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Abstract—We present an optimal control framework for per-
sistent monitoring problems where the objective is to control the
movement of multiple cooperating agents to minimize an uncer-
tainty metric in a given mission space. In a 1-D mission space, we
show that the optimal solution is for each agent to move at maximal
speed from one switching point to the next, possibly waiting some
time at each point before reversing its direction. Thus, the solution
is reduced to a simpler parametric optimization problem: deter-
mining a sequence of switching locations and associated waiting
times at these switching points for each agent. This amounts to
a hybrid system which we analyze using infinitesimal perturba-
tion analysis (IPA) to obtain a complete on-line solution through
a gradient-based algorithm. We also show that the solution is ro-
bust with respect to the uncertainty model used. This establishes
the basis for extending this approach to a two-dimensional mission
space.

Index Terms—Hybrid systems, Infinitesimal Perturbation Anal-
ysis (IPA), multi-agent systems, optimal control.

I. INTRODUCTION

E NABLED by recent technological advances, the deploy-
ment of autonomous agents that can cooperatively per-

form complex tasks is rapidly becoming a reality. In partic-
ular, there has been considerable progress reported in the liter-
ature on robotics and sensor networks regarding coverage con-
trol [1]–[3], surveillance [4], [5] and environmental sampling
[6], [7] missions. In this paper, we are interested in generating
optimal control strategies for persistent monitoring tasks; these
arise when agents must monitor a dynamically changing envi-
ronment which cannot be fully covered by a stationary team of
available agents. Persistent monitoring differs from traditional
coverage tasks due to the perpetual need to cover a changing
environment, i.e., all areas of the mission space must be visited
infinitely often. The main challenge in designing control strate-
gies in this case is in balancing the presence of agents in the
changing environment so that it is covered over time optimally
(in some well-defined sense) while still satisfying sensing and
motion constraints. Examples of persistent monitoring missions
include surveillance, patrol missions with unmanned vehicles,
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and environmental applications where routine sampling of an
area is involved.
In this paper, we address the persistent monitoring problem

by proposing an optimal control framework to drive agents so
as to minimize a metric of uncertainty over the environment. In
coverage control [2], [3], it is common to model knowledge of
the environment as a non-negative density function defined over
the mission space, and usually assumed to be fixed over time.
However, since persistent monitoring tasks involve dynamically
changing environments, it is natural to extend this model to a
function of both space and time to capture uncertainty in the en-
vironment. We assume that uncertainty at a point grows in time
if it is not covered by any agent sensors. To model sensor cov-
erage, we define a probability of detecting events at each point
of the mission space by agent sensors. Thus, the uncertainty of
the environment decreases with a rate proportional to the event
detection probability, i.e., the higher the sensing effectiveness
is, the faster the uncertainty is reduced.
While it is desirable to track the value of uncertainty over

all points in the environment, this is generally infeasible due to
computational complexity and memory constraints. Motivated
by polling models in queueing theory, e.g., spatial queueing
[8], [9], and by stochastic flow models [10], we assign sam-
pling points of the environment to be monitored persistently
(this is equivalent to partitioning the environment into a dis-
crete set of regions.) We associate to these points “uncertainty
queues” which are visited by one or more “servers”. The growth
in uncertainty at a sampling point can then be viewed as a flow
into a queue, and the reduction in uncertainty (when covered by
an agent) can be viewed as the queue being visited by mobile
servers as in a polling system. Moreover, the service flow rates
depend on the distance of the sampling point to nearby agents.
From this point of view, we aim to control the movement of
the servers (agents) so that the total accumulated “uncertainty
queue” content is minimized.
Control and motion planning for agents performing persis-

tent monitoring tasks have been studied in the literature. In [1]
the focus is on sweep coverage problems, where agents are con-
trolled to sweep an area. In [6], [11] a similar metric of uncer-
tainty is used to model knowledge of a dynamic environment.
In [11], the sampling points in a 1-D environment are denoted
as cells, and the optimal control policy for a two-cell problem
is given. Problems with more than two cells are addressed by a
heuristic policy. In [6], the authors proposed a stabilizing speed
controller for a single agent so that the accumulated uncertainty
over a given path in the environment is bounded, along with an
optimal controller that minimizes the maximum steady-state un-
certainty, assuming that the agent travels along a closed path and
does not change direction. The persistent monitoring problem
is also related to robot patrol problems, where a team of robots
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are required to visit points in the workspace with frequency con-
straints [12]–[14].
Although 1-D persistent monitoring problems are of interest

in their own right (e.g., see [15]), our ultimate goal is to op-
timally control a team of cooperating agents in a 2-D or 3-D
environment. The contribution of this paper is to take a first
step toward this goal by formulating and solving an optimal
control problem for a team of agents moving in a 1-D mission
space described by an interval in which we min-
imize the accumulated uncertainty over a given time horizon
and over an arbitrary number of sampling points. Even in this
simple case, determining a complete explicit solution is compu-
tationally hard, as seen in [16] where the single-agent case was
first considered. However, we show that the problem can be re-
duced to a parametric optimization problem. In particular, the
optimal trajectory of each agent is to move at full speed until it
reaches some switching point, dwell on the switching point for
some time (possibly zero), and then switch directions. In addi-
tion, we prove that all agents should never reach the end points
of the mission space . Thus, each agent’s optimal trajec-
tory is fully described by a set of switching points
and associated waiting times at these points, . As
a result, we show that the behavior of the agents operating under
optimal control is described by a hybrid system. This allows us
to make use of generalized Infinitesimal Perturbation Analysis
(IPA), as presented in [17], [18], to determine gradients of the
objective function with respect to these parameters and subse-
quently obtain optimal switching locations and waiting times
that fully characterize an optimal solution. It also allows us to
exploit robustness properties of IPA to extend this solution ap-
proach to a stochastic uncertainty model. Our analysis estab-
lishes the basis for extending this approach to a two-dimensional
mission space (in ongoing research). In a broader context, our
approach brings together optimal control, hybrid systems, and
perturbation analysis techniques in solving a class of problems
which, under optimal control, can be shown to behave like hy-
brid systems characterized by a set of parameters whose optimal
values deliver a complete optimal control solution.
The rest of the paper is organized as follows. Section II for-

mulates the optimal control problem. Section III characterizes
the solution of the problem in terms of two parameter vectors
specifying switching points in the mission space and associ-
ated dwelling times at them. Using IPA in conjunction with a
gradient-based algorithm, a complete solution is also provided.
Section IV provides some numerical results and Section V con-
cludes the paper.

II. PERSISTENT MONITORING PROBLEM FORMULATION

We consider mobile agents moving in a 1-dimensional
mission space of length , for simplicity taken to be an in-
terval . Let the position of the agents at time be

, , following the dynamics:

(1)

i.e., we assume that the agent can control its direction and speed.
Without loss of generality, after some rescaling with the size of

the mission space , we further assume that the speed is con-
strained by , . For the sake of gener-
ality, we include the additional constraint

(2)

over all to allow for mission spaces where the agents may
not reach the end points of , possibly due to the presence
of obstacles. We also point out that the agent dynamics in (1)
can be replaced by a more general model of the form

without affecting the main results of our anal-
ysis (see also Remark 1 in the Section III.) Finally, an additional
constraint may be imposed if we assume that the agents are ini-
tially located so that , , and
we wish to prevent them from subsequently crossing each other
over all

(3)

We associate with every point a function
that measures the probability that an event at location is de-
tected by agent . We also assume that if ,
and that is monotonically nonincreasing in the dis-
tance between and , thus capturing the reduced
effectiveness of a sensor over its range which we consider to
be finite and denoted by (this is the same as the concept of
“sensor footprint” found in the robotics literature.) Therefore,
we set when . Although our anal-
ysis is not affected by the precise sensing model , we
will limit ourselves to a linear decay model as follows:

if
if

(4)

Next, consider a set of points , , ,
and associate a time-varying measure of uncertainty with each
point , which we denote by . Without loss of generality,
we assume and, to simplify nota-
tion, we set . This set may be se-
lected to contain points of interest in the environment, or sam-
pled points from the mission space. Alternatively, we may con-
sider a partition of into intervals whose center points
are , . We can then set

for all
. Therefore, the joint probability of detecting an event

at location by all the
agents simultaneously (assuming detection independence) is

(5)

where we set . We define un-
certainty functions associated with the intervals

, , so that
they have the following properties: (i) increases with a
prespecified rate if , (ii) decreases with
a fixed rate if and (iii) for all .
It is then natural to model uncertainty so that its decrease is
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Fig. 1. Queueing system analog of the persistent monitoring problem.

proportional to the probability of detection. In particular, we
model the dynamics of , , as follows:

if
otherwise

(6)
where we assume that initial conditions , ,
are given and that (thus, the uncertainty strictly
decreases when there is perfect sensing .)
Viewing persistent monitoring as a polling system, each point
(equivalently, th interval in ) is associated with a “vir-

tual queue” where uncertainty accumulates with inflow rate
(similar models have been used in some data havesting prob-
lems, e.g., [19]). The service rate of this queue is time-varying
and given by , controllable through the agent posi-
tion at time . Fig. 1 illustrates this polling system when .
This interpretation is convenient for characterizing the stability
of such a system over a mission time : For each queue, we may
require that . Alternatively, we may re-
quire that each queue becomes empty at least once over .
Wemay also impose conditions such as for each
queue as additional constraints for our problem so as to provide
bounded uncertainty guarantees, although we will not do so in
this paper. Note that this analogy readily extends to 2-D or 3-D
settings.
The goal of the optimal persistent monitoring problem we

consider is to control the movement of the agents through
in (1) so that the cumulative uncertainty over all sensing

points , is minimized over a fixed time
horizon . Thus, setting we aim
to solve the following optimal control problem :

(7)

subject to the agent dynamics (1), uncertainty dynamics (6),
control constraint , , and state constraints
(2), . Note that we require and , for
at least some , ; this is to ensure that there are no
points in which can never be sensed, i.e., any such that

or would always lie outside any agent’s
sensing range. We will omit the additional constraint (3) from
our initial analysis, but we will show that, when it is included,
the optimal solution never allows it to be active.

III. OPTIMAL CONTROL SOLUTION

We first characterize the optimal control solution
of problem and show that it can be reduced to a
parametric optimization problem. This allows us to utilize an
Infinitesimal Perturbation Analysis (IPA) gradient estimation
approach [17] to find a complete optimal solution through
a gradient-based algorithm. We define the state vector

and the associated costate vector
. In view

of the discontinuity in the dynamics of in (6), the optimal
state trajectory may contain a boundary arc when for
some ; otherwise, the state evolves in an interior arc. We first
analyze the system operating in such an interior arc and omit
the constraint (2) as well. Using (1) and (6), the Hamiltonian is

(8)
and the costate equations are

(9)

(10)

where we have used (4), and the sets and are defined
as

(11)

for . Note that , identify all points
to the left and right of respectively that are within

agent ’s sensing range. Since we impose no terminal state con-
straints, the boundary conditions are ,
and , . Applying the Pontryagin min-
imum principle to (8) with , , denoting an op-
timal control, we have

and it is immediately obvious that it is necessary for an optimal
control to satisfy

if
if

(12)

This condition excludes the possibility that over
some finite singular intervals [20]. We will show that if

or , then for some
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may in fact be possible for some finite arc; other-
wise can arise only when .
The implication of (9) with is that

for all and all and that is mono-
tonically decreasing starting with . However, this is
only true if the entire optimal trajectory is an interior arc, i.e.,
all constraints for all remain inactive.
On the other hand, looking at (10), observe that when the two
end points, 0 and , are not within the range of an agent, we
have , since the number of indices satis-
fying is the same as those satisfying

. Consequently, for the one-agent case
, (10) becomes

(13)

and since the two terms in (13) will cancel out, i.e.,
remains constant as long as this condition is satisfied

and, in addition, none of the state constraints ,
, is active. Thus, for the one agent case, as long as the

optimal trajectory is an interior arc and , the agent
moves at maximal speed in the positive direction
towards the point . If switches sign before any of
the state constraints , , becomes active
or the agent reaches the end point , then and
the agent reverses its direction or, possibly, comes to rest.
In what follows, we examine the effect of the state constraints

which significantly complicates the analysis, leading to a chal-
lenging two-point-boundary-value problem. However, we will
establish the fact that the complete solution boils down to deter-
mining a set of switching locations over and waiting times
at these switching points, with the end points, 0 and , being al-
ways infeasible on an optimal trajectory. This is a much simpler
problem that we are subsequently able to solve.
We begin by recalling that the dynamics in (6) indicate a dis-

continuity arising when the condition is satisfied
while for some .
Thus, defines an interior boundary condition which
is not an explicit function of time. Following standard optimal
control analysis [20], if this condition is satisfied at time for
some

(14)

where we note that one can choose to set the Hamiltonian to be
continuous at the entry point of a boundary arc or at the exit
point. Using (8) and (6), (14) implies

(15)

In addition, for all and
for all , but may experience a

discontinuity so that

(16)

where is a multiplier associated with the constraint
. Recalling (12), since remains unaffected,

so does the optimal control, i.e., . Moreover,
since this is an entry point of a boundary arc, it follows from
(6) that . Therefore, (15) and (16) imply
that and . Thus, always de-
creases with constant rate until is active, at which
point jumps to a non-negative value and decreases with
rate again. The value of is determined by how long it takes
for the agents to reduce to 0 once again. Obviously

(17)

with equality holding only if , or with ,
, where , . The actual eval-

uation of the costate vector over the interval requires
solving (10), which in turn involves the determination of all
points where the state variables reach their minimum fea-
sible values , . This generally involves
the solution of a two-point-boundary-value problem. However,
our analysis thus far has already established the structure of
the optimal control (12) which we have seen to remain unaf-
fected by the presence of boundary arcs when for
one or more . We will next prove some additional
structural properties of an optimal trajectory, based on which
we show that it is fully characterized by a set of non-negative
scalar parameters. Determining the values of these parameters
is a much simpler problem that does not require the solution of
a two-point-boundary-value problem.
Let us turn our attention to the constraints and

and consider first the case where , , i.e.,
the agents can move over the entire . We shall make use of
the following technical condition:
Assumption 1: For any , ,
, and any , if , , then either

for all or for all ;
if , then either for all

or for all .
This condition excludes the case where an agent reaches an

endpoint of the mission space at the exact same time that any
one of the uncertainty functions reaches its minimal value of
zero. Then, the following proposition asserts that neither of the
constraints and can become active on an
optimal trajectory. The assumption is used only in Proposition
III.1 for technical reasons and does not alter the structure of the
optimal controller.
Proposition III.1: Under Assumption 1, if , ,

then on an optimal trajectory: and for all
, .

Proof: Suppose at an agent reaches the left
endpoint, i.e., , . We will then estab-
lish a contradiction. Thus, assuming , we first show
that by a contradiction argument. Assume that

, in which case, since the agent is moving toward
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, we have and from (12).
Then, may experience a discontinuity so that

(18)

where is a scalar constant. It follows that
. Since the constraint is not an

explicit function of time, we have:

(19)

On the other hand, , since agent must
either come to rest or reverse its motion at ,
hence . This violates (19), since

. This contradiction implies that
. Next, consider (10) and observe that in

(11) we have , since for all
. Therefore, recalling (17), it follows from (10):

Under Assumption 1, there exists such that during the in-
terval no becomes active, hence no
encounters a jump for . It follows that
for and is continuous with
for . Again, since , there ex-
ists some such that for , we have

and . Thus, for , we
have and . This contradicts the estab-
lished fact that and we conclude that
for all , . Using a similar line of argu-
ment, we can also show that .
Proposition III.2: If and (or) , then on an op-

timal trajectory there exist finite length intervals such
that and (or) , for some ,

, .
Proof: Proceeding as in the proof of Proposition III.1,

when we can establish (19) and the fact that
. On the other hand, , since the agent

must either come to rest or reverse its motion at .
In other words, when on an optimal trajectory,
(19) is satisfied either with the agent reversing its direction
immediately (in which case and ) or
staying on the boundary arc for a finite time interval (in which
case and for ). The exact same
argument can be applied to .
The next result establishes the fact that on an optimal trajec-

tory, every agent either moves at full speed or is at rest.
Proposition III.3: On an optimal trajectory, either
if , or if for ,

.
Proof: When , we have shown in (12) that

, depending on the sign of . Thus, it remains
to consider the case for some , where

. Since the state is in a singular arc, does
not provide information about . On the other hand, the
Hamiltonian in (8) is not an explicit function of time, therefore,

setting , we have , which
gives

(20)

Define as the
set of indices of agents that are in a singular arc and

as the set of in-
dices of all other agents. Thus, , for

, . In addition, agents move with constant
full speed, either 1 or , so that , . Then,
(20) becomes

(21)

From (9), , , so ,
leaving only the last two terms above. Note that

and writing we get

Recall from (6) that when we have

, so that

(22)

(23)

which results in

(24)
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Note that or 0, depending
on the relative position of with respect to . Moreover,
(24) is invariant to or the precise way in which the mission
space is partitioned, which implies that

for all , . Since ,
, it is clear that to satisfy this equality we must have
for all , . In conclusion, in a

singular arc with for some , the
optimal control is .
Next, we consider the case where the additional state con-

straint (3) is included. We can then prove that this constraint is
never active on an optimal trajectory, i.e., agents reverse their
direction before making contact with any other agent.
Proposition III.4: If the constraint (3) is included in problem
, then on an optimal trajectory, for
, .
Proof: Suppose at we have

, for some . We will then establish
a contradiction. First assuming that both agents are moving
(as opposed to one being at rest) toward each other, we have

and . From (12) and Prop III.3,
we know and . When the con-
straint is active, and
may experience a discontinuity so that

(25)

where is a scalar constant. It follows that
and .

Since the constraint is not an explicit
function of time, we have

(26)

On the other hand, and ,
since agents and must either come to rest
or reverse their motion after making contact, hence

. This violates
(26), since .
This contradiction implies that cannot be
active and we conclude that for ,

. Moreover, if one of the two agents is at rest
when , the same argument still holds since it
is still true that .

Based on this analysis, the optimal control depends
entirely on the sign of and, in light of Propositions III.
1–III.3, the solution of the problem reduces to determining: (i)
switching points in where an agent switches from
to either or 0; or from to either , and (ii) if

an agent switches from to 0,waiting times until the
agent switches back to a speed . In other words, the
full solution is characterized by two parameter vectors for each

agent and ,
where denotes the th location where agent
changes its speed from to 0 and denotes the time
(which is possibly null) that agent dwells on . Note that
is generally not known a priori and depends on the time horizon
. In addition, we always assume that agent reverses its di-
rection after leaving the switching point with respect to the
one it had when reaching . This seemingly excludes the pos-
sibility of an agent’s control following a sequence 1, 0, 1 or
, 0, . However, these two motion behaviors can be cap-

tured as two adjacent switching points approaching each other:
when , the agent control follows the se-
quence 1, 0, 1 or , 0, , and the waiting time associated
with is .
For simplicity, we will assume that , so that it fol-

lows from Proposition III.1 that , .
Therefore, corresponds to the optimal control switching
from 1 to 0. Furthermore, with odd (even) always cor-
responds to switching from 1 to 0 ( to 0.) Thus, we
have the following constraints on the switching locations for all

:

if is even
if is odd.

(27)

It is now clear that the behavior of each agent under the optimal
control policy is that of a hybrid system whose dynamics un-
dergo switches when changes from to 0 and from 0 to
or when reaches or leaves the boundary value .

As a result, we are faced with a parametric optimization problem
for a system with hybrid dynamics. This is a setting where one
can apply the generalized theory of Infinitesimal Perturbation
Analysis (IPA) in [17], [18] to conveniently obtain the gradient
of the objective function in (7) with respect to the vectors
and , and therefore, determine (generally, locally) optimal vec-
tors and through a gradient-based optimization approach.
Note that this is done on line, i.e., the gradient is evaluated by
observing a trajectory with given and over based on
which and are adjusted until convergence is attained using
standard gradient-based algorithms.
Remark 1: If the agent dynamics in (1) are replaced by a

model such as , observe that (12)
still holds. The difference lies in (10) which would involve a
dependence on and further complicate the asso-
ciated two-point-boundary-value problem. However, since the
optimal solution is also defined by parameter vectors

and for each agent
, we can still apply the IPA approach presented in the next sub-
section.

A. Infinitesimal Perturbation Analysis (IPA)
Our analysis thus far has shown that, on an optimal trajec-

tory, the agent moves at full speed, dwells on a switching point
(possibly for zero time) and never reaches either boundary
point, i.e., . Thus, the th agent’s move-
ment can be parameterized through
and where is the th control
switching point and is the waiting time for this agent at
the th switching point. Therefore, the solution of problem

reduces to the determination of optimal parameter vectors



CASSANDRAS et al.: OPTIMAL CONTROL APPROACH TO THE MULTI-AGENT PERSISTENT MONITORING PROBLEM 953

and , . As we pointed out, the agent’s
optimal behavior defines a hybrid system, and the switching
locations translate to switching times between particular modes
of this system. This is similar to switching-time optimization
problems, e.g., [21]–[23], except that we can only control a
subset of mode switching times. We make use of IPA in part
to exploit robustness properties that the resulting gradients
possess [24]; specifically, we will show that they do not depend
on the uncertainty model parameters , , and
may therefore be used without any detailed knowledge of how
uncertainty affects the mission space.
1) Single-Agent Solution With and : To main-

tain some notational simplicity, we begin with a single agent
who can move on the entire mission space and will then
provide the natural extension to multiple agents and a mission
space limited to . We present the associated hy-
brid automaton model for this single-agent system operating on
an optimal trajectory. Our goal is to determine , the
gradient of the objective function in (7) with respect to and
, which can then be used in a gradient-based algorithm to ob-
tain optimal parameter vectors and , . We
will apply IPA, which provides a formal way to obtain state and
event time derivatives with respect to parameters of hybrid sys-
tems, from which we can subsequently obtaining .

Hybrid Automaton Model: We use a standard definition
of a hybrid automaton (e.g., see [25]) as the formalism to model
the system described above. Thus, let (a countable set)
denote the discrete state (or mode) and de-
note the continuous state. Let (a countable set) denote
a discrete control input and a continuous con-
trol input. Similarly, let (a countable set) denote a dis-
crete disturbance input and a continuous distur-
bance input. The state evolution is determined by means of (i)
a vector field , (ii) an invariant
(or domain) set , (iii) a guard set

, and (iv) a reset function
. The system remains at a discrete

state as long as the continuous (time-driven) state does not
leave the set . If reaches a set
for some , a discrete transition can take place. If this
transition does take place, the state instantaneously resets to

where is determined by the reset map .
Changes in and are discrete events that either enable a tran-
sition from to by making sure or
force a transition out of by making sure . We
will classify all events that cause discrete state transitions in a
manner that suits the purposes of IPA. Since our problem is set
in a deterministic framework, and will not be used.
We show in Fig. 2 a partial hybrid automaton model of the

single-agent system where and . Since there is
only one agent, we set , and
for simplicity. Due to the size of the overall model, Fig. 2 is
limited to the behavior of the agent with respect to a single

and ignores modes where the agent dwells
on the switching points (these, however, are included in our ex-
tended analysis in Section III-A2.) The model consists of 14
discrete states (modes) and is symmetric in the sense that states
1–7 correspond to the agent operating with , and states

8–14 correspond to the agent operating with . States
where are omitted since we do not include the waiting
time parameter here. The events that cause state tran-
sitions can be placed in three categories: (i) The value of
becomes 0 and triggers a switch in the dynamics of (6). This can
only happen when and
(e.g., in states 3 and 4), causing a transition to state 7 in which
the invariant condition is . (ii) The agent reaches a
switching location, indicated by the guard condition
for any . In these cases, a transition results from
a state to if and to otherwise. (iii)
The agent position reaches one of several critical values that af-
fect the dynamics of while . Specifically, when

, the value of becomes strictly positive
and , as in the transition .
Subsequently, when , as in the transi-
tion , the value of becomes sufficiently large
to cause so that a transition
due to becomes feasible at this state. Similar tran-
sitions occur when , , and

. The latter results in state 6 where
and the only feasible event is , odd, when a switch
must occur and a transition to state 13 takes place (similarly for
state 8).
IPA Review: Before proceeding, we provide a brief review

of the IPA framework for general stochastic hybrid systems
as presented in [17]. The purpose of IPA is to study the be-
havior of a hybrid system state as a function of a parameter
vector for a given compact, convex set . Let

, , denote the occurrence times of all
events in the state trajectory. For convenience, we set
and . Over an interval , the system
is at some mode during which the time-driven state satisfies

. An event at is classified as (i) Exogenous
if it causes a discrete state transition independent of and satis-
fies ; (ii) Endogenous, if there exists a contin-
uously differentiable function such that

; and (iii) In-
duced if it is triggered by the occurrence of another event at
time . IPA specifies how changes in influence the
state and the event times and, ultimately, how they
influence interesting performance metrics which are generally
expressed in terms of these variables.
Given , we use the Jacobian matrix nota-

tion: , , ,
for all state and event time derivatives. It is shown in [17] that

satisfies

(28)

for with boundary condition

(29)

for . In addition, in (29), the gradient vector for
each is if the event at is exogenous and

(30)
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Fig. 2. Hybrid automaton for each . Grey arrows represent events when the control switches between 1 and -1. Arrows from states 3,4 into 7 and from 10,11
into 14 represent events when becomes 0. Dark arrows represent all other events.

if the event at is endogenous (i.e., ),
defined as long as .
IPA Equations: To clarify the presentation, we first note that

is used to index the points where uncertainty is
measured; indexes the components of the param-
eter vector; and indexes event times. In order to
apply the three fundamental IPA (28)–(30) to our system, we
use the state vector and pa-
rameter vector . We then identify all events
that can occur in Fig. 2 and consider intervals
over which the system is in one of the 14 states shown for
each . Applying (28) to with or

due to (1) and (12), the solution yields the gradient vector
, where

(31)

for all , i.e., for all states .
Similarly, let
for . We note from (6) that for states

; for states
; and for all other states

which we further classify into and
. Thus, solving (28) and using (31) gives

if

otherwise

(32)

where as evaluated from (4) depending
on the sign of at each associated automaton state.
Details on the derivation of a simple recursive expression for

above can be found in Appendix A.

Objective Function Gradient Evaluation: Based on our
analysis, the objective function (7) in problem can now be
written as , a function of instead of and we can
rewrite it as

where we have explicitly indicated the dependence on . We
then obtain

(33)

Observing the cancelation of all terms of the form
for all (with , fixed), we finally get

(34)

The evaluation of therefore depends entirely on ,
which is obtained from (47) and (48) in Appendix A and the
observable event times , , given initial con-
ditions , for and
. Since itself depends only on the event times ,

, the gradient is obtained by observing
the switching times in a trajectory over characterized by
the vector .
2) Multi-Agent Solution Where and :

Next, we extend the results obtained in the previous section
to the general multi-agent problem where we also allow

and . Recall that we require and
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, for at least some , since,
otherwise, controlling agent movement cannot affect for
all located outside the sensing range of agents. We now
include both parameter vectors and

for each agent and, for notational
simplicity, concatenate them to construct
and . The solution of problem re-
duces to the determination of optimal parameter vectors
and and we will use IPA to evaluate

. Similar to (34), it is clear
that this depends on
and the event times , , observed on a trajectory
over with given and .
IPA Equations: We begin by recalling the dynamics of

in (6) which depend on the relative positions of all
agents with respect to and change at time instants such
that either with or
with . Moreover, using (1) and our earlier Hamil-
tonian analysis, the dynamics of , , in
an optimal trajectory can be expressed as follows. Define

if is odd and if
is even to be the th interval between successive switching

points for any , where . Then, for

odd
even

otherwise
(35)

where transitions for from to are incorporated
by treating them as cases where , i.e., no dwelling
at a switching point (in which case .) We
can now concentrate on all events causing switches either
in the dynamics of any , , or the dy-
namics of any , . From (29), any other
event at some time in this hybrid system cannot modify
the values of or

at .
First, applying (28) to with , or 0 due to

(35), the solution yields

(36)

for all , . Similarly, applying (28) to
and using (6) gives

if

otherwise
(37)

and

if

otherwise
(38)

where

Details on the derivation of simple recursive expressions for
the components of and in (36)–(38) can be
found in Appendix B.
Objective Function Gradient Evaluation: Proceeding

as in the evaluation of in Section III-A1, we
are now interested in minimizing the objective function

in (7) with respect to and and we can obtain
as

This depends entirely on , which is obtained from (37)
and (38) and the event times , , given ini-
tial conditions for , and for

. In (37), is obtained through
(50) and (52) found in Appendix B, whereas is
obtained through (36) and (49), (57), (63) found in Appendix B.
In (38), is again obtained through (50) and
(52), whereas is obtained through (49) and
(67) which are also found in Appendix B.
Remark 2: Observe that the evaluation of , hence

, is independent of , , i.e., the values
in our uncertainty model. In fact, the dependence of on
, , manifests itself through the event times ,

, that do affect this evaluation, but they, unlike
which may be unknown, are directly observable during the

gradient evaluation process. Thus, the IPA approach possesses
an inherent robustness property: there is no need to explicitly
model how uncertainty affects in (6). Consequently, we
may treat as unknown without affecting the solution ap-
proach (the values of are obviously affected). We may
also allow this uncertainty to be modeled through random pro-
cesses , ; in this case, however, the re-
sult of Proposition III.3 no longer applies without some con-
ditions on the statistical characteristics of and the re-
sulting is an estimate of a stochastic gradient.

B. Objective Function Optimization

We now seek to obtain and minimizing
through a standard gradient-based optimization scheme of the
form

(39)

where , are appropriate step size sequences and
is the projection of the gradient onto

the feasible set (the set of satisfying the constraint (27),
, and ). The optimization scheme ter-

minates when (for a fixed threshold ) for
some and . Our IPA-based algorithm to obtain and
minimizing is summarized in Algorithm 1 where we
have adopted the Armijo method in step-size selection (see
[26]) for .
One of the unusual features in (39) is the fact that the di-

mension of and is a priori unknown (it depends on
). Thus, the algorithm must implicitly determine this value
along with and . One can search over feasible values
of by starting either with a lower bound

or an upper bound to be found. The latter approach
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results in much faster execution and is followed in Algorithm
1. An upper bound is determined by observing that is
the switching point where agent changes speed from 1 to 0
for odd and from to 0 for even. By setting these two
groups of switching points so that their distance is sufficiently
small and waiting times for each agent, we deter-
mine an approximate upper bound for as follows. First,
we divide the feasible space evenly into intervals:

, .
Define to be the geometric
center of each interval and set if is even
and if is odd, so that the distance between
switching points for odd and even is , where
is an arbitrarily small number, . In addition, set

. Then, must satisfy

(40)

, where is the number of switching points
agent can reach during , given as defined above.
From (40) and noting that is an integer, we have

(41)

where is the ceiling function. Clearly, reducing increases
the initial number of switching points assigned to agent
and as . Therefore, is selected sufficiently
small while ensuring that the algorithm can be executed suffi-
ciently fast.

Algorithm 1: IPA-based optimization algorithm to find and

1: Pick and .

2: Define , ,
and set

if even
if odd

Set ., where
and

3: repeat

4: Compute , using , (12), and for

5: Compute and update , through (39)

6: until

7: Set and ,
where is the index of , which is the last switching point
agent can reach within ,

As Algorithm 1 repeats steps 3–6, and distances
between for odd and even generally increase, so that the
number of switching points agent can actually reach within
decreases. In other words, as long as is sufficiently small

(hence, is sufficiently large), when the algorithm converges
to a local minimum and stops, there exists , such that

is the last switching point agent can reach within ,
. Observe that there generally exist such that
which correspond to points that agent

cannot reach within ; the associated derivatives of the cost
with respect to such are obviously 0, since perturbations to
these will not affect , and thus the cost

. When , we achieve a local minimum
and stop, at which point the dimension of and is .

IV. NUMERICAL EXAMPLES

In this section we present some examples of persistent moni-
toring problems in which agent trajectories are determined using
Algorithm 1. The first four are single-agent examples with
, , , , and the remaining sampling

points are evenly spaced over . The sensing range in (4)
is set to , the initial values of the uncertainty functions in
(6) are for all , and the time horizon is .
In Fig. 3(a) we show results where the agent is allowed to move
over the entire space and the uncertainty model is se-
lected so that and for all ,
whereas in Fig. 3(b) the feasible space is limited to with

and . The top plot in each example
shows the optimal trajectory obtained, while the bottom
shows the cost as a function of iteration number. In
Fig. 4, the trajectories in Fig. 3(a) and (b) are magnified for the
interval to emphasize the presence of strictly positive
waiting times at the switching points.
In Fig. 3(c) we show results for a case similar to Fig. 3(a) ex-

cept that the values of are selected so that ,
while , . Note that the waiting times at
the switching points are now longer and even though it seems
that the switching points are at the two end points, they are ac-
tually very close but not equal to these end points, consistent
with Proposition III.1. In Fig. 3(d), on the other hand, the values
of are allowed to be random, thus dealing with a persistent
monitoring problem in a stochastic mission space, where we can
test the robustness of the proposed approach. In particular, each
is treated as a piecewise constant random process

such that takes on a fixed value sampled from an uniform
distribution over (0.075, 0.125) for an exponentially distributed
time interval with mean 10 before switching to a new value.
Note that the behavior of the system in this case is very sim-
ilar to Fig. 3(a) where for all without
any change in the way in which is evaluated in ex-
ecuting (39). As already pointed out, this exploits a robustness
property of IPA which makes the evaluation of in-
dependent of the values of . In general, however, when
is time-varying, Proposition III.3 may no longer apply, since an
extra term would be present in (24). In such a case,

may be nonzero when and the determination
of an optimal trajectory through switching points and waiting
times alone may no longer be possible. In the case of 3 (d),
changes sufficiently slowly to maintain the validity of Proposi-
tion III.3 over relatively long time intervals, under the assump-
tion that w.p. 1 no event time coincides with the jump times in
any .
In all cases, we initialize the algorithm with and

. The running times of Algorithm 1 are approx-
imately 10 sec using Armijo step-sizes. Note that although the
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Fig. 3. One agent example. , . For each example, top plot: optimal trajectory; bottom plot: J versus iterations. (a) , . ,
, . (b) , . , . . (c) , . , , .
. (d) , . , . .

number of iterations for the examples shown may vary substan-
tially, the actual algorithm running times do not. This is simply
because the Armijo step-size method may require several trials
per iteration to adjust the step-size in order to achieve an ade-
quate decrease in cost. In Fig. 3(a) and (d), the red line shows
the cost as a function of iteration number using a constant step
size and the two lines converge to the same approximate optimal
value. Non-smoothness in Fig. 3(d) comes from the fact that it
is a stochastic process. Note that in all cases the initial cost is
significantly reduced indicating the importance of optimally se-
lecting the values of the switching points and associated waiting
times (if any).
Fig. 5 shows two two-agent examples with ,
and evenly spaced sampling points over , ,
, , for all and . In Fig. 5(a)

the agents are allowed to move over the whole mission space
, while in Fig. 5(b) they are only allowed to move over
where and . We initialize the algorithm

with the same and as before. The algorithm running time is
approximately 15 sec using Armijo step-sizes, and we observe
once again significant reductions in cost.

V. CONCLUSION

We have formulated an optimal persistent monitoring
problem with the objective of controlling the movement of
multiple cooperating agents to minimize an uncertainty metric
in a givenmission space. In a 1-Dmission space, we have shown
that the optimal solution is reduced to the determination of two
parameter vectors for each agent: a sequence of switching loca-
tions and associated waiting times at these switching points. We
have used Infinitesimal Perturbation Analysis (IPA) to obtain
sensitivities of the objective function with respect to all the
parameters and, therefore, obtain a complete on-line (locally
optimal) solution through a gradient-based algorithm. We have
also shown that the solution is robust with respect to the un-
certainty model used. Our ongoing work aims at incorporating
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Fig. 4. Magnified trajectory for sub-figure (a) and (b) in Fig. 3, .

constraints such as to the problem formulation,
thus ensuring that an optimal persistent monitoring solution
provides certain performance guarantees. We are also inves-
tigating the use of receding horizon controllers that provide
computationally fast approximate solutions. Finally, our work
to date has established the basis for extending this approach to
a two-dimensional mission space. Specifically, one idea is to
decompose such a two-dimensional mission space into regions
each one of which is monitored by agents moving on a 1-D
trajectory, thus taking direct advantage of the results in this
paper.

APPENDIX A
IPA DERIVATION FOR SINGLE-AGENT SOLUTION

In order to determine and which
are needed to evaluate in (32), we use (29),
which involves the event time gradient vectors

for (the value of
depends on .) Looking at Fig. 2, there are three readily

distinguishable cases regarding the events that cause discrete
state transitions:

Case 1: An event at time which is neither nor
, for any . In this case, it is easy to see

that the dynamics of both and are continuous, so that
in (29) applied to and ,

gives

(42)

Case 2: An event at time . This corresponds
to transitions , , and in
Fig. 2 where the dynamics of are still continuous, but the
dynamics of switch from
to . Thus, , but we need to

Fig. 5. Two agent example. , . Top plot: optimal trajectory.
Bottom plot: J versus iterations. (a) , . . (b) ,

. .

evaluate to determine . Observing that this event is
endogenous, (30) applies with and we get

It follows from (29) that:

Thus, whenever an event occurs at such that be-
comes zero, is always reset to 0 regardless of

.
Case 3: An event at time due to a control sign change

at , . This corresponds to any transition
between the upper and lower part of the hybrid automaton in
Fig. 2. In this case, the dynamics of are continuous and
we have for all , , . On
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the other hand, we have .
Observing that any such event is endogenous, (30) applies with

for some and we get

(43)

Combining (43) with (29) and recalling that ,
we have

where because
for all , since the position of the agent

cannot be affected by prior to this event.
In this case, we also need to consider the effect of perturba-

tions to for , i.e., prior to the current event time
(clearly, for , since the current posi-
tion of the agent cannot be affected by future events.) Observe
that since , we have for
and (30) gives , so
that using this in (29) we get

(44)

Combining the above results, the components of where
is the event time when for some , are given by

if
if
if

(45)

It follows from (31) and the analysis of all three cases above
that for all is constant throughout an optimal tra-
jectory except at transitions caused by control switching loca-
tions (Case 3). In particular, for the th event corresponding to

, , if , then if
is odd, and if is even; similarly, if
, then if is odd and

if is even. In summary, we can write

(46)

Finally, we can combine (46) with our results for
in all three cases above. Letting , we obtain the
following expression for for all ,

if
if

if
(47)

with boundary condition

if
otherwise

(48)

APPENDIX B
IPA DERIVATION FOR MULTI-AGENT SOLUTION

The evaluation of the components of and
in (36)–(38) using (29) involves the event time gra-

dient vectors for ,
which will be determined through (30). There are three possible
cases regarding the events that cause switches in the dynamics
of or as mentioned above:

Case 1: An event at time such that switches from
to . In this case, it is easy

to see that the dynamics of both and are continuous,
so that in (29) applied to and ,

, , and we get

(49)

(50)

Case 2: An event at time such that switches from
to , i.e., becomes

zero. In this case, we need to first evaluate from (30) in
order to determine through (29). Observing that this
event is endogenous, (30) applies with and we get

(51)

It follows from (29) that:

(52)

Thus, is always reset to 0 regardless of . In
addition, (49) holds, since the the dynamics of are contin-
uous at time .

Case 3: An event at time such that the dynamics of
switch from to 0, or from 0 to . Clearly, (50) holds

since the the dynamics of are continuous at this time.
However, determining is more elaborate and requires
us to consider its components separately, first
and then .

Case 3.1: Evaluation of .
Case 3.1.1: An event at time such that the dynamics

of in (35) switch from to 0. This is an endogenous
event and (30) applies with for some

and we have

(53)

and (29) yields

(54)
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As in Case 3 of Section III-A1, we also need to consider the
effect of perturbations to for , i.e., prior to the current
event time (clearly, for , since
the current position of the agent cannot be affected by future
events.) Observe that , therefore, (30) becomes

(55)

and using this in (29) gives

(56)
Thus, combining the above results, when for
some and the agent switches from to 0, we have

if
if

(57)

Case 3.1.2: An event at time such that the dynamics of
in (35) switch from 0 to . This is an induced event since

it is triggered by the occurrence of some other endogenous event
when the agent switches from to 0 (see Case 3.1.1 above.)
Suppose the agent starts from an initial position with

and is the time the agent switches from the 0 to
at the switching point . If is such that ,

then is even and can be calculated as follows:

(58)

Similarly, if is the switching point such that ,
then is odd and we get

(59)
We can then directly obtain as

(60)

Using (60) in (29) gives

(61)

Once again, we need to consider the effect of perturbations to
for , i.e., prior to the current event time (clearly, for
, .) In this case, from (58) and (59),

we have

if odd

if even
(62)

and it follows from (29) that for :

if even,

or odd
if odd,

or even.

(63)

Case 3.2: Evaluation of .
Case 3.2.1: An event at time such that the dynamics

of in (35) switch from to 0. This is an endogenous
event and (30) applies with for some

. Then, for any , we have

(64)

Combining (64) with (29) and since , we have

(65)

Case 3.2.2: An event at time such that the dynamics of
in (35) switch from 0 to . As in Case 3.1.2, is given

by (58) or (59), depending on the sign of . Thus, we
have , for . Using this result in (29) and
observing that from (65), we have

(66)

Combining the above results, we have for Case 3.2

if
if

(67)

Finally, note that for , since the
position of the agent cannot be affected by prior to such
an event.
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