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Event-Driven Cooperative Receding Horizon Control
for Multi-Agent Systems in Uncertain Environments
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Abstract—We propose an event-driven Cooperative Receding
Horizon (CRH) controller to solve maximum reward collection
problems (MRCP) where multiple agents cooperate to maximize
the total reward collected from a set of targets in a given mission
space. In previous work, a CRH controller was developed and in
this paper, we overcome several limitations of this controller, in-
cluding potential instabilities in the agent trajectories and poor per-
formance due to inaccurate estimation of a reward-to-go function.
Rewards are non-increasing functions of time and the environment
is uncertain with new targets detected by agents at random time
instants. The controller sequentially solves optimization problems
over a planning horizon and executes the control for a shorter ac-
tion horizon, where both are defined by certain events associated
with new information becoming available. In contrast to the ear-
lier CRH controller, we reduce the originally infinite-dimensional
feasible control set to a finite set at each control update event. We
prove some properties of this new controller and include simulation
results showing its improved performance.

Index Terms—Cooperative control, event-driven control, reced-
ing horizon control, model predictive control, multi-agent systems,
optimization algorithms, path planning, traveling salesman prob-
lem, vehicle routing problem.

I. INTRODUCTION

COOPERATIVE control of multi-agent systems has been
the focus of many recent research works, [1]–[3]. These

can mostly be described in terms of systems where a set of
controllable mobile agents with limited sensing, communica-
tion and computational capabilities seeks to achieve objectives
defined globally or individually. The uncertain environments
where these agents live in, further require the agents to respond
to random events. Examples arise in areas of wireless sensor
network and robotics in autonomous vehicles control, coopera-
tive classification, mobile robot coordination, rendez-vous prob-
lems, task assignment, persistent monitoring, coverage control
and consensus problems; see [4]–[12] and references therein.
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Both centralized or decentralized control approaches are used
to solve these problems. The former are usually based on the
solution of an optimal control problem in a central station
via non-linear programming [13], game theoretic frameworks
[14] or semi-definite programming [15]. In the latter case,
identification of the information to be shared between agents
along with the communication between the agents in order to
make collaborative decisions are critical steps in the formulation
of a cooperative control problem; see [16]–[19].

In this paper, we consider Maximum Reward Collection Prob-
lems (MRCP) where N agents are collecting time-dependent re-
wards associated with M targets (e.g., data associated with each
target) in an uncertain environment. In a deterministic setting
with equal target rewards, a one-agent MRCP is an instance of a
Traveling Salesman Problem (TSP), [20], [21]. The multi-agent
MRCP is similar to the Vehicle Routing Problem (VRP) [22].
These are combinatorial problems for which globally optimal
solutions are found through integer programming. For example,
in [23], [24], a deterministic MRCP with a linearly decreas-
ing reward model is cast as a dynamic scheduling problem and
solved via heuristics. The VRP and Dynamic VRP (DVRP) lit-
erature is extensive. In [25], a comprehensive review is provided
which points to the computational complexity of these problems.
Beyond dynamic programming, various heuristics are described,
including methods such as Genetic Algorithms and Ant Colony
Systems for different versions of DVRPs. A broad taxonomy of
solution approaches may be found in [26]. In [27], a variety of
VRPs is considered from a queueing theory point of view and
solution algorithms are given that provide some performance
guarantees.

Because of the MRCP complexity, it is natural to resort to
decomposition techniques. One approach is to seek a functional
decomposition that divides the problem into smaller subprob-
lems [28], [29] which may be defined at different levels of the
system dynamics. An alternative is a time decomposition where
the main idea is to solve a finite horizon optimization prob-
lem, then continuously extend this planning horizon forward
(either periodically or in event-driven fashion), an example of
event triggered cooperative control is used for the consensus
problem in [30] with centralized and decentralized approaches.
This time decomposition is in the spirit of receding horizon
techniques used in Model Predictive Control (MPC) to solve
optimal control problems for which obtaining infinite horizon
feedback control solutions is extremely difficult [31]. In such
methods, the current control action is calculated by solving a
finite horizon open-loop optimal control problem using the cur-
rent state of the system as the initial state. At each instant, the
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optimization yields an optimal control sequence executed over
a shorter action horizon before the process is repeated. In the
context of multi-agent systems, a Cooperative Receding Hori-
zon (CRH) controller was introduced in [32] with the controller
steps defined in event-driven fashion (with events dependent
on the observed system state) as opposed to being invoked
periodically, in time-driven fashion. The method is extended
into a graph representation with a switching CRH controller
in [33]. A decentralized version of the CRH controller is also
introduced in [18]. A key feature of this controller is that it
does not attempt to make any explicit agent-to-target assign-
ments, but only to determine headings that at the end of the
current planning horizon, place agents at positions such that a
total expected reward is maximized. Nonetheless, as shown in
[32], a stationary trajectory for each agent is guaranteed under
certain conditions, in the sense that an agent trajectory always
converges to some target in finite time.

In this paper, we develop and formalize a new centralized
CRH controller first introduced in [34]. In particular, we con-
sider MRCPs in uncertain environments where we have no
a priori information about the appearance of targets. This means
targets appear/disappear at random times and a target may have
a random initial reward and a random reward decreasing rate.
The new CRH controller allows us to overcome several limita-
tions of the controller in [32], including potential instabilities in
the agent trajectories and poor performance due to inaccurate
estimation of the reward-to-go function. We accomplish this by
(i) reducing, at each event-driven control evaluation step, the
originally infinite-dimensional feasible control set to a finite set
and (ii) by improving the estimation process for the reward to
go, including a new “travel cost factor” for each target which ac-
commodates different target configurations in a mission space.
We also establish some properties of this new controller whose
overall performance is significantly improved relative to the
original one, as illustrated through various simulation exam-
ples. Although the work here is focusing on a centralized CRH
controller, it has been shown in [18] that a distributed version
of [34] may be obtained and ongoing work is intended to do the
same for the controller in this paper.

In Section II, the MRCP is formulated and in Section III we
place the problem in a broader context of event-driven optimal
control. In Sections IV and V the original CRH controller is
reviewed and the proposed new controller and some of its prop-
erties are established. Section VI analyzes the special case of
one agent and two targets while in Section VII simulation ex-
amples are presented and future research directions are outlined
in the conclusions.

II. PROBLEM FORMULATION

We consider a MRCP where agents and targets are located
in a mission space S. There are M targets defining a set T =
{1, . . . , M} and N agents defining a set A = {1, . . . , N}. The
mission space S may have different topological characteristics.
In a 2-D Euclidean topology, S ⊂ R2 as illustrated in Fig. 1
with a triangle denoting a base, circles are mobile agents and
squares are targets. In this case, the distance metric d(x, y) is a
simple Euclidean norm such that d : S × S → R is the length

Fig. 1. Sample mission space, gray regions as obstacles.

of the shortest path between points x, y ∈ S. Moreover, the
feasible agent headings are given by the set Uj (t) = [0, 2π],
j ∈ A. If there are obstacles in S, the feasible headings and the
shortest path between two points should be defined accordingly.
Alternatively, the mission space S may be modeled as a graph
G(E, V ) with V representing the location of targets and the
base. Feasible headings are defined by the (directed) edges at
each node and the distance d(u, v) is the sum of the edge weights
on the shortest path between u and v. In this paper, we limit
ourselves to a Euclidean mission topology. Targets are located
at points yi ∈ S, i ∈ T . Target i’s reward is denoted by λiφi(t)
where λi is the initial maximum reward and φi(t) ∈ [0, 1] is
a non-increasing discount function. By using the appropriate
discounting function we can incorporate constraints such as
hard or soft deadlines for targets. An example of a discount
function is

φi(t) =

{
1 − αi

Di
t if t ≤ Di

(1 − αi)e−βi (t−Di ) if t > Di

(1)

where αi, βi and Di are given parameters. In this case Di

acts as a “deadline” which if exceeded, results in negligible
or no reward. Agents are located at xj (t) ∈ S. Each agent has
a controllable heading at time t, uj (t) ∈ Uj (t) = [0 2π]. The
velocity of agent j is

vj (t) = Vj [cos(uj (t)), sin(uj (t))]� (2)

where we assume that Vj is a fixed speed. This can be relaxed
with Vj treated as another control parameter; it will increase
the problem complexity, but can be handled by the proposed
framework.

We define a mission as the process of the N agents cooper-
atively collecting the maximum possible total reward from M
targets within a given mission time T . Upon collecting rewards
from all targets, the agents return to a base located at z ∈ S
and the mission is complete. Events occurring during a mission
can be controllable (e.g., collecting a target’s reward) or ran-
dom (e.g., the appearance/disappearance of targets or changes
in their location). The event-driven CRH controller we will de-
velop, handles these random events by re-solving the optimal
control problem as in the original CRH controller in [32]. In
order to ensure that agents collect target rewards in finite time,
we assume that each target has a radius si > 0 and that agent j
collects reward i at time t if and only if d(xj (t),yi) ≤ si .
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III. AN EVENT-DRIVEN OPTIMIZATION VIEW

We view the solution of a MRCP as a sequence of head-
ings for all agents and associated heading switching times. We
define a policy π as a vector [u, ξ] where ξ = [ξ1 , . . . , ξK ] are
the switching time intervals over which headings are maintained
with tk+1 =

∑k
l=1 ξl , and t1 = 0. Here, we have defined the

switching intervals ξk to be part of the control; however, had we
assumed a fixed value ξk = δ this would be the fully determinis-
tic time decomposition with time step δ where tk = kδ. On the
other hand, u = [u1 , . . . ,uK ] with uk = [u1(tk ), . . . , uN (tk )]
is the vector of all agent headings at time tk . With M bounded,
there exist policies π such that all targets are visited over a
finite number of switching events. Each switching time tk is
either the result of a controllable event (e.g., visiting a target)
or an uncontrollable random event. This is a complex stochastic
control problem where the state space Ξ is the set of all possi-
ble locations of agents Xk = [x1(tk ), . . . ,xN (tk )] and targets
Yk = [y1 , . . . ,yMk

] along with Tk defined as the set of unvis-
ited targets at time tk and Mk = ‖Tk‖. As the mission evolves,
Mk decreases and the mission is complete when either Mk = 0
or a given mission time T is reached. The complete system state
at time tk is (Xk ,Yk ) ∈ Ξ. The total number of time steps in a
mission is K

T
which depends on T , the total mission time. We

define the optimization problem P as

max
π

K
T∑

k=1

Rπ(tk ,Xk ,Yk ) (3)

where

Rπ(tk ,Xk ,Yk ) =
Mk∑
i=1

N∑
j=1

λiφi(tk )1{d(xj (tk ),yi) ≤ si}

where 1(·) is the usual indicator function. The time a target is vis-
ited is a controllable event associated with a heading switching.
In a deterministic problem, there is no need to switch headings
unless a target is visited, but in an uncertain setting the switching
times are not limited to these events. We define a subsequence
τπ = {τπ

1 , τπ
2 , . . . , τπ

M } of {t1 , . . . tK }, M ≤ K, so that τπ
i

is the time target i is visited. Note that τπ is not a monotonic
sequence, since targets can be visited in any order. Therefore,
(3) can be rewritten as

max
π

M∑
i=1

λiφi(τπ
i ). (4)

Defining the immediate reward as being collected during a time
period ξk and the reward-to-go as being aggregated over all
t > tk + ξk , an optimality equation for this problem is

J(tk ,Xk ,Yk ) = max
uk ,ξk

[
JI (tk ,Xk ,Yk ,uk , ξk )

+ J(tk+1 ,Xk+1 ,Yk+1)
]

(5)

where J(tk ,Xk ,Yk ) denotes the maximum total reward at time
tk with current state (Xk ,Yk ) and JI (tk ,Xk ,Yk ,uk , ξk ) is the
immediate reward collected in the interval (tk , tk+1]. Finally,
J(tk+1 ,Xk+1 ,Yk+1) is the maximum reward-to-go at tk+1 as-
suming no future uncertainty, i.e., we avoid the use of an a priori

stochastic model for the environment, opting instead to react
to random events by re-solving (5) when this happens. Letting
τ ∗ = maxi∈T {τπ

i }, we set J(τ ∗,XK ,YK ) = 0. Henceforth, we
write J(tk ,Xk ,Yk ) = J(tk ) for brevity.

Had we assumed a fixed value for ξk a priori, the optimiza-
tion problem (5) could be solved using Dynamic Programming
(DP) with the terminal state reached when no target is left in
the mission space. However, a fixed ξk does not allow for real-
time reactions to new events. This fact, along with the size of
the state space renders DP impractical and motivates a reced-
ing horizon control approach where we set ξk = Hk based on a
planning horizon Hk selected at time step tk . The selection of
this planning horizon will be fully discussed in the next section.
A finite horizon optimal control problem over (tk , tk + Hk ]
is solved to determine the optimal control u∗

k . This control
is maintained for an action horizon hk ≤ Hk . A new opti-
mization problem is re-solved at tk+1 = tk + hk or earlier if
any random event is observed. Following (5), the optimization
problem Pk is

max
uk

[JI (uk , tk ,Hk ) + J(tk+1 ,Hk+1)] (6)

where J(tk+1 ,Hk+1) and JI (uk , tk ,Hk ) were defined above
assuming ξk = Hk . The immediate reward is zero if agents
do not visit any target during (tk , tk + Hk ], otherwise it is the
reward collected from the visited targets.

IV. CRH CONTROL SCHEME

In this section we briefly review the CRH controller intro-
duced in [32] and identify several limitations of it to motivate
the methods we will use to overcome them.

Cooperation Scheme: In [32] the agents divide the mission
space into a dynamic partition at each mission step. The de-
gree of an agent’s responsibility for each target depends on the
relative proximity of the agent to the target. A neighbor set
is defined for each target which includes its b closest agents,
b = 1, 2, . . ., sharing the responsibility for that target until an-
other agent moves closer. A value of b = 2 is used in the previous
and current work for simplicity. Defining cij(t) = d(yi ,xj (t))
to be the direct distance between target i and agent j at time t,
let Bl(yi , t) ∈ {1, . . . , N} be the lth closest agent to target i at
time t. Formally

Bl(i, t) = argmin
j∈A,j 	=B 1 (i,t),...,j 	=B l−1 (i,t)

{cij(t)} (7)

Let βb(i, t) = {B1(i, t), . . . , Bb(i, t)} be a neighbor set based
on which a relative distance function is defined for all j ∈ A

δij(t) =

⎧⎨
⎩

cij(t)∑
k∈β b (i,t) cik(t)

if j ∈ βb(i, t);

1 otherwise
. (8)

Obviously, if j /∈ βb(i, t), then δij(t) = 1. The relative proximity
function p(δij(t)) defined in [32] is as follows:

p(δij(t)) =

⎧⎪⎨
⎪⎩

1, if δ ≤ Δ
1−Δ−δ
1−2Δ , if Δ ≤ δ ≤ 1 − Δ

0, if δ > 1 − Δ

(9)
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Fig. 2. The Active Target Set for agent 1: S1 (x1 (tk ), Hk ) = {1, 2, 4, 5}.

and is viewed as the probability that target i will be visited
by agent j. Here, Δ ∈ [0, 1

2 ) defines the level of cooperation
between the agents. By increasing Δ, an agent will take full re-
sponsibility for more targets, hence less cooperation. Each agent
takes on full responsibility for target i if δij(t) ≤ Δ. As shown
in [32], this generalizes the Voronoi tessellations of the mission
space where the borders of the partitions will be determined
based on the value of Δ. When Δ = 1

2 the regions converge to
the Voronoi tessellation of the mission space, with the location
of agents at the centers of the Voronoi tiles. There is no coop-
eration region in this case and each agent is fully responsible
for the targets within its own Voronoi tile. On the other hand,
when Δ = 0 no matter how close an agent is to a target, the two
agents are still responsible for that target.

Planning and Action Horizons: In [32], Hk is defined as the
earliest time of an event such that one of the agents can visit one
of the targets:

Hk = min
l∈Tk

{
d(xj (tk ),yl)

Vj

}
. (10)

This definition of planning horizon for the CRH controller en-
sures no controllable event can take place during this horizon.
It also ensures that re-evaluation of the CRH control is event-
driven, as opposed to being specified by a clock which involves
a tedious synchronization over the networked agents. Fig. 2 il-
lustrates how Hk is determined when Vj = 1. The CRH control
calculated at tk is maintained for an action horizon hk ≤ Hk .
In [32] hk is defined either (i) through a random event that may
be observed at te ∈ (tk , tk + Hk ] so that hk = te − tk , or (ii) as
hk = γHk , γ ∈ (0, 1). It is also shown in [32] that under (10)
the CRH controller generates a stationary trajectory for each
agent in the sense that an agent trajectory always converges to
some target in finite time, under the assumption that all minima
of a an introduced potential function are at the target locations.

IV. Original CRH Controller Limitations

1. Instabilities in Agent Trajectories: The optimization
problem considered in [32] uses a potential function which is
minimized in order to maximize the total reward. If the assump-
tion mentioned above (i.e., all minima of the potential function
are at the target locations) does not hold, the stationary trajec-
tory guarantee cannot be maintained. Due to this, the agents
are directed toward the weighted center of gravity of all targets.
This can specifically happen in missions where targets attain

a symmetric configuration, leading to oscillatory behavior in
the agent trajectories. An example is shown in Fig. 7(a) with
the original CRH controller applied to a single agent, resulting
in oscillations between three targets with equal rewards. This
problem was addressed in [18] by introducing a monotonically
increasing cost factor (or penalty) C(uj ) on the heading uj .
While this prevents some of the instabilities, it has to be appro-
priately tuned for each mission. We show how to overcome this
problem in Section V.

2. Hedging and Mission Time: The agent trajectories in [32]
are specifically designed to direct them to positions close to
targets but not exactly towards them unless they are within
a certain “capture distance”. The motivation is that no agent
should be committed to a target until the latest possible time
so as to hedge against the uncertainty of new, potentially more
attractive, randomly appearing targets. This hedging effect is
helpful in handling such uncertainties, but it can create excessive
loss of time, especially when rewards are declining fast. This can
be addressed by more direct movements towards targets, while
also re-evaluating the control frequently enough. The feasible
control set in the original CRH is the continuous set [0, 2π]N.
By appropriately reducing this to a discrete set of control values
we will show how we can eliminate unnecessary hedging. This
also reduces the complexity of the optimal control problem at
each time step and facilitates the problem solution over a finite
number of evaluations. This reduction in complexity is achieved
with no loss of optimality in the objective function that will be
defined in the next section.

3. Estimation of Reward-to-Go: In the original CRH control
scheme, a target visit time is estimated as the earliest time any
agent j would reach some target i, given a control uk at time
tk and maintained over (tk , tk + Hk ]. Thus, the estimated visit
time τ̃lj(uk , tk ,Hk ) for any l ∈ Tk is

τ̃lj(uk , tk ,Hk ) = tk + Hk + d(xj (tk + Hk, uj (tk )),yl)

where xj (tk + Hk, uj (tk )) is the location of agent j in the next
time step given the control uj (tk ). This is a lower bound for τ̃ij
which is feasible only when Mk ≤ N , leading also to a mostly
unattainable upper bound for the total reward. We will show
how this estimate is improved by a more accurate projection of
each agent’s future trajectory.

V. THE NEW CRH CONTROLLER

In this section, we present a new version of the CRH con-
troller in [32]. Using the agent location xj (tk + Hk, uj (tk ))
and assuming Vj = 1 for all agents, the feasible set for
xj (tk + Hk, uj (tk )) is defined as

Fj (tk ,Hk ) = {w ∈ S : d(w,xj (tk )) = Hk}. (11)

In a Euclidean mission space with no obstacles, Fj (tk ,Hk )
is the circle centered at xj (tk ) with radius Hk (see Fig. 2).
We define qi(xj (t)) as the indicator function capturing whether
agent j visits target i at time t

qi(xj (t)) = 1{d(xj (t),yi) ≤ si}. (12)
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We then define the immediate reward at tk :

JI(uk , tk ,Hk ) =
N∑

j=1

Mk∑
l=1

λlφl(tk + Hk )

· ql(xj (tk + Hk, uj (tk ))). (13)

Following the definition of τi as the visit time of target i used in
(4), we define τ̃ij as the estimated visit time of target i by agent
j. Here, τ̃ij > tk and any of the agents in the mission space has
a chance to visit target i. At time tk we define an estimate of the
reward-to-go J(tk+1 ,Hk+1) under control uk as

J̃(uk , tk+1 ,Hk+1) =
N∑

j=1

Mk + 1∑
l=1

λlφl(τ̃lj(uk , tk ,Hk ))

· ql(xj (τ̃lj(uk , tk ,Hk ))). (14)

We previously mentioned that the original CRH control ap-
proach used a lower bound for estimating τ̃ij . We improve this
estimate and at the same time address the other two limitations
presented above through three modifications: (i) We introduce
a new travel cost for each target, which combines the distance
of a target from an agent, its reward, and a “local sparsity fac-
tor”. (ii) We introduce an active target set associated with each
agent at every control evaluation instant tk . This allows us to
reduce the infinite dimensional feasible control set at tk to a
finite set. (iii) We introduce a new event-driven action horizon
hk which makes use of the active target set definition. With
these three modifications, we finally present a new CRH control
scheme based on a process of looking ahead over a number of
CRH control steps and aggregating the remainder of a mission
through a reward-to-go estimation process.

1) Travel Cost Factor

At each control iteration instant tk , we define ζi(tk ) for target
i to measure the sparsity of rewards in its vicinity as follows.
Let D̄i > 0 be the minimum time such that φi(D̄i) = 0 for
each i ∈ T and set Di = min(D̄i , T ). Thus, the average reward
decreasing rate of i over the mission is given by λi/Di . Let the
set {1, 2, . . . , Ik} contain the indices of the Ik closest targets to
i at time tk . We then define the sparsity factor for target i as

ζi(tk ) =
Ik∑

l=1

γl d(yi ,yl)
λl/Dl

. (15)

The parameter Ik is chosen based on the number of targets in
the mission space at time tk and the computation capacity of the
controller. In addition γ ∈ [0 1] is used to shift the weight among
the Ik targets. In (15), ζi(tk ) captures the effect of target clusters
in the mission space. In topologies with a large number of targets
in one cluster, higher values of γ produce a larger force attracting
agents towards such clusters. On the other hand, if γ → 1 and
if Ik includes all available targets, then (15) becomes the sum
of weighted distances between target pairs. In the limit γ = 1,
this results in similar sparsity factors for all the targets.

Note that ζi(tk ) is time-dependent since the set of Ik closest
targets changes over time as rewards are collected. A larger

ζi(tk ) implies that target i is located in a relatively sparse area
and vice versa. The main idea for ζi(tk ) comes from [35] where
it was used to solve TSP problems with clustering.

Next, for any point in x ∈ S, we define target i’s travel cost
at time tk as

ηi(x, tk ) =
d(x,yi)
λi/Di

+ ζi(tk ). (16)

The travel cost is proportional to the distance metric, so the
farther a target is from x the more costly is the visit to that target.
It is inversely proportional to the reward’s average decreasing
rate, implying that the faster the reward decreases, the less the
travel cost is. Adding ζi(tk ) gives a target in a sparse area a
higher travel cost as opposed to one where there is an opportunity
for a visiting agent to collect additional rewards from its vicinity.

2) Active Targets

At each control iteration instant tk , we define for each agent
j a subset of targets with the following property relative to the
planning horizon Hk :

Sj (tk ,Hk ) =
{
� : ∃ x ∈ Fj (tk ,Hk ) (17)

s.t. � = argmin
i∈Tk

ηi(x, tk + Hk ), i = 1, 2, . . . ,Mk

}
.

This is termed the active target set and (17) implies that i ∈ Tk

is an active target for agent j if and only if it has the smallest
travel cost using (16) from at least one point in the reachable set
Fj (tk ,Hk ). This means that every x ∈ Fj (tk ,Hk ) is associated
with one of the active targets and, therefore, so does every
feasible heading uj (tk ), which corresponds to active target l if
and only if

l = argmin
i∈Tk

ηi

(
x(tk + Hk, uj (tk )), tk + Hk

)
. (18)

When d(x, y) is the 2-D Euclidean norm, active targets partition
the reachable set Fj (tk ,Hk ) into several arcs as illustrated in
Fig. 2 where, for simplicity, we assume γ = 0 in (15) and all
λi and φi(t), i = 1, . . . , M are the same. In this case, agent 1
has four active targets S1(tk ,Hk ) = {1, 2, 4, 5} each of them
corresponding to one of the arcs shown in Fig. 2. Consequently,
the common feature of all points on an arc is that they correspond
to the same active target with the least travel cost.

Construction of Sj (tk ,Hk ): For each target l ∈ Tk and each
agent j, let Lk (xj (tk ),yl) be the set of points x ∈ S defining
the shortest path from xj (tk ) to yl . The intersection of this set
with Fj (tk ,Hk ) is the set of closest points to target l in the
feasible set

Cl,j (tk ,Hk ) = Lk (xj (tk ),yl) ∩ Fj (tk ,Hk ). (19)

In a Euclidean mission space, Lk (xj (tk ),yl) is a convex com-
bination (line segment) of xj (tk ) and yl , while Cl,j (tk ,Hk ) is
a single point where this line crosses the circle Fj (tk ,Hk ) (see
Fig. 2). The following lemma provides a necessary and suffi-
cient condition for identifying targets which are active for an
agent at tk using Cl,j (tk ,Hk ).
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Fig. 3. Multiple-immediate-target event happens with agent at equal distance
to targets 1 and 5.

Lemma 1: Target l is an active target for agent j at time tk if
and only if, ∀i ∈ Tk

ηl(Cl,j (tk ,Hk ), tk+1) ≤ ηi(Cl,j (tk ,Hk ), tk+1). (20)

Proof: See Appendix. �

3) Action Horizon

As mentioned in Section IV, hk in [32] is defined ei-
ther (i) through a random event that may be observed at
te ∈ (tk , tk + Hk ] so that hk = te − tk , or (ii) as hk = γHk ,
γ ∈ (0, 1). This definition requires frequent iterations of the
optimization problem through which u∗

k is determined in case
no random event is observed to justify such action. Instead,
when there are no random events, we define a new multiple-
immediate-target event to occur when the minimization in (10)
returns more than one target, i.e., the agent is at an equal distance
from at least two targets. This is illustrated in Fig. 3 where the
agent is moving toward target 1 and at point z it is equidistant to
targets 1 and 5. In this case, we define hk = ‖z − x1(tk )‖ and
the problem is re-solved at tk + hk . In general, we define hk

to be the shortest time until the first multiple-immediate-target
event occurs in (tk , tk + Hk ]

hk = min
{

Hk, inf
{
t > 0 : ∃l, l∗ ∈ Tk s.t. (21)

d(xj (tk + t, uj (tk )),yl) = d(xj (tk + t, uj (tk )),yl∗)
}}

.

Consequently, this definition of hk eliminates any unneces-
sary control re-evaluation.

3) Look Ahead and Aggregate Processes

In order to solve the optimization problem Pk in (6) using the
CRH approach, we need the estimated visit time τ̃ij(uk , tk ,Hk )
for each uk through which J̃(uk , tk+1 ,Hk+1) in (14) can be
evaluated. This estimate is obtained by using a projected path
for each agent. This path projection consists of a look ahead
step and an aggregate step. In the first step, the active target set
Sj (tk ,Hk ) in (17) is determined for each agent j. The remaining
targets are partitioned using the relative proximity function in
(9). We denote the target subset for agent j as Tk,j where

Tk,j =
{
l : p(δlj(tk )) > p(δlq (tk )), ∀q ∈ A

}
. (22)

Fig. 4. Agent’s heading in a Euclidean mission space.

Let |Tk,j | = Mk,j . All τ̃ij(uk , tk ,Hk ) are estimated so that j
visits targets in its own subset starting with the one with the least
travel cost first. We define the agent j’s tour as the permutation
θj (uk , tk ,Hk ) specifying the order in which it visits targets in
Tk,j . For simplicity, we write θj and let θj

i denote the ith target
in agent j’s tour. Then, for all l ∈ Tk,j and tk+1 = tk + Hk

ηθj
1
(xj (tk+1 , uj (tk )), tk+1) ≤ ηl(xj (tk+1 , uj (tk )), tk+1)

and with n = 1, . . . , Mk,j − 1, for all l ∈ Tk,j − {θj
1 , . . . , θ

j
n}

ηθj
n+1

(yθj
n
, τ̃θj

n
(uk , tk ,Hk )) ≤ ηl(yθj

n
, τ̃θj

n
(uk , tk ,Hk ))

where

τ̃θj
n
(uk , tk ,Hk ) = tk + Hk +

n−1∑
i=1

d(yθj
i
,yθj

i + 1
). (23)

This results in the corresponding τ̃lj(uk , tk ,Hk ) for all l ∈ Tk,j .
We can now obtain the reward-to-go estimate as

JA (uk , tk ,Hk ) =
N∑

j=1

Mk + 1 , j∑
l=1

λlφl(τ̃lj(uk , tk ,Hk ))

· ql(xj (τ̃lj(uk , tk ,Hk ))) (24)

where ql(·) is the indicator function defined in (12). Recalling
the immediate reward in (13), the optimization problem Pk

becomes

max
uk ∈[0 2π ]N

[
JI(uk , tk ,Hk ) + JA (uk , tk ,Hk )

]
. (25)

Next, we will present a theorem that enables us to reduce the
infinite feasible set [0, 2π]N to a finite set of headings for each
agent. We do so by proving in Lemma 2 that the optimal heading
for an agent in a single-agent mission is to go toward an active
target in each time step. Then, Theorem 1 proves that the same
holds in a multi-agent MRCP mission. In (11), we defined the
feasible setFj (tk ,Hk ) for the location of agent j in the next step
tk+1 = tk + Hk . In a Euclidean mission space, each point x ∈
Fj (tk ,Hk ) corresponds to a heading v(x) ∈ [0, 2π] relative to
the agent’s location xj (tk ). This is illustrated in Fig. 4. Recalling
(19), Cl,j (tk ,Hk ) is the closest feasible point to target l. We then
define the set containing the headings that correspond to these
feasible points for all the active targets of agent j

Vj (tk ,Hk ) =
{
v(x) : x = Cl,j (tk ,Hk ), l ∈ Sj (tk ,Hk )

}
.

Then, for all agents at time tk , we define the set Vk as follows:

Vk = V1(tk ,Hk ) × V2(tk ,Hk ) × · · · × VN (tk ,Hk ).
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In the next lemma, we prove that in a single-agent mission with
the objective function defined in (25) the optimal control is
u1(tk ) = v(Cl,1(tk ,Hk )) ∈ [0, 2π] for some l ∈ S1(tk ,Hk ).

Lemma 2: In a single agent (N = 1) mission, if u∗
1 is an

optimal solution to the problem

max
uk ∈[0 2π ]

[
JI(uk , tk ,Hk ) + JA (uk , tk ,Hk )

]
(26)

then u∗
1 ∈ V1(tk ,Hk )

Proof: See Appendix. �
The implication of this lemma is that we can reduce the set of

feasible controls [0, 2π] to a finite set defined by active targets
as illustrated in Fig. 2. In this case the set [0, 2π] is divided into
four arcs each corresponding to one active target. The finite set
of feasible controls are then the four direct directions toward the
active targets.

Theorem 1: In a multi-agent MRCP mission, if u∗ =
[u∗

1 , . . . , u
∗
N ] is the optimal solution to the problem in (25) then

u∗ ∈ Vk .
Proof: See Appendix �
Theorem 1 reduces the problem Pk to a maximization prob-

lem over a finite set Vk of feasible controls

max
uk ∈Vk

[
JI(uk , tk ,Hk ) + JA (uk , tk ,Hk )

]
. (27)

The significance of this is that the aggregation process not only
improves the performance of the CRH control, but also reduces
the size of the problem compared to the original CRH controller
in [32]. Having the active target set, an agent will always even-
tually reach a point where the active target set is reduced to only
one active target, which the agents would then move towards.
This resolves the issue of stationarity in [32] and guarantees that
all targets are visited by agents (unless of course their deadlines
are missed in the case of an infeasible problem).

The following algorithm generates controls in this manner
at each step tk and is referred to as the “One-step Lookahead”
henceforth abbreviated as 1-L (extended to a “K-step Looka-
head” algorithm in what follows).

CRH 1-L Algorithm.
1) Determine Hk through (10).
2) Determine the active target set Sj (tk ,Hk ) through (17)

for all j ∈ A.
3) Evaluate JI and JA for all uk ∈ Vk through (13)

and (24)
4) Solve Pk in (27) and determine u∗

k .
5) Evaluate hk through (21)
6) Execute u∗

k over (tk , tk + hk ] and repeat Step 1 with
tk+1 = tk + hk .

The 1-L CRH controller can be extended to a K-step Looka-
head, henceforth referenced to as K-L controller with K > 1,
by exploring additional possible future paths for each agent at
each time step tk . In the 1-L algorithm, the optimal reward-to-
go is estimated based on a single tour over the remaining tar-
gets. The K-L algorithm estimates this reward by considering
more possible tours for each agent as follows. For any feasible

Fig. 5. (a) Five-target mission. (b) Tree structure.

uj (tk ) ∈ Vj (tk ,Hk ) the agent is hypothetically placed at the
corresponding next step location xj (tk+1). This is done for all
agents to maintain synchronicity of the solution. At xj (tk+1),
a new active target set is determined, implying that agent j can
have |Sj (tk + Hk,Hk+1)| possible paths. At this point, we can
repeat the same procedure by hypothetically moving the agent
to a new feasible location from the set Fj (tk+1 ,Hk+1) or we
can stop and estimate the reward-to-go for each available path.
Thus, for a 2-L controller, problem Pk becomes:

max
uk ∈Vk

[
JI(uk , tk ,Hk ) + max

uk + 1 ∈Vk + 1

[
JI(uk+1 , tk+1 ,Hk+1)

+ JA (uk+1 , tk+1 ,Hk+1)
]]

(28)

We extend the previous algorithm to the K-L controller, as
shown below. For a K-L algorithm the optimization problem
Pk includes a K-fold maximization as an extension of the two-
fold optimization in (28).

CRH K-L Algorithm.
1) Determine Hk through (10).
2) Determine the active target set Sj (tk ,Hk ) through (17)

for all j ∈ A.
3) Evaluate JI for all uk ∈ Vk through (13)
4) For each uk ∈ Vk , Step forward to tk+1 = tk + Hk

and xj (tk+1 , uj (tk )) for all j ∈ A.
5) For K times repeat steps 1 to 4 for the new tk+1 for all

uk+1 ∈ Vk+1 .
6) Evaluate JA (uk+K , tk+K ,Hk+K ) for all

uk+K ∈ Vk+K through (23) and (24)
7) Solve the K-L optimization problem Pk and

determine u∗
k .

8) Evaluate hk through (21)
9) Execute u∗

k over (tk , tk + hk ] and repeat Step 1 with
tk+1 = tk + hk .

This procedure can easily be repeated and the whole process
can be represented as a tree structure where the root is the
initial location of the agent and a path from the root to each leaf
is a possible target sequence for the agent. In Fig. 5(a) a sample
mission with 5 targets is shown with its corresponding tree
in Fig. 5(b). A brute-force method involves 5! = 120 possible
paths, whereas the tree structure for this mission is limited to
11 paths. The active target set for agent 1 consists of targets
1, 2. Each of these active targets would then generate several
branches in the tree, as shown. We calculate the total reward
for each path to find the optimal one. Determining the complete
tree for large K is time consuming. The K-L CRH controller
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Fig. 6. Ten-target deterministic mission with different number of look
ahead steps. (a) 1-L: [1 − 9 − 7 − 4 − 3 − 10 − 2 − 6 − 5 − 8]-Reward =
92.6683-Time = 868. (b) 3-L: [6 − 2 − 10 − 3 − 4 − 7 − 9 − 1 − 8 − 5]-
Reward = 92.5253-Time = 897. (c) 5-L: [5 − 6 − 2 − 10 − 3 − 4 − 7 −
9 − 1 − 8]-Reward = 92.6031-Time = 862. (d) 6-L: [9 − 7 − 4 − 3 −
10 − 2 − 6 − 5 − 1 − 8]-Reward = 92.7436-Time = 916.

enables us to investigate the tree down to a few levels and then
calculate an estimated reward-to-go for the rest of the selected
path. However, there is no guarantee on the monotonicity of the
results with more lookahead steps and, in some cases, the final
result degrades with one more lookahead step. We illustrate this
point through a counterexample with a single agent case and ten
equally important targets (see Fig. 6 where the reward for each
target at the time of the collection is shown below it). This is a
straightforward TSP for which the optimal path can be obtained
through an exhaustive search. For this case, the 1-L and 2-L
CRH controllers find the same path with a reward of 92.6683.
However, once we move up to 3-L, the CRH controller degrades
to a worse path with a reward of 92.5253 reward, [see Figs. 6(a)
and (b)]. The optimal path calculated through exhaustive
search is obtained by the 6-L CRH controller [Fig. 6(d)]. The
observation is that the non-monotonicity in the number of look
ahead steps is a local effect and once we increase the number of
such steps K, the controller can determine the optimal solution.
This obviously is not always the case in deterministic missions.

3) Complexity of the Algorithm

In [32], it was shown that the complexity of the optimization
algorithm solved at each receding horizon iteration is O(GN )
where N is the number of agents and G is the resolution (i.e.,
discretization level) used to define agent headings over [0 2π]
(typically, G = 16 or 32). In the new approach, since the fea-
sible control set is a finite set defined by the active targets,
the complexity is O(AN ) where A ≤ M (number of targets) is
the maximum number of active targets. Observe that, in general,
A 
 G since the number of active targets is not likely to include

Fig. 7. Comparison of the two CRH controllers for a 3-target mission.
(a) Original CRH oscillation. (b) New CRH optimal solution.

every heading in a discretized [0 2π] set, unless the targets have
a very special topology. Moreover, A decreases as targets are
visited. The value of A depends on determining the active target
set Sj (tk ,Hk ) in (17) for agent j (so that A = |Sj (tk ,Hk )|)
at each step. This is a sorting process over M targets which is
of O(M log M). On the other hand, active target sets have to
be determined for all K lookahead steps and this computation
is of exponential complexity in K. Selecting K is topology-
dependent and K can be tuned for any mission. Note, however,
that in missions with uncertainties a small value of K is suffi-
cient since the topology of the mission space can change at any
time.

VI. TWO-TARGET, ONE-AGENT CASE

The simplest case of the MRCP is that of one agent and
two targets. Obviously, this is an easy routing problem whose
solution is one of the two possible paths the agent can take. We
prove that the 1-L algorithm solves the problem with any linearly
decreasing reward function. Consider a mission with one agent
and two targets with initial rewards and deadlines λ1 ,D1 and
λ2 ,D2 , respectively. The analytical solution for this case reveals
whether path θ1 = (1, 2) or θ2 = (2, 1) is optimal. Following
the previous analysis, we assume that V1 = 1 and set x1(tk ) = x
for the sake of brevity. We also assume the rewards are linearly
decreasing to zero: φi(t) = 1 − t

Di
. The two possible rewards

are given by

R(1,2) = λ1

[
1 − d(x,y1)

D1

]

+ λ2

[
1 − d(x,y1) + d(y1 − y2)

D2

]
(29)

R(2,1) = λ2

[
1 − d(x,y2)

D2

]

+ λ1

[
1 − d(x,y2) + d(y2 − y1)

D1

]
. (30)

Therefore, if R(1,2) > R(2,1) , it follows that the following in-
equality must hold:

λ1

D1

[
d(x,y1) − d(x,y2) + d(y2 ,y1)

]
<

λ2

D2

[
d(x,y2) − d(x,y1) + d(y1 ,y2)

]
(31)
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Fig. 8. Performance comparison of the original and new CRH algorithms (numbers in red show the reward for each target). (a) Initial mission. (b) Original
CRH controller, 8 out of 25 targets visited prior to their deadlines. Reward = 62.8, Travel Time = 714, Computation Time: 108 s. (c) 3-L Controller, 19 out of
25 targets visited prior to their deadlines. Reward = 141.29, Travel Time = 677, Computation Time: 104 s. (d) 5-L Controller, 20 out of 25 targets visited
prior to their deadlines. Reward = 143.42, Travel Time = 657, Computation Time: 1400 s.

and the optimal path is θ∗ = θ1 . Letting θCRH denote the path
obtained by the 1-L CRH controller, we show next that this
controller recovers the optimal path θ∗.

Theorem 2: Consider a two-target, one-agent mission. If
γ = 0 in (15) and target i’s reward at time t is λi(1 − t

Di
),

then θCRH = θ∗.
Proof: See Appendix. �

VII. SIMULATION EXAMPLES

We provide several MRCP examples in which the perfor-
mance of the original and new CRH controllers is compared.

We have also applied the CRH control method to the deter-
ministic and completely homogeneous case of benchmark TSP
problems. We emphasize that the CRH controller is not designed
for deterministic TSP problems, thus it is not expected to per-
form as well as highly efficient TSP algorithms. Nonetheless, it
performs to a comparable level; detailed results can be found in
[36]. In all examples that follow, we use the cooperation param-
eter Δ = 0, mobile agent speed Vj = 1, and the parameters for
target rewards are αi = 1, βi = 1 in (1).

Addressing Instabilities: As already mentioned, the original
CRH controller may give rise to oscillatory trajectories and
fail to complete a mission. This is illustrated in Fig. 7(a) for a
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TABLE I
20 TARGET-2 AGENT MISSIONS

Mission # Original CRH 3-L CRH

Reward Travel Time Reward Travel Time

1 33.92 412 45.24 536
2 41.48 439 52.4 426
3 30.93 476 41.19 483
4 32.08 389 37.24 457
5 41.5 444 47.25 537
6 44.61 389 47.91 471
7 23.93 528 35.48 462
8 38.68 415 50.91 489
9 30.92 478 34.08 429
10 36.81 458 44.26 476
Average 35.48 443 43.53 479
SD 6.29 43.92 6.40 37.75

simple mission with three linearly discounted reward targets. In
Fig. 7(b), it is shown that the new CRH controller can easily
determine the optimal path in this simple case.

Comparison of the Two CRH Controllers: A mission with 25
targets distributed uniformly and 2 agents starting at a base is
considered as shown in Fig. 8(a), with uniformly distributed ini-
tial rewards: λi ∼ U(10, 20) and Di ∼ U(300, 600) as in (1).
In this case, the original CRH [Fig. 8(b)] significantly underper-
forms compared to a 3-L and 5-L CRH controller [Figs. 8(c), (d)]
by a large margin, with the 3-L and 5-L controllers more than
doubling the mission reward. We have used a value of γ = 0.3
and I0 = 25 in (15). The value for Ik is equal to the number of
remaining targets in the mission at time tk , i.e., Ik = Mk . The
best travel time is from the 5-L controller where the mission is
completed in 657 units of time. It should be noted that minimiz-
ing time is not an objective of the MRCP considered here and
reward maximization dictates the final length of the mission.

In Fig. 8 for the first ten iterations the original CRH average
CPU time is around 3 s while for the 3-L and 5-L controllers it
is 6 s and 114 s, respectively. However, in the last ten iterations
the 3-L and 5-L CPU time goes down to 0.5 s, while it stays the
same for the original CRH controller. In Fig. 8, it can be seen
that in the original algorithm the red agent exhibits oscillatory
behavior around targets 3, 20, 4, 1. This results in missing three
of these targets. This behavior is one reason that the original
controller underperforms in these cases. The other reason is that
it has to solve a nonlinear optimization problem at each iteration
whose complexity is fixed, whereas in the new CRH controller
the computation time decreases drastically as the number of tar-
gets left in the mission space decreases. The computation times
for all the controllers are shown in Fig. 8 (based on a 3.16 GHz
2-core CPU). In order to calculate the control for the original
CRH controller, the complete infinite feasible control set is dis-
cretized into a finite number of headings instead of solving the
original complex nonlinear optimization problem (in this case,
we discretized to 16 headings). The total computation times for
the original CRH and 3-L controllers are almost the same, while
that of the 5-L controller is almost 10 times longer. In terms
of computation time per control iteration, this is approximately
the same in all original CRH controller updates, since it always
involves evaluating the objective function for 16N controls in

TABLE II
20 TARGET-2 AGENT MISSIONS, WITH RANDOM TARGET APPEARANCE

Mission # Original CRH 2-L CRH

Reward Travel Time Reward Travel Time

1 51.63 704 58.61 736
2 46.53 716 67.57 632
3 37.59 646 54.42 691
4 31.71 929 53.13 941
5 60.05 668 81.31 528
6 58.16 609 67.91 688
7 45.81 739 61.29 760
8 49.71 722 59.47 732
9 42.64 822 47.95 818
10 40.32 648 58.01 868
Average 46.42 720 60.97 739
SD 8.69 94.52 9.40 117.87

TABLE III
EFFECT OF THE SPARSITY FACTOR ζi IN CLUSTERED MISSIONS

Mission # γ = 0 γ = 0.3

Reward Travel Time Reward Travel Time

1 40.62 552 61.9 413
2 64.89 447 64.64 420
3 35.24 471 63.8 461
4 63.78 465 64.64 478
5 25.42 493 26.5 449
6 22 454 22 454
7 44.1 458 46.84 449
8 34.26 466 61.21 472
Average 41.29 475 51.44 449
SD 15.95 33.72 17.79 22.91

this case. In contrast, for the 3-L and 5-L controllers, computa-
tion times are longer in the first few control updates and become
shorter in the final iterations due to the smaller number of targets
remaining to be visited.

Randomly Generated Missions: To compare the overall per-
formance of the new CRH controller, we generated ten missions,
each with 20 targets that are uniformly located in a 300 × 300
mission space and two agents initially at the base. We have used
λi ∼ U(2, 12) and Di = 300. The results are shown in Table I,
in which can be seen that in every single case, the new CRH
controller collects a higher reward (22% average increase) with,
sometimes, a longer travel time (8% average increase). This
longer travel time is to be expected since the new controller is
capable of visiting more targets before they disappear due to
vanishing rewards. In another example, 10 missions were gen-
erated, each with 20 targets where 10 targets are only initially
available to the agents. The other 10 targets appear at random
time instants. We use an initial reward λi ∼ U(2, 12) and the
parameter Di ∼ U(300, 600). The comparison of the original
and new CRH controller is shown in Table II. An increase of
31% is seen in the total reward with a slight 2% increase in the
total mission time.

Sparsity Factor in Clustered Missions: We considered eight
missions with 20 targets that are located uniformly in one case
and in nine clusters in a second case. The goal here is to in-
vestigate the contribution of the sparsity factor ζi in (15). We
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have again used λi ∼ U(2, 12) and Di = 300. We consider a
case with γ = 0 which eliminates the effect of ζi and a second
case with γ = 0.3 and IK = 5 in (15). The results in Table III
indicate that in the clustered missions rewards are improved by
about 24%. It is worth pointing out that the change in the γ
value did not have a significant effect in missions with targets
distributed uniformly (not shown in Table III).

VIII. CONCLUSIONS AND FUTURE WORK

A new CRH controller was developed for solving coopera-
tive multi-agent problems in uncertain environments using the
framework of previous work in [32]. We overcame several lim-
itations of the controller developed in [32], including agent tra-
jectory instabilities and inaccurate estimation of a reward-to-go
function while improving the overall performance. The event-
driven CRH controller is developed to solve the MRCP, where
multiple agents cooperate to maximize the total reward collected
from a set of stationary targets in the mission space. The mis-
sion environment is uncertain, for example targets can appear
at random times and agents might have a limited sensing range.
The controller sequentially solves optimization problems over
a planning horizon and executes the control for a shorter action
horizon, where both are defined by certain events associated
with new information becoming available. Unlike the earlier
CRH controller, the feasible control set is finite instead of infi-
nite. In several numerical comparisons, we showed that the new
CRH controller has a better performance than the original one.

In ongoing work, the same framework is applied to problems
other than the MRCP, such as “data harvesting” where each
target is generating data that should be collected and delivered
to the base. Here, the base acts as a target with dynamic reward.
Ongoing work is also focused on extending the CRH controller
to a decentralized version where each agent is responsible for
calculating its own control with limited information. This will be
pursued along the lines of [18] where decentralization was done
for the original CRH controller. In [18] the main idea is that
the reward-to-go generates a potential field in the centralized
algorithm and the same pattern is followed in the distributed
version by evaluating the gradient of potential fields for each
separate agent. In the new algorithm, we can evaluate JA from
the perspective of each agent. Calculating the immediate reward
JI for each agent is also trivial, given that the agent should at
least be able to see the closest target to itself. Note, however,
that we may lose the synchronization of agents and HK may
need to be defined for each agent separately.

Finally, we are pursuing extensions to mission space topolo-
gies that include obstacles or are better represented through
graphs with agents restricted to move along edges of the graph.

APPENDIX

Proof of Lemma 1: From the definition of ηi(x, t) in (16)
and Cl,j (tk ,Hk ) in (19) we have

d(Cl,j (tk ,Hk ),yl) ≤ d(x,yl), ∀x ∈ Fj (tk ,Hk ) (32)

Dividing both sides by λlD
−1
l and adding ζl(tk + Hk ) we get,

for all x ∈ Fj (tk ,Hk )

ηl(Cl,j (tk ,Hk ), tk + Hk ) ≤ ηl(x, tk + Hk ) (33)

To prove the forward lemma statement, we use a contradiction
argument and assume there exists a target r such that

ηl(Cl,j (tk ,Hk ), tk + Hk ) > ηr (Cl,j (tk ,Hk ), tk + Hk ).

Using (33), we get ηr (Cl,j (tk ,Hk ), tk + Hk ) < ηl(x, tk + Hk )
for all x ∈ Fj (tk ,Hk ). This implies that there exists no x ∈
Fj (tk ,Hk ) such that l = argmini ηi(x, tk + Hk ). Therefore, l
cannot be an active target, which contradicts the assumption,
hence (20) is true.

To prove the reverse statement, we assume that (20) holds for
any i ∈ Tk , i.e.,

ηl(Cl,j (tk ,Hk ), tk + Hk ) < ηi(Cl,j (tk ,Hk ), tk + Hk ).

By the definition of active targets (17), we then know that l is
an active target for agent j at time tk . �

Proof of Lemma 2: The active target set creates a partition
of the set F1(tk ,Hk ) where each subset is an arc in a Euclidean
mission space. For any active target l ∈ S1(tk ,Hk ), let the arc
associated with target l be F l

1(tk ,Hk ) ⊂ Fj (tk ,Hk ). For each
F l

1(tk ,Hk ), we prove that for all x ∈ F l
1(tk ,Hk ) the heading

v∗ = v(Cl,1(tk ,Hk )) satisfies

J(v(x), tk ,Hk ) ≤ J(v∗, tk ,Hk ). (34)

This means that among all headings v(x), x ∈ F l
1(tk ,Hk ) the

heading towards the active target l is the optimal heading in that
arc. There are two possible cases:

Case 1: yl ∈ F1(tk ,Hk ). This means d(yl ,x1(t)) = Hk .
Also, from (19) and (12), we know that ∀r ∈ Tk

qr (Cr,1(tk + Hk )) =

{
1 if r = l

0 otherwise

Setting τ̃r (v∗, tk ,Hk )) = τ̃ ∗
r , the visit time for target l is τ̃ ∗

l =
tk + Hk and reward from target l will be collected at time
tk + Hk . The estimated visit times τ̃ ∗

r for the rest of the targets
are determined based on a tour θ∗ which is a permutation of the
set T ∗

k+1 = Tk − {l}. This tour gives the order of visit for all
remaining targets. The objective function for the control v∗ is
as follows:

J(v∗, tk ,Hk ) = JI(v∗, tk ,Hk ) + JA (v∗, tk ,Hk )

= λlφl(tk + Hk ) +
M ∗

k + 1∑
r=1

λrφr (τ̃ ∗
r )ql(x1(τ̃ ∗

r )).

Here, M ∗
k+1 = |T ∗

k+1 |. Next we calculate the objective func-
tion for any other heading v(x) where x ∈ F l

1(tk ,Hk ). Setting
τ̃r (v(x), tk ,Hk )) = τ̃r and x 	= Cl,1(tk ,Hk ) so that qr (x) = 0
for all r ∈ Tk , we have

J(v(x), tk ,Hk ) = JI(v(x), tk ,Hk ) + JA (v(x), tk ,Hk )

= 0 +
Mk + 1∑
r=1

λrφr (τ̃r )ql(x1(τ̃r )).
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In this case, no target is visited at time tk + Hk and the aggre-
gated tour θ is a permutation of the set Tk+1 = Tk . By definition,
the target with the least travel cost from point x is the active
target l and this is the first target in the tour θ. The rest of the
tour consists of targets in Tk+1 − {l}. Since in both tours θ∗ and
θ the starting point and the set of available targets are the same,
the order of targets will be identical and we have θ = [l,θ∗].
The visit times in θ∗ are given by

τ̃θ∗
n

= tk + Hk +
n−1∑
i=1

d(yθ∗
i
,yθ∗

i + 1
).

In θ, the visit time for the first target θ1 = l is τ̃θ1 = tk + Hk +
d(x,yl). For the rest of the targets, with 1 < n ≤ Mk+1

τ̃θn
= tk + Hk + d(x,yl) +

n−1∑
i=1

d(yθi
,yθi + 1 ).

Expanding both objective functions in (34) we need to prove
that

λlφl(τ̃l) +
Mk + 1∑
n=2

λθn
φθn

(τ̃θn
) ≤ λlφl(τ̃ ∗

l ) +
M ∗

k + 1∑
n=1

λθn
φθ∗

n
(τ̃θ∗

n
).

(35)
Recall that by assumption, φi(t) is a non-increasing function.
Since for all 1 < n ≤ Mk+1 , we have θn+1 = θ∗

n and τ̃θn + 1 >
τ̃θ∗

n
it follows that

φθn + 1 (τ̃θn + 1 ) ≤ φθ∗
n
(τ̃θ∗

n
).

Summing over all the targets and observing that Mk+1 = 1 +
M ∗

k+1 we have

Mk + 1∑
n=2

λθ′
n
φθn

(τ̃θn
) ≤

M ∗
k + 1∑

n=1

λθn
φθ∗

n
(τ̃θ∗

n
). (36)

For target l under the control v∗, we have τ̃ ∗
l = tk + Hk and

under v(x), we have τ̃l = (tk + Hk + d(x,yl)). Using the non-
increasing property of the function φi(t) we have

φl(τ̃l) ≤ φl(τ̃ ∗
l ). (37)

Combining (36) and (37) yields (35).
Case 2: yl 	∈ F1(tk ,Hk ). In this case, for any point x ∈

F l
1(tk ,Hk ) we have a zero immediate reward. Thus, only the

rewards-to-go need to be compared. Using (18), for any x ∈
F l

1(tk ,Hk ) we know the aggregation tour θ for any point x
starts with target l and the rest of it would also be the same.
Similarly, let us assume θ∗ is the tour for v∗ and θ is the tour
for any other control v(x). The estimated visit times for θ∗ are

τ̃θ∗
n

= tk + Hk + d(yl , Cl,1(tk ,Hk )) +
n−1∑
i=1

d(yθ∗
i
,yθ∗

i + 1
)

and for θ

τ̃θn
= tk + Hk + d(yl ,x) +

n−1∑
i=1

d(yθi
,yθi + 1 ).

By the definition in (19), Cl,1(tk ,Hk )) is on the shortest path
from x1(tk ) to yl , i.e., τ̃θn

> τ̃θ∗
n

. Again, with φi(t) being

non-increasing, we have φθn
(τ̃θn

) ≤ φθ∗
n
(τ̃θ∗

n
) for all n, which

implies J(v(x), tk ,Hk ) ≤ J(v∗, tk ,Hk ).
We have thus proved the lemma statement that the optimal

heading of the agent is one of the direct headings towards an
active target. �

Proof of Theorem 1: In the multi-agent mission, calculating
the immediate reward and reward-to-go in (13) and (24) for
each agent is equivalent to a one-agent mission limited to its
own target subset Tk,j . Therefore, the result follows directly
from Lemma 2. �

Proof of Theorem 2: We assume WLOG that d(x,y1) <
d(x,y2) so that at time tk we have Hk = d(x,y1). This implies
that target 1 is always an active target (the travel cost of target
1 at time tk+1 = tk + Hk is equal to 0). Recalling (19) and set-
ting C2,1 = C2,1(tk ,Hk ), we have d(x,y1) = d(x, C2,1) = Hk .
This results in

d(x,y2) = d(x,y1) + d(y2 , C2,1). (38)

From Lemma 1, target 2 is an active target if and only
if η2(C2,1 , tk + Hk ) ≤ η1(C2,1 , tk+1). Therefore, from (16),
target 2 is an active target if and only if

d(C2,1 ,y2)
λ2D

−1
2

≤ d(C2,1 ,y1)
λ1D

−1
1

which is rewritten as

λ1

D1
d(C2,1 ,y2) ≤

λ2

D2
d(C2,1 ,y1).

We now consider two possible cases regarding target 2. First,
assume target 2 is not an active target, i.e.,

λ1

D1
d(C2,1 ,y2) >

λ2

D2
d(C2,1 ,y1). (39)

Starting with the trivial inequality

0 >
−λ1

D1

[
d(C2,1 ,y2) + d(C2,1 ,y1)

]
add λ2

D2

[
d(C2,1 ,y1)

]
to both sides and use (39) to get

λ1

D1

[
d(C2,1 ,y2)

]
>

λ2

D2

[
d(C2,1 ,y1)

]

>
−λ1

D1

[
d(C2,1 ,y2)

]
+

(
λ2

D2
− λ1

D1

)
d(C2,1 ,y1)

]
.

Adding the positive quantity of λ2
D2

[
d(C2,1 ,y2)

]
to both sides

and invoking the triangle inequality(
λ1

D1
+

λ2

D2

) [
d(C2,1 ,y2)

]
>

(
λ2

D2
− λ1

D1

) [
d(C2,1 ,y2)

]

+
(

λ2

D2
− λ1

D1

) [
d(C2,1 ,y1)

]
>

(
λ2

D2
− λ1

D1

)
d(y1 ,y2).

Rearranging the last inequality and using (38) results in

λ1

D1

[
d(x,y2) + d(y2 ,y1)

]
+

λ2

D2
d(x,y2) >

λ1

D1
d(x,y1)

+
λ2

D2

[
d(x,y1) + d(y2 ,y1)

]
(40)
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which is the same as (31) implying that path θ1 = (1, 2) is
optimal, i.e., the CRH controller finds the optimal path.

Next, assume that target 2 is also an active target along with
target 1. Let u1 and u2 be the headings for target 1 and 2,
respectively, i.e., x1(tk+1 , u1) = y1 and x1(tk+1 , u2) = C2,1 ,
The objective function of the CRH controller under u1 and
u2 is

J(u1 , tk ,Hk ) = JI(u1 , tk ,Hk ) + JA (u1 , tk ,Hk )

= λ1φ1(tk+1) + λ2φ2(tk+1 + d(y1 ,y2))

J(u2 , tk ,Hk ) = JI(u2 , tk ,Hk ) + JA (u2 , tk ,Hk )

= 0 +
[
λ2φ2

(
tk+1 + d(C2,1 ,y2)

)
+ λ1φ1

(
tk+1 + d(C2,1 ,y2) + d(y1 ,y2)

)
.

Note that in order to evaluate the objective function for u2 we
find a tour starting at point C2,1 which goes to the target with
minimum travel cost. However, for target 2 to be active at tk it
has to have the smallest travel cost at that point, which results
in JA (u2 , tk ,Hk ) to be the reward of going to target 2 and then
target 1. We can see that using the reward of each path from (29)
and (30) we can write

J(u1 , tk ,Hk ) = R(1,2) , J(u2 , tk ,Hk ) = R(2,1) .

Thus, the objective function of the CRH controller under u1 and
u2 is identical to the corresponding path rewards. Hence, the
CRH controller selects the correct optimal heading at tk . �
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