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Perturbation Analysis and Optimization of
Stochastic Flow Networks

Gang Sun, Christos G. Cassandras, Yorai Wardi, Christos G. Panayiotou, and George Riley

Abstract—We consider a Stochastic Fluid Model (SFM) of
a network consisting of several single-class nodes in tandem
and perform perturbation analysis for the node queue con-
tents and associated event times with respect to a threshold
parameter at the first node. We then derive Infinitesimal
Perturbation Analysis (IPA) derivative estimators for loss
and buffer occupancy performance metrics with respect to
this parameter and show that these estimators are unbi-
ased. We also show that the estimators depend only on
data directly observable from a sample path of the actual
underlying discrete event system, without any knowledge
of the stochastic characteristics of the random processes
involved. This renders them computable in on-line envi-
ronments and easily implementable for network manage-
ment and optimization. This is illustrated by combining
the IPA estimators with standard gradient based stochastic
optimization methods and providing simulation examples.

Keywords— Infinitesimal Perturbation Analysis, Stochas-
tic Fluid Models, Non-linear Optimization.

I. Introduction

Stochastic Fluid Models (SFM) have recently been
adopted as an alternative modeling paradigm to queue-
ing networks for telecommunication applications, as well
as other complex discrete event systems. Introduced in
[1] and then in [2] for the purpose of analysis, fluid mod-
els have also been considered for simulation and control
[3],[4],[5],[6],[7],[8],[9]. Using this modeling framework, a
new approach for network congestion management has
been proposed, based on Infinitesimal Perturbation Anal-
ysis (IPA) [10],[11],[12],[13]. The cornerstone of this ap-
proach is the on-line estimation of gradients (sensitivities)
of certain congestion-related performance measures (e.g.,
loss rates, average buffer levels) as functions of various con-
trollable parameters. These gradient estimates are used in
conjunction with standard stochastic approximation algo-
rithms to optimize the parameter settings. As operating
conditions change, the gradient estimates change, there-
fore, this approach aims at continuously seeking to optimize
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a generally time-varying performance metric. All work to
date has been limited to a single node SFM. In this paper,
we extend the approach to networks of nodes connected in
tandem and, in the process, study how a buffer level per-
turbation in one node in a network can propagate to other
nodes and how local congestion control may affect the rest
of a network.

To date, many implementations of network control mech-
anisms have relied on adjusting traffic parameters (e.g.,
inflow rates) by monitoring and measuring certain perfor-
mance measures (e.g., average buffer levels, delay jitter,
and loss rates). Arguably, control algorithms that rely on
both performance measures and their gradients with re-
spect to controllable parameters will perform better. In
fact, some derivative-based congestion control algorithms
have been proposed in [14],[15]. Our approach is centered
around the on-line estimation of such derivatives and it re-
lies on the use of IPA. IPA has been developed in the gen-
eral setting of Discrete Event Dynamic Systems (DEDS),
and queueing models in particular. However, in the setting
of queueing networks, IPA cannot usually provide unbi-
ased gradient estimators outside the realm of simple mod-
els with a single customer class, infinite buffers, and state-
independent routing [16],[17]. These limitations exclude
many telecommunication application features such as dif-
ferentiated services, packet loss due to buffer capacity lim-
itations, and virtual-path routing. However, in the context
of SFMs, as opposed to queueing systems, recent work [10]
has shown that IPA gradient estimators for important per-
formance metrics are endowed with the following crucial
properties: (i) They are unbiased, (ii) They are nonpara-
metric, i.e., they are computable by expressions that are
independent of the probability laws of the underlying traf-
fic processes, and (iii) They are extremely simple and easy
to implement. The first property implies that the IPA gra-
dient estimators can be trusted in performance prediction;
the second implies that the IPA estimators can be com-
puted from field measurements instead of merely simula-
tion environments; and the third property points to the
possibility of real-time computation.

The use of IPA in single-node SFMs has been studied
in [18],[10],[11],[12]. In [10], a SFM was adopted for a
single traffic class network node in which threshold-based
buffer control is exercised. For the problem of determining
a threshold that minimizes a weighted sum of loss volume
and buffer content, it was shown that IPA yields remark-
ably simple nonparametric sensitivity estimators for this
performance metric with respect to a threshold parameter,
which, in addition, are unbiased under very weak struc-
tural assumptions on the defining traffic processes. More-
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over, a solution of the performance optimization problem
based on the IPA-based approach outlined above recovers
or gives close approximations to the solution of the asso-
ciated queueing model. Extensions of the results derived
in [10],[11] to general networks have had to proceed in two
directions: the incorporation of multiple traffic classes and
the analysis of general topology networks. The former di-
rection has been pursued in [12],[19], where results analo-
gous to those in [10] were obtained. The latter direction
is pursued in the present paper, whose primary focus is
on tandem networks; some early results for the two-node
case may be found in [20]. The main contributions are
as follows. First, we consider a SFM consisting of M ≥ 2
single-class nodes in tandem and develop IPA derivative es-
timators of loss and buffer occupancy performance metrics
with respect to a threshold parameter at the first node. We
show that these estimators are unbiased and discuss their
applicability to general-topology networks. Despite the in-
evitable burdensome notation necessary to derive and an-
alyze the estimators, their implementation is simple and
rests on two intuitively appealing “perturbation propaga-
tion rules”: (i) A queue content perturbation at node m
propagates downstream whenever the buffer at m becomes
empty, and (ii) A perturbation at node m is eliminated
after its buffer becomes either empty or full. Finally, we
demonstrate the use of the IPA estimators for network per-
formance optimization purposes through simulation exper-
iments.

The rest of the paper is organized as follows. Section 2
presents the stochastic flow modeling framework for a net-
work of nodes in tandem. In Section 3 we carry out pertur-
bation analysis of the network with respect to a threshold
parameter at node 1 and derive explicit IPA estimators
for loss and queue content metrics. We also prove the un-
biasedness of these estimators. Section 4 presents some
simulation results illustrating the use of the estimators in
network performance optimization. Section 5 concludes the
paper and outlines related ongoing work.

II. Tandem Network SFM and Preliminary
Results

Consider a tandem network viewed as a Stochastic Fluid
Model (SFM) as shown in Fig. 1 with M nodes indexed
by m = 1, . . . , M . The outflow of node m is the inflow
to node m + 1, and we assume there is no feedback in the
system. In the context of communication network applica-
tions, this implies that we limit ourselves here to network
settings operating with protocols such as the User Data-
gram Protocol (UDP), but not the Transmission Control
Protocol (TCP); the inclusion of feedback information that
affects the incoming flow is a separate problem we address
elsewhere (see [21]) and it has not yet been incorporated
in this multinode analysis. Let bm denote the buffer size
of node m, m = 1, . . . , M , where bm > 0. At the first
node, we consider the buffer size as a controllable param-
eter; equivalently, we view it as a threshold denoted by
θ = b1 which is adjustable for the purpose of congestion
control. We will assume that the real-valued parameter

θ is confined to a closed and bounded (compact) interval
Θ. The inflow rate of each node m = 2, . . . , M is denoted
by αm(θ; t), to indicate the fact that it generally depends
on θ, whereas α1(t) is an external process independent of
θ. The processing rate of node m = 1, . . . ,M at time t
is denoted by βm(t) and is independent of θ. The buffer
level is denoted by xm(θ; t), the outflow rate is denoted by
δm(θ; t) and the overflow rate is denoted by γm(θ; t). The
external processes {α1(t)} and {βm(t)}, m = 1, . . . ,M ,
which are independent of θ, can have a very general form
for the purpose of our analysis; in particular, they need not
be statistically independent. We are interested in studying
sample paths of this SFM over a time interval [0, T ] for a
given fixed 0 < T < ∞.

The dynamics of the buffer level xm(θ; t), m = 1, . . . ,M ,
are described by the following one-sided differential equa-
tion:

dxm(θ; t)
dt+

=





0, if xm(θ; t) = 0 and
αm(θ; t)− βm(t) ≤ 0,

0, if xm(θ; t) = bm and
αm(θ; t)− βm(t) ≥ 0,

αm(θ; t)− βm(t), otherwise.
(1)

where, to maintain uniformity in the notation, it is under-
stood that α1(θ; t) = α1(t). With this convention in mind,
the outflow rate from node m = 1, . . . , M − 1 is the in-
flow rate to the downstream node m + 1, so that for all
m = 2, . . . , M we have

αm(θ; t) =
{

βm−1(t), if xm−1(θ; t) > 0
αm−1(θ; t), if xm−1(θ; t) = 0 . (2)

Finally, the overflow rate γm(θ; t) at node m due to a full
buffer is defined by

γm(θ; t) =





αm(θ; t)− βm(t), if xm(θ; t) = bm and
αm(θ; t)− βm(t) ≥ 0,

0, otherwise.
(3)

For convenience, we define

Am(θ; t) := αm(θ; t)− βm(t). (4)

We stress again that in this SFM the flow rates {α1(t)} and
{βm(t)}, m = 1, ...,M , are treated as stochastic processes
representing the random instantaneous rates of the arriving
traffic and of the node processing rates. This is why in
considering a typical sample path of the SFM (as in Fig.
2) the buffer content is shown not as piecewise linear (which
corresponds to fixed flow rates over specific intervals), but
only as piecewise analytic.
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Fig. 1. System Model
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Let us now take a closer look at (2) which describes the
only connection between node m and its upstream nodes.
The value of αm(θ; t), m > 1, is given by either βm−1(t),
which is independent of θ, or by αm−1(θ; t). In turn,
the value of αm−1(θ; t) is given by either βm−2(t) or by
αm−2(θ; t). Proceeding recursively, we find that the value
of α2(θ; t) is either β1(t) or α1(t) which are both indepen-
dent of θ. Thus, the value of αm(θ; t) is ultimately given
by one of the processes {α1(t)} and {βi(t), i = 1, . . . , m}
which are all independent of θ; the way in which αm(θ; t)
switches among them depends on θ through the states
xi(θ; t), i = 1, . . . , m− 1 and the points in time when this
switching occurs defines the “switchover points” discussed
in the sequel.

Focusing on node m, the inflow process {αm(θ; t)} and
the service process {βm(t)} are referred as defining pro-
cesses of node m, since they define the local dynamics
at that node. The buffer level {xm(θ; t)}, outflow process
{δm(θ; t)} and overflow process {γm(θ; t)} are referred as
derived processes, since they can be derived from the defin-
ing processes via (1)-(3).

Viewing the network as a discrete event system, the SFM
dynamics are dependent on a number of events. For the
purpose of our analysis, we define an event of node m =
1, ..., M to be one of the following:
e1 - A jump (discontinuity) in either αm(θ; t) or βm(t).
e2 - A time instant when Am(θ; t) becomes 0 with no dis-
continuity in Am(θ; t) at t.
e3 - A time instant when the buffer level xm(θ; t) becomes
full or empty.

Two types of sample performance metrics will be con-
sidered throughout this paper, both over the time interval
[0, T ]. The loss volume at node m = 1, . . . ,M , denoted by
Lm(θ;T ), is defined by

Lm(θ; T ) =
∫ T

0

γm(θ; t)dt, (5)

and the work at node m = 1, . . . , M , denoted by Qm(θ;T ),
is defined by

Qm(θ; T ) =
∫ T

0

xm(θ; t)dt. (6)

IPA provides the derivatives (gradient) of the sample per-
formance functions with respect to various control pa-
rameters. In our case, we concentrate on the derivatives
L
′
m(θ;T ) and Q

′
m(θ; T ), where we shall use the “prime”

notation to denote a derivative with respect to θ through-
out the rest of the paper.

Considering a typical sample path of the buffer level
xm(θ; t) in this SFM, as shown in Fig. 2, we observe that
it can be decomposed into Boundary Periods (BP) and
Non-Boundary Periods (NBP). A BP is one during which
xm(θ; t) = 0 or xm(θ; t) = bm, whereas a NBP is one during
which 0 < xm(θ; t) < bm. A BP is further categorized as
either an Empty Period (EP) during which xm(θ; t) = 0 or
as a Full Period (FP) during which xm(θ; t) = bm. Since
the function xm(θ; t) is generally continuous in t for a fixed

θ, we will consider EPs and FPs to be closed intervals and
NBPs to be open intervals in the relative topology induced
by [0, T ]. Let

Bm,n = [τm,n(θ), σm,n(θ)]

denote the nth BP, n = 1, . . . , Nm, where Nm is the total
(random) number of BPs in [0, T ]. Note that the start of
Bm,n, τm,n(θ), is an e3 event of node m. For notational
economy, we will omit θ in τm,n(θ) and σm,n(θ) in what
follows, but will keep in mind that τm,n and σm,n are gen-
erally functions of θ. Next, observe that NBPs and BPs
appear alternately throughout [0, T ] and let

Bm,n = (σm,n−1, τm,n)

denote the NBP that precedes Bm,n. For convenience, we
shall set σm,0 = 0 and σm,Nm

= T .
Depending on the value of xm(θ; t) at the starting and

ending points of a NBP Bm,n = (σm,n−1, τm,n), we can
define four types of NBPs (‘E’ stands for ‘Empty’ and ‘F ’
stands for ‘Full’):
1. (E,E): xm(θ; σm,n−1) = 0 and xm(θ; τm,n) = 0.
2. (E,F ): xm(θ;σm,n−1) = 0 and xm(θ; τm,n) = bm.
3. (F,E): xm(θ; σm,n−1) = bm and xm(θ; τm,n) = 0.
4. (F, F ): xm(θ; σm,n−1) = bm and xm(θ; τm,n) = bm.

In the example shown in Fig. 2, the BPs Bm,n−1 =
[τm,n−1, σm,n−1], and Bm,n = [τm,n, σm,n] are both FPs,
whereas Bm,n+1 = [τm,n+1, σm,n+1] is an EP. The NBP
Bm,n−1 = (σm,n−2, τm,n−1) is of type (E,F ), Bm,n =
(σm,n−1, τm,n) is of type (F, F ), Bm,n+1 = (σm,n, τm,n+1)
is of type (F, E), and Bm,n+2 = (σm,n+1, τm,n+2) is of type
(E, E).

 

τm,n τm,n-1 τm,n+1 τm,n+2 σm,n σm,n-1 σm,n-2 σm,n+1 

bm 

Fig. 2. Typical Sample Path of Node m

The switchover points of αm(θ; t) for m > 1, as seen in
(2), occur as follows: (i) Just before an EP of node m− 1
starts, we have αm(θ; t) = βm−1(t). When the EP starts,
the output of m − 1 switches from βm−1(t) to αm−1(θ; t).
(ii) When the EP of node m− 1 ends, the output of m− 1
switches once again from αm−1(θ; t) to βm−1(t). (iii) The
third instance is less obvious. During the EP at node m−1,
it is possible that an EP at node m − 2 starts, in which
case αm−1(θ; t) switches from βm−2(t) to αm−2(θ; t). When
this happens, the output of m − 1 switches from αm−1(t)
to αm−2(θ; t), therefore, αm(θ; t) = αm−1(t) = αm−2(t).
Clearly, it is possible that a sequence of j such events occurs
so that αm(θ; t) = αm−1(t) = . . . = αm−j(t), where j =
1, . . . ,m − 1. In this case, all nodes m − j, . . . , m − 1 are
empty and m inherits all switchovers experienced by these
upstream nodes as each one starts an EP.

For switchover points of αm(θ; t) under case (ii) above,
we next prove that they are locally independent of θ.
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Lemma II.1: Let σm−1, m > 1, be a switchover point
of αm(θ; t) with αm(θ; σ−m−1) = αm−1(θ; σ−m−1) and
αm(θ; σ+

m−1) = βm−1(σ+
m−1). Then, σm−1 is locally in-

dependent of θ.
Proof. See Appendix I.

It immediately follows from Lemma II.1 that the end of
an EP is independent of θ. Moreover, for m > 2, during
an EP of node m − 1 we can see in (2) that αm(θ; t) =
αm−1(θ; t), which implies that if a switchover occurs at
αm−1(θ; t), this switchover will be inherited by αm(θ; t), as
well as the θ-dependence of it.

This discussion motivates our definition of an active
switchover point, which is generally a function of θ and
is denoted by sm,i(θ), m > 2, i = 1, 2, . . .:
Definition 1. A switchover point of αm(θ; t) is termed
active, if:
1. sm,i(θ) is the time when an EP at node m− 1 starts; or
2. sm,i(θ) is the time when αm−1(θ; t) experiences an active
switchover within an EP of node m− 1.

In Fig. 2, assuming m > 2, the points τm,n+1 and τm,n+2

both start EPs and are, therefore, active switchover points
of αm+1(θ; t). In addition, any point in [τm,n+1, σm,n+1]
is potentially an active switchover point of αm+1(θ; t) if it
happens to be an active switchover point of αm(θ; t).

An active switchover point sm,i(θ) at node m may belong
to a BP Bm,n or to a NBP Bm,n. We define the following
index sets that will help differentiating between different
types of active switchover points depending on the type of
interval they belong to:

Ψm,n := {i : sm,i ∈ Bm,n} (7)
Ψo

m,n := {i : sm,i ∈ (τm,n, σm,n)} (8)

Ψm,n :=
{
i : sm,i ∈ Bm,n

}
(9)

Note that Bm,n = [τm,n, σm,n], so we differentiate between
open and closed intervals that define BPs in defining the
sets Ψm,n and Ψo

m,n. As we will see, of particular interest
are active switchover points that coincide with the end of a
FP, so we define the set of all BP indices that include such
a point, Φm, as well as Γm ⊆ Φm, a subset that includes
those FPs that are followed by a NBP of type (F,E):

Φm := {n : σm,n is an active switchover point,
n = 1, . . . , Nm} (10)

Γm := {n : n ∈ Φm and Bm,n+1 is of type (F, E)}. (11)

III. Infinitesimal Perturbation Analysis (IPA)

Our objective is to estimate the derivatives of the
performance metrics E[Lm(θ; t)] and E[Qm(θ; t)], where
Lm(θ; t) and Qm(θ; t) were defined in (5) and (6), through
the sample derivative L

′
m(θ;T ) and Q

′
m(θ; T ), which is

commonly referred to as the Infinitesimal Perturbation
Analysis (IPA) estimators; comprehensive discussions of
IPA and its applications can be found in [16],[17]. The
IPA derivative-estimation technique computes the sample
derivative L′T (θ) of some performance metric LT (θ) along
an observed sample path ω. An IPA-based estimate L′T (θ)

of a performance metric derivative dE[LT (θ)]/dθ is un-
biased if dE[LT (θ)]/dθ = E [L′T (θ)]. Unbiasedness is the
principal condition for making the application of IPA use-
ful in practice, since it enables the use of the sample (IPA)
derivative in control and optimization methods that em-
ploy stochastic gradient-based techniques.

The case of a single node where we are interested in
L′1(θ;T ) and Q′1(θ; T ) has been studied in [10], so here
we address the inter-node effects and study the resulting
IPA estimators L

′
m(θ; T ) and Q

′
m(θ;T ) for m > 1. Due to

the tandem topology and the absence of feedback between
nodes, the inter-node effects have only one direction: from
upstream to downstream. Therefore, our analysis is based
on the impact of the threshold parameter at the first node
on performance metrics at the downstream nodes.

Since we are concerned with the sample derivatives
L
′
m(θ; T ) and Q

′
m(θ; T ) we have to identify conditions un-

der which they exist. As we will see, these derivatives de-
pend on the derivatives of the active switchover points, i.e.,
specific event times, with respect to θ. Excluding the pos-
sibility of the simultaneous occurrence of two events (e1,
e2, or e3 as defined earlier), the only situation prevent-
ing the existence of these derivatives involves some t such
that Am(θ; t) = αm(θ; t) − βm(t) = 0; in such cases, the
one-sided derivatives exist and can be obtained through a
finite difference analysis (as in [10]). However, to keep the
analysis simple, we focus only on the differentiable case by
proceeding under the following technical conditions:

Assumption 1.

a. W.p.1, the functions α1(t), and βm(t), m = 1, . . . , M
are piecewise analytic in the interval [0, T ].
b. For every θ ∈ Θ, w.p.1 no two events of a certain node
m occur at the same time.
c. W.p.1, no two processes {α1(t)}, {βm(t), m = 1, . . . , M}
have identical values during any open subinterval of [0, T ].

All three parts of Assumption 1 are mild technical
conditions. Regarding part c, note that αm(θ; t), through
(2), ultimately depends on one or more of the processes
{α1(t)}, {βi(t)}, i = 1, . . . , m, therefore the requirement
Am(θ; t) 6= 0 is reflected by the general statement under c.

Recall that a switchover point of αm(θ; t) is the time it
switches among {α1(t)} and {βi(t)}, i = 1, . . . , m. It is
possible that a switchover may not cause a jump (disconti-
nuity) in αm(θ; t); for example, at t = s, αm(θ; t) switches
from αm−1(θ; t) to βm−1(t) while αm−1(θ; s) = βm−1(s)
and such a switchover is not qualified as a node m event
(e1, e2, or e3 as defined earlier). The following lemma is
a consequence of Assumption 1 and shows that for an
active switchover point, αm(θ; t) must experience a jump.
Recall that an active switchover point sm,i(θ) is generally
a function of θ, but, for the sake of notational simplicity,
we shall simply write sm,i.

Lemma III.1: If an active switchover point of αm(θ; t)
occurs at t = sm,i, then w.p. 1 it is an e1 event of node m.

Proof. See Appendix I.
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A. Queue Content Derivatives

We shall proceed by determining the derivative x
′
m(θ; t)

of a buffer level in the SFM with respect to the controllable
parameter θ and will show that it depends exclusively on
the way that θ affects the switchover points of αm(θ; t) that
were termed “active” in Definition 1. Focusing on active
switchover points sm,i, i = 1, 2, . . . we define the following
two quantities for m > 1 that turn out to be crucial in our
analysis:

ψm,i := [αm(θ; s+
m,i)− αm(θ; s−m,i)]s

′
m,i, (12)

and, for n ∈ Φm:

φm,n := [αm(θ; σ+
m,n)− βm(σm,n)]σ

′
m,n. (13)

Let us now consider the derivative x
′
m(θ; t) of a buffer

level in the network with respect to the controllable pa-
rameter θ. The case m = 1 was considered in [10], so we
shall focus on cases with m > 1. The following establishes
the connection between x

′
m(θ; t) and the two crucial quan-

tities defined above. Note that 1 [·] is the usual indicator
function.

Lemma III.2: If m = 1, for n = 1, ..., N1

x
′
1(θ; t) =

{
1
0

if t ∈ B1,n or t ∈ B1,n+1, x1(θ;σ1,n) = θ
otherwise

(14)
If m > 1, then for n = 1, ..., Nm

x
′
m(θ; t) =
{

0 if t ∈ Bm,n

−∑Km,n(t)
k=1 ψm,k − 1 [n ∈ Φm] · φm,n if t ∈ Bm,n+1

(15)

where Km,n(t) is the number of active switchover points in
the interval (σm,n, t) ⊂ Bm,n+1.
Proof. See Appendix I.

It is now clear from (15) that ψm,k and φm,n are crucial
quantities associated with node m. In the next two lemmas,
we show that they provide the means to connect x

′
m(θ; t)

to x
′
m−1(θ; t) and hence shed light into the way in which

buffer level perturbations propagate across nodes.
Lemma III.3: For m > 1, let sm,i be an active switchover

point of αm(θ; t). If it is the start of an EP at node m− 1,
then

ψm,i = −x
′
m−1(θ; s

−
m,i) (16)

Otherwise, if sm,i occurs during an EP of node m−1, then

ψm,i = ψm−1,j (17)

for some j such that sm,i = sm−1,j .
Proof. See Appendix I.

Next for m > 1, we define:

Rm,n(θ) :=
αm(θ; σ+

m,n)− βm(σm,n)

αm(θ; σ+
m,n)− αm(θ; σ−m,n)

(18)

By definition, σm,n is the end of a BP at node m. We
will make use of Rm,n(θ) when n ∈ Φm, i.e., when σm,n

happens to be an active switchover point. If this is the
case, then it follows from Lemma III.1 and Assumption
1(b) that βm(t) is continuous at t = σm,n. Note that this
quantity involves the processing rate information βm(σm,n)
(typically known, otherwise measurable) at t = σm,n, and
the values of the incoming traffic rates before and after a
BP ends at t = σm,n. Using this definition, the next lemma
allows us to obtain a simple relationship between the two
crucial quantities ψm,i and φm,n.

Lemma III.4: Let n ∈ Φm and σm,n = sm,i for some
active switchover point of αm(θ; t). Then,

φm,n = Rm,n(θ) · ψm,i (19)

where
0 < Rm,n(θ) ≤ 1. (20)

Proof. See Appendix I.
Combining Lemmas III.2-III.4 we obtain the following:
Theorem III.1: For m > 1 and n = 1, . . . , Nm:

x
′
m(θ; t) =




0 if t ∈ Bm,n∑Km,n(t)
k=1 x

′
m−i∗(θ; s

−
m,k) +

1 [n ∈ Φm] ·Rm,n(θ)x
′
m−i∗(θ; σ

−
m,n) if t ∈ Bm,n+1

(21)

where

i∗ := min
j=1,...,m−1

{j : xm−j(θ; sm,k) > 0} (22)

and Km,n(t) is the number of active switchover points in
the interval (σm,n, t) ⊂ Bm,n+1.
Proof. See Appendix I.

Taking a closer look at (21) we get significant insight
regarding the process through which changes in the buffer
level of one node affect the buffer levels of downstream
nodes. Let us view x

′
m(θ; t) as a perturbation in xm(θ; t).

For simplicity, let us initially ignore the case where n ∈
Φm and assume i∗ = 1. Thus, we have x

′
m(θ; t) =∑Km,n(t)

k=1 x
′
m−1(θ; s

−
m,k) if t ∈ Bm,n+1. We can see that

node m−1 only affects node m at time sm,k when an EP at
node m−1 starts (recalling Definition 1). In simple terms:
whenever node m − 1 becomes empty, it propagates down-
stream to m its current perturbation. These perturbations
accumulate at m over all Km,n(t) active switchover points
contained in a NBP Bm,n+1. For example, in Fig. 3, sm,i+1

is a point where an EP ends at node m−1 while node m is
in a NBP; at that time we get x

′
m(θ; t) = x

′
m−1(θ; s

−
m,i+1).

Moreover, when the NBP ends at τm,n+1, the value of
x
′
m(θ; τ−m,n+1) is in turn propagated downstream to m + 1,

before setting x
′
m(θ; τ+

m,n+1) = 0 at the start of the ensuing
EP at m.

Any cumulative perturbation at m is eliminated by the
presence of any BP, i.e., when t ∈ Bm,n as indicated by
(21). For example, in Fig. 3, sm,i is a point where an EP
ends at node m − 1 while node m is in a FP; therefore, it
has no effect on xm(θ; t), i.e., x

′
m(θ; t) = 0. The conclusion

is that in order for a node to have a chance to propagate a
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 bm-1 

bm 

σm,n τm,n+1 τm,n 

sm,i-1 sm,i sm,i+1 

σm,n-1 

Fig. 3. A sample path example with two adjacent nodes and three
active switchover points for αm(θ; t)

perturbation downstream, it must become empty before it
becomes full. In view of this fact, we can argue that control
at the edge of a tandem network is generally expected to
have a limited impact on nodes that are several hops away,
since propagating perturbations requires the combination
of several events: a perturbation to be present and to be
propagated at the start of an EP before it is eliminated
by a FP; moreover this has to be true for a sequence of
nodes. The probability of such a joint event is likely to be
small as the number of hops increases. This provides an
analytical substantiation to the conjecture that congestion
in a network cannot be easily regulated through control
exercised several hops away, unless the intermediate nodes
experience frequent EPs providing the opportunity for per-
turbation propagation events.

Let us now look at the two aspects that were ignored
in the discussion above. First, suppose that i∗ > 1. This
means that an EP occurs not just at node m− 1, but also
nodes m − 2, . . . , m − i∗, all at the same time. Thus, in-
stead of propagating a perturbation from m− 1 to m, the
propagation now takes place from m− i∗ to m. Second, let
us consider the case where n ∈ Φm in (21). This allows an
EP that starts at m− 1 to cause the end of a FP at node
m. When this occurs, only a fraction, given by Rm,n(θ), of
the perturbation at m−1 is propagated to node m. For ex-
ample, in Fig. 3, the point sm,i coincides with σm,n and it
therefore contributes another term scaled by Rm,n as seen
in (21).

Finally, note that the discussion above is independent
of the way in which the controllable parameter affects the
buffer content at m = 2 and subsequently all downstream
nodes through (21). In the particular case we are consid-
ering, however, we can see from (14) that the derivatives
at node 1 are always given by 1. Thus, the entire perturba-
tion analysis process here reduces to counting EP events at
all nodes that cause propagations through (21). The only
exception is for those events that end an EP at some m−1
and at the same time a FP at m; in this case, the deriva-
tive at node m is affected by some amount dependent on
Rm,n(θ) ∈ (0, 1].Up to this point, we have characterized
the mechanism through which x

′
m(θ; t) can be evaluated

recursively for all m = 1, . . . , M , making use of the quan-
tities ψm(sm,i) and φm(sm,i). In the next two sections, we

concentrate on the sample derivatives of the two perfor-
mance metrics we have identified, Lm(θ;T ) and Qm(θ; T )
defined in (5) and (6). The case of L1(θ; T ) and Q1(θ; T )
was considered in [10], so we will focus on m > 1 in what
follows.

B. The IPA Derivative L
′
m(θ; T )

Our objective here is to estimate the derivative of the
expected loss volume E[Lm(θ; T )] at node m = 2, . . . , M

through the sample derivative L
′
m(θ; T ). Let us define zm

to be the set of all indices of BPs that happen to be FPs
at node m over [0, T ], i.e.,

zm := {n : xm(θ; t) = bm for all t ∈ Bm,n, n = 1, . . . , Nm} .

Observing that only FPs at node m will experience loss,
we have

Lm(θ; T ) =
∑

n∈zm

∫ σm,n

τm,n

γm(θ; t)dt,

and

L
′
m(θ; T ) =

∑
n∈zm

d

dθ

∫ σm,n

τm,n

γm(θ; t)dt. (23)

By Lemma III.1 and Assumption 1(b), τm,n cannot be
an active switchover point, since at τm,n a node m event
of type e3 must occur. Therefore, for any n ∈ zm, active
switchover points can occur either in the open FP interval
(τm,n, σm,n) or they may coincide with the end of the FP
at time σm,n.

To establish an expression for L
′
m(θ; T ) in terms of ob-

servable sample path data we need three preliminary re-
sults, stated below as Lemmas III.5-III.7. Since we focus
on node m, we drop the subscript m for notational conve-
nience in presenting these results.

Lemma III.5: For n ∈ z,

d

dθ

∫ σn

τn

γ(θ; t)dt =
[
A(θ; σ−n )σ

′
n −A(θ; τn)τ

′
n

]
−

∑

k∈Ψo
n

ψk

(24)
Proof. See Appendix I.

Lemma III.6: For n ∈ z,

A(θ; τn)τ
′
n(θ) =

∑

k∈Ψn

ψk + A(θ; σ+
n−1)σ

′
n−1 (25)

Proof. See Appendix I.
The next result concerns the end point σn of a FP.
Lemma III.7: For n ∈ z,

[A(θ; σ+
n )−A(θ; σ−n )]σ

′
n =

{
ψi, if n ∈ Φ with σn = si

0, if n /∈ Φ
(26)

Proof. See Appendix I.
We can now obtain the IPA derivative L

′
m(θ;T ), using

once again the subscript m. We will also introduce the set

Ωm,n = Ψm,n ∪Ψm,n (27)
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which, recalling (7) and (9), includes the indices i of all ac-
tive switchover points in the BP Bm,n = [τm,n(θ), σm,n(θ)]
and the NBP that precedes it Bm,n = (σm,n−1, τm,n).

Theorem III.2: The loss volume IPA derivative, L
′
m(θ;T ),

m = 2, . . . , M , has the following form:

L
′
m(θ; T ) = −

∑
n∈zm

∑

i∈Ωm,n

ψm,i +
∑

n∈Γm

φm,n (28)

where ψm,i and φm,n are given by (16)-(17) and (19).
Proof. See Appendix I.

In simple terms, to obtain L
′
m(θ;T ) we accumulate terms

−ψm,i over all active switchover points sm,i for each inter-
val (σm,n−1, σm,n], n = 1, 2, . . . However, the result con-
tributes to L

′
m(θ; T ) only if σm,n ends a FP. The second

term of (28) modifies the accumulation process as follows:
Occasionally, σm,n is followed by a NBP (σm,n, τm,n+1) of
type (F,E), i.e., the buffer at node m becomes empty.
When this event takes place, the contribution −ψm,i for
sm,i = σm,n is modified by adding φm,n to it. In the exam-
ple shown in Fig. 3, there are two active switchover points
in the interval (σm,n−1, σm,n] at sm,i−1 and at sm,i. These
contribute terms −ψm,i−1 and −ψm,i to L

′
m(θ;T ) since the

BP that ends at σm,n is a FP. The second one happens to
coincide with the end of the FP, i.e., sm,i = σm,n. Since
the next NBP is of type (F,E), we have n ∈ Γm and a
term φm,n is contributed to L

′
m(θ; T ). In addition, the

active switchover point at sm,i+1 does not contribute to
L
′
m(θ;T ).
The terms ψm,i and φm,n are given in Lemmas III.3 and

III.4, where we can see that they depend on the derivatives
x
′
m−1(θ; s

−
m,i) propagated from the upstream node m − 1

through every EP event that occurs at m−1. These deriva-
tives are in turn provided by (21) in Theorem III.1. We em-
phasize the fact that, as in earlier work for a single node
SFM [10], the IPA estimator does not involve any knowl-
edge of the stochastic processes characterizing arriving traf-
fic or node processing and allows for the possibility of corre-
lations. The only information involved is the one required
to calculate Rm,n in (21), which, incidentally, occurs only
when the end of a FP happens to be an active switchover
point; one can argue that under certain loading conditions
such contributions (recall also that 0 < Rm,n ≤ 1) are
minimal and could be ignored for the benefit of obtaining
computationally efficient approximations; in this case, (28)
becomes a simple counter, since the values of ψm,i are orig-
inally given by −1 at node 1, as seen in (14). This is further
discussed in Section 4.

Theorem III.3: The IPA derivative, L
′
m(θ; T ), m =

2, . . . , M , is unbiased, i.e.,

E
[
L
′
m(θ; T )

]
=

dE[Lm(θ; T )]
dθ

Proof: See Appendix II.

C. The IPA Derivative Q
′
m(θ; T )

Recall the definition of Qm(θ; T ) in (6). By partioning
[0, T ] into NBPs and BPs and recalling that Nm was defined

as the total number of BPs in [0, T ], we have

Qm(θ;T ) =
Nm∑
n=1

[∫ τm,n

σm,n−1

xm(θ; t)dt +
∫ σm,n

τm,n

xm(θ; t)dt

]

Upon taking derivatives with respect to θ and in view of
the fact that xm(θ; t) is continuous in t, we obtain

Q
′
m(θ; T ) =

Nm∑
n=1

∫ τm,n

σm,n−1

x
′
m(θ; t)dt

+
Nm∑
n=1

{
xm(θ; τm,n)τ

′
m,n − xm(θ; σm,n−1)σ

′
m,n−1

}

+
Nm∑
n=1

∫ σm,n

τm,n

x
′
m(θ; t)dt

+
Nm∑
n=1

{
xm(θ;σm,n)σ

′
m,n − xm(θ; τm,n)τ

′
m,n

}

After taking into account the cancellation of several terms
and in view of the fact that σ′m,0 = σ′m,Nm

= 0, this reduces
to

Q
′
m(θ; T ) =

Nm∑
n=1

[∫ τm,n

σm,n−1

x
′
m(θ; t)dt +

∫ σm,n

τm,n

x
′
m(θ; t)dt

]
.

(29)
We can now make use of the expression for x

′
m(θ; t) de-

rived in Lemma III.2 and Theorem III.1 to obtain the IPA
estimator Q

′
m(θ; T ) for m = 2, . . . , M .

Theorem III.4: The workload IPA derivative, Q
′
m(θ; T ),

m = 2, . . . , M , has the following form:

Q
′
m(θ; T ) =−

Nm∑
n=1

∑

i∈Ψm,n

[τm,n − sm,i]ψm,i

−
∑

n∈Φm

[τm,n+1 − σm,n]φm,n (30)

where ψm,i and φm,n are given by (16)-(17) and (19).
Proof. See Appendix I.

For a simple interpretation of the IPA estimator (30),
note that, similar to the IPA estimator in (28), it involves
accumulating terms −ψm,i over active switchover points
sm,i. In this case, however, we are only interested in
sm,i contained in NBPs (σm,n−1, τm,n), n = 1, . . . , Nm.
The accumulation is done at τm,n with each such term
scaled by [τm,n − sm,i] measuring the time elapsed since
the switchover point took place. The second term in (30)
adds similar contributions made at the end of a NBP of
type (F, E) due to active switchover points that coincide
with the end of a FP at some time σm,n.

Theorem III.5: The IPA derivative, Q
′
m(θ;T ), m =

2, . . . ,M , is unbiased, i.e.,

E
[
Q
′
m(θ; T )

]
=

dE[Qm(θ;T )]
dθ

Proof. See Appendix II.
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IV. Experimental Network Optimization Results

This section presents results of simulation experiments in
which we optimized a weighted sum of loss and workload in
the two-queue tandem system shown in Fig. 4, as a function
of the buffer limits (buffer sizes) at the two queues. All of
the experiments were performed using the Georgia Tech
Network Simulator (GTNetS ) [22], modified to include the
requisite IPA derivative calculations.

β

λ s

λ b

n1 Sources

S1 S2

n Sinks

Background
Generator

1θ 2θ
1 2β

Fig. 4. Topology: Two-Stage Simulations

The approach we have taken here is to purposefully
adopt a very practical engineering point of view in trying to
integrate the analytical results of the previous section with
a stochastic optimization methodology. We have made sev-
eral simplifications, our goal being to test the “practical”
value of using IPA estimates to dynamically improve (in
an acceptable time scale) network performance within an
optimization framework. First of all, because of the simple
form of the IPA estimators of the derivatives of loss (28)
and work (30) for the SFM, all data required for their eval-
uation can be directly obtained from a sample path of the
actual queueing system, as was also done and explained in
detail in our earlier work [10]. In other words, the form of
the IPA estimators is obtained by analyzing the system as
a SFM, but the associated values are based on real data.
This provides a good approximation of the performance
derivative estimates of the queueing system (which, if ob-
tained directly from the queueing system, would be biased).
Secondly, we implemented a standard stochastic approxi-
mation technique (e.g., see [23]) in conjunction with the
IPA derivatives obtained in Section 3, but included some
simple heuristics that are empirically known to accelerate
convergence, at the expense of staying within the bounds
of the usual technical conditions required to guarantee con-
vergence. In addition, although all our analysis is based on
the assumption that all observed sample paths start with
all queues at the empty state, we have nonetheless applied
the IPA estimates at the nth iteration of the optimization
algorithm using the ending state of the (n− 1)th iteration.

The final simplifying step we have taken concerns the
contribution of the term involving φm,n in the IPA estima-
tors (28) and (30). As already argued, based on (14), (16)-
(17), and (19)-(20), each instance of this term is bounded
by [0, 1]. Moreover, the term is nonzero only when an active
switchover point coincides with the end of a FP at node 2,
i.e., an EP starts at node 1 causing a FP to end at node
2. This is likely to occur only when the buffer limits are

largely imbalanced (that of node 2 is too small), in which
case the performance sensitivity with respect to the buffer
limit of node 2 is expected to be large (hence, the buffer
limit of node 2 will be increased at the next algorithm itera-
tion), making the contribution of a term bounded by [0, 1]
likely to be negligible. Since this argument is obviously
not rigorous, we proceeded by performing the optimization
process twice: once with all these terms ignored, and once
with the values of these terms, whenever they arise, set to
their maximum value of 1. We found the results numeri-
cally indistinguishable, substantiating this approximation.
The significance of the approximation cannot be overem-
phasized: without the inclusion of the term involving φm,n

in the IPA estimators, these estimators are fully nonpa-
rameteric, i.e., they require only simple event counters and
timers and no traffic rate information whatsoever, since
Rm,n in (18) is no longer involved.

In the system of Fig. 4, intended to represent the opera-
tion of a communication network, the inflow process at the
first queue consists of n1 multiplexed on–off data sources
generating bursty traffic. When in the on state, each source
generates a continuous data stream at the rate of α bits per
second. These data streams are used to construct 554-byte
UDP packets which are forwarded to the buffer at the first
queue and thence across the rest of the network. The on
times and off times are iid random variables sampled from
the exponential distribution with mean 0.1 seconds. The
channel transporting packets from the first queue to the
second queue has a capacity of β1 bps. The inflow process
to the second queue consists of the outflow process from the
first queue and of traffic from the background generator.
The backgrond traffic consists of n2 independent sources.
Each one of these sources has the same statistical charac-
teristics as the sources to the first queue. The outgoing
channel from the second queue has a capacity of β2 bps.

Note that the average bit rate from either one of the in-
dependent sources is α/2 bps, since the expected durations
of the off periods and the on periods are identical. There-
fore, the expected bit rate of the aggregate flow to the first
queue is (n1α/2) × (554/512), where the latter term ac-
counts for the insertion of the headers. Consequently, the
traffic intensity at the first queue, denoted by ρ1, is given
by

ρ1 = n1 × α

2
× 554

512
× 1

β1
. (31)

Similarly, the traffic intensity of the second queue is de-
noted by ρ2. In our simulation experiments we set n1 =
n2 = 100, β1 = 10 Mbps, and β2 = 20 Mbps. Our simula-
tion program was designed to utilize the traffic intensities
as simulation input, and we set ρ1 = ρ2 = 0.95. The pro-
gram then calculated α according to (31).

Let θ = (θ1, θ2) denote the two-dimensional parameter
vector consisting of the buffer limits at the first and sec-
ond queue respectively. Recall that the loss volumes and
workloads at the two queues are denoted by Lj(θ;T) and
Qj(θ;T), j = 1, 2. Let us define the cost function F (θ;T)
as the following weighted sum of the average loss rate and
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workload rate.

F (θ;T) =
1
T

[L1(θ;T) + 10Q1(θ;T)

+L2(θ;T) + 20Q2(θ;T)] . (32)

We set the value of T to T = 1. We seek to minimize this
function using a standard stochastic approximation tech-
nique (e.g., see [23]) in conjunction with the IPA derivatives
obtained in Section 3. The optimization algorithm itera-
tively computes a sequence of points, θ(i) = (θ(i)1, θ(i)2),
i = 1, 2, . . . ,. Its basic iteration step has the form:

θ(i + 1) = θ(i)− ζ(i)h(i), (33)

where ζ(i) ≥ 0 is the ith stepsize (we adopted ζ(i) =
10/i0.6), and h(i) is an estimate of the gradient of
F (θ(i);T) obtained via IPA. As already pointed out, be-
cause of the simple form of the IPA estimators (28) and
(30) for the SFM, all data required for their evaluation
can be directly obtained from a sample path of the actual
queueing system. In addition, we used a simple heuris-
tic to bound the displacement θ(i + 1) − θ(i) along each
coordinate by modifying the vector h(i) = (h(i)1, h(i)2)
as follows. We first computed the partial derivatives
∂F (θ(i);T)

∂θ(i)j
, j = 1, 2. If |ζ(i)∂F (θ(i);T)

∂θ(i)j
| ≤ 5 then we set

h(i)j = ∂F (θ(i);T)
∂θ(i)j

, and if |ζ(i)∂F (θ(i);T)
∂θ(i)j

| > 5 then we set

h(i)j = 5sgn(∂F(θ(i);T)
∂θ(i)j

)/ζ(i).
The parameters θ(i)j (j = 1, 2) were considered as real

numbers, but the simulation runs were performed at the
respective integer values closest to them. Recall that the
simulation time horizon at each iteration point θ(i) was
T = 1.0 second. The simulation state at the end of each
iteration was preserved, and used as the initial state for the
simulation at the next iteration point, θ(i + 1). Likewise,
we preserved the final state of the process of computing the
IPA derivative, and used it as the initial state for the IPA
derivative process at the next iteration. Note that only one
random seed is called for each optimization experiment.
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Fig. 5. θ(i)1 Adjustments vs. Time

We ran the optimization algorithm twice, with two dif-
ferent initial parameters: first with θ(1) = (5,5), and then
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Fig. 6. θ(i)2 Adjustments vs. Time

with θ(1) = (40,40). In either case we ran the algorithm
for 100 iterations (i.e., 100 seconds). For each experiment,
we plotted the evolution of θ(i)1 and θ(i)2 as a function of
i, and show the results in Figs. 5 and 6 respectively. Each of
the figures shows one trajectory for the θ(1) = (5,5) initial
condition, and a second one for the θ(1) = (40,40) initial
condition. The results indicate asymptotic convergence to
approximately θ̂ = (15,14) within approximately 20 sec-
onds. As already mentioned, this optimization process was
performed without the term involving φm,n in the IPA esti-
mators (28) and (30); it was then repeated with the inclu-
sion of this term set to 1 (its upper bound) in all instances
when it arises and the results obtained corresponding to
Figs. 5 and 6 were numerically indistinguishable.
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Fig. 7. Cost Function F (θ1, θ2; T )

Finally, to add validity to these results, we plotted the
graph of F (θ1, θ2; T ) as shown in Fig. 7. Each point on the
plot is the average of 10 separate simulation experiments
with T = 100 seconds, each with a different seed for the
random number generators. However, each set of the 10
simulation experiments uses the same set of 10 random
seeds as all other sets of experiments. This graph clearly
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corroborates the results obtained by the optimization runs,
i.e., it shows that θ̂ = (15,14) is indeed optimal.

V. Conclusions and Future Work

We have considered in this paper a Stochastic Flow
Model (SFM) for a communication network of multiple
nodes in tandem. Our objective is to control threshold pa-
rameters at network nodes so as to optimize performance
captured by combining loss and workload metrics. We have
developed IPA estimators for these metrics with respect
to the threshold and shown them to be unbiased. The
simplicity of the estimators derived and the fact they are
not dependent on knowledge of the traffic arrival or service
processes makes them attractive for on-line control and op-
timization. This work has extended results applicable to
a single-node, single-class SFM in [10], and the next step
is to incorporate multiple traffic classes at various nodes,
along the lines of [12]. Our ongoing work is also investigat-
ing the use of this approach in general topology networks,
which we believe to be possible. For example, the pres-
ence of cross-traffic at node m in our SFM can be captured
by varying the processing rate βm(t) at that node. Finally,
and very importantly, ongoing work is also considering how
to develop IPA and related control and optimization meth-
ods that include network feedback effects (i.e., allowing ar-
riving traffic processes to depend on the buffer content in
different ways); some related initial results are reported in
[21].

Appendix I

Proof of Lemma II.1

Recalling (2), we have xm−1(θ;σ−m−1) = 0 and
xm−1(θ;σ+

m−1) > 0, which implies that at σm−1 there is a
change of sign in Am−1(θ; t) = αm−1(θ; t) − βm−1(t) from
non-positive to positive. For m = 2, since α1(t) and β1(t)
are independent of θ, the time of the sign change of A1(t)
is independent of θ too, and it follows that σ1 is locally
independent of θ. For m > 2, there are two ways in which
a sign change in Am−1(σm−1) can take place: continuously
or as a result of a jump in either αm−1(θ; t) or βm−1(t) at
t = σm−1. Let us consider each of these two cases next.

If no discontinuity occurs at t = σm−1, then
by (2), we have either αm−1(θ; t) = αm−2(θ; t) or
αm−1(θ; t) = βm−2(t). In the latter case, Am−1(θ; σm−1) =
βm−2(σm−1) − βm−1(σm−1) is clearly independent of
θ. In the former case, we have Am−1(θ;σm−1) =
αm−2(θ;σm−1) − βm−1(σm−1) where, once again, either
αm−2(θ; t) = αm−3(θ; t) or αm−2(θ; t) = βm−3(t) at t =
σm−1. In the latter case, Am−1(θ;σm−1) = βm−3(σm−1)−
βm−1(σm−1) is independent of θ. In the former case,
we have Am−1(θ; σm−1) = αm−3(θ; σm−1) − βm−1(σm−1)
and the process repeats until we get Am−1(θ; σm−1) =
α1(σm−1)− βm−1(σm−1) which is independent of θ. Thus,
if the change in sign occurs continuously, we conclude that
σm−1 is independent of θ.

This leaves only the possibility that the sign change oc-
curs as a result of a jump in either αm−1(θ; t) or βm−1(t) at
t = σm−1. Note that αm−1(θ; t) and βm−1(t) may jump si-
multaneously at t = σm−1, but only one of them dominates
the sign change, i.e., the jump in the other one alone would
not have caused the sign change. The dominating jump
in βm−1(t) is obviously independent of θ. Therefore, the
only possibility is that αm−1(θ; t) experiences a dominating
jump at t = σm−1. Moreover, since αm−1(θ; t) − βm−1(t)
experiences a sign change from non-positive to positive,
αm−1(θ; t) must switch to a larger value at σm−1, i.e.,
αm−1(θ; σ−m−1) < αm−1(θ; σ+

m−1).
The jump of αm−1(θ; t) has three possible ways of oc-

curring: (i) switching from βm−2(t) to αm−2(θ; t), (ii)
switching from αm−2(θ; t) to βm−2(t), or (iii) having
αm−1(θ; t) = αm−2(θ; t) because xm−2(θ; t) = 0, and in-
heriting a jump of αm−2(θ; t) at that time.

Case (i) is infeasible by the following argument: if
σm−1 is a switchover point of αm−1(θ; t) from βm−2(t)
to αm−2(θ; t), then the buffer at node m − 2 becomes
empty at that time, which implies that βm−2(σm−1) −
αm−2(θ; σm−1) > 0; this contradicts the fact that
αm−1(θ; t) must switch to a larger value at σm−1.

If case (iii) applies, then αm−2(θ; t) must switch to a
larger value at σm−1, and we repeat the same argument
as the one used above for αm−1(θ; t) until either case (ii)
applies for some αm−i(θ; t) with m−i > 2 or we reach node
2, in which case only case (ii) is possible.

Thus, the proof reduces to considering case (ii),
i.e., showing that if σm−1 is a switchover point of
αm−1(θ; t) with αm−1(θ;σ−m−1) = αm−2(θ; σ−m−1) and
αm−1(θ; σ+

m−1) = βm−2(σ+
m−1) then, σm−1 is locally inde-

pendent of θ. Observe that this is precisely the statement
of the lemma with m replaced by m − 1 in αm(θ; t) and
βm−1(t). Therefore, using the same argument as above,
this process is repeated until the proof is reduced to show-
ing that if σm−1 is a switchover point of α2(θ; t) with
α2(θ; σ−m−1) = α1(σ−m−1) and α2(θ; σ+

m−1) = β1(σ+
m−1)

then σm−1 is locally independent of θ. This, however, was
already established above based on the fact that α1(t) and
β1(t) are both defining processes independent of θ.

Proof of Lemma III.1

If sm,i is an active switchover point of αm(θ; t), it fol-
lows from (2) and Definition 1 that there are two possi-
ble cases: (i) an EP starts at node m− 1, or (ii) sm,i lies
within an EP of node m − 1 and is an active switchover
point of αm−1(θ; t).

In case (i), an event e3 occurs at node m − 1. By As-
sumption 1(c), we can only have βm−1(t) = αm−1(θ; t)
at a single time instant and by Assumption 1(b) that
cannot coincide with another event at node m− 1. There-
fore, αm(θ; t) must experience a jump from βm−1(t) to
αm−1(θ; t) at t = sm,i, which is an e1 event at node m.

In case (ii), sm,i is an active switchover point of
αm−1(θ; t), so either it starts an EP at node m − 2 or it



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MMM 2004 11

is an active switchover point of αm−2(θ; t). Thus, we re-
peat the previous argument until the only remaining case
is that sm,i is an active switchover point of α2(θ; t). In this
case, sm,i can only be the start of an EP at node 1. By
Assumption 1(c), we can only have β1(t) = α1(t) at a
single time instant and by Assumption 1(b) that cannot
coincide with another event at node 1. Therefore, αm(θ; t)
must again experience a jump from β1(t) to α1(θ; t) at sm,i,
which is an e1 event at node m.

Proof of Lemma III.2

The first part was established in Theorem 6 of [10]. To
prove the second part, suppose first that t ∈ Bm,n for some
n = 1, ..., Nm. Since t is in the interior of a BP, we have
either xm(θ; t) = 0 or xm(θ; t) = bm throughout the BP,
therefore,

x
′
m(θ; t) = 0. (34)

Next, suppose t ∈ Bm,n+1 for some n = 0, ..., Nm − 1. In
this case,

xm(θ; t) = xm(θ; σm,n) +
∫ t

σm,n

Am(θ; ζ)dζ,

therefore,

x
′
m(θ; t) = x′m(θ;σm,n) +

d

dθ

∫ t

σm,n

Am(θ; ζ)dζ. (35)

Recall that σm,n is the start of a NBP, so that either
xm(θ; σm,n) = 0 or xm(θ;σm,n) = bm. In either case we
obtain x′m(θ;σm,n) = 0. Thus,

x
′
m(θ; t) =

d

dθ

∫ t

σm,n

Am(θ; ζ)dζ

Let {sm,k}, k = 1, ...,Km,n(t), be the sequence of active
switchover points in the interval (σm,n, t), where Km,n(t)
denotes the total number of such points. First, suppose
n ∈ Φm, i.e., from (10) σm,n is an active switchover point
and it is, therefore, generally a function of θ. We can then
write

d

dθ

∫ t

σm,n

Am(θ; ζ)dζ

=
d

dθ

{∫ sm,1

σm,n

Am(θ; ζ)dζ +
∫ sm,2

sm,1

Am(θ; ζ)dζ+

· · ·+
∫ t

sm,Km,n(t)

Am(θ; ζ)dζ

}

= Am(θ; s−m,1)s
′
m,1 −Am(θ; σ+

m,n)σ
′
m,n

+
Km,n(t)−1∑

k=1

[
Am(θ; s−m,k+1)s

′
m,k+1 −Am(θ; s+

m,k)s
′
m,k

]

−Am(θ; s−m,Kn(t))s
′
m,Km,n(t)

Since sm,k is an active switchover point of αm(θ; t), it fol-
lows from Lemma III.1 that it is an e1 event, so by As-
sumption 1(b) no other event occurs at the same time; in
particular, no other e1 event may take place. Thus βm(t) is
continuous at t = sm,k, i.e., βm(s+

m,k) = βm(s−m,k). Then,
using the definition of Am(θ; t) in (4), we get

d

dθ

∫ t

σm,n

Am(θ; ζ)dζ

= −Am(θ;σ+
m,n)σ

′
m,n

+
Km,n(t)∑

k=1

[αm(θ; s−m,k)− αm(θ; s+
m,k)]s

′
m,k

= −φm,n −
Km,n(t)∑

k=1

ψm,k (36)

where we have used (12) and (13). Similarly, if n /∈ Φm,
the only difference is that σm,n is not a function of θ and
we get

d

dθ

∫ t

σm,n

Am(θ; ζ)dζ = −
Km,n(t)∑

k=1

ψm,k. (37)

Combining (34), (36), and (37) yields (15).

Proof of Lemma III.3

Since sm,i is an active switchover point of αm(θ; t), it
follows from (2) that there are two possible cases: (i)
it starts an EP at node m − 1, or (ii) it lies within an
EP of node m − 1 and is an active switchover point of
αm−1(θ; t). In case (ii), letting sm−1,j (for some j) de-
note the active switchover point of αm−1(θ; t), we have
αm(θ; t) = αm−1(θ; t) at t = sm,i = sm−1,j , therefore (17)
immediately follows from (12). Thus, it remains to consider
case (i) and prove (16).

If at sm,i an EP Bm−1,n+1 at node m− 1 starts, this is
an e3 event at node m−1 and we have sm,i = τm−1,n+1 for
some n. Moreover, by Assumption 1(b), no other event
at node m− 1 occurs at the same time, so αm−1(θ; t) and
βm−1(t) are continuous at sm,i. Therefore, αm(θ; s+

m,i) =
αm−1(θ; sm,i), while αm(θ; s−m,i) = βm−1(sm,i). It follows
from (12) that

ψm,i = [αm−1(θ; sm,i)− βm−1(sm,i)] s
′
m,i

= Am−1(θ; sm,i)s
′
m,i (38)

On the other hand, we have
∫ τm−1,n+1

σm−1,n

Am−1(θ; t)dt = 0

if Bm−1,n+1 is of type (E,E), and
∫ τm−1,n+1

σm−1,n

Am−1(θ; t)dt = −bm−1

if Bm−1,n+1 is of type (F, E). Regarding the start σm−1,n

of the NBP, recall that if it happens to be an active
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switchover point of αm−1(θ; t), then it is a function of
θ; otherwise, it is independent of θ. Let {sm−1,k}, k =
1, ..., K, be the sequence of active switchover points in the
interval Bm−1,n+1, where K denotes the total number of
such points. Then, differentiating with respect to θ the
equations above, we get

Am−1(θ; τm−1,n+1)τ
′
m−1,n+1

−
K∑

k=1

[
αm−1(θ; s+

m−1,k)− αm−1(θ; s−m−1,k)
]
s
′
m−1,k

− 1[n ∈ Φm−1] ·Am−1(θ; σ+
m−1,n)σ

′
m−1,n = 0

where the evaluation of the left-hand-side above is along
the same lines as that of (36). In view of the fact that
τm−1,n+1 = sm,i and using (38) and (12)-(13), we get

ψm,i −
K∑

k=1

ψm−1,k − 1[n ∈ Φm−1] · φm−1,n = 0

Using (15) in Lemma III.2 with t = s−m,i and Km,n(t) = K
above, we obtain (16) and complete the proof.

Proof of Lemma III.4

Since σm,n is an active switchover point of αm(θ; t) and
σm,n = sm,i, (19) immediately follows from (12)-(13).

Next we prove (20). Since n ∈ Φm we have the end of a
FP of node m at σm,n, therefore αm(θ; t)− βm(t) undergoes
a sign change from non-negative to negative, i.e.,

αm(θ; σ−m,n)− βm(σ−m,n) ≥ 0

αm(θ; σ+
m,n)− βm(σ+

m,n) < 0.

Since σm,n is also an active switchover point of αm(θ; t),
then it follows from Lemma III.1 and Assumption 1(b)
that βm(t) is continuous at t = σm,n. Thus we have

βm(σ+
m,n) = βm(σ−m,n) = βm(σm,n)

Combining this with the previous two inequalities yields

αm(θ; σ+
m,n)−αm(θ; σ−m,n) ≤ αm(θ; σ+

m,n)− βm(σm,n) < 0,

from which (20) immediately follows.

Proof of Theorem III.1

The result follows directly from Lemmas III.2-III.4, ob-
serving that in using Lemma III.3, i∗ = 1 corresponds to
(16) and i∗ > 1 corresponds to (17) .

Proof of Lemma III.5

Observe that γ(θ; t) = α(θ; t) − β(t) = A(θ; t) through-
out the interval (τn, σn). Let {sk}, k = 1, ..., K, be the
sequence of active switchover points in (τn, σn), where K
denotes the total number of such points. Also, note that
since at τn a node m event of type e3 occurs, by Assump-
tion 1(b) no e1 event can also occur at this node; hence,

A(θ; t) is continuous at t = τn. Then,

d

dθ

∫ σn

τn

γ(θ; t)dt

=
d

dθ

∫ s1

τn

A(θ; t)dt +
K−1∑

k=1

d

dθ

∫ sk+1

sk

A(θ; t)dt

+
d

dθ

∫ σn

sK

A(θ; t)dt

= A(θ; s−1 )s
′
1 − A(θ; τn)τ

′
n +

K−1∑

k=1

[A(θ; s−k+1)s
′
k+1

−A(θ; s+
k )s

′
k] + A(θ; σ−n )σ

′
n − A(θ; s+

K)s
′
K

Since sk is an active switchover point, it follows from
Lemma III.1 and Assumption 1(b) that β(t) is contin-
uous at t = sk, i.e., β(s+

k ) = β(s−k ). Then, using the
definition A(θ; t) = α(θ; t)− β(t) we get

d

dθ

∫ σn

τn

γ(θ; t)dt = A(θ; σ−n )σ
′
n

−
K∑

k=1

[α(s+
k )− α(s−k )]s

′
k − A(θ; τn)τ

′
n

Finally, noting that K = |Ψo
n| using the definition in (8),

and recalling (12) yields (24).

Proof of Lemma III.6

Using (1) for the NBP (σn−1, τn) that precedes the FP
[τn, σn],

∫ τn

σn−1

[α(θ; t)− β(t)]dt =
∫ τn

σn−1

A(θ; t)dt = 0 or b (39)

depending on whether this NBP is of type (F, F ) or (E, F ).
In either case, letting {sk}, k = 1, ..., K be the sequence of
active switchover points within (σn−1, τn) and differentiat-
ing with respect to θ yields

d

dθ

∫ s1

σn−1

A(θ; t)dt +
K−1∑

k=1

d

dθ

∫ sk+1

sk

A(θ; t)dt

+
d

dθ

∫ τn

sK

A(θ; t)dt = 0

Proceeding as in the proof of the previous lemma to eval-
uate the middle term above (observing again that sk is
an active switchover point and that, by Lemma III.1 and
Assumption 1(b), β(t) is continuous at t = sk), we get

A(θ; τn)τ
′
n −

K∑

k=1

[α(s+
k )− α(s−k )]s

′
k − A(θ;σ+

n−1)σ
′
n−1 = 0

Noting that K =
∣∣Ψn

∣∣ using the definition in (9), and re-
calling (12) yields (25).
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Proof of Lemma III.7

If σn is not an active switchover point, i.e., n /∈ Φ, then
it is independent of θ and σ

′
n = 0. On the other hand,

if σn is an active switchover point and σn = si for some
i, then by Lemma III.1 it is an e1 event time, hence β(t)
must be continuous at t = σn by Assumption 1(b). In
this case, the left-hand side of (26) becomes [A(θ; σ+

n ) −
A(θ; σ−n )]σ

′
n = [α(s+

i )− α(s−i )]s
′
i = ψi from (12).

Proof of Theorem III.2

Using (23) and Lemma III.5 we have

L
′
m(θ; T ) =

∑
n∈zm

d

dθ

∫ σm,n

τm,n

γm(θ; t)dt

=
∑

n∈zm

{
Am(θ; σ−m,n)σ

′
m,n −Am(θ; τm,n)τ

′
m,n

−
∑

i∈Ψo
m,n

ψm.i





Using Lemma III.6 to replace Am(θ; τm,n)τ
′
m,n above, we

get

L
′
m(θ;T ) =

∑
n∈zm

{
Am(θ; σ−m,n)σ

′
m,n −Am(θ; σ+

m,n−1)σ
′
m,n−1

−
∑

i∈Ψo
m,n

ψm.i −
∑

i∈Ψm,n

ψm,i





Subtracting and adding the term Am(θ; σ−m,n−1)σ
′
m,n−1 in-

side the outer sum we obtain

L
′
m(θ; T ) =
∑

n∈zm

{
Am(θ; σ−m,n)σ

′
m,n −Am(θ;σ−m,n−1)σ

′
m,n−1

}

+
∑

n∈zm

{
Am(θ; σ−m,n−1)σ

′
m,n−1 −Am(θ; σ+

m,n−1)σ
′
m,n−1

}

−
∑

n∈zm





∑

i∈Ψo
m,n

ψm,i +
∑

i∈Ψm,n

ψm,i



 (40)

Let us consider the first sum above. For n ∈ zm, there
are two possibilities for the NBP that precedes the FP
[τm,n, σm,n]: (i) If the NBP is of type (E, F ), then σm,n−1

is the end of an EP, therefore σ
′
m,n−1 = 0 by Lemma II.1,

and (ii) If the NBP is of type (F, F ), then σm,n−1 is the
end of another FP [τm,n−1, σm,n−1]. In light of these obser-
vations, this sum can be decomposed into groups of terms
so that the rth group starts with some σm,r−j initiating a
NBP of type (E,F ), followed by a FP, followed by a se-
quence of NBPs of type (F, F ) with an ensuing FP, and
finally ending at σm,r with a FP [τm,r(θ), σm,r(θ)] which is
followed by an NBP of type (F, E). Adding the terms of
any such group we get cancellations of all Am(θ; σ−m,n)σ

′
m,n

leaving only

Am(θ; σ−m,r)σ
′
m,r −Am(θ;σ−m,r−j)σ

′
m,r−j

We have already seen that σ
′
m,r−j = 0 because this is the

start of a NBP of type (E, F ). In addition, σ
′
m,r = 0 unless

it is an active switchover point, i.e., r ∈ Γm as defined in
(11). It follows that

∑
n∈zm

{
Am(θ; σ−m,n)σ

′
m,n −Am(θ;σ−m,n−1)σ

′
m,n−1

}

=
∑

n∈Γm

Am(θ; σ−m,n)σ
′
m,n (41)

Since σm,n in this sum is an active switchover point of
αm(θ; t), by Lemma III.1 and Assumption 1(b) βm(t) is
continuous at t = σm,n. Therefore, for all n ∈ Γm,

Am(θ; σ−m,n)σ
′
m,n = [αm(θ; σ−m,n)− βm(σm,n)]σ

′
m,n

Adding and subtracting the term αm(θ;σ+
m,n) in the

bracket above and making use of Rm,n as defined in (18),
we get

αm(θ; σ−m,n)− βm(σm,n)

= [αm(θ; σ+
m,n)− αm(θ; σ−m,n)](Rm,n − 1)

and making use of (12) we finally get

Am(θ;σ−m,n)σ
′
m,n = (Rm,n − 1)ψm,in

where σm,n = sm,in for some active switchover point index
in, since n ∈ Γm. Thus, returning to (41), we can write

∑
n∈zm

{
Am(θ; σ−m,n)σ

′
m,n −Am(θ;σ−m,n−1)σ

′
m,n−1

}

= −
∑

n∈Γm

ψm,in +
∑

n∈Γm

Rm,nψm,in

Using (19), we have Rm,nψm,in = φm,n so that

∑
n∈zm

{
Am(θ; σ−m,n)σ

′
m,n −Am(θ;σ−m,n−1)σ

′
m,n−1

}

= −
∑

n∈Γm

ψm,in +
∑

n∈Γm

φm,n (42)

Next, let us consider the second term in (40). The sum
index (n − 1) for each n ∈ zm implies that we consider
the end point of a BP which is followed by a FP, or, in
other words, the sum is over the end points of BPs which
do not start an (E,E) or (F, E) type of NBP. On the other
hand, invoking Lemma III.7, we can see that all terms in
the sum are zero unless (n − 1) ∈ Φm. This implies that
non-zero terms are such that the BP that precedes the nth
FP must be another FP; if it is not, then it is an EP and
we have already established in Lemma II.1 that in such
cases σ

′
m,n−1 = 0. Thus, by excluding the index of those

FPs which start an (F,E) type of NBP from the index set
Φm, the remaining part of Φm contains all the indices of
the FPs of interests. Recalling the definition of Γm in (11),
those excluded points in Φm from the set Γm, so let n∗
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index the non-zero terms in our sum and we can write∑
n∈zm

[Am(θ;σ−m,n−1)σ
′
m,n−1 −Am(θ; σ+

m,n−1)σ
′
m,n−1]

= −
∑

n∗∈(Φm−Γm)

ψm,in∗ (43)

where σm,n∗ = sm,in∗ for some active switchover point in-
dex in∗ , since n∗ ∈ Φm and βm(t) is continuous by Lemma
III.1 and Assumption 1(b). Replacing the index n∗ by n
and combining (43) and (42) we get from (40):

L
′
m(θ; T ) =

∑

n∈Γm

φm,n −
∑

n∈Φm

ψm,in

−
∑

n∈zm





∑

i∈Ψo
m,n

ψm,i +
∑

i∈Ψm,n

ψm,i





where we point out the cancellation of the sum∑
n∈Γm

ψm,in
. Finally, by the definition of Φm in (10),

the second sum above contains all ψm,in
terms such that

n ∈ zm and in ∈ Ψm,n corresponds to an active switchover
point at the end point of the FP [τm,n, σm,n]. In other
words, the second and third sum together include all ψm,i

terms with i ∈ Ψm,n. Thus, making use of Ωm,n in (27),
we can write

L
′
m(θ; T ) =

∑

n∈Γm

φm,n −
∑

n∈zm

∑

i∈Ωm,n

ψm,i

which completes the proof.

Proof of Theorem III.4

By Lemma III.2, x
′
m(θ; t) = 0 throughout a BP Bm,n, so

that ∫ σm,n

τm,n

x
′
m(θ; t)dt = 0. (44)

For the NBP Bm,n that precedes the nth BP, let K =∣∣Ψm,n

∣∣ and we have
∫ τm,n

σm,n−1

x
′
m(θ; t)dt =

∫ sm,1

σm,n−1

x
′
m(θ; t)dt

+
K−1∑

k=1

∫ sm,k+1

sm,k

x
′
m(θ; t)dt +

∫ τm,n

sm,K

x
′
m(θ; t)dt. (45)

By Theorem III.1, for t ∈ (σm,n−1, sm,k),

x
′
m(θ; t) = −

k−1∑

j=1

ψm,j − 1 [(n− 1) ∈ Φm] · φm,n−1,

and using this in (45) gives
∫ τm,n

σm,n−1

x
′
m(θ; t)dt =−

∫ sm,1

σm,n−1

1[(n− 1) ∈ Φm] · φm,n−1dt

−
K−1∑

k=1

∫ sm,k+1

sm,k




k−1∑

j=1

ψm,j + 1[(n− 1) ∈ Φm] · φm,n−1


dt

−
∫ τm,n

sm,K




K∑

j=1

ψm,j + 1 [(n− 1) ∈ Φm] · φm,n−1


 dt

Adding the terms that involve ψm,j , after taking into ac-
count several term cancellations we get

−
K−1∑

k=1

∫ sm,k+1

sm,k

k−1∑

j=1

ψm,jdt−
∫ τm,n

sm,K

K∑

j=1

ψm,jdt

= −
K∑

k=1

[τm,n − sm,k]ψm,k

and, similarly, adding the terms that involve φm,n−1 gives

− 1 [(n− 1) ∈ Φm] ·
[∫ sm,1

σm,n−1

φm,n−1dt

+
K−1∑

k=1

∫ sm,k+1

sm,k

k−1∑

j=1

φm,n−1dt +
∫ τm,n

sm,K

φm,n−1dt




= −1 [(n− 1) ∈ Φm] · [τm,n − σm,n−1]φm,n−1

Thus,

∫ τm,n

σm,n−1

x
′
m(θ; t)dt = −

K∑

k=1

[τm,n − sm,k]ψm,k

− 1 [(n− 1) ∈ Φm] · [τm,n − σm,n−1]φm,n−1

(46)

Recall that Ψm,n, defined in (9), refers to the NBP Bm,n =
(σm,n−1, τm,n) which precedes the nth BP, so that using
(44) and (46) in (29) yields (30).

Appendix II
Theorems III.3 and III.5 assert the unbiasedness of the

IPA derivatives L
′
m(θ; T ) and Q

′
m(θ; T ), m = 2, . . . , M , and

both will be proved in what follows. To set the stage in a
general setting, let L(θ) be a real-valued random function
of a real-valued variable θ, defined on a common proba-
bility space (Ω,F ,P). Let θ be confined to a closed and
bounded interval Θ. Suppose that, for a given fixed θ ∈ Θ,
the IPA derivative L′(θ) exists w.p.1 (the appropriate one-
sided derivative if θ is an end-point of Θ). The IPA deriva-
tive is said to be unbiased if the operators of expectation
in (Ω,F ,P) and differentiation with respect to θ are inter-
changeable, namely,

d

dθ
E[L(θ)] = E [L′(θ)] (47)

(see [16],[17]). It is shown in [24] that the following two
conditions jointly guarantee the existence of the deriva-
tive d

dθ E[L(θ)] and suffice for the unbiasedness of the IPA
derivative L′(θ).
• Condition A.1. For every θ ∈ Θ, w.p.1 the derivative
L′(θ) exists (one-sided derivative, in case θ is an end-point
of θ).
• Condition A.2. W.p.1 the random function L(θ) is Lip-
schitz continuous throughout Θ, and its Lipschitz constant,
K, has a finite first moment, i.e., E[K] < ∞.
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In what follows we will prove that these conditions are in
force for the functions Lm(θ; T ) and Qm(θ;T ) defined by
Eqs. (5) and (6) respectively. To this end, we will rely on
an analysis, carried out in [13], of Lipschitz continuity of
certain mappings between defining processes and derived
processes in the general setting of SFMs. We next present
the relevant results.

Consider a single-stage SFM having the inflow rate pro-
cess {α(t)}, service rate process {β(t)}, and buffer size θ.
As mentioned in Section II, we call these defining processes
since they define much of the behavior of the SFM, while
the processes {x(t)}, {γ(t)} and {δ(t)} are called derived
processes since they can be derived from the defining pro-
cesses via (1)-(3). Realizations of each one of these pro-
cesses is a non-negative-valued function defined on the in-
terval [0, T ], denoted generically by u(t). These functions
will be endowed by two functional norms, namely the L1

norm defined by

||u||1 =
∫ T

0

|u(t)|dt,

and the L∞ norm, defined by

||u||∞ = max{|u(t)| : t ∈ [0, T ]}
where the functions u(t) are piecewise analytic, hence the
essential supremum can be replaced by maximum. The L1

norm is typically used for the functions α(t), β(t), γ(t) and
δ(t) while the L∞ norm is used for the function x(t). In
the forthcoming, we focus on these functions regardless of
how they are realized; all that matters is that x(t), γ(t)
and δ(t) are derived from α(t), β(t) and θ via (1)-(3). Cor-
respondingly, we term these defining functions and derived
functions, as appropriate.

Let us now consider given functions α(t) and β(t), and a
buffer size θ, and consider the resulting derived functions
(via (1)-(3)) denoted by x(t), γ(t) and δ(t), respectively.
Next, let us consider the same functions α(t) and β(t), but
a different buffer size, denoted by θ+∆θ. Correspondingly,
the derived functions (computed via (1)-(3)) are denoted by
x(t) + ∆x(t), γ(t) + ∆γ(t), and δ(t) + ∆δ(t), respectively.
Let K1 denote the number of EPs in the interval [0, T ]
that result from the application of the defining functions
α(t) and β(t), and the buffer size θ, and let K2 denote
the number of EPs in the interval [0, T ] that result from
the application of the defining functions α(t) and β(t), and
the buffer size θ + ∆θ. Define K := max{K1, K2}. Note
that ∆δ(t) = [δ(t) + ∆δ(t)] − [δ(t)] can be viewed as a
perturbation in the derived outflow-rate function resulting
from a perturbation in the buffer size, ∆θ. Proposition 3.3
in [13] has established the following inequality.

||∆δ(t)||1 ≤ (K + 1)|∆b|. (48)

Consider next functional variations in the inflow rate α(t).
Thus, given functions α(t) and β(t), and a buffer size θ, let
x(t), γ(t), and δ(t) denote the resulting derived functions
via (1)-(3); and for a different inflow-rate function, α(t) +
∆α(t), and the same service-rate function β(t) and buffer

size θ as before, let the resulting derived functions be x(t)+
∆x(t), γ(t) + ∆γ(t), and δ(t) + ∆δ(t). Proposition 3.1 in
[13] has established the following inequalities:

||∆γ(t)||1 ≤ ||∆α(t)||1, (49)

||∆x(t)||∞ ≤ ||∆α(t)||1, (50)

and
||∆δ(t)||1 ≤ ||∆α(t)||1. (51)

With these preliminary results we now can prove Theorems
III.3 and III.5.

Proof of Theorem III.3 and III.5

We prove the unbiasedness of the IPA derivatives
L
′
m(θ; T ) and Q

′
m(θ; T ) by establishing that Condition A.1

and Condition A.2 above are satisfied for the random func-
tions Lm(θ; T ) and Qm(θ; T ). Condition A.1 is in force
by Assumption 1. Regarding Condition A.2, let K be
the number of EPs at node 1 in the interval [0, T ]. Conse-
quently, K is bounded from above by N1, the total number
of BPs at node 1. Regardless of the value of θ, N1 has a
finite first moment by our assumption of T < ∞.

Now fix θ ∈ Θ and ∆θ > 0 such that θ + ∆θ ∈ Θ. By an
application of Eq. (48) to node 1, we have

||∆δ1(t)||1 ≤ (K + 1)|∆θ| ≤ (N1 + 1)|∆θ|. (52)

Observe that αm(θ; t) = δm−1(θ; t) for all m = 2, ...,M .
Consequently, applications of the inequalities (49) and (50)
to node m respectively, followed by sequential applications
of (51) to nodes from m to 2, yield the following two in-
equalities,

||∆γm(t)||1 ≤ ||∆αm(t)||1 = ||∆δm−1(t)||1
≤ ||∆αm−1(t)||1 = ||∆δm−2(t)||1
≤ · · ·
≤ ||∆α2(t)||1 = ||∆δ1(t)||1
≤ (N1 + 1)|∆θ|, (53)

and

||∆xm(t)||∞ ≤ ||∆αm(t)||1 = ||∆δm−1(t)||1
≤ ||∆αm−1(t)||1 = ||∆δm−2(t)||1
≤ · · ·
≤ ||∆α2(t)||1 = ||∆δ1(t)||1
≤ (N1 + 1)|∆θ| (54)

Finally, (5) and (53) imply that Lm(θ;T ) has the Lipschitz
constant N1 + 1, and (6) and (54) imply that Qm(θ; T )
has the Lipschitz constant (N1 + 1)T . As earlier stated,
E[N1] < ∞ and T < ∞, therefore Condition A.2 is in force
for both functions Lm(θ;T ) and Qm(θ; T ). This completes
the proofs.
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