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approach, has been used to consider the problem of equivalence of adn Improved Forward Algorithm for Optimal Control of

cally observable nonlinear system to a linear observer form by means a Class of Hybrid Systems
of an output dependent time-scale transformation and a state-space dif-
feomorphism. The procedure is simple and requires only algebraic ma- Ping Zhang and Christos G. Cassandras

nipulations and differentiation to check for the existence of a suitable

state-space diffeomorphism. The use of time-scaling transformations
has been shown to be successful in dealing with certain nonlineﬁsg

_Abstract—This note considers optimal control problems for a class of
brid systems motivated by the structure of manufacturing environments

ities encountered in biochemical and chemical reactor systems (§@fintegrate process and operations control. We derive a new property of
[16]). Although it was not shown explicitly in the note, the effect othe optimal state trajectory structure which holds under a modified condi-

an output-dependent time-scale transformation is very closely relagl%(?e

on the cost function. This allows us to develop a low-complexity, scal-
algorithm for explicitly determining the optimal controls, which can

to the effect of intrOdu_Cing an output diffeomprphism as eXP'Oiteq_iﬂe more efficient than the best algorithm to date, known as the Forward
[11]. Both transformations allow one to alleviate some nonlinearitigggorithm. A numerical example is included to illustrate the efficacy of the
that would prevent the solution of the observer linearization problemioposed algorithm, and to compare it with the Forward Algorithm.
_However, the type of npnlingarity that can pe cance_lled is not the sameygex Terms—Hybrid systems, optimal control.

in both cases. From this point of view, the introduction of a time-scale

transformation does extend the class of observable nonlinear systems

that are equivalent to the linear observer form. I. INTRODUCTION

Hybrid systems are characterized by the combinatiadima#-driven
andevent-driverdynamics. The former are represented by differential
(or difference) equations, while the latter may be described through
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to study hybrid systems: those that extend event-driven models to in-
clude time-driven dynamics and those that extend the traditional time
models to include event-driven dynamics; for an overview, see [3]-[5].
The hybrid system modeling framework considered in this note falls
into the first category above. It is motivated by the structure of many
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Eg"“”f"e" x; =maxx;_y +5;04) and (2), the optimal control objective is to choose a control sequence
7 {u1, ..., un} to minimize an objective function of the form
N
Part /
Daepartures I = Z {'gi(ui) + (,bi(éb’i)}' (3)
=1
In a general setupy; is a control variable affecting the processing
=2 j Time-Driven time throughs; = s(u;); see [6] for various examples and [13]
E0=5Gowd] pam for extensions to cases with time-varying contrals(t) over a
_ _ _ service time. By assuming that(-) is either monotone increasing
Fig. 1. A single-stage hybrid system. or monotone decreasing, given a contig) the service times; can

be uniquely determined from; = s(u;) andvice versa Therefore,

is decomposed into decoupled segments, termed “busy periodgysimpli_fy th_e expgsition, we identify the control variables with

Moreover, each busy period is further decomposed into “blockie service times, i.e., we set = u; and carry out the rest of

defined by certain jobs termedritical; identifying such jobs and the analysis in terms of the notatien. I-_Ience, the optimal control

their properties was a crucial part of the analysis and the k@yoblem, denoted byP, has the following form:

to developing effective algorithms for solving the optimal controf,_

problems. The identification of critical jobs and busy periods has’ N

been realized using nonsmooth optimization methods [10], [7].  in {J - Z{&(w)-l—@(m)}: wi>0, 0= 1,...,N} 4)
Recently, two algorithms were developed for solving such problemst: - v~ P

They decompose the entire optimal control problem into a set of smaller. .

convex optimization subproblems with linear constraints. The first §iject to

a “backward” recursive algorithm [11] proceeding backward in time 2 = max (i 1, ;) + i i=1.....N. (5)
from the last job to the first. The complexity of the problem (measured ’ : i

in the number of convex constrained optimization problems requirdthe optimal solution ofP is denoted by:; fori = 1,..., N and
to solve) was thus reduced from exponentiahirthe number of jobs the corresponding departure times in (5) are denoted;bfor i =
processed) to linear bounded®y — 1. The second is a “forward”al- 1, ..., N.

gorithm whose complexity is simplyy’ (again, in the number of convex Assumption 1:6;(«) is continuously differentiable, strictly convex

constrained optimization problems to be solved) as shown in [1]. and monotone decreasing for > 0 and the following limit holds:
In this note, under a modified condition on the nature of the coBtn, o+ 6;(u) = oco.

function, we further exploit the special structure of the optimal sample Assumption 2:¢;(+) is continuously differentiable, strictly convex

path in the singe-stage hybrid system framework. Based on the Forwandl its minimum is obtained at a finite point.

Algorithm, an Improved Forward Algorithm is presented. Instead of

increasing the number of jobs by one at every step, this algorithm may IIl. PROPERTIES OFOPTIMAL SOLUTIONS

increase the number of jobs by more than one. This property can make it

more efficient than the Forward Algorithm, as explained and illustrated V& begin with the following definitions (see also [7]). ~
in the remainder of this note. Definition 1: A job C; is critical if it departs at the arrival time of

the next job, i.e.z; = aiy1.
Definition 2: Considering a contiguous job subgét;., ..., C»},

1 < k < n < N on the optimal sample path, the subset is said to be
The single-stage hybrid system framework we consider is illustratadlock if

in Fig. 1. A sequence alV jobs is assigned by an external source t0 1) z;,_; < a; andz, < anir]

arrive for processing at known tim@s< a; < --- < ay.We de-  2) the subset contains no critical jobs.

note these jobs by’i, i = 1,.... N. The jobs are processed first-  pefinition 3: A busy periods a contiguous set of job€y.. . ..., C

come-first-served (FCFS) by a work-conserving and nonpreempti 1 < , < 5 < N such that the following three conditions are
server. The processing timedgu;), which is a function of a control  g44isfied: ~

variablew;. In general, the control is time-varying over the course o
the processing time;. We limit ourselves here, however, to controls )
. . . . . 2) Ty < An+41,

constrained to be constant over the duration of service, as in [1], varying )

. . S 3) x; > aiy1, foreveryi =k, ..., n— 1.
only with each new job, and chosen to ensure that processing times are’ _"* - . . -, .
nonnegative. i _ Definition 4: A busy-period structure is a partition of the jobs

gative, i.es(u;) > 0. into b iod

Time-Driven Dynamics:A job C; is initially at some physical state C1, ..., Cu iNto busy periods.

& at timexg and subsequently evolves according to tinee-driven Thelth busy period consists ijoﬁﬁl)“ -5 T wherek (1) =
dynamics 1,k(l) = n(l—1)+ 1 andn(M) = N, wherel is the number of

busy periods.
2i(t) = gz, uis 1), zilwo) = & 1) Consider the following optimization problem faf, .... C',
which is denoted by)(k, n):
Event-Driven Dynamics:The completion time of each job is de-
noted byz; and is given by the standard Lindley equation for an Fcrg(k. n):

Il. A SINGLE-STAGE HYBRID SYSTEM FRAMEWORK

f 1) 21 < ag;

nonpreemptive queue [12
P pive q [12] min {Z{Bi(m)+¢)i <a,1;+z'u]'>}: u; > 0} (6)
r; = max(@;—1, a;) + s(u;), i=1,..., N 2 Pt (5T =k
where we assumey = —oo. subject to
Note that the choice of contral; affects both the physical state i
z; and the next temporal state, justifying the hybrid nature of the T = ap + Z W > i, i=Fk ....on—1. @)

system. For the aforementioned single-stage framework defined by (1) =
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TABLE | appropriate (wheré; represents a desired deadline for il job);
FORWARD ALGORITHM | instead, one focuses on a “tardiness” measure, sueh®asr; —§;, 0),
which is commonly used in order-driven manufacturing systems. To
avoid the issue of nondifferentiability at the podin functions such as
max(x; — 6;, 0), one may use a variety of other functions that capture
tardiness. A convenient class is that of Bezier functions and an example
of a cost function that satisfies Assumption 3 is

Step 1 : (initialization) k:= 1,n:=1,ay4+1 = 00;
while n < N do
Step 2 : solve sub-optimal problem Q(k,n);
Step 3 : (identify single busy periods.)
if 3 (k,n) < ant1 then

*

uf = uj(k,n) for j =k, ,n; ’ 0 x; < 6
oi(wi) =

k=n+1, ela + b(z; — 6; —e)]2, T > 6
endif ) B ]
Step 4 : (increment index n.) wheree is a positive number and, b are appropriately selected real
n:=n+1, constants.
end while Theorem 4.1:1f for the problemQ(1, N), job C; is not a critical
job, i.e.,z7 (1, N) > a;y1, then for problen®P, job C; cannot be the
last job of any busy period, i.e., foray=1, ..., N, n(k) # i.

Proof: The statement of the theorem is equivalent to the fol-
ng: If job C; is the last job of some busy period on the optimal
mple path, i.e., there exists sorhesuch thatn(k) = 4, then

(1, N) = ai+1, i.e.,C; is a critical job for the problen®(1, N).

Since the cost functional is continuously differentiable and strictIIy .
convex, the problend)(k, n) is also a convex optimization problem owl
with linear constraints and has a unique solution at a finite point (sé%
[11]). The solution of) (%, »n) and the corresponding departure times

are denoted by} (k, n) andx;(k, n) for j = k, ..., n. Note that Assume there areN jobs and M busy periods in the op-
the equalityax + 3%, u,; = a;4, for somei = k,....n —1is timal sample path, and(0) = no = 0, n(l) = i,
satisfied by the solution af)(%, ») if and only if job C; is critical. n(ni +1) = na, ..., n(nm—1 + 1) = ny = N. We have

Problem@Q(k, n) is of the same form aP, but it is limited to jobs the following decoupling property of the optimal problem (see [7,
Ck, ..., C, constrained through (7) to all belong to the same budyemma 4.1]): for a busy period defined Hy:(7). ..., n(l)}, and

period. There is one important property@tk, n) that is captured in lettingi € {k(l), ..., n(1)}, the optimal controk:; depends only
the following theorem (whose proof is given in [1]). on agy, ---, ay (it does not depend on the arrival times of jobs
Theorem 3.1: JobsCk, ..., C,, constitute a single busy period onin any other busy period). By this decoupling property, the optimal
the optimal sample path if and only if the following conditions are satontrols for jobC., ,+1, Cn,_ 42, ..., Cn,, I = 1,..., M, can
isfied: be obtained by solving problef}(%, »n) wherek = n,_; + 1 and
1) ap > 25, n = n;. The solution of this problem satisfies
2) i (k,i) > ajqq1,foralli=Fk, ..., n—1; (1)1 .
3) T'n(l., 77‘) < (l,nf1. . - aJ + 6 Z \i Qg1 — Amy it — Z w; -0
Theorem 3.1 provides the basis for the Forward Algorithm preu: = Ju: imng g P
sented in [1]. Given the arrival times of jobs. ..., Cv, the optimal '
problemP can be solved by the Forward Algorithm shown in Table I. fori=n—1 +1,.... n(l)
By “forward” we mean that the optimal sample path is constructed . .
starting with job 1 and proceeding forward in time without the nee§hereA; > 0,¢=mni—1 +1, ..., n(l) — 1, are Lagrange multipliers

for multiple forward—backward sweeps involved in a solution bas@flioining the constraints (6) to (7). This gives

on the framework of a two-point-boundary-value problem. Letting a6 g ny

k=1, n = 1, we first solve the linearly constrained convex optimiza- — + Z L — Z A;=0, fori=mn_1+1,....n()
tion problemQ (%, n) and obtain the contral} (k, n), j = k, ..., n dui 4=t dui i

and departure times;(k, n), j = k, ..., n. Then the structure which imolies that

of busy periods is identified by checking if; (k, n) < any1. If P

Ck, ..., C, are identified as a single busy period, the control on the a8, " do; .

optimal path forCy, ..., C, is given byu’(k, n), j = k, ..., n. .t > o, 20 fori=mni—1+1,...,n(). (8)

Then, we set the index of the first job of a new busy period as1,
|.e.,lf =n + 1. We repeat _th_e procedure over all jobs. This algor'thrN/Ioreover, since’,, is the last job in a busy period, the solutiop,
requiresN steps, becauseis increased by 1 at every step. Therefore71 41 n(1), satisfies

the Forward Algorithm must solvéV subproblems to obtain the - ot T

optimal solution. "y i
Any_1+1 + Z U < Gpyg1- 9

i=n;_1+1

IV. IMPROVED FORWARD ALGORITHM Then, consider the relaxed optimization problem

In this section, we further exploit a property of the optimal state tr%j (k, n):
jectory for the optimal control problel®, which is based on modifying “"*"" "

Assumption 2 as follows. . - i
Oi(ui)+oi | a tu; >05. (10
Assumption 3:¢;(-) is continuously differentiable and strictly uf.l.l.l,lun {Z{ (wi)+ <”k+;"']>} iz } (10)

; . i=k
convex. Moreoverg;(-) fori = 1, 2, ..., N — 1 is nondecreasing,

and¢x (-) is monotone increasing. The necessary condition satisfied by the solution, denoted by
This is in fact a common condition for a large class of problemd;.. (1, V), of problem@, (1, V) is

when one wishes, for example, to penalize the departure time of jobs N

(e.g., through:?) or their system time [e.g., through; — a;)*]. Thus, 9J _ dbi 3 dé; _ fori=1.....N. (11)

under Assumption 3, cost functions of the fofm; — &;)% are not Oui — du; = du;j /
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TABLE I
IMPROVED FORWARD ALGORITHM

Using (8) and the monotonicity @f;(-) fori = ni—1 +1, ..., ng,i.e.,
i belonging to théth busy period, where=1, ..., M
aT _ df; |~ do,
Ou? - du? = du?
_de; do, do;
- du? du?
‘ Jj=n;+1
X ey
> Z >0 (12)
j=ng+1 ot
so, by (11) and (12), we have
u; (1, N) < uj, fori=n;—1+1,...,n(). (13)
Therefore, using (9)
'Ll 'Ll
Z u;j (1, N) < Z Ui < 41 — Gny_y+1- (14)
i=n;_1+1 i=n;_1+1

Step 1 : (initialization)
solve sub-optimal problem Q(1,
forj=1,---,N
if 3(1,N) = aj41, add j to set Crit;
endfor
add N 41 to set Crit in order to end the loop;
i:=1,k:=1,n:=Crit(i),ay+1 = 00;
while n < N do
Step 2 : solve sub-optimal problem Q(k,n);
Step 3 : (identify single busy periods.)
if 2 (k,n) < ap41 then
ui=uj(k,n) for j=4k, - ,n
k:=n+1,
endif
Step 4 : (increment index n.)
ti=14+1;
n = Crit(i);
end while

N);

By the convexity of the probler)(1, V), the optimal solution must
be on the constraint boundary, otherwise, (14) implies that we can de-
crease the cost by decreasing the controls. Therefore, we have

ng

TABLE I
IMPROVED FORWARD ALGORITHM I

Z u:(lg N) = Upy4+1 — Uny_1+1 (15)
i=ng_1+1
i.e., 2y, (1, N) = an,+1, orCy, is a critical job inQ(1, N). |

This theorem suggests that we can get some information about 1
busy period structure on an optimal sample path from the solutic
x7 (1, N)ofQ(1, N).In particular, only critical jobs of)(1, V) may
end a busy period on an optimal path. Therefore, instead of adding o1
one job at every step of the Forward Algorithm involving the solutiot
of a problem of the forn®) (%, »), we can add multiple jobs and make
the algorithm more efficient by solving fewer problems of the forn
Q(k, n). The price to pay is that we need to solve the larger problel
Q(1, N) first; however, some additional flexibility can be added to the
algorithm as discussed in Remark 3. Based on Theorem 4.1, the |
proved Forward Algorithm is shown in Table I, whetgit denotes
the set of critical job indices an@rit(i) denotes theth element of
this set.

Remark 1: The differences between the Improved Forward Algo
rithm and the Forward Algorithm presented in [1] are

1) in the initialization step we need to solve problénl, N ) and
get information on all critical jobs;
2) in Step 4, we increase indexto the next critical job, instead of
n+ 1.
Remark 2: This algorithm requires at most + 1 steps (usually,
it requires less thav steps), while the Forward Algorithm always

Step 1 : (initialization)

m:=1,an4+1 1= 00,d :=0;

while m < N do

Step 2 : (initialization)

Crit := 0;
solve sub-optimal problem Q(m,m + N’ +d — 1);
forj=m,--- ,m+N +d-1

if 23(m,m + N' +d = 1) = aj41, add j to set Crit;
endfor

add m + N’ +d to set Crit in oder to end the loop;
t:=1,k :=m,n = Crit(i);
whilen <m+N'+d-1do
Step 3 : solve sub-optimal problem Q(k,
Step 4 : (identify single busy periods.)
if 7 (k,n) < an+1 then
uy =uj(k,n) for j =k,
k:=n+1;
endif
Step 5 : (increment index n.)
P=idl;
n = Crit(i);
end while
Step 6 : (increment index m or number d.)
if m < k then
m:=k;
d:=0;

n);

» T

else, this busy period has more than N’ + d jobs, increase d

d:=d+1;
endif

requiresN steps. The worst case of the Forward Algorithm become .4 while

the best case for this algorithm. If &fl jobs are in a single busy period

and there is no critical job, then the optimal control is immediately

obtained when we solve the problep{l, N). [i.e., the number of jobs — & + 1 in Q(k, n)], we can take advan-

Remark 3: When N is large, the solution of)(1. N) becomes tage of usingV' to tradeoff the complexity of a small number of larger
computationally intensive. However, a simple variation of the alggroblems against a larger number of problems of lower dimensionality.

rithm, shown in Table Il1, provides some added flexibility. Specifically,
it is not necessary to start with all jobs in one busy period; instead,
we may solve a probler®(1, N'), wherel < N’ < N, which still
provides information on critical jobs leading to the optimal busy period
structure. In this case, we decompdde ..., N} into two or more
subsequences of job indices and solve the associated problems. ng
this approach provides the flexibility to control the number of convex
problems to be solved. Since the actual computational time depends on

both the number of problendg(%, ») solved and their individual sizes for the arrival sequencgl, 1.4, 1.5, 1.55,1.6,3.0,3.1,3.2,3.3,3.5}.

V. EXAMPLES

Let us consider the following problem with = 10:

in J= Z{u

2, U0

subject tar; = max(ai, xi—1) + i
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First, let us set the maximum number of jobs considered in problem
Q(k, k+ N'—1) equal to the total number of jobé, i.e., we shall use
the algorithm shown in Table Il. At the first stef)(1, 10) is solved
and we have a critical job sétrit = {1, 5, 10} (see also Fig. 2).
Then, we start to verify the busy period structure. Fiégtl, 1) for
k=1, n=Crit(l) = 1is solved. Sinca:7 (1, 1) = 1.56 > a2, we
setn = Crit(2) = 5. Here,Q(1, 2),Q(1, 3) andQ(1, 4) do not need
to be considered. Thef)(1, 5) is solved. Since:5(1, 5) = 2.67 <
ae, jobsCy, ..., Cs constitute a single busy period. The optimal con-
trols for this busy period are obtained by solvi@g1, 5). Then, we
setk = 6 andn = Crit(3) = 10 wherek is the index of the first
job of the next busy period. Finally, we obtain the optimal solution. Let
|Q(k, n)| = n—k+ 1 denote the dimensionality of a convex problem.
Then, for this example, as seenin Fig. 2, the cumulative dimensionality
over all subproblems solved €@ (1, 10)| + |Q(1, 1)| + |Q(1, 5)| +
|Q(6, 10)] = 10+ 1+ 5+ 5 = 21, requiring a total of four steps,
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while the corresponding numbers using the Forward Algorithm are 8®. 2. The first two plots show the queue length@f1, V) andP. The

with ten total steps.
Next, let us set the maximum number of jobs considered in proble

Q(k, k+ N’ — 1) equal to5 < N and use the algorithm in Table IlI.

This reduces the dimensionality of the initial problem, in case the com-

second two present the complexity @k, n) using the Improved Forward
/?Tlgorithm and the Forward Algorithm, respectively.
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tially solved. Interms of actual CPU time, our implementation required 3]
3.02 s for the original Improved Forward Algorithm [of which 1.86 s
are spentin solving problef(1, 10)], while using the second version  [3]
of the algorithm involving the initial solution of problefd(1, 5), the 4
resulting CPU time was reduced to 0.92 s. (4l
As previously illustrated, the proposed algorithm reduces the 5]
number of convex problems solved under the original Forward
Algorithm. Its ultimate efficiency depends on the tradeoff between
solving a single large problem of the for@a(1, N) (required in the
algorithm of Table 1) and a collection of smaller problems (as in
Table Ill). The ability to select som&’ < N in Table Il provides
a degree of flexibility for maximizing the benefit of the Improved
Forward Algorithm.

(1]

(6]
(7]

(8]

VI. CONCLUSION [9]
We have considered optimal control problems defined on a single-
stage hybrid system motivated from manufacturing environments. Thg ]

control variables are comprised of the service times of the various jobs
and the performance metrics involve measures of quality and of timéL1]
delivery requirements of the completed jobs. These optimal control
problems are inherently neither convex nor differentiable becaus
of the nature of the event-driven dynamics involved. However, th
structure of optimal sample paths allows an efficient decomposition:3]
into busy periods which can be separately analyzed, leading to the
efficient forward decomposition algorithm in [1]. In this note, we
have identified a new property of the optimal sample paths, under a
modified condition on the cost functions used, based on which we
derived an efficient, low-complexity, scalable algorithm for computing
optimal controls, which improves the algorithm presented in our
earlier work.

Ongoing work is aimed at extending our approach to systems with
uncertainties in job arrival times and to more complex dynamics
encountered in multistage processes. In addition, we believe that
the forward decomposition approach will enable us to make use of
a receding horizon control scheme for studying a system over an
infinite number of jobs.

2]

out an omission in the proof of Theorem 4.1.
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