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A Cooperative Receding Horizon Controller for
Multivehicle Uncertain Environments

Wei Li and Christos G. Cassandras, Fellow, IEEE

Abstract—We consider a setting where multiple vehicles form a
team cooperating to visit multiple target points and collect rewards
associated with them. The team objective is to maximize the total
reward accumulated over a given time interval. Complicating fac-
tors include uncertainties regarding the locations of target points
and the effectiveness of collecting rewards, differences among ve-
hicle capabilities, and the fact that rewards are time-varying. We
propose a receding horizon (RH) controller suitable for dynamic
and uncertain environments, where combinatorially complex as-
signment algorithms are infeasible. The control scheme dynami-
cally determines vehicle trajectories by solving a sequence of op-
timization problems over a planning horizon and executing them
over a shorter action horizon. This centralized scheme can generate
stationary trajectories in the sense that they guide vehicles to target
points, even though the controller is not explicitly designed to per-
form any discrete point assignments. This paper establishes condi-
tions under which this stationarity property holds in settings that
are analytically tractable, quantifies the cooperative properties of
the controller, and includes a number of illustrative simulation ex-
amples.

Index Terms—Cooperative control, optimization, potential field,
receding horizon.

I. INTRODUCTION

COOPERATIVE control refers to settings which in-
volve multiple controllable agents cooperating toward a

common objective. The information based on which an agent
takes control actions may differ from that of the rest. In addition,
operating in an uncertain environment requires that agents be
capable of reacting to unexpected events. Cooperative control
has its roots in team theory [1] and it has recently emerged as
a framework for coordinating a team of autonomous vehicles
whose task it is to perform a mission with a common goal, e.g.,
[2] and [3].

In this paper, we consider a setting which involves a team of
vehicles and a set of target points in a two-dimensional

space (as we will see, and may vary with time). Associ-
ated with the a target point there is a reward. A mission is de-
fined as the process of controlling the movement of the vehicles
and ultimately assigning them to target points so as to maximize
the total reward collected by visiting points in the set within
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a given mission time . It is assumed that at least one target
point is present in order for a mission to be initiated, but other
targets may be added (or deleted) during the course of the mis-
sion. The problem is complicated by several factors: i) Target
point rewards may be time-dependent, typically decreasing in
time; thus, the order in which target points are visited by vehi-
cles may be critical; ii) Different vehicles have different capa-
bilities in terms of collecting the reward associated with a target
point; thus, assigning specific vehicles to specific points can also
be critical; iii) The exact location of target points may not always
be known in advance; iv) There may be obstacles (also known
as threats) in the two-dimensional space (referred to as the mis-
sion space), which constrain the feasible trajectories of vehicles
or may cause their elimination when they are encountered; and
v) The collection of information about the state of the mission
space is an important aspect of the problem, since knowledge of
target point and obstacle locations clearly affects the ultimate
objective of the mission.

This setting gives rise to a complex stochastic optimal control
problem. In principle, one can invoke dynamic programming as
a solution approach, but this is computationally intractable even
for relatively simple mission control settings [4], [5]. Because
of the complexity of the overall problem, it is natural to decom-
pose it into various subproblems at different levels—from de-
tailed motion control of the vehicles to higher-level path plan-
ning and assignment of vehicles to target points. For example,
[6] and [7] address issues of dynamically allocating resources,
while [8] formulates the problem of cooperative path planning
as a mixed-integer linear program (MILP) that incorporates task
timing constrains, vehicle capability constraints, and the pres-
ence of obstacles. At the level of generating trajectories, key
issues involve formation control, obstacle avoidance, and stabi-
lization [9]–[12].

An alternative to this “functional decomposition” approach is
one based on time decomposition. This is aimed at developing
online controllers suitable for uncertain environments where
combinatorially complex assignment algorithms are infeasible.
The main idea is to solve an optimization problem seeking to
maximize the total expected reward accumulated by the team
over a given time horizon, and then continuously extend this
time horizon forward (either periodically or in purely event-
driven fashion). This idea is in the spirit of receding horizon
(RH) schemes, which are associated with model-predictive con-
trol and used to solve optimal control problems for which feed-
back solutions are extremely hard or impossible to obtain; see
[13]–[15] and, more recently, [16]–[19]. In [20], we introduced
this approach in the multivehicle, multitarget point setting de-
scribed previously. The resulting cooperative control scheme
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dynamically determines vehicle trajectories by solving a se-
quence of optimization problems over a planning horizon and
executing them over a shorter action horizon. We should empha-
size that the optimization problem involved does not attempt to
make any explicit vehicle-to-target assignments, but only to de-
termine headings that, at the end of the current planning horizon,
would place vehicles at positions such that a total expected re-
ward is maximized. Thus, it is a relatively simple problem to
solve. A surprising observation in early simulation experiments
[20] was the fact that vehicle trajectories actually converge to
target points, despite the fact that our approach, by its nature,
was never intended to perform any such discrete vehicle-to-
target-point assignment. With this seemingly salient property,
an advantage of this approach is that it integrates the three tasks
of: i) vehicle assignment to target points; ii) routing of the vehi-
cles to their assigned target points; and iii) real-time trajectory
generation, all in one function: Controlling vehicle headings in
real time.

Motivated by this observation, the contribution of this paper
is to present and analyze the RH control scheme outlined above
and to explore the generality of the “stationarity” property
observed, i.e., the fact that vehicles converge to target points
without explicitly being assigned to them. We first study the
general -vehicle -target point case and identify a condition
that ensures a “stationary” trajectory in the sense that a vehicle
always ends up visiting a target. For the 1-vehicle -target
point case, we show that this condition reduces to a simple test.
For 2-vehicle problems, despite the loss of cost function con-
vexity compared to a single-vehicle case, we are able to show
that this condition is satisfied and RH controller trajectories are
still stationary. The verification of this condition for
vehicles remains an open issue.

From a practical standpoint, the proposed RH control scheme
translates into on-line task assignment and path planning for
multi-vehicle cooperative missions and its event-driven nature
is specifically suited to uncertain environments by naturally ad-
justing trajectories in response to random events. The scheme is
centralized, i.e., it requires a controller (possibly one of the ve-
hicles) with adequate computation and communication capacity
to solve an optimization problem whenever invoked as a result
of an event occurrence reported by any one vehicle. Commands
are then issued from the controller to all team vehicles. The cen-
tralized scheme in this paper has formed the basis for developing
a distributed RH controller, presented in [21] where the RH con-
troller is also extended to include trajectory constraints such as
obstacle avoidance and limits on the vehicle headings allowed.

In Section II, we present the cooperative RH (CRH) con-
trol scheme and include some simulation examples to illustrate
its properties and cooperative characteristics. In Section III, we
place this scheme in the context of a potential field and examine
the stationarity properties of the CRH control scheme.

II. CRH CONTROL SCHEME

We consider a two-dimensional mission space, in which there
is a set of target points indexed by . The
location of the th target point is . There are also initially

vehicles indexed by that define a set , and

let denote the position of the th vehicle at time .
The vehicles’ intial positions are given by , .
For simplicity, we assume a vehicle travels at constant velocity
throughout the team mission, i.e.,

(1)

where is the controllable heading of vehicle
and is the corresponding velocity. We note that , and
may change in time.

Vehicles complete tasks in the mission space by visiting target
points. To distinguish the relative importance of tasks at time ,
each target point has an associated reward function denoted by

, where is the maximal reward and is
a discounting function which describes the reward change over
time. Note that by appropriately selecting , it is possible
to capture timing constraints imposed on target points, as well
as precedence constraints (e.g., if point must be visited before
point , then for all prior to being visited by some
vehicle). By allowing for some and properly selecting

, we may also model an obstacle or threat in the mission
space (see also [21]). A simple discounting function we can use
is the linear one

(2)

When a deadline is associated with a paricular target point, we
can use

if

if
(3)

where is a deadline assigned to target point , and ,
are parameters which may be target-specific and chosen

to reflect different cases of interest.
In order to distinguish the effectiveness of vehicles relative to

a target point , we define a vehicle capability factor
, which reflects the probability that a vehicle visiting

point at time will complete the task and collect the reward
. We say that vehicle visits target point at time

if ( is the usual Euclidean norm) and
. Thus, can be viewed as the size of a target

point. If during a visit the vehicle successfully completes its
task, it will collect the corresponding reward and, at the same
time, target point is no longer of interest to the mission and it
is removed from the set . Since a visit at point is related to
the consumption of vehicle ’s resources, the vehicle capability
factor may decrease after the visit, i.e. .
In addition, if target is a threat, a visit may result in the elim-
ination of vehicle , a negative reward is collected, and is re-
moved from the set .

Cooperative structure: Vehicles cooperate by dynami-
cally partitioning the mission space and implicitly allocating
regions of it among themselves. Given an arbitrary point

in the mission space (not necessarily a target point),
we would like to assign this point to vehicles at time so that

is assigned to the closest vehicle with the highest proba-
bility. To formalize this idea, we first define a neighbor set

to include the closest vehicles to at time
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, where . Let be the th closest
vehicle to , i.e. ,

, , so that

We then define the relative distance function, , as fol-
lows:

if

otherwise
(4)

Of particular interest is the case , so we set
. Moreover, when coincides with a target point , we

write and similarly .
Next, we define a relative proximity function to

be any nonincreasing function of such that ,
. An example of such a function when is

if
if
if

(5)
where is an adjustable parameter which can be
interpreted as a “capture radius”: if a target point happens to
be so close to vehicle as to satisfy , then at
time vehicle is committed to visit target . Again, when
coincides with a target point , we write .
We can now view as the probability that target point is
assigned to vehicle at time , based on the value of , and
observe that . Fig. 1(a) illustrates (5) when

. In Fig. 1(b), the mission space regions which are within the
“capture radius” of vehicles are indicated; as will be shown in
Section III, the boundaries of these regions are made up by arcs
(see Lemma 5). As increases, the regions expand and when

they cover the entire mission space. It is worthwhile
noting that when these regions reduce to the Voronoi
partition of the mission space (see [22]), as a special case of this
cooperative structure construction.

CRH trajectory construction: The objective of the mission
is to collect the maximal total reward by the end of some mis-
sion time (or some specific event that defines the end of the
mission). To meet this goal, we design a cooperative controller
which generates a set of trajectories for each vehicle in the team

during . This on-line controller is applied at time points
denoted by , , during the mission time. At ,
the controller operates by solving an optimization problem ,
whose solution is the control vector .
Next, we explain how is formulated.

Suppose that vehicles are assigned headings
at time , intended to be main-

tained for a planning horizon denoted by . Then, at time
the planned positions of the vehicles are given by

(6)

Define

(7)

Fig. 1. (a) q function when � = 0:4. (b) Full responsibility regions when
� = 0:4 and Voronoi partition (dotted line) obtained when � = 0:5.

and note that is the earliest time that vehicle can
reach point under the condition that it starts at with control
dictated by and then proceeds directly from
to the target point . We are interested in the maximal reward
that vehicle can extract from target if it reaches the target at
time . Clearly, this is given by . For
convenience, define

(8)

where it is worth pointing out that , unlike , depends
on both and . It is also clear that the probability of extracting
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this reward, evaluated at time , is given by .
For convenience, we set

(9)

Returning to the function defined earlier,
we are interested in its value at and define

(10)

Using the notation and to denote dependence of these
sets on , we can now present the optimization problem ,
formulated at time , as follows:

(11)

with , , and as defined
in (8)–(10), respectively. The expression

in (11) can be seen as the expected
reward that vehicle collects from target point , evaluated at
time using a planning horizon . Note, once again, that
we may have in the case of threats in the mission
space. Moreover, we can model the elimination of vehicles by
including negative terms of the form where
is the cost of vehicle and is the probability that
a vehicle visiting target point at time will be eliminated
(see also [21]). We should also point out that is readily
extended to incorporate additional features of a team mission
environment. For example, the formulation in (11) assumes
that a vehicle is free to arbitrarily change its heading at no cost.
Introducing such a cost [i.e., a negative reward in (11)] results
in a tradeoff between changing direction and the incremental
expected benefit of such a control action. This tradeoff is for-
malized in [21] by introducing a heading change cost function

, where is the current heading of a vehicle and is
a new heading, determined as the solution of a problem of the
form at some .

Problem is parameterized by the planning horizon ,
which is critical in obtaining desirable properties for this CRH
controller. In particular, we will set

(12)

i.e., the smallest “distance” (in time units) between any target
point and any capable vehicle at time . We will show in Sec-
tion III (see Lemma 1) why this choice is appropriate. Moreover,
from our definition of a vehicle “visiting” a target point, it fol-
lows that where
is the size of . At the time of a visit, either the task at the target
point is completed and the target is removed from the set or
the vehicle depletes its resources (i.e., ); the plan-
ning horizon is also re-evaluated at this point.

Upon getting the optimal for (11) based on and all state
information available at , all vehicles follow this control for
an action horizon . The process is then repeated at time

, The value of is determined by
two factors. First, if an unexpected event takes place (e.g., a new
target is detected or a vehicle fails) at some ,

then we set . Otherwise, we simply update the con-
trol after a prespecified amount of time. Thus, in general, is
a random sequence. The CRH controller terminates when: i) all
the target rewards are collected; ii) all vehicles are eliminated;
iii) vehicles deplete all their resources; or iv) the mission time
expires.

Looking at (11), observe that the solution of this problem is
some heading for every vehicle , but there is no
express constraint imposed on to assign a vehicle to a target
location: There is no constraint of the form

, or
forcing a vehicle to either be at

a some point by a certain time or to set a heading for it. The
intent of designing the CRH controller was originally to simply
direct vehicles toward points in the mission space in a way that
the team maximizes an expected reward as represented by the
objective function in (11); a lower level controller might then
be responsible for making final discrete assignments. However,
the empirical observation made (as seen in the next section) was
that in fact vehicles always end up visiting a target point, as long
as the planning horizon is appropriately selected, specifically as
in (12) above. The remainder of this paper is largely intended
to explore the validity and potential limitations of this “station-
arity” property.

Complexity of problem : The motivation for our CRH
approach comes from: i) the stochastic nature of the mission
space, and ii) an effort to bypass the combinatorial complexity
of vehicle assignment problems. In deterministic discrete opti-
mization, there exist several well-known algorithms to address
the problem of assigning vehicles to sequentially visit
points and maximize a total reward (e.g., Vehicle Routing Prob-
lems or, if , Traveling Salesman Problems [23], [24]).
Using such algorithms in our problem setting is infeasible, since
random events necessitate that this type of combinatorially hard
problem is repeatedly solved on line; in addition, these algo-
rithms are typically very sensitive to the problem setting (e.g.,
target locations and rewards). This raises the issue of whether
solving is significantly simpler than any such approach and
whether it is scalable with respect to and .

In order to provide a reasonable comparison of our approach
to a deterministic assignment problem (e.g., as in [8]), it is
common to consider the mission space as a two-dimensional
grid. Depending on the grid design, the control can take

values and in the case of vehicles, the solution of (11)
reduces to comparing cost values. An immediate observa-
tion is that this is independent of the number of target points
[except for some arithmetic to add terms in (11)], so that the
complexity of this approach is independent of . The problem
of evaluating assignments of vehicles to sequentially visit
points can be mapped onto a “ball and urn” problem (ignoring
the extra complexity induced by constraints that make some
assignments infeasible) as follows: given a labeling of balls,
there are groupings into urns (where denotes
the number of combinations), therefore the total number of
assignments is .
In a stochastic setting, if random events occur each one
requiring resolving a problem, the complexity of this approach
is of the order of compared to
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the complexity of the CRH scheme which is . As an
example, for , , (a standard rectangular
grid), , whereas

, a complexity reduction of the order of for
each of the events. We should also point out that when
the stochastic optimization problem is considered, neither ap-
proach can be guaranteed to yield a global optimum because the
associated stochastic discrete dynamic program is intractable.
In practice, problem is an unconstrained nonlinear program
which may be solved very efficiently by a variety of standard
techniques without resorting to any discretization of the mis-
sion space; naturally, in general, only local optimality can be
guaranteed in this case.

A. Simulation Examples

Before proceeding with the analysis of the CRH controller’s
properties, we provide in this section a few examples in a simu-
lated mission space environment. We do so at this point in order
to illustrate these properties and motivate the analysis carried
out in the rest of this paper, as well as to highlight some issues
that deserve further scrutiny.

The implementation of the controller requires selecting the
planning and action horizons and , respectively. In what
follows, is given by (12) and is selected so that

if
if

(13)

where, for any target point, is a small distance from it (in the
sequel, ). The reward discounting function is given
by (3), is given by (5) with , and

is given by (4) with . Finally, the simu-
lated environment allows for time-dependent target point values
(modeled through , including deadlines), different vehicle
capabilities (modeled through ), and random events such
as new target points being detected or vehicle failures.

An example of a mission executed under CRH control is
shown in Fig. 2. In this case, there are 4 vehicles (A,B,C,D)
and 10 target points (shown as indexed triangles). Each target
point is assigned a maximal reward , with for

, , and . Targets
are also assigned deadlines , with ,
for , 5, 6, 8, and for . The initial ve-
hicle positions (randomly chosen) are indicated by the squares.
The notation on the top right represents the time of the
snapshot shown and the remaining total reward for the team. For
simplicity, in this example we set all vehicle capability factors
to 1 (the controller’s basic behavior is not affected by changing
these values). It is also assumed that all target points are known
in advance and that information is shared by all vehicles.

Looking at Fig. 2, we make several observations. First, as
pointed out in the previous section, the RH controller guides
vehicles to eventually visit discrete target points. This is not at
all obvious, since the controller sets headings with the aim of
maximizing expected rewards, but has no explicit mechanism
for forcing vehicles to reach any discrete point in the mission
space. For instance, vehicle A initially heads for a position be-
tween points 1, 6, and 9, but then eventually converges to target

Fig. 2. Example of the CRH controller operation with four vehicles, ten target
points.

point 1. This “stationarity” property of the CRH controller is
analyzed in the next section. Note that such flexibility in a ve-
hicle’s behavior is highly desirable in an uncertain environment:
The vehicle does not commit to a specific target point until the
last possible time instant. In this example, target point 1 has a
tight deadline , so it is not surprising that A selects
it first in its trajectory. The cooperative nature of the controller
is also seen in the joint behavior of vehicles A and D: while A
heads for 1, vehicle D heads toward 6 and 9 and visits 9 in time to
make the deadline while also visiting 6 which happens
to be along the way. Another manifestation of cooperative con-
trol in this example is the way that the four vehicles implicitly
divide the mission space into respective areas of responsibility.
Finally, note that the control updates are not made uniformly
over time: control updates are indicated by dots in Fig. 2, and
one can see that some are made more frequently than others.
This is a result of the asynchronous event-driven nature of the
controller, where an event such as “vehicle visits target point
” triggers a re-evaluation of the controls obtained by solving

at that event time.
Fig. 3 shows another example with 4 vehicles (P, G, BK, BL,

all initially located at the same point), but in this case only a
single target point is initially known (labeled 1). The remaining
points indicated are unknown to the team, but can be detected if
a vehicle happens to be within a “sensor detection area” (in this
case, a circle of radius 10/3 units). Thus, an essential aspect of
the mission is the search for target points. In this case, the CRH
controller serves to disperse the four vehicles so that they are
headed in different directions. In Fig. 3(a), because targets 4, 8,
9, 11 are located within the detection radius defined by the ini-
tial location, they become known to the team. Vehicles BK, G,
and BL are headed for these targets, while vehicle P is heading
for target 1. In Fig. 3(b), all but one target points have been de-
tected. An example of the controller’s cooperative nature is seen
in the behavior of BK: it was originally accompanying P toward
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Fig. 3. Example of a mission with unknown targets.

1, up to a point where the effect of in (11) is such that
the expected reward is maximized by having vehicle BK be “re-
pelled,” which is tantamount to this vehicle searching for un-
known targets and in fact detecting some as seen in Fig. 3(b)
relative to Fig. 3(a). This occasional repelling action automati-
cally induced by the cooperative controller will be discussed in
detail in Section III-C; see (28). Along the same lines, vehicle
G, after visiting target 4, is directed away from the areas that the
other three vehicles are covering. Although this vehicle fails to
detect any of the remaining unknown targets, it will continue in
“search mode” during the mission. On the other hand, vehicle
BL visits a number of targets that it happens to detect along its
trajectory.

Additional simulation results were reported in [20] where the
performance of the controller was also compared to an upper
bound provided by performing an exhausitive search over all
possible straight-line (minimum-time) trajectories. The results
indicate that the CRH controller matches the reward upper
bound, except in some cases where the behavior of vehicles
under CRH control exhibits instabilities in the form of headings

that oscillate between two or more values corresponding to
nearby target points. This is intuitively understandable, since
a vehicle located in the vicinity of two or more target points
with comparable expected rewards may not be able to clearly
discriminate between these target choices. This oscillatory
behavior is overcome by introducing heading change costs as
described in the previous section and further discussed in [21].
Naturally, the fact that the CRH controller was observed to
match the reward upper bound does not prove its “optimality” in
any way, but it is a strong indication that it possesses attractive
properties, some of which we discuss next.

III. STATIONARITY PROPERTIES OF THE CRH CONTROL

SCHEME

We will now study in some detail the “stationarity” property
illustrated in Section II-A, i.e., the fact that vehicle trajectories
generated by the CRH controller converge to the discrete target
points, even though there is no explicit mechanism forcing them
to do so through the solution of problems , To
facilitate the analysis, let us first define a stationarity trajectory
for a setting involving fixed sets and . Recall that associated
with every target point is its size and when vehicle visits
target point at time we have .

Definition 1: For a trajectory gen-
erated by a controller, if there exists some , such that

, , , then is a stationary tra-
jectory, and we say that the trajectory converges to target
. Otherwise, is a nonstationary trajectory.

In what follows, we will concentrate on problems with reward
discounting functions given by (2) with and
for all , and with relative proximity functions given by (5)
where . We will also set and choose the planning
horizon as in (12) when this is necessary to establish some
of our results. For simplicity, we also set for all ,
and for all , and ; these
assumptions simplify the analysis but do not alter the nature of
the results. For this problem, in the objective function in (11), we
make use of the fact that and omit the argument
of for notational simplicity. Maximizing this function over

is then equivalent to the minimization problem

(14)

Let us define to be the feasible set for

where . Because of the one-to-one
relationship between and [see (1) and (6)], (14) becomes

It is convenient at this stage to introduce a potential function
(see [25]) for this -point system as follows:

(15)
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with

(16)

The optimization problem (14) can then be rewritten as

(17)

Looking at (17), we can see that the CRH controller operates
by iteratively exploring the potential function and leading
vehicles toward the minimum points. Thus, its stationarity prop-
erty is related to two questions: i) under what condition does the
CRH controller lead a vehicle to a (local) minimum of , and
ii) under what condition does such a minimum of satisfy

for some , (i.e., the minima coincide with
target points).

In Section III-A, we establish a general condition for the sta-
tionarity of an arbitrary -vehicle, -target point system. In
Section III-B, we show that this condition can be reduced to
a simple test in the case of a single vehicle. In Section III-C,
we perform stationarity analysis to two-vehicle systems, which
provides insights to the cooperative behavior of vehicles under
CRH control.

A. -Vehicle, -Target Point Analysis—A General Result

For an arbitrary -vehicle, -target point system, question
i) posed previously is answered by Theorem 3, the main result in
this section. According to this theorem, under the condition that
every local minimum in the potential field corresponds to at least
one vehicle located at some target point, a trajectory generated
by the CRH controller is stationary by leading a vehicle to one
such local minimum. This condition can be formally written as
follows.

Condition (C): Let , , be any local
minimum of . Then, for all ,
for some , .

We begin by defining the circular decision space
for any vehicle at step

Recalling that , the overall
decision space is defined as

(18)

In addition, we define the interior of the region bounded by
at step as

and the region

Finally, we define the closed regions and
, and note that they are convex sets in and ,

respectively.

We establish two useful results. The first asserts that under
condition (C) every CRH control step leads vehicles to points
that do not increase the potential function value.

Lemma 1: Under condition (C), let
denote the position of

vehicles at the beginning of the th CRH control step. Then,
if , the solution of the
CRH control problem satisfies

for all and for all
.

Proof: See the Appendix.
This lemma provides a key step toward showing the conver-

gence of CRH trajectories to target points: since and
for all , we have for

all . However, the lemma does not offer information about the
speed of convergence, an issue we address next. The following
lemma gives a lower bound for when vehicles are in
the neighborhood of any local minimum and provides infor-
mation about the speed of convergence when vehicles approach
a local minimum.

Lemma 2: Under condition (C), let for some ,
. Then

for all

and

for all , where is a constant.
Proof: See the Appendix.

The fact that has a positive lower bound when is
in the neighborhood of a local minimum implies that under
condition (C), the solutions of do not include
any local minima of . Thus, when , must
either be a local maximum or a saddle point. These two lemmas
will help us establish Theorem 3 after making two additional
technical assumptions.

Assumption 1: has a finite number of points such that
.

Let us denote these points (which, by Lemma 2, can only be
maxima or saddle points) by , . Then, a circular
region with radius can be defined for each and
positive constant so that

(19)

(20)

Thus, defines the smallest circular region around
which contains all neighborhood points of with

. Since is continuous, we must have
and . In fact, if As-

sumption 1 is relaxed to require only that there is a finite
number of regions which contain maxima or saddle points with
the same value of , the same technique used in the proof of
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Theorem 3 can be applied, at the expense of added notational
complexity; we will therefore make use of Assumption 1.

Assumption 2: There exists some such that
for all and , .

Under this assumption, for all , we have
for all except for a finite number of

regions , . It follows from this discussion
that we should select some so that , as defined in
Lemma 2, for all .

Theorem 3: Under Assumptions 1,2 and condition (C), let
denote the position of vehi-

cles at the beginning of the th CRH control step and
for all . Then, for all ,
where is a constant independent of , and the CRH tra-
jectory converges to a local minimum in a finite number of steps.

Proof: See the Appendix.
Theorem 3 offers a sufficient condition for stationarity based

on Definition 3.1. If condition (C) holds, i.e., every local min-
imum in the potential field corresponds to at least
one vehicle located at a certain target point ( for some

, ), the CRH controller is guaranteed to generate
a stationary trajectory. The importance of this general result is
that it translates testing the stationarity property of the CRH con-
troller into a test for the structure of the potential function :
At least through numerical methods, one can explore to
identify the function’s minima and see if condition (C) applies.
Naturally, it is also desirable to further simplify this task by de-
termining simpler verifiable conditions under which condition
(C) indeed holds, which is precisely question ii) as posed in the
end of the last section. In what follows, we address this for the
case where .

B. One-Vehicle, -Target Point Analysis

We begin by considering the single vehicle case, i.e.,
and in (14). Aside from being a necessary first step
before attempting to deal with multi-vehicle settings, this case
is also the basis for eventual distributed cooperative control in
which each vehicle can solve a problem relying only on its own
information set (see [21]). As we will also see, even in this
simple case where there is no cooperation involved we can only
guarantee trajectory stationarity under a condition that involves
the locations and rewards of target points.

Since we are now dealing with a single vehicle, there is a
single control variable for a vehicle whose velocity is and
position . Problem (17) becomes:

(21)

where and is the feasible set
for . Moreover, note that as defined above is
a convex function on , since it is the sum of convex func-
tions , . This convexity greatly simplifies
the one-vehicle stationarity analysis. The following theorem lo-
cates the global minimum of and presents the stationarity
properties of a one-vehicle -target system.

Theorem 4: The convergence of the RH trajectory sat-
isfies the following.

i) Necessary condition for nonstationary trajectory:
If is a nonstationary trajectory, then there exists
some , s.t. for all and

(22)

ii) Sufficient condition for stationary trajectory:
is a stationary trajectory if there exists a , such that

(23)

and, letting , the RH trajectory converges by
time .

Proof: See the Appendix.
Condition (23) in Theorem 4 fails to be necessary because

in some settings where it does not hold may still be a sta-
tionary trajectory. For example, suppose that for some

; in this case, is trivially a stationary trajectory, even
though condition (23) may not hold. Also note that condition
(23) is not as restrictive as it might appear at first glance. First
of all, it only requires that any one target point satisfies this in-
equality. Second, when taking the sum of vectors on the
right-hand-side of (23), these vectors can often counteract each
other, allowing some not necessarily large value to satisfy
the inequality.

We can give a simple interpretation to this theorem by
viewing the vehicle as a particle with maximum velocity that
follows the motion dynamics

if
if

(24)

Let us define forces applied to this particle as follows:

if
otherwise

(25)

where is the current position of the particle. In other words,
each target point applies an attraction force on the particle, the
magnitude of which is and its direction is toward . The total
force is given by

Under these attraction forces , , the particle’s
motion is the same as applying the motion dynamics (24). In
part i) of Theorem 4, we can see that at the total force is

. Therefore, the particle will stop once it reaches the
equilibrium point . In part ii) of the theorem, if there exists
some satisfying (23), then the attraction force of target point

is so large that it exceeds the total attraction force generated
by all other nodes. In such cases, the particle will be “captured”
by and the motion trajectory will converge to this point. This
“attraction force” point of view of the problem provides some
insights that are particularly helpful in multivehicle settings.
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Some additional insight is provided by the theorem regarding
the observation made in [20] that the RH controller can gen-
erate trajectories exhibiting oscillatory behavior. If (23) is not
satisfied, then the trajectory generated by our RH scheme might
indeed be unstable, in which case additional actions are required
to prevent that (e.g., including a heading change cost, as men-
tioned in Section III). However, in situations where case ii) ap-
plies, we can ensure that the trajectory will be stationary.

C. Two-Vehicle Analysis

A crucial difference between multi-vehicle and one-vehicle
settings is the presence of the function in (14). As al-
ready mentioned, the interpretation of is the probability
that target is assigned to vehicle , given the relative distance

between vehicle and target at time . For , since
, depending on the distance

of the two vehicles from target , there are three cases.

1) If , we have ,
and , . This implies that ve-
hicle 1 is expected to collect all the remaining reward
of target as if vehicle 2 did not exist. On the other
hand, vehicle 2 is so far from target compared to ve-
hicle 1 that it expects no reward from the target as if
the target did not exist.

2) Conversely, if , ,
then and and vehicle 1 ex-
pects no reward from target , while vehicle 2 expects
the total remaining reward.

3) If for , 2, then
. In this case, both vehicles expect some fraction of

the reward from target .

These three cases characterize distinct cooperative relation-
ships between vehicles. Since the evaluation of and of
the cost function depends on the relative distances, a question
that arises is: given the position of the two vehicles, can we find
a target’s positions in which will lead to cases 1–3 respec-
tively? This motivates the following definitions.

1) Given the positions of the two vehicles, all ,
, such that [case 1) above]

define a set which we call the full responsi-
bility region for vehicle 1. This set is identical to the
invisibility region for vehicle 2, denoted by .

2) Similarly, all , , such that
[case 2) above] define a set

which we call the full responsibility region for vehicle
2 and invisibility region set for vehicle 1.

3) We define the cooperative region for vehicles 1 and 2
to be .
This set contains all target positions which satisfy case
3) above.

Lemma 5: Suppose that by translating and rotating coordi-
nates we set the position of vehicle 1 to and the
position of vehicle 2 to . Then is a circular
region with center and radius

. Similarly, is a circular region with
center and radius

.

Proof: See the Appendix.
This result characterizes the regions , as circular,

nonoverlapping, and dependent only on the parameter and
the distance between the vehicles.

A simple example can illustrate the fact that when ,
the potential function is not convex. This implies that mul-
tiple minima may be present in . If we can prove that every
local minimum in the potential field corresponds to at least one
vehicle located at a certain target, then by applying Theorem 3
we can conclude that a trajectory generated by the CRH con-
troller leads to one such local minimum and, therefore, at least
one vehicle converges to one of the targets. We remind the reader
that after this visit the target point is removed from the set and
the process repeats with one fewer targets.

We will proceed by showing that condition (C) in Theorem
3 is indeed satisfied. We begin with the necessary condition
for local optimality. Recall that in both and
are vectors in (which means that the decision variable is a
vector in ). Then, is given by

, which we can evaluate from (16) and
(5) to get

if

if
if

(26)

with and defined by (4) with .
Let be the Hessian matrix of . In order to evaluate

we have three cases to consider.

i) When , : By checking the determi-
nants of all upper left sub-matrices of , we can see
that is positive semidefinite.

ii) When (for , 2): To determine
the eigenvalues of , set , where is
a 4 4 identity matrix. Solving this equation yields
four eigenvalues for ,

, ,
, where and . Thus, is not

positive semidefinite.
iii) When , : This case is the dual of

i) and is positive semidefinite.
To summarize cases i)–iii), we have if or

and if . It is difficult, from
this point on, to develop a generalized condition under which all
local minima in an arbitrary 2-vehicle -target setting lead to
stationary trajectories. Thus, we will proceed by investigating
the first two cases with .

Two-Vehicle, One-Target Case: For this setting, we have
and we can derive the following result,

which, along with Theorem 3, establishes the desired trajectory
stationary.

Theorem 6: In a cooperative control setting with and
, the potential function has exactly two local

minima

i)

ii)

and both lead to stationary trajectories.
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Fig. 4. Force exerted on a vehicle as a function of the target’s position (� = 0:4).

Proof: See the Appendix.
Two-Vehicle, Two-Target Case: For this setting, we have

and we derive the fol-
lowing result (the proof, which is omitted, is along the lines
of that in the previous theorem, but requires checking nine
different cases depending on the position of the two targets).

Theorem 7: In a cooperative control setting with and
and , the potential function has at

most four local minima

i)

ii)

iii)

iv)

and all of these solutions lead to stationary trajectories.
Similar to the stationarity analysis of the 1-vehicle case, the

partial derivative can be viewed as the attraction
force applied on vehicle by target . Thus

(27)

where

if
otherwise

if

if
if

The attraction force exerted on vehicle when target point be-
longs to its full responsibility region looks familiar, since it is
exactly the same as if vehicle were the only one in the mission
space (see (25) in the 1-vehicle case). It is also easy to see why
vehicle has no attraction from target if this target is in its in-

visibility region . However, when , the expression for
the force between vehicle and target needs some discussion.

Let us denote this force by and observe that it is composed
of two separate forces, i.e., . The first force is an
attraction force: . Recall that
in the 2-vehicle case we have , which implies that

. Thus, can be viewed as a partition of
the total attraction force (whose magnitude is ) between two
vehicles based on their relative proximity to . As for the second
force, i.e.,

(28)

note that it is an attraction force when and is oth-
erwise a repellent force. It can be considered to be an exclusive
force which is generated during the cooperation of two vehicles.
The vehicle which is closer to target will be further attracted
to it and it therefore approaches it until the target enters its full
responsibility region. Conversely, the vehicle which is further
away from target will experience a repellent force, and, on
occasion, this repellent force directs the vehicle away from the
target until it falls into its invisibility region. This type of be-
havior was observed in Fig. 3(b) involving vehicles P and BK.

In Fig. 4, we show the contours of the force exerted on ve-
hicle 1 by target as a function of the target’s position . In
this figure, the two vehicles are positioned at ,

respectively and the target is in the rectangular re-
gion defined by ( 8, 5) and (8,5). In this contour graph, all
target positions which generate the same force level are shown
in the corresponding circles. The two small circular regions la-
beled I and V correspond to the full responsibility region and
the invisibility region , respectively. The remaining area is the
cooperative region . Note that if the target lies in the contour
region labeled IV, the overall force vehicle 1 experiences is a
repellent one, which pushes the vehicle further away from the
target.
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TABLE I
MISSION SPACE IS PARTITIONED INTO 5 REGIONS

TABLE II
COOPERATIVE BEHAVIORS IN DIFFERENT REGIONS

The different regions shown define a partition of the mission
space. Depending on the location of a target at one of five re-
gions, as shown in Fig. 4, the cooperative behavior of the vehi-
cles present in the team is also different. Tables I and II sum-
marize the five different types of cooperative behaviors and the
corresponding region definition relative to a target point .

One can see that by defining the function in dif-
ferent ways, the cooperative behavior of vehicles and the coop-
erative region definition may also change. However, regardless
of the precise form of (as long as its defining mono-
tonicity and normalization properties specified in Section II are
not changed), an essential property of the relative proximity
function is its ability to implicitly carry out dynamic
resource allocation as illustrated in Fig. 4 for two vehicles and
in Fig. 1(b) for four vehicles.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have considered a setting where multiple
vehicles form a team cooperating to visit multiple target points
in order to collect rewards associated with them and maximize
the total reward accumulated over a given time interval. The
CRH control scheme we have proposed dynamically determines
vehicle trajectories by solving a sequence of relatively simple
optimization problems over a planning horizon and executing
them over a shorter action horizon. A noteworthy “stationarity”
property of this scheme is that it guides vehicles to target
points without any explicit assignment problem involved, thus
bypassing the need to deal with combinatorially explosive
problems. We have obtained conditions under which this prop-
erty can be guaranteed in an arbitrary -vehicle -target point
case and analyzed the 1-vehicle, -target point case for which
we can derive a simple condition for obtaining such a stationary
trajectory. A similar analysis can be used for 2-vehicle settings

and the function can be seen to act in a way that induces
distinct cooperative behaviors. However, the analysis becomes
extremely tedious for the case and different techniques
may be required to verify that the conditions derived still apply.
The application of the proposed RH control scheme includes
online task assignment and path planning for multivehicle
cooperative missions where the event-driven nature of the RH
controller well suits the uncertain mission environment. This
centralized controller also acts as a basis for the development
of a distributed version (see [21]), which has been successfully
implemented in a multiple robot real-time testbed (see [26]).

APPENDIX

A. Proof of Lemma 1

The fact that for all is established
by contradiction. We assume that for some

. Since , it follows that
for all . Therefore, since is con-

tinuous, this further implies that in region there must exist
at least one local minimum, i.e., there exists some such
that for some . Since

, we have

for all

thus for all . This further means that for
all . But this is in contridiction with the given condition (C),
i.e., since is a local minimum of

, we must have for some and . This
completes the proof of for all and it
immediately follows that for all .

B. Proof of Lemma 2

For

where is the neighbor set of target (i.e., and
are the vehicles which constitute ). Since

[see (5)],

(29)

Since as defined is a local minimum of
and for some , (i.e., corresponds to
vehicle located at target ), we have
for all . Since , cannot be defined

by (29), so we concentrate on the neighborhood of instead.
Let where is an arbitrary vector in sufficiently
small to ensure as defined in (4) and (5), so that from
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the definition of in (5) we have and .
Thus

The inner product of with a unit vector
gives

Taking limits with , we obtain the equation shown at the
bottom of the page. The inner product on the right-hand side of
this equation is minimized at , where is the norm
of the term in square brackets. Therefore, the minimum of the
right-hand side is

and it follows that

(30)

Since is a local minimum of , we must have
for all small so that is in

the neighborhood of . Therefore,
for any . Since the above limit is minimized by

, it follows that .
Finally, for any , the inner product implies

that , therefore

(31)

Combining (31), (30), and , we have
which

completes the proof.

C. Proof of Theorem 3

We will proceed by establishing the following two facts: i)
for all ; and ii) before vehicles reach a

local minimum, is bounded from below by a
positive constant independent of . These two facts guarantee
that the CRH trajectory converges to a local minimum in a finite
number of steps.

i) for all . The fact that

(32)

easily follows from the definition of , i.e.,
, where

, , for all , .
ii) Before vehicles reach a local minimum,

is bounded from below by a positive constant independent of
. To prove this statement, we build a lower bound for

by comparing the CRH trajectory to an artificially con-
structed trajectory which, in the th step, terminates at

(see Fig. 5). Using Lemma 1, we have for
all , which implies that

(33)

Thus, a lower bound for will also be a lower
bound for . We will now proceed by dividing
the proof into two steps: step ii.A) concentrates on the construc-
tion of a trajectory used as a baseline for the analysis, while in
step ii.B), we analyze this baseline trajectory, which helps us
determine a lower bound for .

ii.A) Construction of baseline trajectory. For each step , the
constructed trajectory starts at and it is generated by letting
vehicles follow carefully designed paths. If the locations of ve-
hicles are such that for all , a gra-
dient-based method is applied to generate vehicle trajectories.
Otherwise, when for some , vehicles
switch to different motion dynamics. Specifically, when the lo-
cations of vehicles are such that for all ,
letting

for all

the gradient-based vehicle trajectories are given for each
by

if is not a local minimum
if is a local minimum

(34)

On the other hand, when for some ,
under Assumption 2 vehicles must be in the neighborhood of a
local maximum or saddle point, say . In this case, vehicles
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Fig. 5. Comparing the CRH trajectory and the constructed trajectory.

switch to different motion dynamics under which vehicles head
in straight lines toward a point
which is obtained by

(35)

Formally, when , vehicles trajectories are given by

(36)

The following observation is made to ensure that driven by
(36), vehicles will depart from and will not re-enter it
again. By Lemma 2, the region does not contain
local minima of , therefore, must be on the boundary
of . If (i.e., contains the
entire ), then is on the boundary of . Then, at
point , when the vehicle motion dynamics are switched back
to (34), under the effect of gradient descent, vehicles will move
out of (otherwise, the value of would increase). In
addition, since will keep decreasing thereafter, it is guar-
anteed that vehicles will not re-enter again. On the other
hand, if is on the boundary of (i.e., ), then by
leading vehicles to , the constructed trajectory crosses the
CRH decision space at , and it terminates thereafter.

ii.B) Properties of baseline trajectory. Let us now examine
the baseline trajectory , , con-
structed through the motion dynamics (34), (36). This will help
us determine a lower bound for . We will pro-
ceed by first defining the termination point of in the th
step. Let be the earliest time that any vehicle, say , crosses

, i.e.,

for some (37)

and we define the termination point as . We
can see that, by this definition, . We will show later
in (46) that is finite. Another fact we should notice is that

for all (38)

This is because at step , the CRH trajectory consists of straight
lines between and , which is the fastest way
vehicles can reach . A constructed trajectory for vehicle
is illustrated in Fig. 5, where this vehicle starts at and
by following the motion dynamics (34), (36), at time , it
crosses at . Let us now concentrate on the segment

of where and partition it into two distinct
sets. Along the trajectory , we now define

for all

and

for some

These are the time sets over which (34) or (36), respectively, is
active. We then define

and

Since, for any , either or
, we have

(39)

We will now derive an upper bound for , the amount of
time spent by in some . Let be
the set of instances such that crosses for all

during . Without loss of generality, let vehicles
enter at time for some and, under motion
dynamics (36), vehicles reach at time . Thus

(40)

Under (36), we also have . Since
both and are in the circular region , we have

, where was defined in (20). Thus,
. In the worst case, starting from ,

crosses for all , and crosses each
by following its diameter. This worst case gives an upper bound
for , that is

Because of (39), this also offers a lower bound for , that
is

(41)

After partitioning into sets and deriving bounds for
them, now let us consider the decrease of along a trajectory

over . By partitioning into and
and using (40), we obtain

(42)

The first term on the right-hand side of the equation corresponds
to the decrease of when . Since
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, and minimizes over as
defined in (35), we have

and it follows from (42) that

(43)
Now, let us try to find a lower bound for , the second

term in the right-hand-side of (42). Recalling that
and ,

the right-hand side is

Using the motion dynamics (34), we get

and by applying the triangle inequality

Since for and all , and
under Assumption 2

Thus

and, returning to (43), we obtain

(44)

This inequality implies two important facts. First, it leads to
the conclusion that (i.e., crosses in finite
time). This is because (32) implies that , therefore,

. In addition, using (41), we have

(45)

so that (44) yields an upper bound for

(46)

The second implication of (44) is that it offers a lower bound for
, which is obtained as follows. Since

from (38), and recalling that , it follows
from (45) that

Since, by assumption, no vehicle is located at any target point
at , we have , where . Thus

(47)

and by combining (33), (44), and (47), we get

Since , and
, we can select some such that

. Therefore

for all

Now, we conclude the proof of ii). By setting

for all (48)

Finally, by combining (32) and (48), we can derive an upper
bound for the total number of steps required for a CRH trajec-
tory to converge to a local minimum. If at vehicles start at
some , then clearly the CRH trajectory is guaranteed to con-
verge to a local minimum in steps.

D. Proof of Theorem 4

To prove i), we begin with the definition of in (15) and
(16), where we see that

from which it follows that

(49)

Since and is a convex function, a
global minimum in exists. Since we have assumed that
is nonstationary, there exists some , , such
that is the global minimum of and we must have

Next, to prove ii), assume that there exists some that satisfies
(23). We will show that is the global minimum of . Since

is not analytic at such , let us consider for
some arbitrarily small . We have
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where is a unit vector. Then

(50)

Note that for an arbitrary unit vector

Therefore

If (23) holds, this implies

for every . This is a necessary and sufficient condition for
to be the unique global minimum.

It remains to determine an upper bound for the trajectory con-
vergence time . We proceed by finding a lower bound for

. Toward this goal, we compare two trajecto-
ries: The trajectory generated by the RH controller, which
ends at at , and the trajectory gener-
ated by a gradient method, which will terminate at (see
also Fig. 5). From Lemma 1, we have

. Thus, a lower bound for
will also be a lower bound for .

The constructed trajectory is based on the motion dynamics

if
if

(51)

This is similar to the proof of Theorem 3 without the need for
a second mode in the motion dynamics. Now let us evaluate

, where as defined in the proof of Theorem
3 [see (37)], is the termination time of

(52)

Under (51), we see that for any point on , the steepest de-
scent direction is always the tangent direction of , hence

and (52) becomes

Since is a convex function, we have:
for every and being the global min-

imum of . Under the condition in (23), we saw that
. Thus

Since (see (38) in the proof of Theorem 3), then
. We further obtain

and, from Lemma 1, .
Therefore

which gives a lower bound for the cost improvement the RH
controller can provide in each iteration. Setting ,
we have (otherwise the vehicle is already at a target
point), and we get

It follows that if at the vehicle is located at , then the
RH controller is guaranteed to converge in

steps, or by time .

E. Proof of Lemma 5

For the full responsibility region of , its boundary can
be expressed by

Defining , this becomes

After squaring both sides and following some simplifications,
we get

Dividing both sides by and adding
to both sides yields

which is a circle with center and radius
. Similarly, we can prove is a circular

region with center and radius
.

F. Proof of Theorem 6

There are three cases to consider in terms of the target point
location .

i) . This means and . Thus,
from (23)
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when . Moreover, . Since for all
and for and ,

this is the only possible local minimum.
ii) . This means for .

In this case, from (26)

The solution for is .
Then, from the definition of , we have ,
thus . Since, from the definition of

, we have , we can see that
is not feasible because
. Since there is no feasible solution

for , there is no local minimum in this case.
iii) . This case is similar to i) and gives

and as the only local minimum.

Combining i) and iii) gives the desired result. The second
assertion follows from Theorem 3.
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