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approach, has been used to consider the problem of equivalence of a lo-
cally observable nonlinear system to a linear observer form by means
of an output dependent time-scale transformation and a state-space dif-
feomorphism. The procedure is simple and requires only algebraic ma-
nipulations and differentiation to check for the existence of a suitable
state-space diffeomorphism. The use of time-scaling transformations
has been shown to be successful in dealing with certain nonlinear-
ities encountered in biochemical and chemical reactor systems (see
[16]). Although it was not shown explicitly in the note, the effect of
an output-dependent time-scale transformation is very closely related
to the effect of introducing an output diffeomorphism as exploited in
[11]. Both transformations allow one to alleviate some nonlinearities
that would prevent the solution of the observer linearization problem.
However, the type of nonlinearity that can be cancelled is not the same
in both cases. From this point of view, the introduction of a time-scale
transformation does extend the class of observable nonlinear systems
that are equivalent to the linear observer form.
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An Improved Forward Algorithm for Optimal Control of
a Class of Hybrid Systems

Ping Zhang and Christos G. Cassandras

Abstract—This note considers optimal control problems for a class of
hybrid systems motivated by the structure of manufacturing environments
that integrate process and operations control. We derive a new property of
the optimal state trajectory structure which holds under a modified condi-
tion on the cost function. This allows us to develop a low-complexity, scal-
able algorithm for explicitly determining the optimal controls, which can
be more efficient than the best algorithm to date, known as the Forward
Algorithm. A numerical example is included to illustrate the efficacy of the
proposed algorithm, and to compare it with the Forward Algorithm.

Index Terms—Hybrid systems, optimal control.

I. INTRODUCTION

Hybrid systems are characterized by the combination oftime-driven
andevent-drivendynamics. The former are represented by differential
(or difference) equations, while the latter may be described through
various frameworks used for discrete event systems (DESs), such as
timed automata, max-plus equations, or Petri nets (see [2]). Broadly
speaking, two categories of modeling frameworks have been proposed
to study hybrid systems: those that extend event-driven models to in-
clude time-driven dynamics and those that extend the traditional time
models to include event-driven dynamics; for an overview, see [3]–[5].

The hybrid system modeling framework considered in this note falls
into the first category above. It is motivated by the structure of many
manufacturing systems. In these systems, discrete entities (referred
to as jobs) move through a network of work centers which process
the jobs so as to change their physical characteristics according to
certain specifications. Each job is associated with atemporal state
and aphysicalstate. The temporal state of a job evolves according to
event-driven dynamics and includes information such as the service
time or departure time of the job. The physical state evolves according
to time-driven dynamics and describes some measures of the “quality”
of the job such as temperature, weight and chemical composition.
The interaction of time-driven with event-driven dynamics leads to
a natural tradeoff between temporal requirements on job completion
times and physical requirements on the quality of the completed
jobs. Such modeling frameworks and optimal control problems have
been considered in [6] and [7]. Similar optimal control problems
for hybrid systems have been studied using dynamic programming
techniques in [8] and [9].

By the nature of the event-driven dynamics, the problem is inherently
nonconvex and nondifferentiable. Moreover, its dimension (number
of independent variables) is identical to the number of considered
jobs. If this number is in the hundreds or thousands, the problem is
highly complex and defies general-purpose algorithms (like dynamic
programming) for its solution. In earlier work [7], the task of solving
these problems was simplified by exploiting structural properties
of the optimal sample path. In particular, an optimal sample path

Manuscript received April 27, 2001; revised October 8, 2001. Recommended
by Associate Editor R. S. Sreenivas. This work was supported in part by the
National Science Foundation under Grants ACI-98-73339 and EEC-00-88073,
by the Air Force Office of Scientific Research under Contract F49620-01-0056,
by the Air Force Research Laboratory under Contract F30602-99-C-0057, and
by EPRI/ARO under Contract WO8333-03.

The authors are with the Department of Manufacturing Engineering, Boston
University, Brookline, MA 02446 USA (e-mail: pzhang@bu.edu; cgc@bu.edu).

Digital Object Identifier 10.1109/TAC.2002.803549.

0018-9286/02$17.00 © 2002 IEEE



1736 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

Fig. 1. A single-stage hybrid system.

is decomposed into decoupled segments, termed “busy periods.”
Moreover, each busy period is further decomposed into “blocks”
defined by certain jobs termedcritical; identifying such jobs and
their properties was a crucial part of the analysis and the key
to developing effective algorithms for solving the optimal control
problems. The identification of critical jobs and busy periods has
been realized using nonsmooth optimization methods [10], [7].

Recently, two algorithms were developed for solving such problems.
They decompose the entire optimal control problem into a set of smaller
convex optimization subproblems with linear constraints. The first is
a “backward” recursive algorithm [11] proceeding backward in time
from the last job to the first. The complexity of the problem (measured
in the number of convex constrained optimization problems required
to solve) was thus reduced from exponential inN (the number of jobs
processed) to linear bounded by2N �1. The second is a “forward” al-
gorithm whose complexity is simplyN (again, in the number of convex
constrained optimization problems to be solved) as shown in [1].

In this note, under a modified condition on the nature of the cost
function, we further exploit the special structure of the optimal sample
path in the singe-stage hybrid system framework. Based on the Forward
Algorithm, an Improved Forward Algorithm is presented. Instead of
increasing the number of jobs by one at every step, this algorithm may
increase the number of jobs by more than one. This property can make it
more efficient than the Forward Algorithm, as explained and illustrated
in the remainder of this note.

II. A SINGLE-STAGE HYBRID SYSTEM FRAMEWORK

The single-stage hybrid system framework we consider is illustrated
in Fig. 1. A sequence ofN jobs is assigned by an external source to
arrive for processing at known times0 � a1 � � � � � aN . We de-
note these jobs byCi, i = 1; . . . ; N . The jobs are processed first-
come–first-served (FCFS) by a work-conserving and nonpreemptive
server. The processing time iss(ui), which is a function of a control
variableui. In general, the control is time-varying over the course of
the processing timesi. We limit ourselves here, however, to controls
constrained to be constant over the duration of service, as in [1], varying
only with each new job, and chosen to ensure that processing times are
nonnegative, i.e.,s(ui) � 0.

Time-Driven Dynamics:A job Ci is initially at some physical state
�i at timex0 and subsequently evolves according to thetime-driven
dynamics

_zi(t) = g(zi; ui; t); zi(x0) = �i: (1)

Event-Driven Dynamics:The completion time of each job is de-
noted byxi and is given by the standard Lindley equation for an FCFS
nonpreemptive queue [12]

xi = max(xi�1; ai) + s(ui); i = 1; . . . ; N (2)

where we assumex0 = �1.
Note that the choice of controlui affects both the physical state

zi and the next temporal statexi, justifying the hybrid nature of the
system. For the aforementioned single-stage framework defined by (1)

and (2), the optimal control objective is to choose a control sequence
fu1; . . . ; uNg to minimize an objective function of the form

J =

N

i=1

f�i(ui) + �i(xi)g: (3)

In a general setup,ui is a control variable affecting the processing
time throughsi = s(ui); see [6] for various examples and [13]
for extensions to cases with time-varying controlsui(t) over a
service time. By assuming thatsi(�) is either monotone increasing
or monotone decreasing, given a controlui, the service timesi can
be uniquely determined fromsi = s(ui) and vice versa. Therefore,
to simplify the exposition, we identify the control variables with
the service times, i.e., we setsi = ui and carry out the rest of
the analysis in terms of the notationui. Hence, the optimal control
problem, denoted byP, has the following form:

P:

min
u ; ...; u

J =

N

i=1

f�i(ui)+�i(xi)g: ui�0; i = 1; . . . ; N (4)

subject to

xi = max(xi�1; ai) + ui; i = 1; . . . ; N: (5)

The optimal solution ofP is denoted byu�i for i = 1; . . . ; N and
the corresponding departure times in (5) are denoted byx�i for i =
1; . . . ; N .

Assumption 1:�i(u) is continuously differentiable, strictly convex
and monotone decreasing foru > 0 and the following limit holds:
limu!0 �i(u) = 1.

Assumption 2:�i(�) is continuously differentiable, strictly convex
and its minimum is obtained at a finite point.

III. PROPERTIES OFOPTIMAL SOLUTIONS

We begin with the following definitions (see also [7]).
Definition 1: A job Ci is critical if it departs at the arrival time of

the next job, i.e.,xi = ai+1.
Definition 2: Considering a contiguous job subsetfCk; . . . ; Cng,

1 � k � n � N on the optimal sample path, the subset is said to be
a block if

1) xk�1 � ak andxn � an+1;
2) the subset contains no critical jobs.
Definition 3: A busy periodis a contiguous set of jobs,Ck; . . . ; Cn

for 1 � k � n � N such that the following three conditions are
satisfied:

1) xk�1 < ak ;
2) xn < an+1;
3) xi � ai+1, for everyi = k; . . . ; n � 1.
Definition 4: A busy-period structure is a partition of the jobs

C1; . . . ; Cn into busy periods.
Thelth busy period consists of jobsCk(l); . . . ; Cn(l) wherek(1) =

1, k(l) = n(l � 1) + 1 andn(M) = N , whereM is the number of
busy periods.

Consider the following optimization problem forCk; . . . ; Cn,
which is denoted byQ(k; n):

Q(k; n):

min
u ;...;u

n

i=k

�i(ui) + �i ak +

i

j=k

uj : ui � 0 (6)

subject to

xi = ak +

i

j=k

uj � ai+1; i = k; . . . ; n� 1: (7)
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TABLE I
FORWARD ALGORITHM I

Since the cost functional is continuously differentiable and strictly
convex, the problemQ(k; n) is also a convex optimization problem
with linear constraints and has a unique solution at a finite point (see
[11]). The solution ofQ(k; n) and the corresponding departure times
are denoted byu�j (k; n) andx�j (k; n) for j = k; . . . ; n. Note that
the equalityak + i

j=k uj = ai+1, for somei = k; . . . ; n � 1 is
satisfied by the solution ofQ(k; n) if and only if job Ci is critical.
ProblemQ(k; n) is of the same form asP, but it is limited to jobs
Ck; . . . ; Cn constrained through (7) to all belong to the same busy
period. There is one important property ofQ(k; n) that is captured in
the following theorem (whose proof is given in [1]).

Theorem 3.1:JobsCk; . . . ; Cn constitute a single busy period on
the optimal sample path if and only if the following conditions are sat-
isfied:

1) ak > x�k�1;
2) x�i (k; i) � ai+1, for all i = k; . . . ; n � 1;
3) x�n(k; n) < an+1.

Theorem 3.1 provides the basis for the Forward Algorithm pre-
sented in [1]. Given the arrival times of jobsC1; . . . ; CN , the optimal
problemP can be solved by the Forward Algorithm shown in Table I.
By “forward” we mean that the optimal sample path is constructed
starting with job 1 and proceeding forward in time without the need
for multiple forward–backward sweeps involved in a solution based
on the framework of a two-point-boundary-value problem. Letting
k = 1; n = 1, we first solve the linearly constrained convex optimiza-
tion problemQ(k; n) and obtain the controlu�j (k; n); j = k; . . . ; n
and departure timesx�j (k; n); j = k; . . . ; n. Then the structure
of busy periods is identified by checking ifx�n(k; n) < an+1. If
Ck; . . . ; Cn are identified as a single busy period, the control on the
optimal path forCk; . . . ; Cn is given byu�j (k; n); j = k; . . . ; n.
Then, we set the index of the first job of a new busy period asn + 1,
i.e.,k = n + 1. We repeat the procedure over all jobs. This algorithm
requiresN steps, becausen is increased by 1 at every step. Therefore,
the Forward Algorithm must solveN subproblems to obtain the
optimal solution.

IV. I MPROVED FORWARD ALGORITHM

In this section, we further exploit a property of the optimal state tra-
jectory for the optimal control problemP, which is based on modifying
Assumption 2 as follows.

Assumption 3:�i(�) is continuously differentiable and strictly
convex. Moreover,�i(�) for i = 1; 2; . . . ; N � 1 is nondecreasing,
and�N(�) is monotone increasing.

This is in fact a common condition for a large class of problems,
when one wishes, for example, to penalize the departure time of jobs
(e.g., throughx2i ) or their system time [e.g., through(xi�ai)

2]. Thus,
under Assumption 3, cost functions of the form(xi � �i)

2 are not

appropriate (where�i represents a desired deadline for theith job);
instead, one focuses on a “tardiness” measure, such asmax(xi��i; 0),
which is commonly used in order-driven manufacturing systems. To
avoid the issue of nondifferentiability at the point�i in functions such as
max(xi� �i; 0), one may use a variety of other functions that capture
tardiness. A convenient class is that of Bezier functions and an example
of a cost function that satisfies Assumption 3 is

�i(xi) =
0; xi < �i

�[a+ b(xi � �i � �)]2; xi � �i

where� is a positive number anda, b are appropriately selected real
constants.

Theorem 4.1: If for the problemQ(1; N), job Ci is not a critical
job, i.e.,x�i (1; N) > ai+1, then for problemP, jobCi cannot be the
last job of any busy period, i.e., for anyk = 1; . . . ; N , n(k) 6= i.

Proof: The statement of the theorem is equivalent to the fol-
lowing: If job Ci is the last job of some busy period on the optimal
sample path, i.e., there exists somek such thatn(k) = i, then
x�i (1; N) = ai+1, i.e.,Ci is a critical job for the problemQ(1; N).

Assume there areN jobs and M busy periods in the op-
timal sample path, andn(0) = n0 = 0, n(1) = n1,
n(n1 + 1) = n2; . . . ; n(nM�1 + 1) = nM = N . We have
the following decoupling property of the optimal problem (see [7,
Lemma 4.1]): for a busy period defined byfk(l); . . . ; n(l)g, and
letting i 2 fk(l); . . . ; n(l)g, the optimal controlu�i depends only
on ak(l); . . . ; an(l) (it does not depend on the arrival times of jobs
in any other busy period). By this decoupling property, the optimal
controls for jobCn +1; Cn +2; . . . ; Cn , l = 1; . . . ; M , can
be obtained by solving problemQ(k; n) wherek = nl�1 + 1 and
n = nl. The solution of this problem satisfies

@J

@ui
+

@

@ui

n(l)�1

i=n +1

�i ai+1 � an +1 �

i

j=n +1

uj = 0

for i = nl�1 + 1; . . . ; n(l)

where�i � 0, i = nl�1 + 1; . . . ; n(l)� 1, are Lagrange multipliers
adjoining the constraints (6) to (7). This gives

d�i

dui
+

n

j=i

d�j

dui
�

n

j=i

�j = 0; for i = nl�1 + 1; . . . ; n(l)

which implies that

d�i

dui
+

n

j=i

d�j

dui
� 0; for i = nl�1 + 1; . . . ; n(l): (8)

Moreover, sinceCn is the last job in a busy period, the solutionu�i ,
i = nl�1 + 1; . . . ; n(l), satisfies

an +1 +

n

i=n +1

u
�

i < an +1: (9)

Then, consider the relaxed optimization problem

Qr(k; n):

min
u ;...;u

n

i=k

�i(ui)+�i ak+

i

j=k

uj : ui�0 : (10)

The necessary condition satisfied by the solution, denoted by
u�i (1; N), of problemQr(1; N) is

@J

@ui
=

d�i

dui
+

N

j=i

d�j

dui
= 0; for i = 1; . . . ; N: (11)
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Using (8) and the monotonicity of�i(�) for i = nl�1+1; . . . ; nl, i.e.,
i belonging to thelth busy period, wherel = 1; . . . ; M

@J

@u�i
=

d�i

du�i
+

N

j=i

d�j

du�i

=
d�i

du�i
+

n

j=i

d�j

du�i
+

N

j=n +1

d�j

du�i

�

N

j=n +1

d�j

du�i
> 0 (12)

so, by (11) and (12), we have

u
�

i (1; N) < u
�

i ; for i = nl�1 + 1; . . . ; n(l): (13)

Therefore, using (9)
n

i=n +1

u
�

i (1; N) <

n

i=n +1

u
�

i < an +1 � an +1: (14)

By the convexity of the problemQ(1; N), the optimal solution must
be on the constraint boundary, otherwise, (14) implies that we can de-
crease the cost by decreasing the controls. Therefore, we have

n

i=n +1

u
�

i (1; N) = an +1 � an +1 (15)

i.e.,x�n (1; N) = an +1, orCn is a critical job inQ(1; N).
This theorem suggests that we can get some information about the

busy period structure on an optimal sample path from the solution
x�i (1; N) ofQ(1; N). In particular, only critical jobs ofQ(1; N)may
end a busy period on an optimal path. Therefore, instead of adding only
one job at every step of the Forward Algorithm involving the solution
of a problem of the formQ(k; n), we can add multiple jobs and make
the algorithm more efficient by solving fewer problems of the form
Q(k; n). The price to pay is that we need to solve the larger problem
Q(1; N) first; however, some additional flexibility can be added to the
algorithm as discussed in Remark 3. Based on Theorem 4.1, the Im-
proved Forward Algorithm is shown in Table II, whereCrit denotes
the set of critical job indices andCrit(i) denotes theith element of
this set.

Remark 1: The differences between the Improved Forward Algo-
rithm and the Forward Algorithm presented in [1] are

1) in the initialization step we need to solve problemQ(1; N) and
get information on all critical jobs;

2) in Step 4, we increase indexn to the next critical job, instead of
n + 1.

Remark 2: This algorithm requires at mostN + 1 steps (usually,
it requires less thanN steps), while the Forward Algorithm always
requiresN steps. The worst case of the Forward Algorithm becomes
the best case for this algorithm. If allN jobs are in a single busy period
and there is no critical job, then the optimal control is immediately
obtained when we solve the problemQ(1; N).

Remark 3: WhenN is large, the solution ofQ(1; N) becomes
computationally intensive. However, a simple variation of the algo-
rithm, shown in Table III, provides some added flexibility. Specifically,
it is not necessary to start with allN jobs in one busy period; instead,
we may solve a problemQ(1; N 0), where1 � N 0 � N , which still
provides information on critical jobs leading to the optimal busy period
structure. In this case, we decomposef1; . . . ; Ng into two or more
subsequences of job indices and solve the associated problems. Thus,
this approach provides the flexibility to control the number of convex
problems to be solved. Since the actual computational time depends on
both the number of problemsQ(k; n) solved and their individual sizes

TABLE II
IMPROVED FORWARD ALGORITHM

TABLE III
IMPROVED FORWARD ALGORITHM II

[i.e., the number of jobsn � k + 1 in Q(k; n)], we can take advan-
tage of usingN 0 to tradeoff the complexity of a small number of larger
problems against a larger number of problems of lower dimensionality.

V. EXAMPLES

Let us consider the following problem withN = 10:

min
u ;...;u

J =

10

i=1

u
�1

i + x
2

i

subject toxi = max(ai; xi�1) + ui (16)

for the arrival sequencef1; 1:4; 1:5; 1:55; 1:6; 3:0; 3:1; 3:2; 3:3; 3:5g.
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First, let us set the maximum number of jobs considered in problem
Q(k; k+N 0�1) equal to the total number of jobsN , i.e., we shall use
the algorithm shown in Table II. At the first step,Q(1; 10) is solved
and we have a critical job setCrit = f1; 5; 10g (see also Fig. 2).
Then, we start to verify the busy period structure. First,Q(1; 1) for
k = 1; n = Crit(1) = 1 is solved. Sincex�

1(1; 1) = 1:56 > a2, we
setn = Crit(2) = 5. Here,Q(1; 2),Q(1; 3) andQ(1; 4) do not need
to be considered. Then,Q(1; 5) is solved. Sincex�

5(1; 5) = 2:67 <
a6, jobsC1; . . . ; C5 constitute a single busy period. The optimal con-
trols for this busy period are obtained by solvingQ(1; 5). Then, we
setk = 6 andn = Crit(3) = 10 wherek is the index of the first
job of the next busy period. Finally, we obtain the optimal solution. Let
jQ(k; n)j = n�k+1 denote the dimensionality of a convex problem.
Then, for this example, as seen in Fig. 2, the cumulative dimensionality
over all subproblems solved isjQ(1; 10)j+ jQ(1; 1)j+ jQ(1; 5)j+
jQ(6; 10)j = 10 + 1 + 5 + 5 = 21, requiring a total of four steps,
while the corresponding numbers using the Forward Algorithm are 30
with ten total steps.

Next, let us set the maximum number of jobs considered in problem
Q(k; k +N 0 � 1) equal to5 < N and use the algorithm in Table III.
This reduces the dimensionality of the initial problem, in case the com-
putational complexity ofQ(1; 10) is substantial. Thus, at the first step
Q(1; 5) is solved and we have a critical job setCrit = f1; 5g. Then,
we need to solveQ(1; 1) and get the optimal controls for this busy
period by solvingQ(1; 5). Subsequently, we setk = 6 andn =
k + 5 = 10. The cumulative dimensionality over all subproblems is
now jQ(1; 5)j+ jQ(1; 1)j+ jQ(6; 10)j = 5+1+5 = 11, requiring
three total steps, an improvement over the case whereQ(1; 10)was ini-
tially solved. In terms of actual CPU time, our implementation required
3.02 s for the original Improved Forward Algorithm [of which 1.86 s
are spent in solving problemQ(1; 10)], while using the second version
of the algorithm involving the initial solution of problemQ(1; 5), the
resulting CPU time was reduced to 0.92 s.

As previously illustrated, the proposed algorithm reduces the
number of convex problems solved under the original Forward
Algorithm. Its ultimate efficiency depends on the tradeoff between
solving a single large problem of the formQ(1; N) (required in the
algorithm of Table II) and a collection of smaller problems (as in
Table III). The ability to select someN 0 � N in Table III provides
a degree of flexibility for maximizing the benefit of the Improved
Forward Algorithm.

VI. CONCLUSION

We have considered optimal control problems defined on a single-
stage hybrid system motivated from manufacturing environments. The
control variables are comprised of the service times of the various jobs
and the performance metrics involve measures of quality and of time
delivery requirements of the completed jobs. These optimal control
problems are inherently neither convex nor differentiable because
of the nature of the event-driven dynamics involved. However, the
structure of optimal sample paths allows an efficient decomposition
into busy periods which can be separately analyzed, leading to the
efficient forward decomposition algorithm in [1]. In this note, we
have identified a new property of the optimal sample paths, under a
modified condition on the cost functions used, based on which we
derived an efficient, low-complexity, scalable algorithm for computing
optimal controls, which improves the algorithm presented in our
earlier work.

Ongoing work is aimed at extending our approach to systems with
uncertainties in job arrival times and to more complex dynamics
encountered in multistage processes. In addition, we believe that
the forward decomposition approach will enable us to make use of
a receding horizon control scheme for studying a system over an
infinite number of jobs.

Fig. 2. The first two plots show the queue length ofQ(1; N) andP. The
second two present the complexity ofQ(k; n) using the Improved Forward
Algorithm and the Forward Algorithm, respectively.
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