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Asynchronous Distributed Optimization
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Abstract—We consider problems where multiple agents coop-
erate to control their individual state so as to optimize a common
objective while communicating with each other to exchange state
information. Since communication costs can be significant, espe-
cially when the agents are wireless devices with limited energy,
we seek conditions under which communication of state infor-
mation among nodes can be restricted while still ensuring that
the optimization process converges. We propose an asynchronous
(event-driven) optimization scheme that limits communication
to instants when some state estimation error function at a node
exceeds a threshold and prove that, under certain conditions,
such convergence is guaranteed when communication delays
are negligible. We subsequently extend the analysis to include
communication delays as long as they are bounded. We apply this
approach to a sensor network coverage control problem where the
objective is to maximize the probability of detecting events occur-
ring in a given region and show that the proposed asynchronous
approach may significantly reduce communication costs, hence
also prolonging the system’s lifetime, without any performance
degradation.

Index Terms—Asynchronous optimization, cooperative control,
distributed optimization, distributed systems, sensor networks.

I. INTRODUCTION

T HE need for distributed optimization arises in settings
which involve multiple controllable agents cooperating

toward a common objective without a central controller to
coordinate their actions. The cooperating agents define a dy-
namic system which may be thought of as a network with each
agent corresponding to a node maintaining its own state ,

. The goal of each node is to control its state so as
to optimize some system-wide objective expressed as a function
of and possibly the state of the environment.
Clearly, to achieve such a goal in a dynamic and uncertain
environment, the nodes must share, at least partially, their
state information. However, this may require a large amount of
information flow and becomes a critical issue when the system
consists of wirelessly communicating nodes which are often
small, inexpensive devices with limited resources (e.g., a sensor
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network). Aside from energy required to move (if nodes are mo-
bile), communication is known to be by far the largest consumer
of the limited energy of a node [1], compared to other functions
such as sensing and computation. Moreover, every commu-
nication among nodes offers an opportunity for corruption or
loss of information due to random effects or adversarial action.
Therefore, it is crucial to reduce communication between nodes
to the minimum possible. This in turn imposes a constraint on
the optimization task performed by each node, since it requires
that actions be taken without full knowledge of other nodes’
states. Standard synchronization schemes require that nodes
exchange state information frequently, sometimes periodically,
which can clearly be inefficient and, in fact, often unnecessary
since it is possible that: (i) system inactivity makes the periodic
(purely time-driven) exchange of information unnecessary,
(ii) occasional state information is adequate for control and/or
optimization mechanisms which do not require perfect accuracy
at all times, (iii) the state information of other nodes can be
estimated reasonably well and explicit communication is thus
redundant. This motivates us to seek asynchronous optimiza-
tion mechanisms in which a node communicates with others
only when it considers it indispensable; in other words, each
node tries to reduce the cost of communication by transmitting
state information only under certain conditions and only as
a last resort. This poses questions such as “what should the
conditions be for a node to take such communication actions?”
and “under what conditions, if any, can we guarantee that the
resulting optimization scheme possesses desirable properties
such as convergence to an optimum?”

The general setting described above applies to problems
where the nodes may be vehicles controlling their locations
and seeking to maintain some desirable formation [2], [3]
while following a given trajectory. The system may also be a
sensor network whose nodes must be placed so as to achieve
objectives such as maximizing the probability of detecting
events in a given region or maintaining a desired distance from
data sources that ensures high-quality monitoring [4]–[11]; this
is often referred to as a “coverage control” problem. In some
cases, the state of a node may not be its location but rather its
perception of the environment which changes based on data
directly collected by that node or communicated to it by other
nodes; consensus problems fall in this category [12]–[16].

In this paper, we consider a system viewed as a network of
cooperating nodes. The system’s goal is to minimize an ob-

jective function known to all nodes with every node con-
trolling its individual state , . The state
update scheme employed by the th node is of the general form

(1)
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where is a constant positive step size and is an up-
date direction evaluated at the th update event (see also [17]).
We often use

where is the gradient of and
. In general, each state is characterized by dynamics of the

form where is a control vector;
for our purposes, however, we treat as a directly controllable
vector. Thus, in (1) we view as the desired state deter-
mined at the th update event and assume that the control is
capable of reaching from within a time interval
shorter than the time between update events.

A key difficulty in (1) is that is in fact not fully known to
node . Thus, has to be evaluated by synchronizing all
nodes to provide their states to node at the time its th update
event takes place. This is extremely costly in terms of commu-
nication and assumes no delays so that the state information is
accurate. Alternatively, node can evaluate using esti-
mates of for all relying on prior information from node

and possibly knowledge of its dynamics. Our concern is with
determining instants when a node may communicate its state
to other nodes through what we term communication events. We
note that such communication events occur at different times for
each node, as do each node’s state update events, so that the re-
sulting mechanism is asynchronous. We also point out that a dis-
tributed optimization framework is necessitated by the fact that
nodes operate in a dynamic and uncertain environment and each
node generally has local information not available to others. An
example is the appearance of a random obstacle in the coverage
control setting mentioned earlier, detected only by a single node.

We propose a scheme through which a node maintains an
error function of its actual state relative to its state as estimated
by other nodes (which node can evaluate). The node then trans-
mits its actual state at time only if this error function at
exceeds a given threshold . In other words, a node does not
incur any communication cost unless it detects that the devi-
ation of its state from the other nodes’ estimate of its state be-
comes too large; this may happen due to the normal state update
(1) accumulating noise, imperfect state estimation or through
unexpected state changes (e.g., if a mobile node encounters an
obstacle). First, assuming negligible communication delays, we
prove that by varying this threshold appropriately and under cer-
tain rather mild technical conditions the resulting optimization
scheme converges and leads to a minimum of ; this min-
imum may be local or global depending on the nature of the
objective function. Our analysis is based on the distributed opti-
mization framework in [17], but our emphasis is on controlling
the asynchronous occurrence of communication events through
the threshold-based scheme outlined above in a way that may
drastically reduce the number of such events while still guar-
anteeing convergence. When an explicit noise term is included
in (1), our analysis still leads to a similar convergence result
under some additional conditions bounding this noise term. Sub-
sequently, we allow communication delays to be non-negligible
as long as there exists an upper bound in the number of state
update events that occur between the time of a communica-
tion event initiated by a node and the time when all nodes re-
ceive the communicated message. This requires a modification

in how communication events are generated. The resulting op-
timization mechanism is shown to still converge to a minimum
of .

In the second part of the paper, we apply this approach to a
coverage control problem in which a distributed optimization
scheme based on (1) is used in order to deploy sensor nodes in a
region (possibly containing polygonal obstacles) so as to max-
imize the probability of detecting events (e.g., unknown data
sources) in this region. In earlier work [9] it was assumed that
all nodes have perfect state information by synchronizing up-
date events with communication events. This imposed signifi-
cant communication costs. Here, we relax this synchronization
requirement and limit communication events to occur according
to the new proposed event-driven policy leading to convergence
to the optimum. Simulation results are included to show that the
same performance is attained with only a fraction of the original
communication costs.

Our work on asynchronous distributed optimization with
event-driven communication was introduced in [18] with
no communication delays in the convergence analysis. Such
event-driven communication is also used in collaborative
estimation (as opposed to optimization) [19] where a node
transmits data to other nodes only when a computable estima-
tion error exceeds some fixed threshold. In [20], an augmented
Lagrangian method based on event-triggered message passing
is developed to obtain an approximate solution of the network
utility maximization problem.

The remainder of the paper is organized as follows. Section II
describes our asynchronous distributed optimization frame-
work and the proposed scheme for communication events. The
convergence analysis under negligible communication delays
is presented in Section III, including the case of explicit noise
present in (1). We subsequently extend it in Section IV to the
case where communication delays are present. In Section V we
show how our approach applies to a coverage control problem
for sensor networks and we conclude with Section VI.

II. ASYNCHRONOUS DISTRIBUTED OPTIMIZATION FRAMEWORK

In a setting where cooperating nodes seek to optimize a
common objective function, there are two processes associated
with each node: a state update process and a state communi-
cation process. We begin with a discussion of the state update
process.

Let , , denote the time when any one node
performs a state update, i.e., it takes an action based on (1). We
impose no constraint on when precisely such an update event
occurs at a node and allow it to be either periodic or according
to some local node-based policy. However, we will assume that
every node performs an update with sufficient frequency relative
to the updates of other nodes (this assumption will be stated
precisely later).

Let be the set of indices in corresponding to update
events at node . As an example, in Fig. 1, where nodes 1 and
2 perform state updates at and respec-
tively, we have , and . We will set

in (1) for all , i.e.
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Fig. 1. State update and communication processes for two nodes. Dots repre-
sent state update events at a node and triangles represent state communication
events.

We refer to any state update at such as a null step at node
.

Next, let us discuss the state communication process. Let
be the th time when node broadcasts its true state to all other
nodes, and (a more general scheme which
allows point-to-point communication will be introduced later
in this section). Depending on the network connectivity at that
time, it is possible that only a subset of nodes is reached. We as-
sume that at all communication event times the state information
broadcast by node can reach any other node with negligible
delay either directly or indirectly (in the latter case, through a
sequence of transmissions), i.e., we assume that the underlying
network is connected. The negligible communication delay as-
sumption will be relaxed in Section IV. The network connec-
tivity assumption is preserved throughout the paper, although it
may be replaced by weaker conditions when the network has
nodes that can be decoupled, i.e., the local decision of a node is
not affected by the state information of some other nodes in the
network. For the range of applications that motivate our work,
there is usually a “base station” which maintains communica-
tion with all nodes in the network, thus ensuring full connec-
tivity. However, the existence of such a base station is not re-
quired for the general optimization framework we propose. If
connectivity is lost by some node, then a related problem is to
ensure that the node (if mobile) can control its state so as to
re-establish such connectivity. This problem is the subject of
ongoing research and is not addressed in this paper.

Let us now consider a state update time at node , i.e.,
. We are interested in the most recent communication

event from a node and define

(2)

as the time of the most recent communication event at node
up to a state update event at . As an example, in Fig. 1 node
1 communicates its state to node 2 twice in the interval ;
in this case, . However, no further communication
event takes place from node 1 until after the next state update
event at node 2 at time , so that . The
policy used by node to generate communication events is cru-
cial and will be detailed later in this section, but we emphasize
that it is in no way constrained to be synchronized with update
events or with the communication events of any other node.

In order to differentiate between a node state at any time
and its value at the specific update times , , we
use to denote the former and observe that

Thus, the state of node communicated to other nodes at time
may be written as . Returning to the state update

process, consider some with , and let be a vector
with node ’s estimates of all node states at that time, i.e., an
estimate of . There are various ways for node to estimate
the state of some . The simplest is to use the most recent
state information received at time as defined in (2), i.e.

(3)

Alternatively, node may use a dynamic linear estimate of the
form

(4)

where is an estimate of the average time between state up-
dates at node (e.g., a known constant if node performs pe-
riodic updates) and is the update direction communi-
cated by node at time along with its state. Note that

is an estimate of the number of state updates
at since its last communication event. More generally, if the
precise local decision making process of is known to , then

can evaluate using this information with initial condi-
tion . In this case, the estimate is error-free except for
noise that may have affected the actual state evolution of node

in the interval . In general, the value of an estimate
used by node to estimate node ’s state depends on ,

the most recent communication event time , and the actual
state of node at that time.

Now let us consider what criterion a node might use to gen-
erate its communication events, recalling that we aim to reduce
communication costs. If node knows that node uses a spe-
cific method to estimate its state, then node can evaluate that
estimate and hence the error in it at any time. If is the es-
timate of evaluated by node at time , we can define
an estimation error function , which measures the
quality of the state estimate of node with the requirement that

(5)

Examples of include and
. Let be an error threshold, determined

by node after the th state update event such that .
Thus, if . Let be the index of the
most recent state update time of node up to , i.e.

(6)

If different nodes use different means to estimate ’s state, then
generally for nodes and communication
may be limited to a node-to-node process. Let be the th
time when node sends its true state to node . Let us also set

for all . Then, the communication event policy at
node with respect to node is determined by

(7)

When a communication event is triggered by (7) at , as-
suming negligible communication delay, is instantaneously
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Fig. 2. Trajectory of the error function ��� ���� � ���� when the communica-
tion delay is negligible.

set to , i.e., . Therefore, the error
measure is reset to zero, i.e., .

If, on the other hand, all nodes use the exact same estimation
method, then will have the same value for all and we
can replace in (7) by . In other words, node communi-
cates its state to all other nodes only when it detects that its true
state deviates from the other nodes’ estimate of it by at least
the threshold . Fig. 2 shows an example of a trajectory of

where the threshold is decreasing over time and
the error function is continuous over all intervals ,

Observe that the negligible communication delay
assumption allows the value of to be instanta-
neously reset to 0 at ,

Next, we discuss the way in which the threshold should
be selected. The basic idea is to use a large value at the ini-
tial stages of the optimization process and later reduce it to ulti-
mately ensure convergence. One of the difficulties is in selecting
an appropriate initial value for which, if too large, may
prevent any communication. The approach we follow is to con-
trol in a manner which is proportional to , the
Euclidean norm of the update direction at the th update event
henceforth denoted by . Thus, let

if
otherwise

(8)

where is a positive constant. We also impose an initial con-
dition such that

(9)

and

(10)

Note that (10) can be readily enforced by requiring all
nodes to share their initial states at the beginning of the
optimization process, i.e., for all ; since gener-
ally , this triggers (7) and results in

for all . Also note
that since is node ’s local estimate of at , the
computation in (8) requires only local information.

Finally, we point out that the quality of the estimation method
used may be critical for effective communication reduction in

our event-driven optimization framework. Poor quality state es-
timation can potentially trigger communication events at a fre-
quency that is higher than that of state updates, especially close
to convergence when nodes have small . Interestingly,
when the simplest method, i.e., static estimation, is used this
issue does not arise because triggering estimation errors coin-
cide with state update events. Therefore, a node will communi-
cate its real state at most as often as it updates its state.

III. CONVERGENCE ANALYSIS

In this section, we study the convergence properties of the
asynchronous distributed state update scheme, for

(11)

used by nodes , where is an update di-
rection which satisfies for all . For sim-
plicity, a common step size is used, but each node may easily
adjust its step size by incorporating a scaling factor into its own

. Recall that is the state estimate vector evalu-
ated by node at the th update event using the most recent
state updates from other nodes at times defined by (2). We
will follow the framework in [17]. The distinctive feature in our
analysis is the presence of the controllable state communication
process defined by (7), (8) and (9) which imposes a requirement
on the constant in order to guarantee convergence. Further,
our analysis gives us means to select this constant in conjunction
with the step size parameter in (11) in a way that may poten-
tially drastically reduce the number of communication events
while still guaranteeing convergence.

We begin with a number of assumptions, most of which are
commonly used in the analysis of distributed asynchronous al-
gorithms [17]. Recall that, for the time being, we assume that
the communication delay is negligible whenever a node informs
other nodes of its current states.

Assumption 1: There exists a positive integer such that for
every and at least one of the elements of
the set belongs to .

This assumption imposes a bound on the state update fre-
quency of every node in order to guarantee that the entire state
vector will be iterated on. It does not specify a bound in time
units but rather ensures that each node updates its state at least
once during a period in which state update events take place.
We point out that an update event time may correspond to
more than one node performing updates.

Assumption 2: The objective function , where ,
, satisfies the following:

(a) for all
(b) is continuously differentiable and is Lips-

chitz continuous, i.e., there exists a constant such that
for all , .

In what follows, we shall take all vectors to be column vectors
and use to denote a transpose. Let

For simplicity, we will henceforth write instead of
.
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Assumption 3: There exist positive constants and such
that for all and , we have

(a)
(b)
Here denotes a vector with dimension . Its

th component, denoted by , is the partial deriva-
tive of with respect to the th component of . This as-
sumption is very mild and is immediately satisfied with

when we use an update direction given by
.

Assumption 4: The error function satisfies the
following:

(a) There exists a positive constant such that
for all

(b) where was defined in (6).
In the common case where ,

part (a) of this assumption is obviously satisfied with .
Part (b) may be violated if there is a discontinuity when

exceeds , in which case we can simply
redefine the error function to take the value at all
such points, i.e., we use instead an error function such
that if ,
otherwise . Alternatively, observe that if such a
discontinuity occurs at , then, by (7), node generates a com-
munication event and, under the negligible delay assumption,
node receives node ’s state and sets , hence

by (5); that is, the error is instantaneously
reset to zero. Therefore, defining to be right-continuous
guarantees that part (b) is always satisfied. With this under-
standing, we will continue to use the notation
and assume this assumption is satisfied throughout this section
(Assumption 4(b) will be relaxed in the next section).

Theorem 1: Under Assumptions 1–4, the communication
event policy (7), and the state update scheme (11), if the error
threshold controlling communication events is set by
(8), (9), then there exist positive constants and such that

.
Proof: The main part of the proof consists of bounding

by a sum of terms and showing that, at each step ,
decreases by a quantity proportional to . By the

nonnegativity of , we can conclude that eventually
vanishes and so does . We begin by using a result
known as the “descent lemma” (see Prop. A.32 in [17]) stating
that under Assumption 2 the following inequality holds for all

:

(12)

Applying (12) to we get

Since, for any and all ,
and, by Assumption 2(b),

applying this inequality to the third
term above we get

where is the th component of . Using Assumption
3(a) in the second term above

(13)

Considering the third term in (13), Assumption 4(a) implies
that for all , and
Assumption 4(b) implies that . Re-
calling that if , we get
and it follows that:

(14)

In view of (8), (9), it follows that for all :

(15)

and observe that, due to Assumption 1, we have .
Next, set

(16)
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Then, combining (15) and (13), the latter becomes

Recalling that and using the inequality
(an immediate conse-

quence of the Schwarz inequality), we get

Using , we further
obtain

We now make use of Assumption 1 to bound . Based on
this assumption, from time to each node performs at
least one non-null state update step, i.e.,
for all such that . Thus, the second sum in (16) can be
written as

In addition, recalling that for all such that ,
we have and it follows that:

Since it is possible that , let us for convenience
set , for all . Then

(17)

Adding all inequalities of the form (17) for through
recursive substitution, we can see that all terms cancel
each other except for and . More-
over, all sums added together result in

(recalling that , for all ).
Therefore, we finally get

By Assumption 2(a), we have , so that the
inequality above implies

(18)

We can always select positive and such that

For example, the inequality is satisfied by selecting
and then

. Thus, we obtain the inequality

Observe that the right-hand side is a finite positive constant in-
dependent of and the inequality holds for all , therefore

(19)
Since , the tail of the sequence must vanish, i.e.

(20)

It follows from (11) that:

(21)

Since when for all , we have
. Due to (15), we have for all

(22)

Assumption 3(b) and (20) imply that for all ,
. Recalling the defi-

nition of , we have and
due to (22) we conclude that .
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Finally, by (21) we obtain and
Assumption 2(b) implies that for
all , which completes the proof.

Corollary 1: If , then

(23)

guarantees that .
Proof: This follows directly from (17) by ensuring that the

term is positive.
Note that (23) provides an upper bound for that guaran-

tees convergence under the conditions of Theorem 1. Obviously,
there may be larger values of under which convergence is
still possible.

As already mentioned, we often set
in (11) and use

, in which case Assumption 3 is satisfied with
and Assumption 4(a) with . It

follows from Corollary 1 that we can choose
and (23) leads to a arbitrarily close from below to

. Observe that, if node states
are scalar, this value is inversely proportional to .
Thus, large networks require a smaller value of , implying
that convergence is less tolerant to a node’s state estimates
evaluated by other nodes and communication needs to be
more frequent. For vector node states the same is true since

. Along the same lines, note that is inversely
proportional to , which means that when there is a larger
difference in the state update frequency between the fastest
node and the slowest node (larger ), more communication is
necessary in order to preserve convergence. Finally, a smaller
step size (slower change of states) allows us to choose a
larger , which means greater tolerance to estimation errors.

A. Optimization With State Update Noise

As already mentioned, we have assumed that each node exe-
cuting (1) is capable of reaching a desired new state
from within a time interval shorter than the time between
update events. Thus, any noise present in this update step affects
only the time required for to be attained. If, however,
we explicitly include a noise term in (1), then we must
consider a new state update process

(24)

We will make the following assumption regarding this added
noise process:

Assumption 5: There exists a positive constant
such that , where and

are the th scalar component of and
respectively.

This assumption requires the noise incurred during a state
change to generally decrease with the magnitude of the state
changes in the sense that it is bounded by , which
decreases with .

Theorem 2: Under Assumptions 1–5, the communication
event policy (7), and the state update scheme (24), if the error
threshold controlling communication events is set by

(8), (9), then there exist positive constants and such that
.

Proof: The proof is almost identical to that of Theorem 1.
We apply (12) to and
get

By Assumption 5, we have
and

. Thus

Omitting all steps that are the same as those in the proof of
Theorem 1, we obtain the analog of (18)

We can always select positive and such that

because first, by Assumption 5, , and second,
and can be arbitrarily close to

0 by choosing small and . The rest of the proof is identical
to that of Theorem 1 and is thus omitted.

IV. OPTIMIZATION WITH NON-NEGLIGIBLE

COMMUNICATION DELAYS

Thus far, we have assumed negligible communication delays,
i.e., the transmission and reception of a message in a commu-
nication event has been treated as instantaneous. Under this as-
sumption, when a communication event is triggered by node at

according to (7), a copy of the true state of node is sent to node
and the error function is reset to zero immedi-

ately. This was illustrated by the trajectory of in
Fig. 2. As a result, we also have at our disposal the upper bound

for , which, due to Assumption 4(a), leads
to a bound for . This upper bound was instru-
mental in the proof of Theorem 1.



2742 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 12, DECEMBER 2010

Fig. 3. Trajectories of error functions with communication delays. In this case,
every message sent by node � is received before a new communication event is
triggered at node �.

In this section, we discuss the case where communication de-
lays are not negligible, modify the communication event policy
accordingly, and derive a convergence result similar to The-
orem 1. The key to achieving this is to find another bound for

and without resorting to a neg-
ligible delay assumption. We begin by observing that, as a con-
sequence of non-negligible communication delays, after a com-
munication event originates from node to node at , node
cannot set to immediately. Therefore, the error func-
tion continues to grow until the message con-
taining is received by node . This point is illustrated
in Fig. 3 where the red curve is an example of the trajectory of

and denotes the time when a message sent by
node at is received at node . Obviously, if messages sent
by a node can take infinitely long to reach other nodes, there
can be no cooperation among these nodes and a distributed al-
gorithm may never reach an optimal solution. If this happens,
then the underlying communication network used to control the
system is likely to be unstable, a case we must exclude. In par-
ticular, if for some in Fig. 3 is unbounded,
then may be unbounded, possibly leading to an
infinitely large estimation error (for simplicity, the error bound

is treated as constant in all figures in this section). Thus,
as a first step, we add the following assumption:

Assumption 6: There exists a non-negative integer such
that if a message is sent before from any node to any
other node , it will be received before .

In other words, we assume that at most state update events
can occur between a node sending a message and all destination
nodes receiving this message.

An additional complication caused by non-negligible delays
is in the triggering of communication events. Specifically, if we
still use the policy in (7), then between and the value of

generally remains above (as shown in Fig. 3).
As a result, node will continuously trigger communication
events until . To suppress this redundancy over the interval

, we need to modify (7). Doing so requires carefully
differentiating between the way in which node estimates the
state of node in the presence of communication delays as op-

posed to no delays (as assumed in the previous section). Thus,
let us express such a general-purpose estimate as follows:

(25)

where denotes the specific functional form of the esti-
mator used by node to estimate the state of node and ,

, is the time when the th communication event
from to is generated and viewed as a parameter of the esti-
mator. The estimate is defined over an interval and

is the th time when the estimate is reset to a given value .
This provides a formal representation of the estimation process
in our optimization framework: At instants , ,
node resets its estimate of node ’s state to some value and
then repeats the estimation process with this new initial condi-
tion over the next interval . In the case of negligible
communication delays (considered in the previous section), we
have

(26)

that is, the th reset time is the instant when a communication
event is generated from node to node , and the reset value is
the corresponding actual state of at that time. However, in the
presence of communication delays, we must set

(27)

where is the time the th message sent from node is
received by node and the reset value depends on the estimation
method used by node .

In view of this discussion, we define the new communication
event policy

(28)
with the initial condition . Next, we introduce a new
variable , defined as

(29)
with an initial condition . In other words,
is the estimate of node ’s state used by node as if there were
no communication delays, consistent with (26). This variable
is maintained by node . If the estimation process is designed
to have the property that , (29) can be
further simplified to

Fig. 3 illustrates the difference between a trajectory of
(black curve) and a trajectory of

(red curve) under (28). Notice that if the communication delay
is zero, then and will obviously
follow the exact same trajectory. There is an additional reason
for introducing at node : If communication delays are



ZHONG AND CASSANDRAS: ASYNCHRONOUS DISTRIBUTED OPTIMIZATION 2743

Fig. 4. Trajectories of error functions with communication delays. In this case,
additional communication events occur before a message is received.

not negligible and are typically unknown, then node does not
know the exact value of and hence cannot execute (7).

Regarding the possible forms that can take, we will
discuss two cases. First, if node uses a static state estimation
method, i.e., , it simply sets its estimate of

to the value contained in the received message

(30)

In this case, for all , in accor-
dance with (29). On the other hand, if node uses a dynamic
state estimation method, the value of depends on as
well. For example, if node uses (4), then

(31)

where . Note that in this case evaluating
the state estimate in (31) requires knowledge of , i.e., the
message sent by node must be time-stamped (otherwise, in
the presence of random delays, node cannot infer the value of

when it receives a message at ). This, in turn, requires a
clock synchronization mechanism across nodes (which is often
not simple to implement).

Finally, we discuss how the new communication event policy
(28) and Assumption 6 help us bound and

. This will be formalized within the proof of
Theorem 3. For simplicity, we first consider the case where
every message from a node reaches its destination before the
next communication event is triggered, i.e., for all

, as shown in Fig. 3. At each , the state estimate
is synchronized with defined in (29) and we

have . Due to Assumption 6, at

most state update events occur between and for all
, which guarantees that will not

exceed , for some , augmented by the estimation error
accumulated over these state update steps.

If, on the other hand, reaches during
, then a new communication message will be sent out

by node before the previous one is received. For example,
in Fig. 4, and . Although the trajec-
tory of becomes more complicated in this case,

(the red curve) still has an upper bound, which
will be given within the proof of Theorem 3.

In light of this discussion, if we choose an error function
such that , it is obvious
that is bounded. Thus, if we choose any error
function such that [ac-
cording to Assumption 4(a)], is also bounded,
which is key to the proof of Theorem 3. In Theorem 3, we con-
sider the static estimation case (30) which is the least costly in
terms of estimation complexity. Moreover, static estimation, as
already pointed out, does not require a synchronization mech-
anism which (31), for example, does. We must also point out
that in Theorem 3 we no longer use Assumption 4(b); instead,
Assumption 6 will allow us to derive the bounds required to es-
tablish the desired convergence result.

Theorem 3: Under Assumptions 1–4(a) and 6, the communi-
cation event policy (28), the state update scheme (11), and the
static estimation method (30), if the error threshold con-
trolling communication events is set by (8), (9), then there exist
positive constants and such that .

Proof: The first few steps of the proof are identical to those
of Theorem 1. In particular, we obtain (13) which we rewrite
below for convenience

(32)

Next, we seek a bound for in the third term of
(32). Under the assumption of negligible communication delay,
we were able to use Assumption 4 and establish the bound

. In the presence of communication
delays, however, this no longer holds (as seen in the examples
of Figs. 3 and 4). Instead, we make use of Assumption 6, based
on which if node sends a message using (28) in the worst case
it can take a period of time which contains state update events
to reach all destination nodes. During this period, might be
updated up to times and each update changes the value of
by through (11) (recall that is the shorthand for

). Since, by assumption, static estimation is used, we
can ignore changes in . We can then establish the following
bound for the th component of :

(33)

To justify this bound, first observe that the value of , which
node uses in updating its state at , is based on a message
arrival from node at some time such that and
there is no message from in . Since static estimation
is assumed, , where is the associ-
ated time of the communication event at node . On the other
hand, immediately after sending this message at , node
sets and evaluates for .
There are now two cases to consider. First, if no new commu-
nication event occurs at in the interval , then the error
function at remains below its threshold throughout this period
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and we have
by Assumption 4(a), which makes (33) valid.

The second possibility is that node sends at least one new
message to in . If , due to Assumption
5, could not have exceeded its threshold before

(if that were to happen, a new message would have ar-
rived at ). So, we only need to consider
or, since , just . Suppose

exceeds the current error threshold at
some . Since a new communication event is trig-
gered, we have . Moreover, since static estimation is
assumed, is fixed in and this event
must be due to changing at through (11). Thus, we
set for some . Right before this state update,
we have . Right after the state

update, based on (11), is changed by ,
hence

(34)

Observe that may occur before or after , but either way,
at we have , thus . Therefore,
the difference between and
can only be caused by any change in , . Since
there are at most such state updates in this interval, we need
the sum in (33) to bound .

Finally, since in (34) is such that and
varies over this interval, the max operator in (33) is needed

to ensure the worst case is accounted for.
It follows from (33) that:

where

(35)

and in the case of a tie for it is broken arbitrarily. Thus

Making use of the inequalities

we get

In view of (8), (9), it follows that for all and

where , i.e.,
is the most recent state update time up to when node

took a non-null update step. The existence of is guaranteed
by Assumption 1. Setting

(36)
we get

(37)
Then, combining (37) and (32), the latter becomes

Since , this gives

Using , we further
obtain
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We now make use of Assumption 1 to bound in (36).
Based on this assumption, for every , from time
to each node performs at least one non-null state update step,
i.e., for all such that . From the
definition of (35), we also know that .
Thus, we have for all such that

. Thus, the two sums in (36) can be written as

It follows that:

Since it is possible that , let us for convenience
set , for all . Then

(38)

Adding all inequalities of the form (38) for , we can
see that all terms cancel each other except for

and . Moreover, all sums

added together result in (recalling
that , for all ). Therefore, we finally get

By Assumption 2(a), we have , so that the
inequality above implies:

We can always select positive and such that

(the argument is similar to the proof of Theorem 1, but the values
of and in this case are generally smaller). Therefore, we
can write
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Observe that the right-hand side is a finite positive constant in-
dependent of and the inequality holds for all , therefore

(39)

The remainder of the proof is based on the same arguments as
in the proof of Theorem 1. Specifically, since , the
tail of the sequence must vanish, i.e.

(40)

It follows from (11) that:

(41)

Since and when for all , we

have . Due to (37), we have for all

(42)

Assumption 3(b) and (40) imply that for all ,
. Recalling the defi-

nition of , we have and
due to (42) we conclude that .
Finally, by (41) we obtain and
Assumption 2(b) implies that for
all , which completes the proof.

Comparing the bounds in (19) and (39) for the case of neg-
ligible and non-negligible communication delays respectively,
note that by setting we can reduce the latter to the former
except for the presence of rather than in the mul-
tiplicative factor for . This was necessitated by the looser
bound used for in the proof of Theorem 3. In ad-
dition, if both the state update noise introduced in Section III-A
and non-negligible communication delays are present in the op-
timization process, as long as Assumptions 5 and 6 are still sat-
isfied, a convergence result (omitted here) similar to Theorem 2
can also be derived.

V. ASYNCHRONOUS DISTRIBUTED COVERAGE CONTROL

In this section, we apply the proposed asynchronous dis-
tributed optimization framework to the class of coverage control
problems mentioned in Section I. Specifically, we consider the
problem of deploying a sensor network so that sensor nodes are
located in a way that maximizes the probability of detecting
events occurring in a given two-dimensional mission space.
Our goal is to show how an asynchronous algorithm may
significantly reduce the energy expended on communication
among nodes with no adverse effect on performance. We will
also illustrate the convergence of the objective function without
and with communication delays and examine the effect of
on the convergence speed and the communication cost.

A. Coverage Control Problem Formulation

We begin by briefly reviewing the coverage control problem
following the formulation in [9]. We define an event density
function over the mission space , which captures
the frequency of random event occurrences at some point .

satisfies for all and .
We assume that when an event takes place, it will emit some
signal which may be observed by some sensor nodes. The co-
operative system consists of mobile sensor nodes deployed
into to detect the random events. Their positions are captured
by a -dimensional vector .

The probability that sensor node detects an event occurring
at , denoted by , is a monotonically decreasing
differentiable function of , the Euclidean distance be-
tween the event and the sensor. Since multiple sensor nodes are
deployed to cover the mission space, the joint probability that an
event occurring at is detected (assuming independent sensor
detection processes), denoted by , is given by

and the optimization problem of interest is

in which we use the locations of the sensor nodes as decision
variables to maximize the probability of event detection in . As
discussed in [21], this objective function aims at maximizing the
joint event detection probability without considering the issue of
maintaining a balance between a region within which may be
extremely well covered and others which may not. Thus, a more
general form of the objective function is

(43)

where is a (possibly piecewise) differen-
tiable concave non-decreasing function of the joint detection
probability . Clearly, may be selected so that the same
amount of marginal gain in is assigned a higher reward
at a lower value of . A special case is where cov-
erage balance is not taken into account.

A synchronous gradient-based solution was obtained in [9] in
which the next way point on the th mobile sensor’s trajectory
is determined through

(44)

The gradient is given by

(45)
where and is
the node ’s region of coverage where denotes the sensing
radius of node (i.e., for ). In addition,



ZHONG AND CASSANDRAS: ASYNCHRONOUS DISTRIBUTED OPTIMIZATION 2747

Fig. 5. Communication cost comparison of three distributed optimization algorithms under different communication delay assumptions. (a) Negligible commu-
nication delay; (b) non-negligible communication delay

is the set of
neighbor nodes of .

The state update rule (44) allows a fully distributed imple-
mentation based on node ’s local information and the state of its
neighbors (instead of the state of all nodes). This eliminates the
communication burden of transferring information to and from
a central controller and the vulnerability of the whole system
which would be entirely dependent on this controller. However,
(45) shows that node needs the exact locations of all nodes in

in order to carry out (44) in a state update. As already men-
tioned, the communication involved to ensure such state syn-
chronization has a high energy cost which is often unnecessary
because the locations of neighboring nodes may be accurately
estimated due to minor changes in their locations or update di-
rections (see (3) and (4)).

Next, we will apply the asynchronous method developed
above to this problem and compare the results with the
synchronous approach in terms of communication cost, perfor-
mance, and convergence behavior. The asynchronous method
is also applied to a nonsmooth version of the coverage control
problem recently developed in [21] when the mission space
contains obstacles.

B. Asynchronous vs Synchronous Optimal Coverage Control

We present numerical results based on simulations of the cov-
erage control setting using an interactive Java-based simulation
environment.1 We compare three versions of the optimal cov-
erage control solution:

1) Synchronous iterations where all nodes perform state up-
dates using state information from all other nodes.

2) Asynchronous iterations performed by node with fixed
error threshold , i.e., for all , where is
a positive constant.

3) Asynchronous iterations performed by node using (8),
(9).

The coverage control problem considered here involves four
nodes deployed into a rectangular mission space (50 units by 60
units) from the lower left corner. All nodes update their states
at approximately the same frequency (one update in every 10

1The interactive simulation environment used in all results shown in this sec-
tion (along with instructions) is located at http://codescolor.bu.edu/simulators.
html.

simulation time steps augmented by some uniformly distributed
noise) using the same step size in all three schemes. All nodes
have identical sensing capability and
for all , which means that, if deployed individually, a node
can only effectively cover a relatively small portion of the mis-
sion space ( when ). For
the asynchronous versions, (3) is used as a simple static state
estimation scheme and the error function is

.
In Figs. 5 and 6, we compare these three algorithms under

both the negligible and non-negligible communication delay
assumptions. When we compare communication costs in Fig. 5,
every time a node broadcasts its state information, the total
number of communications is increased by one. By looking
at these figures, it is clear that the asynchronous method can
substantially reduce the communication cost (hence, the energy
consumption at all nodes) while performance convergence
is virtually indistinguishable from that of the synchronous
method. The asynchronous algorithm with fixed has the
added advantage that it usually stops incurring communication
cost earlier than the other two methods. However, it does not
guarantee convergence to stationary points. In Figs. 5(b) and
6(b), we provide results for a case with a fairly large commu-
nication delay (50 simulation time steps for every transmitted
message). Comparing Fig. 6(b) to Fig. 6(a), it is clear that
introducing delays does not affect convergence but it does slow
it down; in Fig. 6(b), the optimal value of the objective function
is attained approximately 5 time units later than the time seen
in Fig. 6(a).

Fig. 7 shows the node trajectories for these three methods
under the negligible communication delay assumption. Methods
1 and 3 converge to the same node configuration which is in-
dicated by the squares, while method 2 converges to a config-
uration close to it (we cannot mark the points that configura-
tion method 2 converges to due to the limited resolution of the
figure).

In Figs. 8 and 9, under the negligible communication delay
assumption, we compare the performance of the asynchronous
method with different values of the constant in (8) under the
same coverage control setting as before. We can see that a larger

leads to fewer communication events. But we also notice in
Fig. 9 that when , the objective function curve exhibits
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Fig. 6. Objective function trajectories of three distributed optimization algorithms under different communication delay assumptions. (a) Negligible communica-
tion delay; (b) Non-negligible communication delay.

Fig. 7. Node trajectory comparison of three distributed optimization algo-
rithms in a coverage control mission. See Fig. 6 for legend.

Fig. 8. Communication cost comparison of asynchronous distributed algorithm
with different � .

considerable oscillations before it converges. This suggests that
is set too high and some “necessary” communications be-

tween nodes have been omitted at the expense of effective co-
operation. In other words, when is increased, although con-
vergence to a local optimum may still be guaranteed if (23) is
satisfied, so is the risk of slower convergence.

In Fig. 10, we show results from a larger coverage control
problem with 100 nodes with no obstacle or communication

Fig. 9. Objective function trajectories of asynchronous distributed algorithm
with different � .

delay and reduced sensing range. We observe similar commu-
nication savings as in the smaller problem of Fig. 5 with only 4
nodes.

Next, we apply the asynchronous algorithm to a problem with
polygonal obstacles in the region to be covered and employ (4)
as the state estimation method. Five nodes are deployed into a
mission space cluttered with obstacles as shown in Fig. 11. In
this case, we have a nonsmooth optimization problem with gra-
dients that are more complicated than (45) in order to account
for discontinuities in the sensor detection probability functions

; details on their derivation are provided in [21]. Con-
vergence under (44) cannot always be guaranteed and there are
multiple local optima which nodes can oscillate around. In order
to achieve a more balanced coverage, we use the objective func-
tion in (43). In Fig. 12, we can once again see the cost-cutting
benefits of using asynchronous methods. Fig. 13 shows that all
three methods eventually achieve the same approximate level of
coverage.

VI. CONCLUSION

The issue we have addressed in this paper is the extent to
which communication among agents could be reduced in a co-
operative optimization setting. This is crucial when the coop-
erating nodes have limited energy resources, as in the case of
small inexpensive devices wirelessly networked. In addition,
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Fig. 10. Coverage control simulation result of a large network with 100 nodes. (a) Communication cost comparison; (b) obective function trajectories.

Fig. 11. Initial and final deployment of an optimal coverage mission in an en-
vironment with polygonal obstacles. The blue rectangles represent obstacles.
Areas covered with cyan color have joint detection probability � ��� �� � ����.
Green areas have ���� � � ��� �� � ����. Yellow and white areas have
� � � ��� �� � ����. If the image is viewed in black and white, a lighter color
indicates lower event detection probability in that area. (a) Initial deployment;
(b) final deployment.

Fig. 12. Communication cost comparison of three distributed optimization al-
gorithms in a nonsmooth problem.

limiting communication reduces the possibility of jamming or
other sources of information corruption that can damage the co-
operative process. The main result is showing that frequent com-
munication among cooperating agents (nodes in a network) is
not necessary in order to guarantee convergence of a process
seeking to optimize a common objective. Specifically, we have
proposed a scheme that limits communication events to “last re-
sort only” when some state estimation error function at a node
exceeds a threshold. We have proved that, under certain con-
ditions, the convergence of a gradient-based asynchronous dis-
tributed algorithm employing this communication policy is still

Fig. 13. Objective function trajectories of three distributed optimization algo-
rithms in a nonsmooth problem.

guaranteed. In addition, we have quantified the range of the two
crucial parameters on which such convergence depends. Both
cases where communication delays are negligible and where
they are not have been analyzed. In the latter case, as expected,
simulation results show convergence to be generally slower. We
have also shown that our convergence analysis still applies when
noise is explicitly included in the node state update process, pro-
vided that some additional conditions hold which appropriately
bound this noise term.

We have applied this approach to a coverage control problem
common in the deployment of wireless sensor networks and
confirmed through numerical examples that limited asyn-
chronous (event-driven) communication results in substantial
energy savings which can prolong the life of such a network
with no adverse effect on the optimization objective. Thus, from
a practical standpoint, the proposed method can significantly
benefit wireless networks set up to enable missions of multiple
cooperating agents by reducing their use of energy with no
compromise in performance. However, there is no guarantee
that an event-driven communication approach always provides
energy savings relative to time-driven mechanisms. What this
approach offers is the flexibility to exploit intervals over which
there is no need for a node to unnecessarily communicate
minimal errors in its state trajectory.

There are several interesting questions we are currently ad-
dressing to improve upon the basic approach we have proposed.
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First, we have assumed that communication among all nodes
is always possible. To maintain this property when nodes are
mobile, they need to be endowed with the capability to remain
within a given feasible communication range and, if such loss
does occur due to uncontrollable random events, it is necessary
that nodes have the ability to re-establish a link. Regarding the
estimation error function used to trigger the asynchronous com-
munication events essential in this approach, we are currently
studying the use of second derivative information (see also [22])
which may be critical when controlling the state of a node when
it is sensitive to the state of other nodes.
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