n);
τ ∗
j
= τj(T1(k, p), aLi+1), j = p, . . . , Li;

x∗
Li

= aLi+1;
p = Li + 1; go to step 2;}
i = i+ 1;

}
τ ∗j = τj(T1(k, p), dn), j = p, . . . , n;

END

Note that GCTDA finds the critical tasks in a BP on the
optimal sample path of P1 iteratively. The optimal departure
times of these critical tasks can be easily obtained using the
results in Lemma 3.4. Finally, the optimal solution to the offline
problem τ∗j , j = 1, . . . , N is also calculated in GCTDA.

Regarding the complexity of our algorithm, the most time-
consuming part is solving NE(i, j; t1, t2). In the worst case,
the optimal sample path is a single BP containingN − 1 critical
tasks and the GCTDA algorithm may need to solve NE(i, j;
t1, t2) 2Nr times to identify each critical task, where Nr is
the number of tasks remaining. Therefore, the worst case com-
plexity of the GCTDA algorithm is O(N2).
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C. Maximum Power Constraint

In P1, we omitted the constraint: τi ≥ τi_ min, which is
essentially the maximum transmission rate or transmission
power constraint for task i. This constraint is very important
in real-world scenarios because a transmitter simply cannot
transmit above the maximum transmission rate/power. We now
formulate P2

P2 : min
τ ′
1,...,τ

′
N

N∑
i=1

viωi (τ
′
i)

s.t. x′
i = max

(
x′
i−1, ai

)
+ viτ

′
i ≤ di, i = 1, . . . , N

τ ′i > τi_ min, x0 = 0.

Notice that the only difference between P1 and P2 is the con-
straint on the control. We use τ ′∗i and x′∗

i to denote the optimal
control and optimal departure time of task i in P2, respectively.

It is easy to show that Lemmas 3.1 and 3.2 also apply to
P2. Similar to how we handled P1, we only need to consider
a single BP {k, . . . , n} in the optimal sample path of P2. We
formulate the following problem for BP {k, . . . , n}:

Q′(k, n) : min
τ ′
k,...,τ

′
n

n∑
i=k

viωi (τ
′
i)

s.t. x′
i = ak +

i∑
j=k

viτ
′
i ≤ di, i = k, . . . , n

τ ′i ≥ τi_min, i = k, . . . , n

x′
i ≥ ai+1, i = k, . . . , n− 1.

In order to establish the connection between Problems P1
and P2, we now introduce the following assumption, which will
be used to derive the results in this subsection.

Assumption 2: a) If τi_ min < τj_ min, then ω̇i(τi_min) <
ω̇j(τj_ min) and ω̇i(τ) > ω̇j(τ); b) If τi_min ≥ τj_ min, then
ω̇i(τi_min) ≥ ω̇j(τj_ min) and ω̇i(τ) ≤ ω̇j(τ).

Justification for this assumption can be found in the
Appendix. Let

τmin = inf
i=k,...,n

τi_ min.

Under Assumption 2, we introduce the following auxiliary
lemma:

Lemma 3.9: If ∃τ∗i < τmin, then Q′(k, n) is infeasible.
Lemma 3.9 establishes certain connections between

the power-unconstrained problem Q(k, n) and the power-
constrained problem Q′(k, n). When the problem is homoge-
neous, that is, the cost functions are identical among the tasks,
we can easily derive that if Q′(k, n) is feasible, then the optimal
solution to Q(k, n) must also yield the maximum power
constraint. In the inhomogeneous case, however, it is possible
that Q(k, n) may return an optimal solution above the maxi-
mum power constraint while Q′(k, n) is indeed feasible. When
this occurs, the optimal solution to Q′(k, n) would be close
to τi_ min, and the controller could simply apply τi_min as the

TABLE I
DIFFERENT TASK DEADLINES AND IDENTICAL ENERGY FUNCTIONS

control since there is not much benefit to conduct optimization
in this case.

D. Offline Performance Comparisons

Next, we will test the offline performance of the GCTDA
algorithm. In this case, all task information, including arrival
times, deadlines, and number of bits is known. For compar-
ison purposes, we obtain numerical results for the following
algorithms:

GCTDA: Offline algorithm knowing all task information
exactly and having full computational capability to solve
NE(i, j; t1, t2).

GCTDA_TL: Offline algorithm knowing all exact task in-
formation and using pre-established tables to find an
approximate solution to the nonlinear algebraic system
NE(i, j; t1, t2). The purpose of this algorithm is to re-
duce the computational overhead associated with solving
NE(i, j; t1, t2) at the cost of more energy consumption.
Specifically, we pre-calculate the derivatives of 1000 τ
values for each energy function ωi(τ) and save these data
into tables. Using these tables and binary search, we find
approximate solutions to NE(i, j; t1, t2) in GCTDA.

MoveRight: The algorithm proposed in [2]. It is an itera-
tive algorithm that converges to the optimal solution. We
choose it for performance comparison purposes because
to the best of our knowledge, it is the only other algorithm
available for solving problems with task-dependent cost
functions.

In each experiment, in order to make the comparison fair, we
use the same setting (i.e., same arrival times, deadlines, task
sizes, and energy functions) for each algorithm. Note that what
the “best” function solves in the MoveRight algorithm is ac-
tually a nonlinear system NE(i, i+ 1; t1, t2). All experiments
are done using a 1.8 GHz Athlon XP processor.

The setting of the first experiment in Table I is as follows:
500 tasks of Poisson arrivals with mean interarrival time 5 s,
each task has its own deadlines (uniformly distributed between
[ai + 5, ai + 20] for task i), task sizes are different, and the
energy functions are the same. The GCTDA algorithm out-
performs the MoveRight algorithm in terms of CPU time by
two orders of magnitude. Because the optimal sample path is
likely to contain multiple BPs and the energy functions are
identical, GCTDA is very fast. We terminated the MoveRight
algorithm after 10 000 passes. It can be seen that the MoveRight
algorithm did not converge at this point yet. (The cost is still
higher than the optimal cost returned by GCTDA.) Another
observation is that the solution of GCTDA_TL is a good ap-
proximation to the one of GCTDA. This makes GCTDA_TL a
good candidate for on-line control. However, it can be seen that
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TABLE II
DIFFERENT DEADLINES AND DIFFERENT ENERGY FUNCTIONS

TABLE III
IDENTICAL DEADLINES AND IDENTICAL ENERGY FUNCTIONS

TABLE IV
IDENTICAL DEADLINES AND DIFFERENT ENERGY FUNCTIONS

GCTDA_TL takes longer than GCTDA when the energy func-
tions are identical. The reason is that in this case, the nonlinear
system NE(i, j; t1, t2) becomes a linear system, which can be
easily solved. So there is no benefit in using the table lookup
approximation approach. However, when the energy functions
are different, as we will see later, the approximation method
does help.

In the next experiment for 500 tasks in Table II, we keep
the same setting as above, except that we make the energy
functions different for each task. We terminate the MoveRight
algorithm after 100 passes. It can be seen that in this experi-
ment, GCTDA_TL takes much less CPU time than GCTDA.
Both of them are much faster (by an order of magnitude) and
MoveRight has not yet converged.

In Table III, we make all 500 tasks have the same deadline
and the same energy function. In this case, the optimal sample
path contains a single BP. We terminate the MoveRight algo-
rithm after 10 000 passes. It can be seen that at the time of termi-
nation, it was still far from converging to the optimal solution.
Again, the CPU time of GCTDA_TL is higher than GCTDA,
since the energy functions are identical.

In Table IV, the setting is the same as above, except that
we now consider 100 tasks with different energy functions. We
terminate the MoveRight algorithm after 1000 passes.

IV. ONLINE CONTROLLER DESIGN

We proved that our offline algorithm GCTDA can return each
critical task on the optimal sample path correctly. Therefore,
by using it, we can obtain the offline optimal solution. We are
also interested in designing good online controllers, in which
case there are two difficulties: 1) lack of future task information
and 2) high computational complexity in solving the nonlinear
equations.

To overcome the first difficulty, we design a receding hori-
zon (RH) controller assuming that at each decision point, the
controller always has some task information within a given RH
window, and nothing beyond this window. The size of the RH

window H can be measured either by time units or the number
of tasks. In this paper, we use the latter to measure the RH win-
dow H . This RH window, together with the task information
within it, is often referred to as the planning horizon. In contrast
to the planning horizon, the RH controller will apply controls
over an action horizon, which contains a subset of tasks over
the planning horizon. Such controllers have been proposed and
analyzed in [30] and [31] for the homogeneous case that the
cost functions are identical. In this paper, we consider the RH
control for the inhomogeneous case that the cost functions are
task dependent.

As we will see later, the offline results we obtained in
previous sections provide insight to RH online controller design
and performance evaluation. We now introduce some notations
similar to the ones in [31]. Let x̃t be the departure time of task t
on the RH state trajectory, which is also a decision point when
the RH controller is invoked with look-ahead window H . Let τ̃t
be the control associated with task t as determined by the RH
controller. When task t+1 starts a new BP (i.e., at+1>x̃t), then
the RH controller does not need to act until at+1 rather than x̃t;
for notational simplicity, we will still use x̃t to represent the
decision point for task t+ 1 (i.e., the time when the control
τ̃t+1 is determined). Let h denote the last task included in the
window that starts at the current decision point x̃t, i.e.,

h = argmax
r≥t

{ar : ar ≤ x̃t +H}.

Note that although the value of h depends on t, for notational
simplicity, we will omit this dependence and only write ht

when it is necessary to indicate dependence on t. When the RH
controller is invoked at x̃t, it is called upon to determine τ̃i, the
control associated with task i for all i = t+ 1, . . . , h, and let
x̃i denote the corresponding departure time of task i which is
given by x̃i = max(x̃i−1, ai) + τ̃ivi. The values of x̃i and τ̃i
are initially undefined, and are updated at each decision point
x̃t for all i = t+ 1, . . . , h. Control is applied to task t+ 1 only.
That control and the corresponding departure time are the ones
shown in the final RH sample path. In other words, for any given
task i, x̃i, and τ̃i may vary over different planning horizons,
since optimization is performed based on different available
information. It is only when task i is the next one at some
decision point that its control and departure time become final.

Given these definitions, we are now ready to discuss the
worst case estimation process to be used. If h = N , then the
optimization process is finalized, so we will only consider
the more interesting case when h < N . Then, our worst case
estimation pertains to the characteristics of task h+ 1, the first
one beyond the current planning horizon determined by h, that
is, its arrival time, deadline, and number of bits which are
unknown. We define task arrival times and task deadlines for
i = t+ 1, . . . , h+ 1 as follows:

ãi =

{
ai, if t+ 1 ≤ i ≤ h

x̃t +H, if i = h+ 1
(11)

d̃i =

{
di, if t+ 1 ≤ i ≤ h

ãh+1 + τi_ minvh+1, if i = h+ 1.
(12)
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In (11), the arrival times of tasks i = t+ 1, . . . , h are known
and we introduce a “worst case” estimate for the first unknown
task beyond x̃t +H , that is, we set it to be the earliest it could
possibly occur. In (12), the deadlines of tasks i = t+ 1, . . . , h
are known and we introduce a “worst case” estimate for the first
unknown task’s deadline to be the tightest possible, since τi_min

is the minimum feasible time per bit. Note that vh+1 is, in fact,
unknown at time x̃t, but we will see that this does not affect
our optimization process as the value of d̃h+1 is not actually
required for analysis purposes. We point it out that we do not
have to worry about estimates for the unknown tasks beyond
h+ 1 (this is because of the FCFS nature of our system).

Therefore, the optimization problem that the RH controller
faces at time x̃t is over tasks t+ 1, . . . , h with the additional
constraint that they must all be completed by time ãh+1 = x̃t +
H . This is equivalent to redefining d̃i as

d̃i =

{
di, if t+ 1 ≤ i ≤ h

min(dh, ãh+1), if i = h.
(13)

Our online RH control problem at decision point x̃t will be
denoted by Q̃(t+ 1, h) and is formulated as follows:

Q̃(t+ 1, h) : min
τ̃t+1,...,τ̃h

h∑
i=t+1

viωi(τ̃i)

s.t. τ̃i ≥ 0, i = t+ 1, . . . , h

x̃i = max(x̃i−1, ai) + τ̃ivi ≤ d̃i, x̃t known

where d̃i is defined in (13). We also formulate the online RH
control problem with the maximum power constraint

Q̃′(t+ 1, h) : min
τ̃t+1,...,τ̃h

h∑
i=t+1

viωi(τ̃i)

s.t. τ̃i ≥ τi_min, i = t+ 1, . . . , h

x̃i = max(x̃i−1, ai) + τ̃ivi ≤ d̃i, x̃t known.

Similar to the RH problem in [31], Q̃(t+ 1, h) may not be
feasible even if the offline problem is feasible. This is due to the
worst-case estimation. One way of relaxing the worst-case esti-
mation is to use ĥ (defined below), instead of h in Q̃ above. Let

x̂j = max(x̂j−1, aj) + τj_ minvj

x̂t = x̃t, j = t+ 1, . . . , h

S = {j : t+ 1 ≤ j < h

x̂i ≤ min(di, aj+1) for all i, t+ 1 ≤ i ≤ j}

ĥ =

{
sup S, if S �= ∅

∞, otherwise.

We then define d̂i

d̂j =

{
dj , j = t+ 1, . . . , ĥ− 1

min(dj , ãj+1), j = ĥ
(14)

TABLE V
RH CONTROL

and formulate problem Q̂(t+ 1, ĥ)

Q̂(t+ 1, ĥ) : min
τ̃t+1,...,τ̃ĥ

ĥ∑
i=t+1

viωi(τ̃i)

s.t. τ̃i ≥ 0, i = t+ 1, . . . , ĥ

x̃i = max(x̃i−1, ai) + τ̃ivi ≤ d̂i, x̃t known.

The RH control algorithm at each decision point x̃t is shown in
Table V. Note that Q̃(t+ 1, h) and Q̂(t+ 1, ĥ) essentially are
smaller scale offline optimization problems. This implies that
at each online decision point, we shall use an offline control al-
gorithm, that is, GCTDA or GCTDA_TL, to solve Q̃(t+ 1, h)

and Q̂(t+ 1, ĥ). In the next result, we discuss the feasibility of
the proposed online RH control mechanism.

Theorem 4.1: If the offline problem P2 is feasible, then the
RH control in Table V is also feasible.

Theorem 4.1 reveals that the RH control in Table V guar-
antees feasibility when the offline problem P2 is feasible.
Next, we will analyze the performance of the proposed RH
controller using simulation. To overcome high computational
complexity, we use the GCTDA_TL algorithm, rather than
GCTDA algorithm for online RH control. As mentioned previ-
ously, the GCTDA_TL algorithm uses some piecewise constant
functions to approximate the derivatives of the energy functions
at different τ . Optimization can be approximated by searching
efficiently in a pre-established table containing these functions.

In our simulation, all tasks have 512 B and a fixed deadline,
that is, di= ai + d. The value of d is set to 10 s. In Figs. 2 and 3,
we run the experiment 1000 times, and 500 tasks are executed
in each run. The simulation is performed on a PC with a third-
generation Intel Core i5-3570K Ivy Bridge 3.4GHz Quad-Core
Desktop Processor. To quantify the deviation of the RH cost
from the optimal offline cost, we define the cost difference as:
(RH cost—optimal offline cost)/optimal offline cost. Figs. 2
and 3 plot the average cost difference, worst-case cost differ-
ence, best-case cost difference, and average calculation time
versus the RH window size H in seconds.

In Fig. 2, we consider Poisson arrivals with λ = 0.2. With
RH window size H varying from 1 to 11 s, the cost differences
are well below 2%. When H becomes larger, the cost differ-
ences are reduced; the calculation time per task increases since
at each decision point, and the optimization problem involves
more tasks.
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Fig. 2. Simulation results of Poisson and bursty arrivals.

Fig. 3. Simulation results of bursty arrivals.

In the next experiment shown in Fig. 3, we consider bursty ar-
rivals with the burst interval uniformly distributed over [8, 12] s,
the number of tasks in each burst chosen from {10, . . . , 20}
with equal probability, and the task intervals within the same
burst uniformly distributed within [0, 1]. Although the cost dif-
ferences are just slightly higher than those in the Poisson case,
the average calculation time per task is now much larger. This is
because in the bursty arrival case, a large number of backlogged
tasks are involved at each decision point.

Our simulation results show that the proposed RH control
mechanism not only guarantees feasibility when the offline
problem is feasible, but also achieves near optimal solutions.

V. CONCLUSION

In this paper, we first study the downlink transmission schedul-
ing (DTS) problem. A simpler version of this problem has been
studied in [2] and [9], where the MoveRight algorithm is pro-
posed. The MoveRight algorithm is an iterative algorithm, and
its rate of convergence is obtainable only when the cost function
is not task dependent. Compared with the work in [2] and
[9], we deal with a much harder problem: i) our cost function
is task dependent and ii) each task has its own arrival time and

deadline. This is essentially a hard convex optimization prob-
lem with nondifferentiable constraints. By analyzing the special
structure of the optimal sample path, an efficient algorithm,
known as the GCTDA, is proposed to solve the problem. Sim-
ulation results show that our algorithm is more appropriate for
real-time applications than the MoveRight algorithm. Finally,
we show that our results can be used in online control to achieve
near optimal solutions for Poisson and bursty arrivals.

APPENDIX

Proof of Lemma 3.3: Since ωi(τ) is strictly convex and
differentiable

v1ω1(τ1)− v1ω1 (τ
′
1) > v1 (τ1 − τ ′1) ω̇1 (τ

′
1) (15)

v2ω2(τ2)− v2ω2 (τ
′
2) > v2 (τ2 − τ ′2) ω̇2 (τ

′
2) . (16)

Since v1τ1 + v2τ2 = v1τ
′
1 + v2τ

′
2

v1 (τ1 − τ ′1) = −v2 (τ2 − τ ′2) = C > 0. (17)

Summing (15) and (16) above, and using (17), we obtain

v1ω1(τ1) + v2ω2(τ2)− v1ω1 (τ
′
1)− v2ω2 (τ

′
2)

> C (ω̇1 (τ
′
1)− ω̇2 (τ

′
2)) .

Since C > 0 and by assumption ω̇1(τ
′
1)− ω̇2(τ

′
2) > 0

v1ω1(τ1) + v2ω2(τ2) > v1ω1 (τ
′
1) + v2ω2 (τ

′
2) .

�
Proof of Lemma 3.4: We only prove part i). Part ii) can

be proved similarly. Let τ∗k, . . . , τ
∗
n be the optimal solution. By

definition of a left-critical task, we have ω̇i(τ
∗
i ) > ω̇i+1(τ

∗
i+1).

Since tasks i and i+ 1 are withina single BP, x∗
i ≥ ai+1. Sup-

pose x∗
i > ai+1. Consider a feasible solution τ ′k, . . . , τ

′
n, s.t.

τ ′j = τ∗j , j �= i, j �= i+ 1

τ ′i < τ∗i , τ
′
i+1 > τ ∗i+1, ω̇i (τ

′
i) > ω̇i+1

(
τ ′i+1

)
.

Note that such a feasible solution always exists as long as τ ′i
and τ ′i+1 are arbitrarily close to τ∗i and τ∗i+1, respectively. From
Lemma 3.3, we obtain

viωi (τ
∗
i ) + vi+1ωi+1

(
τ ∗i+1

)
> viωi (τ

′
i) + vi+1ωi

(
τ ′i+1

)
.

Since τ ′j = τ∗j , j �= i, j �= i+ 1, using the above inequality, we
obtain

n∑
i=k

viωi (τ
∗
i ) >

n∑
i=k

viωi (τ
′
i)

which contradicts the assumption that τ∗k , . . . , τ
∗
n is the optimal

solution. Therefore, x∗
i = ai+1. �

Proof of Lemma 3.5: i) Since ωm(τ) is strictly convex,
continuous, and differentiable, ω̇m(τ) is also continuous.NE(i,
j; t1, t2) has a feasible solution, because ω̇m(τ) is continuous
and monotonically increasing, and τ can take any value in (0,∞).
Now, suppose there are two different solutions to NE(i, j; t1,
t2) : τi(t1, t2), . . . , τj(t1, t2) and τ ′i(t1, t2), . . . , τ

′
j(t1, t2).
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Then, the common derivatives of these two solutions are dif-
ferent. Without loss of generality, we assume σi,j(t1, t2) >
σ′
i,j(t1, t2), which means ω̇m(τm(t1, t2)) > ω̇m(τ ′m(t1, t2)),

for any m, i ≤ m ≤ j. By the convexity of ωm(τ), we obtain
τm(t1, t2) > τ ′m(t1, t2), for any m, i ≤ m ≤ j, and

j∑
m=i

τm(t1, t2)vm = t2 − t1 >

j∑
m=i

τ ′m(t1, t2)vm = t2 − t1

which is a contradiction. Therefore, NE(i, j; t1, t2) has a
unique solution.

ii) Let σi,j(t1, t2), σi,j(t3, t4) be the common derivative of
NE(i, j; t1, t2) and NE(i, j; t3, t4), respectively, 0 < Δ =
t2 − t1< Δ′ = t4 − t3. Let τi(t1, t2), . . . , τj(t1, t2), τi(t3, t4),
. . . , τj(t3, t4) be the solution to NE(i, j; t1, t2) and NE(i, j;
t3, t4), respectively. We need to show σi,j(t1, t2) < σi,j(t3, t4).
Suppose σi,j(t1, t2) ≥ σi,j(t3, t4). Then, by definition, we ob-
tain ω̇m(τm(t1, t2)) ≥ ω̇m(τm(t3, t4)), for any m, i ≤ m ≤ j.
By the convexity of ωm(τ), τm(t1, t2)≥τm(t3, t4), i≤m≤j.
Therefore,

∑j
m=i τm(t1, t2)vm= t2−t1 = Δ ≥

∑j
m=i τm(t3,

t4)vm = t4 − t3 = Δ′ which contradicts our assumption that
Δ < Δ′. Therefore, the common derivative of NE(i, j; t1, t2)
is a monotonically increasing function of Δ = t2 − t1.

iii) It can be easily checked that τi(t1, t2), . . . ,τp(t1, t2) and
τp+1(t1, t2), . . . , τj(t1, t2) are the unique solutions to NE(i, p;
t1, t1+Sip) andNE(p+1, j; t1 + Sip, t2), respectively. There-
fore, by the definition of NE(i, j; t1, t2) and σi,j(t1, t2), we
have σi,p(t1, t1+Sip)=σi,j(t1, t2) and σp+1,j(t1 + Sip, t2) =
σi,j(t1, t2), which implies σi,p(t1, t1 + Sip) = σp+1,j(t1 +
Sip, t2) = σi,j(t1, t2).

iv) Let Sip be the same as in iii). By assumption, cq �= cr ∀ q,
r ∈ {1, 2, 3}, q �= r. This implies that t3 �= Sip; otherwise, cq=
cr. From the monotonicity of σi,j(t1, t2) shown in part ii), we
obtain min(c1, c2) < c3 < max(c1, c2). �

Proof of Lemma 3.6: Invoking Lemma 3.4, we obtain
x∗
r = dr. Suppose there are left-critical tasks in {k, . . . , r − 1}

and the closest left-critical task to r is task l, k≤ l<r. Invoking
Lemma 3.4, x∗

l = al+1. By assumption

σk,Lr
(ak, aLr+1) ≤ σk,r(ak, dr). (18)

Because l < r, from (7)

σk,l(ak, al+1) ≤ σk,Lr
(ak, aLr+1) . (19)

From (18) and (19), the following must be true:

σk,l(ak, al+1) ≤ σk,r(ak, dr). (20)

When the equality holds in (20), from iii) of Lemma 3.5, we
obtain

σl+1,r(al+1, dr) = σk,l(ak, al+1). (21)

When the inequality holds in (20), from iv) of Lemma 3.5, we
obtain

σl+1,r(al+1, dr) > σk,r(ak, dr).

From (20) and the above inequality, we get

σl+1,r(al+1, dr) > σk,l(ak, al+1). (22)

Combining (21) and (22), we obtain

σl+1,r(al+1, dr) ≥ σk,l(ak, al+1). (23)

Since there is no right-critical or left-critical task in {l+ 1, . . . ,
r − 1}, invoking Lemma 3.1, we get ω̇s(τ

∗
s ) = ω̇s+1(τ

∗
s+1) =

σl+1,r(al+1, dr), ∀ s ∈ {l + 1, . . . , r − 1}. From the definition
of left-critical tasks, we get

ω̇l (τ
∗
l ) > ω̇l+1

(
τ ∗l+1

)
= σl+1,r(al+1, dr). (24)

We consider two cases:

Case 1: k = l. Then, σk,l(ak, al+1) = ω̇l(τ
∗
l ). Inequalities

(23) and (24) contradict each other.
Case 2: k < l. We will use a contradiction argument to show

that there must exist a right-critical task m, k ≤
m < l, that is, ω̇m(τ ∗m) < ω̇m+1(τ

∗
m+1). Suppose

such a task m does not exist, i.e.,

ω̇m (τ ∗m) ≥ ω̇m+1

(
τ ∗m+1

)
, k ≤ m < l. (25)

Let

ym =

{
ak, m = k − 1

x∗
m m = k, . . . , l.

Inequality (25) is equivalent to the following
equation:

σm,m(ym−1, ym) ≥ σm+1,m+1(ym, ym+1),

for m = k, . . . , l− 1. (26)

We will use a recursive proof next:

Step 1: Letting m = k in (26), we have

σk,k(yk−1, yk) ≥ σk+1,k+1(yk, yk+1). (27)

When the equality holds in (27), invoking part iii) of
Lemma 3.5, we get

σk,k+1(yk−1, yk+1) = σk+1,k+1(yk, yk+1). (28)

When the inequality holds in (27), invoking part
iv) of Lemma 3.5, we get

σk,k+1(yk−1, yk+1) > σk+1,k+1(yk, yk+1). (29)

Combining (28) and (29), we have

σk,k+1(yk−1, yk+1) ≥ σk+1,k+1(yk, yk+1). (30)

Step 2: Letting m = k + 1 in (26), we have

σk+1,k+1(yk, yk+1) ≥ σk+2,k+2(yk+1, yk+2).

Combining (30) and the above inequality, we obtain

σk,k+1(yk−1, yk+1) ≥ σk+2,k+2(yk+1, yk+2).

Similar to the derivation of (28)–(30), we can obtain

σk,k+2(yk−1, yk+2) ≥ σk+2,k+2(yk+1, yk+2).
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Repeating the process up to step l − k, we obtain

σk,l(yk−1, yl) ≥ σl,l(yl−1, yl).

Since task l is left-critical, from the definition of
ym and Lemma 3.4, yl = x∗

l = al+1, and the above
inequality is equivalent to

σk,l(ak, al+1) ≥ ω̇l (τ
∗
l ) . (31)

From (31) and (24), we get

σk,l(ak, al+1) > σl+1,r(al+1, dr).

Invoking iv) of Lemma 3.5, we obtain

σk,l(ak, al+1) > σk,r(ak, dr)

which contradicts (20). Therefore, there must exist
a task m, k ≤ m < l, s.t., ω̇m(τ ∗m) < ω̇m+1(τ

∗
m+1).

By Definition 1, task m is a right-critical task, which
contradicts our assumption that task r is the first
right-critical task in {k, . . . , n}. Therefore, there is
no left-critical task before task r. �

Proof of Lemma 3.7: We use a contradiction argument to
prove the lemma. Suppose there are right-critical tasks before
task Ri and the one with the smallest index is task r, k ≤ r <
Ri. By assumption, σk,j(ak, dj) ≥ σk,Lj

(ak, aLj+1), for all j,
k < j < i. When r > k, letting j = r, we have σk,r(ak, dr) ≥
σk,Lr

(ak, aLr+1). Then we can invoke Lemma 3.6 to establish
that there is no left-critical task in {k, . . . , r − 1}. Since there
is also no right-critical task in {k, . . . , r − 1}, from Lemma 3.1

ω̇s (τ
∗
s ) = σk,r(ak, dr), ∀ s ∈ {k, . . . , r}. (32)

Since k ≤ r < Ri, from (6), we have

σk,Ri
(ak, dRi

) ≤ σk,r(ak, dr). (33)

Then, from ii) of Lemma 3.5

σk,Ri

(
ak, x

∗
Ri

)
≤ σk,Ri

(ak, dRi
) . (34)

Combining (33) and (34), we get

σk,Ri

(
ak, x

∗
Ri

)
≤ σk,r(ak, dr). (35)

Since r is right-critical, from (32) and Definition 1

σk,r(ak, dr) = ω̇r (τ
∗
r ) < ω̇r+1

(
τ ∗r+1

)
. (36)

From (35) and (36), there must exist at least one left-critical
task in {r + 1, . . . , Ri − 1}; otherwise, from the definition of a
left-critical task in Definition 1 and a simple contradiction argu-
ment, we have ω̇s(τ

∗
s ) ≤ ω̇s+1(τ

∗
s+1), ∀ s ∈ {r + 1, . . . , Ri −

1}. Using this result, (36) and a similar method as in obtaining
(31), we can get σk,r(ak, dr) < σk,Ri

(ak, x
∗
Ri
), which contra-

dicts (35).
Let the left-critical task with the smallest index be l. From

Lemma 3.4, x∗
l = al+1. Similar to obtaining σk,r(ak, dr) <

σk,Ri
(ak, x

∗
Ri
), we can obtain

σk,r(ak, dr) < σk,l (ak, x
∗
l ) = σk,l(ak, al+1). (37)

By assumption, σk,j(ak, aj+1) ≤ σk,Rj
(ak, dRj

), and setting
j = l, we get σk,l(ak, al+1) ≤ σk,Rl

(ak, dRl
). Since, from (6),

we have σk,Rl
(ak, dRl

) ≤ σk,r(ak, dr), combining this and
the above inequality, we obtain σk,l(ak, al+1) ≤ σk,r(ak, dr)
which contradicts (37) and completes the proof. �

Proof of Lemma 3.8: Suppose task Ri is not right-critical.
By assumption, σk,Ri

(ak, dRi
) < σk,i(ak, ai+1). Since x∗

Ri
≤

dRi
, from ii) of Lemma 3.5

σk,Ri

(
ak, x

∗
Ri

)
≤ σk,Ri

(ak, dRi
) . (38)

From the two inequalities above, we obtain

σk,Ri

(
ak, x

∗
Ri

)
< σk,i(ak, ai+1). (39)

Invoking Lemma 3.7, there is no right-critical task before taskRi.
Next, we use a contradiction argument to show that there must
exist at least one right-critical task in {Ri, . . . , i− 1}. Suppose
there is no right-critical task in {Ri, . . . , i− 1}. Because there
is no right-critical task in {k, . . . , i− 1}, by Definition 1, we
have ω̇m(τ ∗m) ≥ ω̇m+1(τ

∗
m+1), m = k, . . . , i− 1. Let

ym =

⎧⎪⎨⎪⎩
ak, m = k − 1

x∗
m, m = k, . . . , i− 1

ai+1, m = i.

The above inequality can be rewritten as σm,m(ym−1, ym) ≥
σm+1,m+1(ym, ym+1), m = k, . . . , i− 1. Similar to the way
of obtaining (31) in proving Lemma 3.6, we obtain σk,Ri

(ak,
x∗
Ri
)≥σk,i(ak, ai+1), which contradicts (39). We showed there

must exist at least one right-critical task in {Ri, . . . , i−1}. From
the initial contradiction assumption, Ri is not right-critical.
When i = Ri + 1, the contradiction proof is completed. Next,
we consider the case when i > Ri + 1. Let r be the closest
right-critical task to Ri in {Ri, . . . , i− 1}. Since there is no
right-critical task in {k, . . . , r − 1}, by Definition 1, ω̇m(τ ∗m) ≥
ω̇m+1(τ

∗
m+1), m = k, . . . , r − 1. Let

ym =

{
ak, m = k − 1

x∗
m, m = k, . . . , r.

The above inequality can be rewritten as

σm,m(ym−1, ym) ≥ σm+1,m+1(ym, ym+1),m = k, . . . , r − 1.

Similar to the way of obtaining (31) in proving Lemma 3.6,
we obtain

σk,Ri

(
ak, x

∗
Ri

)
≥ σk,r (ak, x

∗
r) = σk,r(ak, dr).

From the above inequality and (38), we obtain

σk,r(ak, dr) ≤ σk,Ri
(ak, dRi

)

which contradicts the definition of Ri in (4), since Ri < r < i.
Therefore, task Ri must be right-critical. �

Proof of Theorem 3.1: We only prove part i). Part ii) can
be proven similarly. The proof contains several steps: 1) using
(8), Lemma 3.6, and setting j = Ri, we conclude that there is
no left-critical task before Ri; 2) using (8), (9), and Lemma 3.7,
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we establish that there is no right-critical task before Ri;
3) using (8)–(10), and Lemma 3.8, it follows that Ri is a right-
critical task; and, finally, 4) combining the results established
in the previous steps 1)–3), we can obtain that Ri is the first
critical task in {k, . . . , n}, and it is right-critical. �

Justifications for Assumption 2: We only justify Part a).
Part b) can be justified similarly. Using Shannon’s theo-
rem, τi can be represented by the following equation: τi =
1/(B log2(1 + (siP/N0))), where B is the bandwidth of the
channel, si is the task-dependent channel gain, P is the
transmission power, and N0 is the power of the noise. Since
siP/N0 
 1 in typical scenarios, we can omit the 1 above and
represent P in terms of τi

P (τi) =
N0

(
2

1
Bτi

)
si

. (40)

We assume that the maximum transmission power of each task
is constant Pmax, and it determines τi_min

Pmax =
N0

(
2

1
Bτi_ min

)
si

. (41)

Because ωi(τi) = P (τi)τi, we use (40) and (41) to get

ω̇i(τi) = P (τi)

(
1− 1

Bτi

)
=

N0

(
2

1
Bτi

)
si

(
1− 1

Bτi

)
(42)

ω̇i(τi)|τi=τi_ min
= Pmax

(
1− 1

Bτi_min

)
. (43)

Using (43) and τi_min < τj_ min, we have ω̇i(τi_min) <
ω̇j(τj_ min). Using (41) and τi_ min < τj_ min, we obtain si >
sj , that is, the channel gain of task i is greater than that of task
j. Finally, using (42), we get ω̇i(τ) > ω̇j(τ). �

Proof of Lemma 3.9: Let us assume that there exists tasks
{p, . . . , q} (k < p ≤ q < n) in a BP {k, . . . , n} of the optimal
sample path of Q(k, n) such that

τ ∗p−1 ≥ τp−1_min, τ
∗
q+1 ≥ τq+1_min

τ ∗i < τmin, i = p, . . . , q. (44)

From Assumption 1

ω̇p−1

(
τ ∗p−1

)
≥ ω̇p−1(τp−1_ min)

ω̇q+1

(
τ ∗q+1

)
≥ ω̇q+1(τq+1_ min). (45)

Let z = argmini=k,...,n τi_min. Because τi_ min ≥ τz_ min, we
invoke Assumption 2 and get

ω̇i(τmin) ≤ ω̇z(τmin), i = p, . . . , q. (46)

From Assumption 1 and (44), we have

ω̇i (τ
∗
i ) < ω̇i(τmin), i = p, . . . , q. (47)

Combining (46) and (47) above, we have

ω̇i (τ
∗
i ) < ω̇z(τmin), i = p, . . . , q. (48)

Because τp−1_ min ≥ τmin, we invoke Assumption 2 and get

ω̇p−1(τp−1_ min) ≥ ω̇z(τmin). (49)

Similarly, we use τq+1_ min ≥ τmin and Assumption 2 to get

ω̇q+1(τq+1_ min) ≥ ω̇z(τmin). (50)

Combining (45), (49), and (50), we have

ω̇p−1

(
τ ∗p−1

)
≥ ω̇z(τmin) and ω̇q+1

(
τ ∗q+1

)
≥ ω̇z(τmin). (51)

Then, we combine (48) and (51) to get ω̇p−1(τ
∗
p−1) > ω̇i(τ

∗
i )

and ω̇i(τ
∗
i )<ω̇q+1(τ

∗
q+1), i=p, . . . , q. From these two inequali-

ties, we have ω̇p−1(τ
∗
p−1) > ω̇p(τ

∗
p) and ω̇q(τ

∗
q ) < ω̇q+1(τ

∗
q+1).

Invoking Lemma 3.4, we have

x∗
p−1 = ap and x∗

q = dq. (52)

Becausex∗
q=x∗

p−1+
∑q

i=p viτ
∗
i , we use(44) and(52) to getx∗

q −
x∗
p−1=dq−ap=

∑q
i=p viτ

∗
i <

∑q
i=p viτmin ≤

∑q
i=p viτi_min .

For any feasible solution ofQ′(k, n), we must have
∑q

i=p viτ
′
i ≤

dq − ap ≤
∑q

i=p viτi_min, which implies that there exists at
least one τ ′i , i = p, . . . , q, such that τ ′i < τi_min. This implies
that Q′(k, n) is infeasible. �

Proof of Theorem 4.1: Because P2 is feasible, we have
x′∗
i ≤ di. To prove the theorem, we only need to show that x̃i ≤

x′∗
i for i = 1, . . . , N . We use induction to prove it.
1) When t = 0, we are at the first decision point x̃0 = a1. We

have two cases:

Case 1.1) We apply τ1_min to task 1. It is obvious that
x̃1≤x′∗

i .
Case 1.2) We apply control τ̃∗1 obtained in either Step 1 or

Step 2 of Table V to task 1. Without loss of gener-
ality, let us assume that τ̃∗1 is obtained from Step 1
of Table V. In this case, τ̃∗i , i = 1, . . . , h, are the
solution to Q̃(1, h) and τ̃ ∗i ≥τi_min for all i. There-
fore, τ̃∗i is also the solution to problem Q̃′(1, h).
We have two subcases:

Case 1.2.1) When the planning horizon contains the
end of a busy period on the optimal
sample path, it is trivial that τ̃∗1 = τ ′∗1 .
Therefore, x̃1 = x′∗

1 ≤ d1.
Case 1.2.2) We now consider the more interesting

case that di ≥ ãi+1, i = 1, . . . , h. To
compare the RH problem and the offline
problem, we now add subscripts to in-
dicate the starting and ending times of
each problem. In particular, we use
Q̃′

a1,a1+H(1, h) to show that the starting

transmission time of Q̃′(1, h) is a1 and
the ending transmission time is a1 +H .
Similarly, we use Q′

a1,x′∗
h
(1, h) to show

that the starting transmission time of
Q′(1, h) is a1 and the ending trans-
mission time is x′∗

h . Because ah+1 >
a1+H and dh≥a1+H , we must have
x′∗
h ≥a1+H . Looking at Q̃′

a1,a1+H(1, h)



MIAO et al.: OPTIMAL ENERGY-EFFICIENT DOWNLINK TRANSMISSION SCHEDULING 705

and Q′
a1,x′∗

h
(1, h), they are exactly the

same, except that the ending transmis-
sion time of Q′

a1,x′∗
h
(1, h) is poten-

tially at a later time. Therefore, the
optimal departure time of any task in
Q′

a1,x′∗
h
(1, h) must not be earlier than

that in Q̃′
a1,a1+H(1, h), which means

x̃1 ≤ x′∗
1 .

2) Suppose that the RH controller is at decision point x̃t, and
x̃t ≤ x′∗

t . We also have two cases:

Case 2.1) We apply τt+1min to task t+ 1. It is obvious that
x̃t+1 ≤ x′∗

t+1.
Case 2.2) We apply control τ̃ ∗t+1 obtained in either Step 1 or

Step 2 of Table V to task 1. Without loss of gener-
ality, let us assume that τ̃∗t+1 is obtained from Step
1 of Table V. In this case, τ̃∗i , i = t+ 1, . . . , h, are
the solution to Q̃(t+ 1, h) and τ̃ ∗i ≥ τi_ min for all
i. Therefore, τ̃∗i is also the solution to problem
Q̃′(t+ 1, h). We consider two subcases:

Case 2.2.1) When the planning horizon contains
the end of a busy period on the opti-
mal sample path, that is, there exists
task jε{t+ 1, . . . , h} s.t. dj < ãj+1, we
focus on tasks {t+ 1, . . . , j}. In this
case, the controls of these tasks on the
RH sample path are the solutions to
problem Q̃′

x̃t,dj
(t+ 1, j), and the con-

trols of these tasks on the optimal sam-
ple path of P2 are the solutions to
problem Q′

x′∗
t ,dj

(t+ 1, j). Looking at

Q̃′
x̃t,dj

(t+ 1, j) and Q′
x′∗
t ,dj

(t+ 1, j),
they are identical, except that the start-
ing transmission time of Q̃′

x̃t,dj
(t+

1, j) is potentially earlier than that
of Q′

x′∗
t ,dj

(t+ 1, j). Therefore, the op-
timal departure time of any task in
Q̃′

x̃t,dj
(t+ 1, j) must be no later than

that in Q′
x′∗
t ,dj

(t+ 1, j), which means
x̃t+1 ≤ x′∗

t+1.
Case 2.2.2) di≥ ãi+1, i= t+1, . . . , h. In this case,

the controls of tasks {t+ 1, . . . , h} on
the RH sample path are the solutions
to problem Q̃′

x̃t,x̃t+H(t+ 1, h), and the
controls of these tasks on the optimal
sample path of P2 are the solutions to
problem Q′

x′∗
t ,x′∗

h
(t+ 1, h). Because

ah+1 > x̃t +H and dh ≥ x̃t +H , we
must have x′∗

h ≥ x̃t +H . Looking at
Q̃′

x̃t,x̃t+H(t+ 1, h) and Q′
x′∗
t ,x′∗

h
(t+

1, h), they are exactly the same, ex-
cept that the starting and ending trans-
mission times of Q̃′

x̃t,x̃t+H(t+1, h)
are potentially sooner than those of
Q′

x′∗
t ,x′∗

h
(t+1, h). Therefore, the op-

timal departure time of any task in

Q̃′
x̃t,x̃t+H(t+ 1, h) must be no later

than that in Q′
x′∗
t ,x′∗

h
(t+ 1, h), which

means x̃t+1 ≤ x′∗
t+1. �
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