
1

A Solution to the Optimal Lot Sizing Problem as a

Stochastic Resource Contention Game
Chen Yao, Christos G. Cassandras, Fellow, IEEE

Abstract—We present a new way to solve the "lot sizing" prob-
lem viewed as a stochastic non-cooperative resource contention
game. We develop a Stochastic Flow Model (SFM) for polling
systems with non-negligible changeover times enabling us to
formulate lot sizing as an optimization problem without imposing
constraints on the distributional characteristics of the random
processes in the system. Using Infinitesimal Perturbation Analysis
(IPA) methods we derive gradient estimators of the performance
metrics of interests with respect to the lot size parameters and
prove they are unbiased. We then derive an on-line gradient-
based algorithm for obtaining optimal lot sizes from both a
system-centric and user-centric perspective. Uncharacteristically
for such cases, there is no gap between the two solutions in
the two-class case for which we have obtained explicit numerical
results. We derive a proof of this phenomenon for a deterministic
version of the problem, suggesting that lot-sizing-like scheduling
policies in resource contention problems have a natural property
of balancing certain user-centric and system-centric performance
metrics.

Note to Practitioners—This paper is motivated by the "lot
sizing" problem in manufacturing which involves the determi-
nation of the optimal number of parts combined to form a
"lot" for each of several part types differing in their processing
times, raw material supplying rates, etc. Using better selected
lot sizes decreases the average lead time, and ultimately leads to
larger throughput. In addition, lot sizing provides an inexpensive
way to improve performance by controlling a simple parameter,
especially when compared to complicated manufacturing re-
engineering processes. The paper proposes an algorithm to
calculate optimal lot sizes for multiple types of manufacturing
parts. This algorithm only relies on data that are either readily
observable or easily calculated from operating production sys-
tems. It can be easily programmed and used for on-line estimation
of optimal lot sizes. Further, the paper examines the problem
from the point of view of a central coordinator aiming to optimize
a system-wide objective and can select all lot sizes or as a "game"
where each part type controller can individually select its own
lot size to optimize its own objective. It is shown that both
approaches lead to the same solution. This property is attractive
since it indicates an inherent fairness in treating different part
types and suggests that similar mechanisms may be used in other
applications with similar resource contention features.

Index Terms—Stochastic Flow Model, Lot-Sizing, Perturbation
Analysis

I. INTRODUCTION

A large class of Discrete Event Systems (DES) involves

the control of resources allocated to users, ultimately aiming

to optimize various performance metrics. In this paper, we

consider a family of such problems in which a single resource

can “cycle” through multiple users and provide service to each

Manuscript submitted XXX. This work is supported in part by NSF
under Grant EFRI-0735974, by AFOSR under grants FA9550-07-1-0361 and
FA9550-09-1-0095, by DOE under grant DE-FG52-06NA27490, and by ONR
under grant N00014-09-1-1051.

one according to some policy that defines the amount of time

or number of tasks devoted to that user before it moves to

a different one. The problem is complicated by the fact that

the resource cannot instantaneously switch between users and

doing so incurs a delay referred to as “changeover time” or

“setup time.” This models, for example, transportation systems

where the resource physically moves from one location to

another to pick up or deliver users (passengers or goods). In

what follows, we first review the previous relevant work, and

then introduce our proposed solution.

A. Previous Work

Problems as described above have been extensively studied

in the literature as limited service polling models [1], where

each user is represented as a queue of tasks waiting for

service. In these models, each queue receives service until K
tasks are processed (known as K-limited service) or until the

time spent in the current queue exceeds a certain threshold

T (known as time-limited service). The analysis carried out

aims at deriving or estimating the average system time given

the parameter K or T depending on the policy considered.

Exact solutions can only be obtained for some special cases

such as assuming symmetry and exponentially distributed

service times as in [2], or two users only and no changeover

time as in [3]. Alternatively, approximation methods may be

used. For example, in [4], an upper bound was given for the

average delay of a symmetric system with general service time

distribution, by assuming that the system will keep serving the

current queue till it’s empty; in [5], authors studied the time-

limit service model, using an approximation by assuming the

time thresholds as exponentially distributed random variables,

and then estimated the average delay using discrete Fourier

transforms.

The lot sizing problem falls within the class of polling

models and is mostly encountered in production planning

for manufacturing systems. In this problem, changeover/setup

times can be significant and a “lot” is defined as a set of

tasks that must be performed by the resource in between suc-

cessive changeovers. In the manufacturing system literature,

the main concern is to determine lot sizes of manufactured

parts for several future periods that minimize the sum of setup

and inventory holding costs over a planning horizon, while

satisfying a known demand in discrete time. The study of

this problem has its origins in the Economic Order Quantity

(EOQ) model proposed in [6], extended through the years ([7],

[8], [9], [10]) and eventually formulated mathematically as

a mixed integer programming problem with binary variables

representing setups for each job-period combination. The

2

Fig. 1. Queueing-based model for the lot-sizing problem.

problem is NP-hard [11], so that various heuristics have been

proposed as in [12],[13],[14],[15], [16], [17], [18], [19]. In ad-

dition, extensions to multi-stage lot-sizing problems have been

considered in [20],[21],[22], [23], [24], where users (parts)

go through a sequence of resources (machines) leading to

formidable complexity even if one assumes unlimited resource

capacities. This line of work is based on discrete-time models,

usually assuming fixed setup costs and inventory holding costs,

and it ignores random effects in the job arrival and service

processes since there is actually no notion of “jobs” in such

discrete-time models.

In view of the above limitations, research eventually shifted

toward studying the lot-sizing problem based on queueing

systems with the mean system time as a cost function instead

of setup costs. In these models, a common resource (server)

is scheduled to cycle through multiple users (queues, each

containing jobs of the same “class”) and arriving jobs of each

class are batched on a First-Come-First-Served (FCFS) basis

to define a “lot” comprised of θi jobs. The objective then is to

select proper lot sizes for different classes in order to minimize

the overall mean system time. Figure 1 illustrates this model

with N different job classes representing different part types.

The interarrival and processing times for jobs of class i are all

random variables and vary among different classes. Arriving

jobs of class i wait until θi of them can be batched on a FCFS

basis to define a single lot (note that θi need not be integer-

valued, since the actual lot may be chosen to be the floor �θi�).
Once there is a lot waiting in the ith queue, the server can

start processing it according to some given schedule. We will

assume this schedule is based on a round-robin scheme, i.e.,

the classes have been ordered in advance. When the server

switches to class i, a setup time Si is incurred, which is

generally also a random variable. When a lot is served, jobs

are processed individually and must wait in an output queue

until the entire lot is complete. It is only at that time that

the lot is released to the next server (or leaves the system).

Clearly, during a setup, the server is idle, so it is desirable to

minimize the total setup time. If lot sizes are small, the server

engages in frequent setups and utilization is low; on the other

hand, if lots are large, then classes experience long queueing

delays in both the input queue (until the lot is formed) and

output queue (until all jobs in the lot are processed) shown in

Figure 1. Therefore, there is a clear tradeoff in selecting lot

sizes and, generally, an optimal value depending on how the

tradeoff is mathematically expressed.

Previous work on this model has focused on deriving rela-

tionships between the mean system time and lot sizes. Closed-

form results can only be obtained for a simple Markovian

queueing model in [25] or a single M/G/1 queue in [26]. For

multiclass systems, one can only resort to approximation meth-

ods to capture this relationship as in [27],[28]. For example,

in [28], the system is approximated by an M/G/1 queue with

the service time distribution given by the mix of processing

times across batches of all classes. There is no guarantee on the

quality of these approximation methods which are mainly used

for qualitative analysis and gaining insights, rather than aiming

to formally control and optimize the system. An alternative

approach based on estimating performance sensitivities and

using a “surrogate” optimization process was also proposed

in [29]. It is worth noting that lot sizing provides an oppor-

tunity to optimize system performance by controlling simple

parameters (lot sizes) and is thus an inexpensive alternative to

complex manufacturing re-enginnering processes. Moreover,

by periodically adjusting the parameter values one can react

to random effects in the environment. The problem is also

interesting in that it may be viewed from the perspective of

either the system trying to optimize the overall average system

time while maintaining high server utilization or the individual

user (the ith class) trying to optimize its own average system

time. This gives rise to a resource contention game which often

results in a gap between the system-centric and user-centric

optimal solutions. This gap is commonly referred to as the

“price of anarchy.”

B. SFM and IPA Method

In this paper, we propose a new way to tackle the lot-

sizing problem, by first constructing a Stochastic Flow Model

(SFM) for the problem. SFMs, introduced in [30], form a class

of stochastic hybrid systems which can be used as abstrac-

tions of DES whose event-driven dynamics are too complex

to analyze. The time-driven component of a SFM captures

general-purpose flow dynamics and the event-driven compo-

nent describes switches, controlled or uncontrolled, that alter

the flow dynamics. Fluid models have been used to analyze

or efficiently simulate various settings where users compete

over different sharable resources (e.g., [31], [32], [33], [34],

[35], [36]). Unlike traditional fluid models where the flow rates

involved are treated as fixed parameters, a SFM has the extra

feature of treating flow rates as stochastic processes. With

only minor technical conditions imposed on the properties of

such processes, it is therefore possible to model very general

dynamics (e.g., [37].) Moreover, while recognizing that fluid

models cannot always provide accurate representations for the

purpose of analyzing the performance of the underlying DES,

the purpose of a SFM in our case is to enable the estimation

of performance sensitivity estimates through which we can

achieve effective control and optimization. Thus, the value of

a fluid model lies in capturing those system features needed

to design an effective controller that can potentially optimize

performance without any attempt at estimating the correspond-

ing performance value with accuracy. Our approach is based

on Infinitesimal Perturbation Analysis (IPA), which uses data

from a single observed sample path to yield unbiased gradient

estimates of performance metrics with respect to lot-sizing

3

parameters and then drives an on-line optimization algorithm

to obtain optimal lot sizes, thus circumventing the difficulty

of obtaining closed-form analytical solutions. In addition, the

gradient estimators obtained through IPA are independent

of the distributional information of the random processes

involved. IPA was originally developed for DES [38] to obtain

unbiased gradient estimates of performance metrics. However,

IPA estimates become biased (hence unreliable for control

purposes) when dealing with various aspects of DES that cause

significant discontinuities in sample functions of interest. This

difficulty has been shown to be circumvented in SFMs and

IPA has been applied in optimizing some challenging systems

that include blocking phenomena and a variety of feedback

control mechanisms (e.g., [39], [40], [41], [42].) In addition,

recent work on multiclass SFMs, for example, [43] and [44],

has opened up the opportunity to study the difference between

the usual system-centric optimization, where a system-wide

metric is optimized, and a user-centric approach, where classes

optimize their own performance function, thus leading to a

non-cooperative resource contention game setting. As men-

tioned above, the two solutions are usually different. However,

an interesting result of our analysis is that the system-centric

and user-centric optimal solutions coincide. This suggests that

the fundamental lot sizing mechanism in scheduling resources

over non-cooperating users is characterized by this attractive

property and may be applicable to broader problems of this

type.

In Section II, we develop a SFM for the lot-sizing problem,

classify all events that occur in the system, and give a formal

representation of the system as a stochastic hybrid automaton.

In Section III, we define the optimization problem and de-

rive IPA gradient estimators based on the general framework

developed in [37]. In Section IV, we prove the unbiasedness

of the derived IPA estimators, and apply them to solve the

lot sizing problem for the original DES. We also provide

simulation results to illustrate our optimization algorithm and

contrast the difference between system-centric and user-centric

perspectives. Observing that there is no “price of anarchy”

in this resource contention game, we prove this fact for the

case of deterministic arrival, setup, and service processes and

provide an explanation of this fact.

II. A STOCHASTIC FLOW MODEL (SFM) FOR THE

LOT-SIZING PROBLEM

The SFM shown in Figure 2 is the counterpart of Figure 1.

There are N classes of flows (jobs) entering the system with

rates {ri(t)}, i = 1, . . . , N , and sharing a single resource

(server). Each flow has its own queue, which is associated

with a lot-sizing parameter θi ∈ R
+, and xi(θ,t) ∈ R

+

denotes the class i queue content at time t. We then define

a vector x(θ,t) = (x1(θ,t), ..., xi(θ,t), ..., xN(θ,t))
′
, where

θ =(θ1, ..., θi, ..., θN)
′
. For notational simplicity, in the rest

of the paper we will write xi(θ,t) as xi(t) when no confusion

arises. The server can only process one class at a time and

switches among queues in round-robin fashion (modulo N).

When it switches to queue i from the previous queue, a

changeover time si is required before it can start processing

Fig. 2. SFM for Lot-sizing Problem

a flow from class i. If xi(t) ≥ θi at the time when the

changeover is complete, then the server starts processing

class i with rate βi(t); if xi(t) < θi, the server waits until

xi(t) = θi. The index of the class the server is serving at

time t is denoted by a(t) ∈ {1, . . . , N}. All processed flow

enters an output queue where it remains until the content of

the output queue reaches θa(t).
Associated with this stochastic hybrid system are several

real-valued and non-negative random processes which are

all defined on a common probability space (Ω,F, P). The

arrival flow processes {ri(t)}, i = 1, . . . , N , characterize the

arrival rates of tasks at time t and the service flow processes

{βi(t)}, characterize their processing capacities. In addition,

the changeover times si are random, with {si(k)} defining

random processes over the number of switches k = 1, 2, . . .
at each i = 1, . . . , N . For notational simplicity, we omit the

k dependencies in si(k) and write only si in what follows.

We are interested in the behavior of this SFM over a finite

time interval [0, T]. Regarding the arrival and service flow

processes, we will impose no restrictions on them as far as

the probability laws that characterize them are concerned, but

will make the following assumption:

Assumption 1: W.p. 1, the arrival ri(t) ≥ 0, and service

capacity βi(t) ≥ 0 functions are piecewise constant in the

interval [0, T].
In addition to a(t), x(t) defined above, let us define

y(θ,t) ∈ R
+ to be the content of the output queue and

z(t) ∈ R
+ to be a “clock” value that represents the time

elapsed since last switch from one queue to the next. As in

the case of xi(θ,t), we will write y(t) instead of y(θ,t) when

no confusion arises.Then, the dynamics of each state variable

xi(t), i = 1, . . . , N , and of the output queue content y(t) are

given by

dxi(t)

dt+
=

ri(t)− βi(t)

if a(t) = i, z(t) ≥ sa(t)
and xi(t) + y(t) ≥ θi

ri(t) otherwise
(1)

dy(t)

dt+
=

βa(t)(t)

if z(t) ≥ sa(t), y(t) < θa(t)
and xa(t)(t) + y(t) ≥ θa(t)

0 otherwise
(2)

y(t) = 0 if y(t−) = θa(t−) (3)

In (1), the condition xi(t) + y(t) ≥ θi indicates that there is

4

sufficient flow from class i to form a lot; if y(t) = 0 and

xi(t) < θi, then
dxi(t)
dt+

= ri(t) and
dy(t)
dt+

= 0, which implies

the system remains idle until class i accumulates enough flow

to form a lot. The condition z(t) ≥ sa(t) simply indicates that

the changeover is complete and the server may process a lot.

In (2), the output queue fills up with rate βa(t)(t) as long as a

lot is formed and the changeover is complete at the currently

selected queue. The condition (3) is based on the fact that

when y(t−) = θa(t−), the server has finished serving a full

lot of the current class a(t) and is ready to switch to the next

class; when this happens, all flow in the output queue leaves

the system thus resetting the output queue to an empty state

y(t) = 0. Along the same lines, the dynamics of the clock

variable z(t) are

dz(t)

dt+
= 1 if y(t) < θa(t)

z(t) = 0 if y(t−) = θa(t−) (4)

where (4) indicates that the clock is also reset when the server

switches to a new class.

A. Event Classification

Following the event classification for general stochastic

hybrid systems in [37], there are three types of events that

can occur in the SFM of Figure 2 and cause discrete state

transitions:

1. Exogenous events. An event at time τk is exogenous if

τk is independent of the controllable vector θ. In this SFM,

exogenous events correspond to changes in the arrival flow

rates ri(t) or the processing rates βi(t), i = 1, . . . , N .

2. Endogenous events. An event occurring at time τk
is endogenous if there exists a continuously-differentiable

function gk(x, y, θ) (see also [37]) , such that

τk = min {t : t > τk−1, gk (x (t) , y (t) , θ) = 0} (5)

Based on the specific gk(x, y, θ) of interest, we can further

classify endogenous events as follows:

2.1. Switching events. These events occur when the server

completes processing a lot of class a(τ−k) and switches to

the next class, i.e., when y(t) reaches θa(t) from below.

Therefore,

gk (x, y, θ) = y(t)− θa(t) (6)

2.2. Lot-forming events. These events occur when the

current class accumulates sufficient flow to form a lot. If

z(τ−k) < sa(τk), then from (1) the lot-forming event can-

not initiate service and the system dynamics remain un-

changed. Therefore, lot-forming events are only of interest

when z(τ−k) ≥ sa(τk) and x(t) reaches θa(t) from below; in

what follows, lot-forming events will only refer to events that

satisfy these two conditions. Therefore,

gk (x, y, θ) = xα(t)(t)− θa(t) (7)

3. Induced events. An event occurring at time τk is induced

if

z(τ−k) = sa(τk) (8)

Such an event occurs when a changeover is completed after

switching to the current queue and is “induced” by the most

recent switching event that initiates the associated changeover

process. Letting τks denote the time of this switching event

(τks < τk), we have

τk = τks + sa(τk) (9)

Similar to a lot-forming event, an induced event is only of

interest when x
a(τ−k)

(τ−k) + y(τ−k) ≥ θ
a(τ−k)

, and in what

follows we will refer to induced events as only those that

satisfy both this condition and (8). We note that these induced

events are of a simpler form than those defined in [43] and

[44], and are consistent with the general definitions given in

[37] without requiring as much notation.

Observe that lot-forming events and induced events both

initiate processing at the current queue and affect the dynamics

of y(t). Thus, in the following, we will sometimes refer to

them as service start events for convenience.

B. Stochastic Hybrid Automaton Model

A stochastic hybrid automaton model for the SFM described

thus far is shown in Figure 3, in which we limit ourselves

to two classes for simplicity. There are eight discrete states

in this model, represented by the circles in Figure 3, with

associated time-driven dynamics inside the circles and guard

and reset conditions shown on the directed arcs. States 1-4
represent the following four processes in the system: At state

1(4) the server is processing flow from class 1(2); at state

3(2) the server has switched to class 1(2) but is not yet ready

to start processing. States 5-8 are different from 1-4 in that

the system transitions into them with no actual change in the

time-driven dynamics. They represent the two different ways

that the server can start processing after a switching event. For

example, at state 3 the server is switched to class 1 and must

both complete a changeover time s1 and have a flow amount

of at least θ1 before it can start serving, i.e., enter state 1.

Thus, we have two possibilities: (i) when the changeover is

complete, i.e., z = s1, condition x1 < θ1 holds, in which

case state 5 is entered, and (ii) when x1 ≥ θ1 holds, but the

changeover is still not complete, i.e., z < s1, in which case

state 6 is entered. States 5 and 6 have the same time-driven

dynamics but different invariant conditions, and the system

will transition to state 1 either by a lot-forming event from

state 5 or by an induced event from state 6.

There are several possible variants of this model. For ex-

ample, in one such variant a non-idling policy is adopted, i.e.,

the server immediately starts processing after a changeover

is completed, regardless of whether a lot is fully formed or

not. The stochastic hybrid automaton model for this variant is

shown in Figure 4, where there are only four discrete states

and no lot-forming events. The analysis developed for our

current model can be readily modified to apply on this variant,

and we will also include simulation results for this variant

model to validate the effectiveness of our approach on it.

Another variant (not considered here) arises when following

a switching event to queue i the condition xi(t) = 0 applies

and the server immediately switches to the next queue. This

5

Fig. 3. The Stochastic Hybrid Automaton Model

Fig. 4. The Stochastic Hybrid Automaton Model for the Variant Model with
Non-Idling Policy

is normally less interesting because it corresponds to a lightly

loaded system.

III. PERFORMANCE OPTIMIZATION

An optimization problem for our SFM is defined by viewing

θ = (θ1, . . . , θN) as a controllable parameter vector and

seeking to optimize performance metrics of the form

J(θ;x(0), T) = E [L(θ;x(0), T)] (10)

where L(θ;x(0), T) is a sample function of interest evaluated

in the interval [0, T] with initial conditions x(0). In the lot-

sizing problem, we are typically interested in minimizing the

mean system time for each class or equivalently the mean

workload (i.e., queue contents) in the SFM. In this paper, we

consider the sample performance function

L(θ;x(0), T) =
N∑

i=1

γiQi(θ;x(0), T) (11)

where γi ∈ R
+, i = 1, . . . , N , are weight parameters which

can be interpreted as unit holding costs of different classes,

and

Qi(θ) =
1

T

∫ T

0

[xi(t, θ) + 1 (a(t) = i) · y(t)]dt (12)

where 1 (m = n) is the usual indicator function such that

1 (m = n) = 1 if m = n and 0 otherwise. Observe that

1 (a(t) = i) · y(t) represents the delay experienced by jobs

in the output queue of the actual DES while waiting for the

remaining jobs of the lot under process.

Because of the multiclass nature of this problem, as men-

tioned in the introduction, in addition to the usual system-

centric optimization focusing on the objective J(θ;x(0), T),
each class (user) may solve its own optimization problem with

a performance metric of the form Ji (θ) = E[Qi(θ)]; this

leads to a non-cooperative resource contention game that calls

for solving N distinct user-centric optimization problems. We

shall consider both in Section IV.

Since we do not wish to impose any limitations on the defin-

ing processes {ri(t)} and {βi(t)} (other than mild technical

conditions), it is infeasible to obtain closed-form expressions

for J(θ;x(0), T). Therefore, we resort to iterative methods

such as stochastic approximation algorithms (e.g., [45]) which

are driven by estimates of the cost function gradient with

respect to the parameter vector of interest. Thus, we are

interested in estimating ∂J/∂θi based on sample path data,

where a sample path of the system may be directly observed

or obtained through simulation. We then seek to obtain θ∗

minimizing J(θ;x(0), T) through an iterative scheme of the

form

θi,n+1 = θi,n−ηnHi,n(θn;x(0), T, ωn), n = 0, 1, . . . (13)

where Hi,n(θi,n;x(0), T, ωn) is an estimate of ∂J/∂θi eval-

uated at θ = (θ1,n, θ2,n, ..., θN,n) and based on information

obtained from a sample path denoted by ωn. For our purposes,

we shall consider T to be a fixed time horizon and evaluate

performance over [0, T]. To simplify the analysis that follows,

we will assume that xi(0) = 0, for all i (in practice, it is

possible to avoid this issue as explained, for example, in [41]).

In addition, we will omit in subsequent notation the initial

condition, the observation interval T and the sample path ωn
unless it is necessary to stress such dependence.

In order to execute an algorithm such as (13), we need

to estimate Hi,n(θi,n), i.e., the derivative ∂J/∂θi. The IPA

approach is based on using the sample derivative ∂L/∂θi
as an estimate of ∂J/∂θi. The strength of the approach is

that ∂L/∂θi can be obtained from observable sample path

data alone and, usually, in a very simple manner that can be

readily implemented on line. Moreover, it is often the case

that ∂L/∂θi is an unbiased estimate of ∂J/∂θi, a property

that allows us to use (13) in obtaining θ∗. We will return to

this issue and concentrate first on deriving IPA estimates.

It is clear from (11) and (12) that obtaining sample deriv-

atives of Qi(θ) requires the sample derivatives of the states

xi(θ, t), y(θ, t) and of the event times τk(θ) where the explicit

dependence on the parameter θ is included here for emphasis.

This is precisely the task of IPA which we present in the next

section.

6

A. IPA Estimation

To simplify notation in the sequel, we define the following

for all state and event time sample derivatives, i, j = 1, .., N :

x′i,j(t) ≡
∂xi (t)

∂θj
, y′j(t) =

∂y (t)

∂θj
τ ′k,j ≡

∂τk
∂θj

(14)

1) State Perturbations: Let us rewrite the flow dynamics (1)

over an interval [τk−1, τk) as
dxi(t)
dt+

= fi,k(t) where fi,k(t) =
ri(t) − βi(t) or fi,k(t) = ri(t). We obtain the dynamics of

the sample derivative x′i,j(t) defined in (14) as follows for all

t ∈ [τk−1, τk) (see also [37]):

d

dt
x
′

i,j (t) =
2∑

l=1

∂fi,k(t)

∂xl
x′l,j (t)+

∂fi,k(t)

∂y
y′j (t)+

∂fi,k(t)

∂θj
(15)

and since
∂fi,k(t)
∂xl

=
∂fi,k(t)
∂y

=
∂fi,k(t)
∂θj

= 0 over all t ∈

[τk−1, τk),
d

dt
x
′

i,j (t) = 0 (16)

that is, the IPA derivative x
′

i,j (t) remains fixed in between

consecutive events. In addition, because of the continuity of

the queue content xi(t), we have xi(τ
+
k) = xi(τ

−

k). Taking

derivatives with respect to θj , we have:

x
′

i,j(τ
+
k) +

∂xi(τ
+
k)

∂t
τ ′k,j = x

′

i,j(τ
−

k) +
∂xi(τ

−

k)

∂t
τ ′k,j

and since
∂xi(τ

+

k
)

∂t
= fi,k+1(τ

+
k),

∂xi(τk−)

∂t
= fi,k(τ

−

k),

x
′

i,j(τ
+
k) = x

′

i,j(τ
−

k) + [fi,k(τ
−

k)− fi,k+1(τ
+
k)]τ

′

k,j (17)

Note that fi(t) can be discontinuous in t at event times t =
τk, hence x

′

i,j(τ
+
k), x

′

i,j(τ
−

k) above are generally different.

Combining (16) with (17) we get

x
′

i,j(t) = x
′

i,j(τ
+
k), t ∈ [τk, τk+1) (18)

Thus, the queue content derivatives are piecewise constant,

with jumps according to (17) at event times. It therefore

suffices to use (17) to track them on an event by event basis.

For the state variables y(t) with the dynamics (2) and (3),

we get

y′j(t) = y′j(τ
+
k), t ∈ [τk, τk+1) (19)

Since y (t) is continuous at service start events, i.e., y(τ+k) =
y(τ−k), taking derivatives with respect to θj , we get

y′j(τ
+
k) +

∂y(τ+k)

∂t
τ ′k,j = y′j(τ

−

k) +
∂y(τ−k)

∂t
τ ′k,j

where at service start events,
∂y(τ+

k
)

∂t
= βa(τ+

k
)(τ

+
k),

∂y(τ−
k
)

∂t
=

0, so that

y′j(τ
+
k) = y′j(τ

−

k)− βa(τ+
k
)(τ

+
k) · τ

′

k,j (20)

In addition, since y(t) is reset at switching events by (3),

obviously if a switching event occurs at τk,

y′j(τ
+
k) = 0 (21)

In summary, (17) and (20)-(21) fully describe the propa-

gation of the state derivatives from one event to the next,

provided we can also evaluate all event time derivatives

τ ′k,j , k = 1, 2, . . ., as described next.

2) Event Time Derivatives: Recalling the event classifica-

tion in Section II-A, we consider event time perturbations for

each event type.

1. Exogenous events. By definition, all such events are

independent of θ, therefore:

τ ′k,j = 0 (22)

2. Endogenous events.

2.1 Switching events. In this case, from (6) we have y(t) =
θa(t) and taking derivatives with respect to θj gives:

y′j(τ
−

k) +
∂y(τ−k)

∂t
· τ ′k,j =

{
1 a

(
τ−k
)
= j

0 a
(
τ−k
)
�= j

so that, using (2),

τ ′k,j =

{ (
1− y′j(τ

−

k)
)
/β
a(τ−k)

(
τ−k
)

a
(
τ−k
)
= j

−y′j(τ
−

k)/βa(τ−k)
(
τ−k
)

a
(
τ−k
)
�= j

(23)

2.2 Lot-forming events. In this case, from (7) we have

xα(t)(t) = θa(t) and taking derivatives with respect to θj gives:

x′a(τk),j(τ
−

k) +
∂xa(τk)

∂t
(τ−k) · τ

′

k,j =
{
1 a (τk) = j
0 a (τk) �= j

and, using (1), we have

τ ′k,j =

1−x′
a(τk),j

(τ−
k
)

r
a(τk)

(τk)
a (τk) = j

−
x′
a(τk),j

(τ−
k
)

ra(τk)
(τk)

a (τk) �= j
(24)

3. Induced events. By definition, we know such an event

is triggered by a switching event at τks , therefore, taking

derivatives with respect to θj on both sides of (9) gives

τ ′k,j = τ ′ks + ∂sa(τk)/∂θj and because changeover times si
are independent of lot sizes, this reduces to

τ ′k,j = τ ′ks (25)

3) IPA Derivative Estimation Process: We can now com-

bine the results from the previous two sections to provide a

complete description of the IPA derivative estimation process

on an event by event basis. Keeping in mind that the values

of these derivatives are updated only at event times, we need

only specify this update process at each event. We proceed

again using our event classification in Section II.

1. Exogenous events. Based on (22), and in conjunction

with (17), for all i, j = 1, 2, ..., N :

τ ′k,j = 0, x′i,j(τ
+
k) = x′i,j(τ

−

k), y′j(τ
+
k) = y′j(τ

−

k) (26)

2. Endogenous events.

2.1 Switching events. If a switching event occurs at τk
with a

(
τ−k
)
= i, by (1), fi,k

(
τ−k
)
= ri(τ

−

k) − βi(τ
−

k) and

fi,k+1
(
τ+k
)
= ri(τ

+
k). Therefore,

fi,k+1
(
τ+k
)
=

{
fi,k

(
τ−k
)
+ βi(τ

−

k) if i = a
(
τ−k
)

fi,k
(
τ−k
)

otherwise

7

and then using (17), (21) and (23), we get

x′i,j(τ
+
k) =

x′i,j(τ
−

k) +

y′j(τ
−

k)− 1 if i = j = a
(
τ−k
)

y′j(τ
−

k) if i = a
(
τ−k
)
�= j

0 otherwise

y′j(τ
+
k) = 0 (27)

2.2 Lot-forming events. Based on (1) and recalling that

a lot forming event is of interest only under the condition that

z(τ−k) ≥ sa(τk), if a (τk) = i, then fi,k
(
τ−k
)
= ri(τk) and

fi,k+1
(
τ+k
)
= ri(τ

+
k)− βi(τk). Therefore,

fi,k+1
(
τ+k
)
=

{
fi,k

(
τ−k
)
− βi(τ

−

k) if i = a
(
τ−k
)

fi,k
(
τ−k
)

otherwise

so from (17), (20) and (24), we get

x′i,j(τ
+
k) = x′i,j(τ

−

k)+

βi(τk)(1−x′i,j(τ
−

k
))

ri(τk)
i = a

(
τ−k
)
, j = a

(
τ−k
)

βi(τk)·x
′

i,j(τ
−

k
)

ri(τk)
i = a

(
τ−k
)
, j �= a

(
τ−k
)

0 otherwise

y′j(τ
+
k) = y′j(τ

−

k)− βa(τk)(τk) · τ
′

k,j (28)

3. Induced events. Similar to lot-forming events, using

equations (17), (20) and (25), we have

x′i,j(τ
+
k) = x′i,j(τ

−

k) + βi(τk) · τ
′

k, i = a (τk)

x′i,j(τ
+
k) = x′i,j(τ

−

k), i �= a (τk) (29)

y′j(τ
+
k) = y′j(τ

−

k)− βa(τk)(τk) · τ
′

k,j

Based on (26) through (29), we can evaluate all x′i,j (t)
and τ ′k,j along a given sample path. We can then return to

(12) and evaluate the performance metric derivatives
∂Qi(θ)
∂θj

as described next. Taking derivatives of Qi(θ) with respect to

θj , we get

∂Qi(θ)

∂θj
=
1

T

NT∑

k=1

[
τ ′k,j · (xi(τk, θ) + 1 (a(τk) = i) y(τk))+

∫ τk

τk−1

(
x′i,j(t, θ) + 1 (a(t) = i) y′j(t)

)
dt−

τ ′k−1,j · (xi(τk−1, θ) + 1 (a(τk−1) = i) y(τk−1))
]

where NT is the total number of events occurring in [0, T].
Based on (19) and (18), we can reduce this to

∂Qi(θ)

∂θj
=
1

T

NT∑

k=1

[
τ ′k,j · (xi(τk, θ) + 1 (a(τk) = i) y(τk))+

(τk − τk−1) ·
(
x′i,j(τ

+
k−1) + 1

(
a(τ+k−1) = i

)
y′j(τ

+
k−1)

)

(30)

−τ ′k−1,j · (xi(τk−1, θ) + 1 (a(τk−1) = i) y(τk−1))
]

Note that evaluation of the IPA gradient estimator in (30)

requires event time and state derivatives provided by (26)-(29),

which only need readily observable data (e.g., queue lengths,

event times) and some rate information at events (e.g., job

arrival rates a(τk), service rates β(τk)) that can be measured.

Section IV provides implementation details of this estimation

algorithm taking advantage of the fact that all this information

is directly observable on any underlying DES sample path.

B. IPA Estimator Unbiasedness

The unbiasedness of an IPA derivative ∂Qi(θ)/∂θj has been

shown to be ensured by the following two conditions (see [46],

Lemma A2, p.70): (i) For every θ ∈ Θ (where Θ is a closed

bounded set), the sample derivative ∂Qi(θ)/∂θj exists w.p.1,

and (ii) W.p.1, the random function Qi(θ) is Lipschitz con-

tinuous throughout Θ, and the (generally random) Lipschitz

constant has a finite first moment. Regarding condition (i), the

existence of the sample derivatives ∂Qi(θ)/∂θj is guaranteed

by Assumption 1 and the following additional assumption:

Assumption 2. (a) For every θ ∈ Θ, w.p. 1, two events

cannot occur at exactly the same time, unless one event in-

duces the other, (b) W.p.1, no two processes {ri(t)}, {βi(t)},
have identical values during any open subinterval of [0, T].

We point out that even if the conditions of Assumption 2

do not hold, it is possible to use one-sided derivatives and

still carry out IPA, as in [30]. Consequently, establishing the

unbiasedness of ∂Qi(θ)/∂θj reduces to verifying the Lipschitz

continuity of the sample function Qi(θ) with appropriate Lip-

schitz constants. To establish this, we will need the following

additional mild technical assumptions on processing rates and

the number of exogenous events.

Assumption 3: The processes {βi(t)} are upper bounded

w.p.1, i.e., there exists B <∞ such that βi(t) ≤ B w.p.1 for

all t ∈ [0, T] and i = 1, 2, ..., N .

Assumption 4: Let N1 be the number of exogenous events

over [0, T]. Then E [N1] <∞.

The proof of unbiasedness relies on two Lemmas. First,

Lemma 1 provides a bound for the expected total number of

events in the interval [0, T].
Lemma 1: Let NT be the number of events occurring during

interval [0, T]. Then E [NT] <∞.

Proof : See Appendix.

Using Lemma 1, we can further bound all state and event

time derivatives, as shown in Lemma 2 below.

Lemma 2: For all t ∈ [0, T], state perturbations
∣∣x′i,j(θ, t)

∣∣
and

∣∣y′j(θ, t)
∣∣ are bounded w.p. 1, and for all k = 1, 2, ..., NT ,

and |τ ′k| is also bounded w.p. 1.

Proof : See Appendix.

Now, with the above two Lemmas, we are able to verify the

Lipschitz continuity and finally establish the unbiasedness of

the IPA estimators.

Theorem 1. Under Assumptions 1-4, the IPA estimator

∂Qi(θ)/∂θj is an unbiased estimate of dE[Qi(θ)]/dθj .
Proof : See Appendix.

IV. DES OPTIMIZATION

In this section, we describe how the IPA estimator we

have derived for the SFM of Section II can be used to

determine optimal lot sizes for the actual underlying DES.

Since the SFM can only be simulated, we can apply our

analysis in such a simulation setting and take advantage of

the fact that a flow model is much simpler to simulate than

its DES counterpart. Instead, however, we choose to apply

the IPA estimator using actual data from an observed sample

path of the DES, which leads to an approximate solution of

the original problem. Note that the availability of such data

8

does not require any assumptions on the random processes

involved, which would otherwise be necessary to generate the

realizations necessary in implementing a simulation model. We

also note that an analytical quantification of the relationship

between the optimal performance obtained using the SFM

and that corresponding to the original DES is possible for

some simple systems as described in [47], but it is generally a

challenging task. However, empirical evidence of the accuracy

of such an approximation is provided in what follows.

Let JDEST (θ) be the expected total workload over [0, T]
of the actual DES whose SFM we developed in Section II,

under a lot size parameter vector θ. We can use the following

stochastic approximation algorithm to seek the value of θ that

minimizes JDEST (θ):

θn+1 = θn − ηnHn(θn, ω
DES
n) (31)

where Hn(θn, ω
DES
n) is an estimate of dJDEST (θ) /dθ at

θn which is unavailable. Since we cannot obtain such an

estimate from the DES itself, we use instead an IPA es-

timator dJSFMT (θ)/dθ from the SFM where JSFMT (θ) =
E[L(θ;x(0), T)] with L(θ;x(0), T) defined in (11), thus

approximating the optimal solution. The IPA estimator

dJSFMT (θ)/dθ is evaluated using the data observed over a

specific estimation interval using the IPA estimation algorithm

given in the previous section. It is then used in (31) to update

θ, and the process repeats with the updated θ in the next

estimation interval. To use the event-driven IPA estimation

algorithm, we need to identify all events defined in Section

II-A for the SFM with observable events in the real DES.

For exogenous events, we monitor changes in arrival rates

ri(t) and βi(t) in the DES through simple rate estimators

periodically updated over t; if |ri(t)− ri(t−∆)| > ε for

some adjustable∆ and ε, we detect such changes and similarly

for βi. For switching events, we just have to count the number

of jobs processed: once the server has served �θi� class i jobs

continuously, a switching event will occur to the next class. For

induced events and lot-forming events, we identify them by

monitoring the time elapsed after switching to the current class

and the number of jobs in the current queue: when either the

changeover is finished or the current queue has accumulated

enough jobs to form a lot, we have an induced event or lot-

forming event respectively.

Figure 5 shows an example of applying our IPA estimate

and (31) in optimizing a two-class lot-sizing problem (not its

SFM counterpart). The jobs of both classes arrive according

to Poisson processes with time-varying rates; in particular, the

rates are piecewise constant with values uniformly distributed

over
[
1
2.1 ,

1
1.7

]
and

[
1
1.9 ,

1
1.3

]
, and the times between changes

of the rates are both exponentially distributed with average

1500 sec. The processing times for both classes are piecewise

constant functions, whose values are uniform random variables

over [0.4, 0.6] and [0.7, 0.9], and the times between changes

of the processing times are both exponentially distributed

with average 800 sec. The estimation interval is 150 sec, and

the server is scheduled in round-robin fashion between the

two classes and the changeover times are 15 sec and 25 sec
respectively. The actual objective function shown is obtained

by exhaustively simulating the real DES over all (θ1, θ2) pairs,

Fig. 5. (a) System-Centric Optimization (b) User-Centric Optimization

averaging over 50 sample paths for a time horizon of 4 hours.

This gives (approximately) θ∗ = (22, 16).
As mentioned earlier, an interesting aspect of this problem

is that one can expect differences between a user-centric

and system-centric optimization approach. In system-centric

optimization, we use (10) as the objective function and Figure

5.(a) shows results in this case by implementing (31) using

gradient estimates obtained by applying the IPA algorithm

on a single sample path with different starting points. We

can see that all results converge to a point very close to the

“true” optimum, illustrating the effectiveness of our method.

In the user-centric optimization, classes 1 and 2 individually

optimize their own performance metric Ji (θ) by taking turns

adjusting θi in a non-cooperative game setting. In this game,

each class has no information on the other’s performance

or control, i.e., class 1 updates θ1 using dJSFM1,T (θ)/dθ1
evaluated during an estimation interval, while class 2 maintains

its control θ2. Then, in the next estimation interval, class 1

uses its updated θ1, and class 2 takes its turn to evaluate

dJSFM2,T (θ)/dθ2 and uses it to update θ2. Figure 5.(b) shows

the results of user-centric optimization; comparing it to Figure

5.(a), we can see that (unlike previous resource contention

problems in multiclass SFMs, e.g., [43], [44]) in the lot-sizing

problem, there is no gap between system-centric and user-

centric optimal costs.

Analyzing the difference between the two problem solu-

tions under arbitrary arrival, setup, and service processes is

extremely complicated. We have, however, in what follows,

studied the deterministic version of the SFM in Figure 2

and can formally prove that system-centric and user-centric

9

optimization processes converge to the same point as shown

next. In addition, the analysis therein can give us some insights

on the reasons behind the “no-gap” property in the stochastic

setting of this problem.

Theorem 2. Let θ∗s and θ∗u be the optimal lot sizes in the

system-centric and user-centric optimization respectively. If

{ri} , {βi} and {si}, i = 1, 2, are all constant, then θ∗s = θ∗u.

Proof: See Appendix.

The intuition behind this “no-gap” property becomes clear

when considering the three cases of system convergence

analyzed in the theorem proof. Looking at the control space

defined by (θ1, θ2), there is only a subset over which the

system can be stable, i.e., x1(t), x2(t) remain finite. From

the user-centric point of view, class 1 is unstable if θ1 is

too small because (i) there are too many changeovers and

(ii) the system spends a relatively large time serving class 2;
hence, its effective processing capacity is limited. However,

if θ1 is too large, then the length of both the input and the

output queue of class 1 increases. Therefore, class 1 seeks

the minimum possible value of θ1, for any given value of

θ2, that allows it to be stable in order to optimize its own

performance. A similar argument applies to class 2, whose

optimal lot size is the smallest θ2 that makes class 2 stable

for a given θ1. Thus, user-centric optimization will lead us

to the point where both classes are stable, and with smallest

possible θ1 and θ2. From the system’s point of view, in

order to achieve the best possible overall performance, system-

centric optimization will obviously also lead us to the region

where both classes are stable. In addition, in that region, the

performances of individual classes are decoupled (as explicitly

shown in the proof) and the overall system performance is the

sum of all class workloads, hence the result of system-centric

optimization is also the point with smallest θ1 and θ2 in that

region. Therefore, user-centric and system-centric optimization

converge to the same lot size vector. It is also worth noticing

that in the simulation results above, the optimal solution θ∗ is

indeed very close to the values given in (54) and (55) when ri
and βi are replaced by their respective expected values. The

same applies to the example discussed next.

Figure 6 shows an example of applying IPA and a similar

optimization algorithm on the variant of the problem for a non-

idling policy as discussed in Section II-B with the stochastic

hybrid automaton model shown in Figure 4. One can see that

the IPA algorithm works effectively for this variant as well,

and similarly, there is no gap between system-centric and user-

centric optimization.

V. CONCLUSIONS AND FUTURE WORK

We have developed a multiclass SFM for the lot-sizing

problem based on which we derive IPA gradient estimators to

drive an on-line optimization scheme for getting optimal lot

sizes. In addition, similar to recent work on multiclass SFMs,

we carry out optimization in both system-centric and user-

centric manner. Interestingly, in the lot-sizing problem, these

two forms of optimization lead to the same optimum of the

performance function, as shown in our simulation results and

by an analysis of a deterministic model. Our ongoing research

Fig. 6. Optimization Results for the Variant Model with Non-Idling Policy:
(a) User-Centric Optimization (b) System-Centric Optimization

focuses on exploring the possibilities of extending our methods

in the lot-sizing problem to more general problems involving

resource switching control, as well as to multi-stage lot-sizing

problems.

VI. APPENDIX

Proof of Lemma 1: Let N1, N2 and N3 denote the number

of exogenous events, switching events, and service start events

respectively. First, based on Assumption 4,

E [N1] ≤ n1 (32)

for some positive number n1.
In order to study the number of switching events and service

start events, we define a “cycle” to be the time interval between

one service start event and the next service start event of the

same class. Because of the round-robin scheduling policy, the

server has to make N switches before it can start to serve the

current class again, where N is the number of different classes.

Therefore, for any sample path, during each cycle there are

exactly N switching events and N service start events, hence

N2 ≤ N ·Nc,T , N3 ≤ N ·Nc,T (33)

where Nc,T is the number of cycles over an interval [0, T],
which may also include an incomplete cycle at the end. Note

that the length of a cycle, denoted by LC , is comprised of

10

times spent in changeovers, together with actual job processing

times and possibly times spent waiting for a sufficient number

of jobs to form a lot. Therefore,

LC >
N∑

i

si

and

Nc,T =

⌊
T

LC

⌋
+ 1 ≤

T

LC
+ 1 <

T
∑N
i si

+ 1

Combining with (33), we get

N2 < N ·

(
T

∑N
i si

+ 1

)

, N3 < N ·

(
T

∑N
i si

+ 1

)

Since {si} are positive by definition, it follows that E [N2]
and E [N3] are also bounded, i.e.,

E [N2] < n2 ≡ N +NT · E

[
1

∑N
i si

]

(34)

E [N3] < n2 ≡ N +NT · E

[
1

∑N
i si

]

Since NT = N1 + N2 + N3, combining (32) and (34), we

conclude that E [NT] <∞ and the result is established. �

Proof of Lemma 2: First, using Lemma 1, we know

that E[NT] is bounded, i.e., NT is finite w.p.1. Since, from

(18) and (19), we know that x′i,j(t) and y′j(t) are fixed

between any two consecutive events, we only have to prove

the boundness of {x′i,j(τ
+
k)}, {y

′

j(τ
+
k)} and {τ ′kj}, for all

k ∈ {0, 1, 2, ..., NT}. When k = 0, x′i,j(τ
+
0) = 0, i = 1, 2, and

y′j(τ
+
0) = τ ′0,j = 0, which are obviously bounded. Assume

that for some integer n, 0 ≤ n < N , for all integers k ≤ n,∣∣x′i,j(τ
+
k)
∣∣,
∣∣y′j(τ

+
k)
∣∣ and

∣∣∣τ ′k,j
∣∣∣ are bounded. At τn+1, there

are four possible event types that can occur:

Case 1: An exogenous event occurs at τn+1. Then from

(26), we know that

τ ′n+1,j = 0

x′i,j(τ
+
n+1) = x′i,j(τ

−

n+1) = x′i,j(τ
+
n)

y′j(τ
+
n+1) = y′j(τ

−

n+1) = y′j(τ
+
n)

Since, by the induction hypothesis,
∣∣x′i,j(τ+n)

∣∣ and
∣∣y′j(τ+n)

∣∣
are bounded, it follows that

∣∣x′i,j(τ
+
n+1)

∣∣,
∣∣y′j(τ

+
n+1)

∣∣ and

τ ′n+1,j are also bounded.

Case 2: A switching event occurs at τn+1. Then from (27),

we have

x′i,j(τ
+
n+1) =

x′i,j(τ
−

n+1) + y′,j(τ
−

n+1)− 1 i = a
(
τ−n+1

)
, j = a

(
τ−n+1

)

x′i,j(τ
−

n+1) + y′,j(τ
−

n+1) i = a
(
τ−n+1

)
, j �= a

(
τ−n+1

)

x′i,j(τ
−

n+1) otherwise

y′j(τ
+
n+1) = 0

Using the induction hypothesis,
∣∣x′i,j(τ

+
n+1)

∣∣ and
∣∣y′j(τ

+
n+1)

∣∣
are obviously bounded. Regarding τ ′n+1,j , from (23),

τ ′n+1,j ={ (
1− y′,j(τ

−

n+1)
)
/β
a(τ−n+1)

(
τ−n+1

)
, a

(
τ−n+1

)
= j

−y′,j(τ
−

n+1)/βa(τ−n+1)
(
τ−n+1

)
, a

(
τ−n+1

)
�= j

and we have

∣∣τ ′n+1,j
∣∣ ≤

1 +
∣∣y′j(τ

−

n+1)
∣∣

β
a(τ−n+1)

(
τ−n+1

)

where 1 +
∣∣y′j(τ

−

n+1)
∣∣ = 1 +

∣∣y′j(τ+n)
∣∣ is bounded by the

induction hypothesis, and βa(τ−n+1)
(
τ−n+1

)
must be strictly

positive, otherwise we cannot have y
(
−

n+1

)
< θa(τ−n+1)

and

y
(
+
n+1

)
= θa(τ+n+1)

as required by a switching event at τn+1.

Therefore, there exists a strictly positive number k1, such that

β
a(τ−n+1)

(
τ−n+1

)
> k1, and we get

∣∣τ ′n+1,j
∣∣ ≤

1 +
∣∣y′j(τ

−

n+1)
∣∣

β
a(τ−n+1)

(
τ−n+1

) ≤
1 +

∣∣y′j(τ
−

n+1)
∣∣

k1

which implies that
∣∣∣τ

′

n+1,j

∣∣∣ is also bounded.

Case 3: An induced event occurs at τn+1. First, from (25),

the value of τ
′

n+1,j is unchanged from the previous switching

event, which is bounded by the induction hypothesis. Next,

from (29),

x′i,j(τ
+
n+1) = x′i,j(τ

−

n+1) + βa(τn+1)(τn+1) · τ ′n+1,

if i = a (τn+1)

x′i,j(τ
+
n+1) = x′i,j(τ

−

n+1),

if i �= a (τn+1)

y′,j(τ
+
n+1) = y′,j(τ

−

n+1)− βa(τn+1)(τn+1) · τ
′

n+1,j

Using the induction hypothesis together with Assumption 3,∣∣x′i,j(τ
+
n+1)

∣∣ and
∣∣y′j(τ

+
n+1)

∣∣ are obviously also bounded.

Case 4: A lot-forming event occurs at τn+1. From (28), we

have

x′i,j(τ
+
n+1) = x′i,j(τ

−

n+1) +
βa(τn+1)(τn+1) ·

(
1− x′i,j(τ

−

n+1)
)

ri(τn+1)

if i = a (τn+1) = j

x′i,j(τ
+
n+1) = x′i,j(τ

−

n+1)−
βa(τn+1)(τn+1) · x

′

i,j(τ
−

n+1)

ri(τn+1)

if i = a (τn+1) �= j

x′i,j(τ
+
n+1) = x′i,j(τ

−

n+1)

if i �= a (τn+1)

y′,j(τ
+
n+1) = y′,j(τ

−

n+1)− βa(τn+1)(τn+1) · τ
′

n+1,j

It follows from these equations, together with Assumption 3,

that
∣∣x′i,j(τ

+
n+1)

∣∣ ≤
∣∣x′i,j(τ

+
n)
∣∣+B ·

(
1 +

∣∣x′i,j(τ
+
n)
∣∣) /ri(τn+1)∣∣y′,j(τ

+
n+1)

∣∣ ≤
∣∣y′,j(τ

+
n)
∣∣+B ·

(
1 +

∣∣x′i,j(τ
+
n)
∣∣) /ri(τn+1)

where
∣∣x′i,j(τ+n)

∣∣ and
∣∣y′,j(τ+n)

∣∣ are bounded by the induction

hypothesis, and ri(τn+1) > 0, otherwise we cannot have

11

xi
(
τ−n+1

)
< θi and xi

(
τ+n+1

)
= θi as required by a lot-

forming event at τn+1.Therefore, there exists a strictly positive

number k2, such that ri(τn+1) > k2, and we get
∣∣x′i,j(τ

+
n+1)

∣∣ ≤
∣∣x′i,j(τ

+
n)
∣∣+B ·

(
1 +

∣∣x′i,j(τ
+
n)
∣∣) /k2∣∣y′,j(τ

+
n+1)

∣∣ ≤
∣∣y′,j(τ

+
n)
∣∣+B ·

(
1 +

∣∣x′i,j(τ
+
n)
∣∣) /k2

which implies that
∣∣x′i,j(τ

+
n+1)

∣∣ and
∣∣y′,j(τ

+
n+1)

∣∣ are also

bounded.

This completes the inductive step and, recalling that NT is

finite w.p.1, the result is established. �

Proof of Theorem 1: Invoking Lemma A2 from [46], the

unbiasedness of the IPA estimator ∂Qi(θ)/∂θj relies on the

Lipschitz continuity of Qi(θ). From (12),

Qi(θ) =
1

T

∫ T

0

(xi(t, θ) + 1 (a(t) = i) · y(t)) dt

and taking derivatives with respect to θj yields

|∂Qi(θ)/∂θj | =
1

T

∣∣∣∣∣

∫ T

0

(
x′i,j(t) + 1 (a(t) = i) · y′j(t)

)
dt

∣∣∣∣∣

≤
1

T

∫ T

0

(∣∣x′i,j(t)
∣∣+

∣∣y′j(t)
∣∣) dt

Based on Lemma 2, we know that
∣∣x′i,j(t)

∣∣ and
∣∣y′j(t)

∣∣
are bounded, therefore, the above inequality guarantees the

boundedness of |∂Qi(θ)/∂θj|, i.e.,

|∂Qi(θ)/∂θj | < BQ <∞

where BQ is such that 1
T

∫ T
0

(∣∣x′i,j(t)
∣∣+

∣∣y′j(t)
∣∣) dt < BQ,

and we get

|�Qi(θ)| = |∂Qi(θ)/∂θj | |∆θj | < BQ |∆θj | (35)

Thus, Qi (θ) is Lipschitz continuous with finite Lipschitz

constant BQ. �

Proof of Theorem 2: Let us partition the state trajectory

of the system into “cycles” as defined in the proof of Lemma

1 (i.e., time intervals between a service start event and the

next service start event of the same class). Let l1,k (θ1) and

l2,k (θ2) denote the length of time spent serving class 1 and

class 2 respectively within the kth cycle, k = 1, 2, . . ., which

obviously depends on the lot sizes θ1, θ2. In addition, let xsi,k
be the class i content at the time when the server is switched

to class i = 1, 2 within the kth cycle. Then, the net class 1
and class 2 flow volumes processed in the kth cycle are:

∆x1,k (θ1, θ2) = xs1,k+1 − xs1,k (36)

= r1 · [l1,k (θ1) + l2,k (θ2)]− θ1

∆x2,k (θ1, θ2) = xs2,k+1 − xs2,k

= r2 · [l1,k+1 (θ1) + l2,k (θ2)]− θ2

Clearly, if θi is such that ∆xi,k (θ1, θ2) > 0, then xsi,k is

increasing and the class i queue is obviously unstable and not

optimal. If on the other hand∆xi,k (θ1, θ2) ≤ 0, then xsi,k+1 ≤
xsi,k. To analyze the exact behavior of xsi,k over k = 1, 2, . . .
let us start with k = 1 and assume the system starts out empty

with the server switched to class 1. If xs1,1+r1s1 = r1s1 < θ1,
then class 1 cannot form a lot by the time the changeover is

done at t = s1, therefore, there is an additional time interval

given by w1,1 =
θ1
r1
− s1 until a lot-forming event occurs for

class 1. It follows that

l1,1 = s1 +w1,1 +
θ1
β1
=

θ1
r1
+

θ1
β1

When the server switches to class 2, we have xs2,1 = r2 ·l1,1. If

xs2,1+r2s2 < θ2, then class 2 must also wait for a lot-forming

event and

l2,1 =
θ2
r2
− l1,1 +

θ2
β2

(37)

In the second cycle, xs1,2 = r1 ·
(
θ1
β1
+ l2,1

)
. If xs1,2+ r1s1 =

r1 ·
(
θ1
β1
+ l2,1 + s1

)
< θ1, then there is once again an interval

w1,2 =
θ1
r1
−
(
l2,1 +

θ1
β1
+ s1

)
until a class 1 lot-forming event

and we get

l1,2 = s1 +w1,2 +
θ1
β1
=

θ1
r1
− l2,1

For class 2, using (36) and (37), we have xs2,2 =

r2 ·
(
θ2
β2
+ l1,2

)
. Similarly, if xs2,2 + r2s2 = r2 ·(

θ2
β2
+ l1,2 + s2

)
< θ2, there is a time interval w2,2 =

θ2
r2
−
(
θ2
β2
+ l1,2 + s2

)
before a lot-forming event occurs for

class 2, and

l2,2 = s2 +w2,2 +
θ2
β2
=

θ2
r2
− l1,2 =

(
θ2
r2
−

θ1
r1

)
+ l2,1

Thus, l2,2− l2,1 =
θ2
r2
− θ1
r1

. Following the same series of steps

over k = 1, 2 . . ., as long as xsi,m + risi < θi for all m ≤ k,

i = 1, 2, we obtain:

xs1,k = r1 ·

(
θ1
β1
+ l2,k−1

)
, xs2,k = r2 ·

(
θ2
β2
+ l1,k

)
(38)

and

l1,k =
θ1
r1
− l2,k−1 =

(
θ1
r1
−

θ2
r2

)
+ l1,k−1 (39)

l2,k =
θ2
r2
− l1,k =

(
θ2
r2
−

θ1
r1

)
+ l2,k−1

Next, we proceed by considering the three possible cases

defined by the sign of θ1
r1
− θ2
r2

:

Case 1: If θ1
r1

> θ2
r2

, then based on (39), l1,k > l1,k−1 and

l2,k < l2,k−1, i.e., {l1,k} increases and {l2,k} decreases, hence,

by (38), {xs1,k} decreases and {xs2,k} increases. Therefore,

there must exist some n ∈ Z+, such that xs2,n + r2s2 ≥ θ2
and xs2,n−1 + r2s2 < θ2, which implies that the nth cycle is

the first one such that class 2 can form a lot as soon as the

changeover is done. Thus,

l2,n = s2 +
θ2
β2

< s2 +
θ2
β2
+w2,n−1 = l2,n−1 (40)

In the n+1th cycle, by (38), xs1,n+1 = r1 ·
(
θ1
β1
+ l2,n

)
, and,

based on (40), xs1,n+1 < r1 ·
(
θ1
β1
+ l2,n−1

)
= xs1,n. Therefore,

xs1,n+1 + r1s1 < xs1,n +r1s1 < θ1, so that class 1 will still

12

Fig. 7. Converging Cycle when
θ1
r1
>

θ2
r2

Fig. 8. Converging Cycle when
θ1
r1
<

θ2
r2

includes a lot-forming event in this cycle, which from (39)

implies that l1,n+1 =
θ1
r1
− l2,n. Using (40) again, l1,n+1 >

θ1
r1
−l2,n−1 = l1,n, hence xs2,n+1+r2s2 = r2 ·

(
θ2
β2
+ l1,n+1

)
+

r2s2 > r2 ·
(
θ2
β2
+ l1,n

)
+r2s2 = xs2,n+r2s2 ≥ θ2. Therefore,

in the n+1th cycle, class 2 can also form a lot as soon as the

changeover is done and l2,n+1 = l2,n = s2+
θ2
β2

. By repeating

the above analysis, it is easy to see that for all subsequent

cycles k ≥ n+1, {xs1,k}, {l1,k} and {l2,k} will remain fixed,

i.e.,

xs1,k = r1 ·

(
s2 +

θ2
β2
+

θ1
β1

)
(41)

l1,k =
θ1
r1
− s2 −

θ2
β2

, l2,k = s2 +
θ2
β2

and since l1,k + l2,k =
θ1
r1

, then using (36) together with the

assumption θ1
r1

> θ2
r2

, we have ∆x2,k (θ1, θ2) > 0 for all k ≥
n + 1, which implies that the class 2 queue is unstable. The

structure of a typical cycle k ≥ n+1 in this case is shown in

Figure 7.

Case 2: If θ1
r1

< θ2
r2

, following a similar analysis as in Case

1, there exists some n′ ∈ Z+ such that for all k > n′:

xs2,k = r2 ·

(
s1 +

θ2
β2
+

θ1
β1

)
(42)

l1,k = s1 +
θ1
β1

, l2,k =
θ2
r2
− s1 −

θ1
β1

and the class 1 queue is unstable. The structure of a typical

cycle k ≥ n+ 1 in this case is shown in Figure 8.

Case 3: If θ1
r1
= θ2
r2

, based on (39), l1,k and l2,k will be

constant for all k. There are three possible subcases based on

Fig. 9. Converging Cycle when θ1
r1
= θ2

r2
and

∑
2

i=1 si +
θi
βi
≤

θ1
r1
= θ2

r2

Fig. 10. Partition of the (θ1, θ2) feasible space

the (fixed) value of l1,k + l2,k:

(i) If l1,k + l2,k > θ1
r1
= θ2
r2

, then according to (36), both

classes will become unstable, and li,k = si +
θi
βi
, i = 1, 2.

(ii) If l1,k + l2,k < θ1
r1
= θ2

r2
, then using (38), xs1,k +

r1s1 = r1
(
s1 +

θ1
β1
+ l2,k−1

)
= r1

(
s1 +

θ1
β1
+ l2,k

)
≤

r1 (l1,k + l2,k) < r1 ·
θ1
r1
= θ1, which implies that class 1

has a lot-forming event in this cycle, and we can use (39)

to get l1,k =
θ1
r1
− l2,k−1 =

θ1
r1
− l2,k, which contradicts our

assumption that l1,k + l2,k < θ1
r1

. Therefore, this subcase is

infeasible.

(iii) If l1,k + l2,k =
θ1
r1
= θ2
r2

, then, since li,k ≥ si +
θi
βi
,

i = 1, 2, we must have
∑2
i=1

(
si +

θi
βi

)
≤ θ1
r1
= θ2
r2

, which

can be further reduced to, for i = 1, 2,

θi ≥ (s1 + s2)

(
riβ1β2

β1β2 − r1β2 − r2β1

)
(43)

The structure of a typical cycle in this case is shown in Figure

9, where wi = 0 when li,k = si +
θi
βi

.

From the above three cases, we conclude that if θ1
r1

> θ2
r2

,

the system converges to cycles as shown in Figure 7 where the

class 1 queue satisfies (41) while the class 2 queue is unstable;

similarly, if θ1
r1

< θ2
r2

, the system converges to cycles as shown

in Fig. 8 where the class 2 queue satisfies (42) while the class 1
queue is unstable. Finally, if θ1

r1
= θ2
r2

, then the system is either

unstable for both classes when
∑2
i=1 si+

θi
βi

> θ1
r1
= θ2
r2

, or it

converges to cycles as shown in Figure 9 when θi satisfies (43).

Figure 10 shows the partition of the two-dimensional feasible

space of lot size values (θ1, θ2) based on this analysis.

Now let us study the effect of θi on the performance of class

i concentrating on cycles k such that all convergent behavior

has been attained. When i = 1, for a fixed θ2, if θ1
r1

< θ2
r2

or
∑2
i=1

(
si +

θi
βi

)
> θ1
r1
= θ2
r2

, the class 1 queue becomes

unstable. When θ1
r1

> θ2
r2

, or θ1
r1
= θ2
r2

and (43) holds, the class

1 queue is stable. Let F1 (θ2) ⊆ R
+ denote the region of

feasible θ1 values where the class 1 queue is stable for some

13

fixed θ2, i.e.,

F1 (θ2) =

(
r1θ2
r2

,∞
)

if θ2 <
(s1+s2)·r2β1β2
β1β2−r1β2−r2β1[

r1θ2
r2

,∞
)

if θ2 ≥
(s1+s2)·r2β1β2
β1β2−r1β2−r2β1

(44)

Let x1,lf denote the class 1 queue content when a lot-forming

event occurs in a cycle k after convergent behavior is attained.

By the definition of a lot-forming event, we have x1,lf = θ1.
Let x1,sw denote the class 1 queue content when the next

switching event occure in the same cycle after the class 1 lot

is processed, so that x1,sw = r1
θ1
β1

. The length of the interval

between the lot-forming event and the switching event is θ1
β1

,

while the length of the interval between this switching event

and the lot-forming event in the next cycle is l2,k+s1+w1,k+1.
Since the dynamics of x1 in (1) over both of these intervals are

linear, the time average of the class 1 workload, x̄1 is given

by

x̄1 =

x1,lf+x1,sw
2 · θ1

β1
+ x1,lf+x1,sw

2 · (s1 + l2,k +w1,k+1)

θ1
β1
+ l2,k + s1 +w1,k+1

=
1

2
(x1,lf + x1,sw) =

(β1 + r1) θ1
2β1

(45)

Recalling the dynamics of the class 1 output queue in (2), we

have 1 (a (t) = 1)·y(t) > 0 in (12) only during the processing

of class 1 in each cycle and the time average of this queue

length is

ȳ1 =

1
2 (0 + θ1) ·

θ1
β1

l1,k + l2,k
(46)

=

θ1
2 ·

θ1
β1

θ1
r1

=
r1θ1
2β1

Based on (45) and (46) and recalling (12), the performance

function J1(θ1, θ2) in this case becomes:

J1(θ1, θ2) = E [Q1(θ1, θ2)]

=
1

T

∫ T

0

(x1(t, θ) + 1 (a(t) = 1) · y(t)) dt (47)

=
(β1 + 2r1) θ1

2β1

which is an increasing function of θ1. Therefore, for a fixed

θ2, J1(θ1) is simply minimized by

argmin
θ1

J1(θ1, θ2) = arg min
θ1∈F1(θ2)

(β1 + 2r1) θ1
2β1

(48)

= min{θ1 : θ1 ∈ F1 (θ2)}

Along the same lines, for a fixed θ1, when θ1
r1

> θ2
r2

or
∑2
i=1

(
si +

θi
βi

)
> θ1

r1
= θ2

r2
, the class 2 queue becomes

unstable, otherwise it is stable and we can define F2 (θ1) as

the region of θ2 where the class 2 queue is stable for a given

θ1, i.e.,

F2 (θ1) =

(
r2 ·

θ1
r1
,∞
)

if θ1 <
(s1+s2)·r1β1β2
β1β2−r1β2−r2β1[

r2 ·
θ1
r1
,∞
)

if θ1 ≥
(s1+s2)·r1β1β2
β1β2−r1β2−r2β1

(49)

Then, using the same analysis for deriving (47), the perfor-

mance function of class 2 in F2 (θ1) is

J2(θ1, θ2) =
(β2 + 2r2) θ2

2β2
(50)

the performance of class 2 is optimized by

argmin
θ2

J2(θ1, θ2) = arg min
θ2∈F2(θ1)

(β2 + 2r2) θ2
2β2

=(51)

argmin{θ2 : θ2 ∈ F2 (θ1)}

Suppose the solution of the user-centric optimization prob-

lem is θ∗ = (θ∗1, θ
∗

2). Then, both classes should be stable at this

point, otherwise, the lot size of the unstable class cannot have

an equilibrium value at this point. From the above analysis

and referring to Figure 10, the region where both classes are

stable, denoted by F (θ), is given by

F (θ) = (52)
{
θ ∈ R2 :

θ1
r1
=

θ2
r2

, θi ≥
(s1 + s2) · riβ1β2

β1β2 − r1β2 − r2β1
, i = 1, 2

}

On the other hand, from the definition of the game, we have

∂J1
∂θ1

(θ∗1, θ
∗

2) = 0,
∂J2
∂θ2

(θ∗1, θ
∗

2) = 0 (53)

which implies that when θ2 is fixed to θ∗2, then θ∗1 minimizes

J1. Then, based on (48) and (52), we have

θ∗1 = min{θ1 : θ1 ∈ F1 (θ
∗

2) , (θ1, θ
∗

2) ∈ F (θ)} (54)

= (s1 + s2) ·
r1β1β2

β1β2 − r1β2 − r2β1
and, similarly,

θ∗2 = min{θ2 : θ2 ∈ F2 (θ
∗

1) , (θ
∗

1, θ2) ∈ F (θ)} (55)

= (s1 + s2) ·
r2β1β2

β1β2 − r1β2 − r2β1
For a perturbation ∆θ2 > 0 of θ2, first consider the point

(θ∗1, θ
∗

2 −∆θ2). Since θ∗1 =
r1θ

∗

2

r2
> r1(θ

∗

2−∆θ2)
r2

and θ∗1 ∈
F1 (θ

∗

2 −∆θ2), by (45), J1(θ1) is the same as that of the

point (θ∗1, θ
∗

2), i.e.,

J1 (θ
∗

1, θ
∗

2)− J1 (θ
∗

1, θ
∗

2 −∆θ2) = 0

therefore,

lim
∆θ2→0

J1 (θ
∗

1, θ
∗

2)− J1 (θ
∗

1, θ
∗

2 −∆θ2)

∆θ2
= 0 (56)

Next, for the point (θ∗1, θ
∗

2 +∆θ2), we have θ∗1 =
r1θ

∗

2

r2
<

r1(θ
∗

2+∆θ2)
r2

, so that the class 1 queue falls into the unstable

region, and

J1 (θ
∗

1, θ
∗

2 +∆θ2)− J1 (θ
∗

1, θ
∗

2) > 0

thus

lim
∆θ2→0

J1 (θ
∗

1, θ
∗

2 +∆θ2)− J1 (θ
∗

1, θ
∗

2)

∆θ2
> 0 (57)

Combining (53), (56) and (57), it is clear that (θ∗1, θ
∗

2) is the

minimum of J1(θ1, θ2). Similarly, we can show that (θ∗1, θ
∗

2) is

also the minimum of J2(θ1, θ2). Therefore, (θ∗1, θ
∗

2) given by

(54) and (55) is the optimal point of the overall performance

function J(θ1, θ2) = J1(θ1, θ2)+J2(θ1, θ2), i.e., the solution

of the system-centric optimization problem.�

14

REFERENCES

[1] H. Takagi, “Analysis and application of polling models,” Lecture notes

in computer science, vol. 1769, pp. 423–442, 2000.
[2] S. Fuhrmann, “Symmetric queues served in cyclic order,” Operation

Research Letter, vol. 4, no. 3, pp. 139–144, October 1985.
[3] J. Hayes and J. Nadushan, “Numerical solution to limited service polling

models,” Computer Communication, vol. 9, no. 4, pp. 171–176, August
1986.

[4] S. Fuhrmann and Y. Wang, Mean Waiting time approximations of

cyclic service systems with limited service. Elsevier North-Holland,
Amsterdam, 1988, pp. 253–265.

[5] K. Leung, “Cyclic-service systems with nonpreemptive, time-limited
service,” IEEE Transactions on Communications, vol. 42, no. 8, pp.
2521–2524, August 1994.

[6] F. Harris, Operations and Cost, ser. Factory Management Series. A.W.
Shaw Co. Chicago, 1915.

[7] G. Tinarelli, “Inventory control: Models and problems,” European Jour-

nal of Operational Research, vol. 14, no. 1, pp. 1–12, 1983.
[8] M. Salomon, Deterministic lot sizing models for production planning.

Springer, Inc., 1991.
[9] K. Baker, P. Dixon, M. Magazine, and E. Silver, “An algorithm for

the dynamic lot-size problem with time-varying production capacity
constraints,” Management Science, vol. 24, no. 16, pp. 1710–1720, 1978.

[10] L. Wolsey, Integer Programming. John Wiley and Sons, Inc., 1998.

[11] M. Florian, J. Lenstra, and H. Rinnooy, “Deterministic production
planning: Algorithms and complexity,” Management Science, vol. 46,
no. 5, pp. 669–679, 1980.

[12] J. Maes and L. Wassenhove, “Multi-item single-level capacitated dy-
namic lot-sizing heuristics: A general review,” Journal of Operation

Research, vol. 39, no. 11, pp. 991–1004, 1988.
[13] N. Absi and S. Kedad-Sidhoum, “MIP-based heuristics for multi-item

capacitated lot-sizing problem with setup times and shortage costs,”
Operations Research, vol. 41, no. 2, pp. 171–192, 2007.

[14] G. Belvaux and L. Wolsey, “bc-prod: A specialized branch-and-cut
system for lot-sizing problems,” Management Science, vol. 46, no. 5,
pp. 724–738, 2000.

[15] K. Akartunah and A. J. Miller, “A heuristic approach for big bucket
multi-level production planning problems,” European Journal of Oper-

ational Research, vol. 193, no. 2, pp. 396–411, 2009.
[16] M. T. A. Federgruen, J. Meissner, “Progressive interval heuristics

for multi-item capacitated lot-sizing problems,” Operations Research,
vol. 55, no. 3, pp. 490–502, 2007.

[17] J. M. W. B. Karimi, S. M. T. F. Ghomiand, “A tabu search heuristic for
solving the clsp with backlogging and set-up carry-over,” Journal of the
Operational Research Society, vol. 57, no. 2, pp. 140–147, 2006.

[18] Y. L. E. P. S. Kim, J. Han, “Decomposition based heuristic algorithm for
lot-sizing and scheduling problem treating time horizon as a continuum,”
Computers and Operations Research, vol. 37, no. 2, pp. 302–314, 2010.

[19] Y. P. S. Kucukyavuz, “Uncapacitated lot sizing with backlogging: the
convex hull,” Mathematical Programming, vol. 118, no. 1, pp. 151–175,
2009.

[20] P. Afentakis, B. Gavish, and U. Karmarkar, “Exact solutions to the lot-
sizing problem in multi-stage assembly systems,” Management Science,
vol. 30, no. 1, pp. 222–239, 1984.

[21] N. Simpson and S. Erengue, “Modeling multiple stage manufacturing
systems with generalized costs and capacity issues,” Naval Research

Logistics, vol. 52, no. 6, pp. 560–570, 2005.
[22] H. T. S. H. F. Sahling, L. Buschkuhl, “Solving a multi-level capacitated

lot sizing problem with multi- period setup carry-over via a fix-and-
optimize heuristic,” Computers and Operations Research, vol. 36, no. 9,
pp. 2546–2553, 2009.

[23] H. Sadtler, “Multilevel lot sizing with setup times and multiple con-
strained resources: Internally rolling schedules with lot-sizing windows,”
Operations Research, vol. 51, no. 3, pp. 487–502, 2003.

[24] L. B. H. Tempelmeier, “A heuristic for the dynamic multi-level ca-
pacitated lotsizing problem with linked lotsizes for general product
structures,” OR Spectrum, vol. 31, no. 2, pp. 385–404, 2009.

[25] U. Karmarkar, S. Kekre, and S. Freeman, “Lot-sizing and lead-time
performance in a manufacturing cell,” Interfaces, vol. 15, no. 2, pp.
1–9, 1985.

[26] S. Graves, A. Rinnooy, and P. Zipkin, Logistics of Production and

Inventory. North-Holland, 1993.
[27] H. Hafner, “Lot-sizing and throughput times in a job shop,” International

Journal of Production Economics, vol. 23, no. 3, pp. 111–116, 1991.
[28] U. Karmarkar, “Lot sizes, lead times and in-process inventories,” Man-

agement Science, vol. 33, no. 3, pp. 409–418, 1987.

[29] C. G. Cassandras and R. Yu, “A ‘surrogate problem’ approach for lot
size optimization in manufacturing systems,” Proc. of 2000 American

Control Conference, pp. 3279–3283, 2000.
[30] C. G. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C. G. Panayiotou,

“Perturbation analysis for on-line control and optimization of stochastic
fluid models,” IEEE Transactions on Automatic Control, vol. 47, no. 8,
pp. 1234–1248, 2002.

[31] D. Anick, D. Mitra, and M. M. Sondhi, “Stochastic theory of a data-
handling system with multiple sources,” The Bell System Technical

Journal, vol. 61, pp. 1871–1894, 1982.
[32] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. B. Gong, “Fluid

simulation of large scale networks: Issues and tradeoffs,” in Proceedings

of the Intl. Conf. on Parallel and Distributed Processing Techniques and

Applications, June 1999, pp. 2136–2142.
[33] D. Connor, G. Feigin, and D. D. Yao, “Scheduling semiconductor lines

using a fluid network model,” IEEE Transactions on Robotics and

Automation, vol. 10, no. 2, pp. 88–98, 1994.
[34] A. Elwalid and D. Mitra, “Analysis and design of rate-based congestion

control of high-speed networks, i: Stochastic fluid models, access
regulation,” Queueing Systems, vol. 9, pp. 29–64, 1991.

[35] N. G. S. R. Mahabhashyam and S. Kumara, “Resource-sharing queueing
systems with fluid-flow traffic,” Operations Research, vol. 56, no. 3, pp.
728–744, 2008.

[36] A. Yan and W. B. Gong, “Fluid simulation for high-speed networks with
flow-based routing,” IEEE Transactions on Information Theory, vol. 45,
pp. 1588–1599, 1999.

[37] C. G. Cassandras, Y. Wardi, C. G. Panayiotou, and C. Yao, “Perturbation
analysis and optimization of stochastic hybrid systems,” European

Journal of Control, vol. 16, no. 6, pp. 642–664, 2010.
[38] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event

Systems, 2nd Edition. Springer, 2008.
[39] H. Yu and C. Cassandras, “Perturbation analysis of feedback-controlled

stochastic flow systems,” IEEE Transactions on Automatic Control,
vol. 49, no. 8, pp. 1317–1332, 2004.

[40] Y. Wardi, R. Adams, and B. Melamed, “A unified approach to infini-
tesimal perturbation analysis in stochastic flow models: the single-stage
case,” IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 89–
103, 2009.

[41] G. Sun, C. G. Cassandras, and C. G. Panayiotou, “Perturbation analy-
sis and optimization of stochastic flow networks,” IEEE Transactions
Automatic Control, vol. 49, no. 12, pp. 2113–2128, 2004.

[42] H. Yu and C. Cassandras, “Perturbation analysis and feedback control
of communication networks using stochastic hybrid models,” Journal of
Nonlinear Analysis, vol. 65, no. 6, pp. 1251–1280, 6 2006.

[43] C. Yao and C. Cassandras, “Perturbation analysis and optimization of
multiclass multiobjective stochastic flow models,” Journal of Discrete

Event Dynamic Systems, vol. 21, no. 2, pp. 219–256, 2011.
[44] ——, “Perturbation analysis and resource contention games in multiclass

stochastic fluid models,” Nonlinear Analysis: Hybrid Systems, vol. 5,
no. 2, pp. 301–319, 2011.

[45] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms and

Applications. Springer-Verlag, 1997.
[46] R. Y. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity

Analysis and Stochastic Optimization by the Score Function Method.
New York, New York: John Wiley and Sons, 1993.

[47] C. Yao and C. G. Cassandras, “Using infinitesimal perturbation analysis
of stochastic flow models to recover performance sensitivity estimates of
discrete event systems,” in Proceedings of 18th IFAC World Congress,
2011, pp. 8217–8222.

