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Ordinal Optimization for a Class of Deterministic and
Stochastic Discrete Resource Allocation Problems

Christos G. Cassandrakellow, IEEE Liyi Dai, Member, IEEE and Christos G. Panayiotou

Abstract—The authors consider a class of discrete resource s = [s1,---,sk|’, wheres; € {1,---, N} is the user class
allocation problems which are hard due to the combinatorial jndex assigned to resourgelet S be the finite set of feasible
explosion of the feasible allocation search space. In addition, if resource allocations
no closed-form expressions are available for the cost function of
interest, one needs to evaluate or (for stochastic environments) S = {[31 81']1 s, € {1 N}}
estimate the cost function through direct online observation or oo TR T

through simulation. For the deterministic version of this class of \yhere “feasible” means that the allocation may have to be

problems, the authors derive necessary and sufficient conditions . . . o
for a globally optimal solution and present an online algorithm chosen to satisfy some basic requirements such as stability

which they show to yield a global optimum. For the stochastic OF faimess. Letl;(s) be the class cost associated with the
version, they show that an appropriately modified algorithm, allocation vectos. The class ofesource allocatiorproblems
analyzed as a Markov process, converges in probability to the we consider is formulated as

global optimum. An important feature of this algorithm is that N

it is driven by ordinal estimates of a cost function, i.e., simple .

comparisons of estimates, rather than their cardinal values. (RA1) gélg ZﬁiLi(s)

They can therefore exploit the fast convergence properties of i=1

ordinal comparisons, as well as eliminate the need for “step size” . . . . . .
parameters whose selection is always difficult in optimization WNere/ is a weight associated with user classRAL) is a

schemes. An application to a stochastic discrete resource allo-SPecial case of a nonlinear integer programming problem (see
cation problem is included, illustrating the main features of their  [14], [16], and references therein) and is in general NP-hard

approach. [14]. However, in some cases, depending upon the form of
Index Terms—Discrete-event systems, resource allocation, sto-the objective function (e.g., separability, convexity), efficient
chastic optimization. algorithms based on finite-stage dynamic programming or

generalized Lagrange relaxation methods are known (see [14]
for a comprehensive discussion on aspects of deterministic
resource allocation algorithms). Alternatively, if @opriori
ISCRETE optimization problems often arise in the corinformation is known about the structure of the problem, then
text of resource allocation. A classic example is theome form of a search algorithm is employed (e.g., simulated
buffer (or kanban) allocation problem in queueing models @fhnealing [1], genetic algorithms [13]).
manufacturing systems [10], [20], where a fixed number of |n general, the system we consider operates in a stochastic
buffers (or kanban) must be allocated over a fixed numbgfivironment; for example, users may request resources at
of servers to optimize some performance metric. Anothesndom time instants or hold a particular resource for a random
example is the transmission scheduling problem in radiriod of time. In this casd,;(s) in (RA1) becomes a random
networks [5], [18], where a fixed number of time slots formingariable, and it is usually replaced @[ L;(s)]. Moreover, we
a “frame” must be allocated over several nodes. In the basigsh to concentrate on complex systems for which no closed-
model we will consider in this paper, there aké identical form expressions fOILi(S) or E[L7(3)] are available. Thus,
resourcedo be allocated oveN user classeso as to optimize E[L;(s)] must be estimated through Monte Carlo simulation
some system performance measure (objective function). Igthy direct measurements made on the actual system. Problem
the resources be sequentially indexed so that the “stafglA1) then becomes a stochastic optimization problem over
or “allocation” is represented by th&'-dimensional vector g discrete state space.
While the area of stochastic optimization owvantinuous
decision spaces is rich and usually involves gradient-based
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to exploit the fact that ordinal estimates are particularlgptimal allocation under certain conditions. In Section Ill, we
robust with respect to estimation noise compared to cardimabpose an iterative descent algorithm and show convergence
estimates (see also [7]); that is, estimating the correct ordertofa globally optimal allocation in a finite nhumber of steps.
two costs based on noisy measurements is much easier thmection 1V, we treat the stochastic version of the problem
estimating the actual values of these costs. The implicatiand develop an algorithm for solving it. We analyze the
is that convergence of such algorithms is substantially fastatgorithm as a Markov process and show that it converges
These recent contributions are intended to tackle stochastigorobability to a globally optimal allocation. In Section V,
optimization problems of arbitrary complexity, which is onave present an application to a stochastic resource allocation
reason that part of the ordinal optimization approach in [1pfoblem and illustrate the properties of our approach through
includes a feature referred to as “goal softening.” On tteeveral numerical results. We conclude with Section VI, where
other hand, exploiting the structure of some resource allocatie® summarize the work done and identify further research
problems can yield simpler optimization schemes which neditections in this area.

not sacrifice full optimality. For example, in [3] an approach is

proposed whereby introducing auxiliary control variables, the || cHARACTERIZATION OF OPTIMAL ALLOCATIONS

original discrete optimization problerf®?41) is transformed ) ] )
into a continuous optimization problem. The latter may then In order to specify the class of discrete resource allocation

be solved through a variant of a stochastic approximati(*i’rﬁ()blemS we shall study in this paper, we define

algorithm. K
In this paper, we first consider the deterministic version of n; = Z 1[s; = 1] i=1,---,N (1)
problem(RA1) for a class of systems that satisfy the separa- j=1

bility and convexity assumptions, Al) and A2), respectively, ) o ) o

defined in Section II. Subsequently, we provide a necessdyjperel[] is the standard indicator function amd is simply

and sufficient condition for global optimality, based on whick1€ number of resources allocated to user classder some

we develop an optimization algorithm. We analyze the propetllocations. We shall now make the following assumption

ties of this algorithm and show that it yields a globally optimal Al) L;(s) depends only on the number of resources as-

allocation in a finite number of steps. We point out that, unlike signed to clasg, i.e., Li(s) = Li(n;)-

resource allocation algorithms presented in [14], an importanhis assumption asserts that resources are indistinguishable,

feature of the proposed algorithm is that every allocation s opposed to cases where the identity of a resource assigned

the optimization process remains feasible so that our schetoeuser: affects that user’s cost function. Even though Al)

can be usednlineto adjust allocations as operating conditionimits the applicability of the approach to a class of resource

(e.g., system parameters) change over time. Next, we addraifscation problems, it is also true that this class includes a

the stochastic version of the resource allocation problem. Bymber of interesting problems. Examples include: 1) buffer

appropriately modifying the deterministic algorithm, we obtaiallocation in parallel queueing systems where the blocking

a stochastic optimization scheme. We analyze its propertjg®bability is a function of the number of buffer slots assigned

treating it as a Markov process and prove that it converggs each server (for details, see Section V); note, however,

in probability to a globally optimal allocation under mildthat A1) does not hold in the case oftandemqueueing

conditions. system; 2) cellular systems where the call loss probability of
As will be further discussed in the sequel, two featuresach cell depends only on the number of channels assigned to

of the resource allocation scheme we analyze are woshch cell; and 3) scheduling packet transmissions in a mobile

noting because of their practical implications. All iterativeadio network, where the resources are thee slotsin a

reallocation steps are driven by ordinal comparisons, whidnansmission frame (see [5] and [18]).

as mentioned earlier, are particularly robust with respect toUnder Al), we can see that an allocation written as the

noise in the estimation process. Consequently: 1) as in otliérdimensional vectos = [s1,---,sk], can be replaced by

ordinal optimization schemes (e.g., [11] and [12]), convethe N-dimensional vectos = [n1,---,ny]. In this case, the

gence is fast because short estimation intervals are adeques®urce allocation probletRA1) is reformulated as

to guide allocations toward the optimal and 2) there is no N N

need for “step size” or “scaling” parameters which arise in .

algorithms driven by cardinal estimates of derivatives or finite (RA2) ses >_BiLi(ni) st z_: ni = K.

differences; instead, based on the result of comparisons of =

various quantities, allocations are updated by reassigning ondhe cardinality of the state space involved (RA2) is

resource with respect to the current allocation. This avoids theen by [S| = (K + N — D)I/KY(N — 1)!), so that

difficult practical problem of selecting appropriate values fain exhaustive search is generally not feasible. Deterministic

these parameters, which are often crucial to the convergemesource allocation problems with a separable cost function

properties of the algorithm. have been studied in the literature (for a thorough treatment see
The rest of the paper is organized as follows. In Section [14]). Several algorithms based on the theory of generalized

we use Assumption Al) to transfor@®RA1) to an equivalent Lagrange multipliers are presented in [14, Ch. 4] where the

problem (RA2). Subsequently, we consider the deterministioptimal solution can be determined in polynomial time. These

version of problen{RA2) and present a characterization of thalgorithms are based on relaxing the resource constraint so

i=1
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that the determination of an optimal solution is based on ex- Proof: First, define the set
amining several infeasible allocations. Moreover, all relevant B(s) = {s: s= [
information (in the form of an individual user cost vector ' o
[ALi(1), -, AL (K), -, ALx(1),---, ALx(K)]) is ob- for somei # j}

tained prior to the optimization procedure. In other wordgyhich includes all feasible neighboring points ® =
these are intended to lmfline algorithms. As mentioned in [, ... 5], i.e., vectors which differ frons by +1 and—1
the previous section, however, our ultimate goal is to solyg two distinct components (recall that + - - - + ny = K).
stochastic resource allocation problems where the cost functipfl prove that (4) is a necessary condition, assumegfiga
is not available in closed-form. This requires that: 1) we resqjlobal optimum. Then, from (3), it is clear th&(s) < L(s/)

to estimates ofL;(n;) and AL;(n;) for all ¢ = 1,---.N  for all ¢ € B(s). From this we can write
over some observation period and 2) we iterate after every

such observation period by adjusting the allocation which,
therefore,must remain feasiblat every step of this process.

"'7ni+17"'7nj_17"'771]\7]

S L) < La(m) -+ L+ 1)+ -

It is for this reason that we wish to derivanline discrete =t Ly — 1)+ -+ Ly(my)
optimization algorithms. We shall first deal with issue 2) i\ NATN
above in Sections Il and Illl. We will then address issue Bf
in Section IV. — _ _ _
.\ . . . Lim)+L;(m) < L;(m;+1)+L;(n; —1
In addition to A1), we will make the following assumption () + L)) (i + 1)+ L;(m; = 1)
regarding the cost functions of interest: and, therefore
A2) For alli = 1,---,N,L;(n;) is such thatAL;(n; + AL;(m; +1) = AL;(n;) for anyi, j. (5)
1) >AL; (717)
where To prove the sufficiency of (4), l&= [71,---,7n] be an
allocation that satisfies (4), and lgt = [»],---,n%] be a
ALi(n;) = Li(n;) — Li(n; — 1), n;=1,---,K (2) global optimum. Therefordni,---,n}] satisfies (5), i.e.,
ALi(n; +1) > AL;(n}) for anyq,;. (6)

with boundary values
Let n} = @, +d; for all ¢ = 1,---,N, whered; €

ALi(0)=-oc0 and AL;(N +1)=occ. {-K,---,—-1,0,1,---, K} and subject to the constraint
This assumption is the analog of the usual convex- zj\:d —0
ity/concavity requirement for the vast majority of gradient- - 7
=

driven optimization over continuous search spaces. It is the
assumption that typically allows an extremum to be a globwhich follows from the constraint; +--- +ny = K. Then,
optimum. The alternative is to settle for local optima. Frorflefine the setd = {i: d; = 0}. There are now two cases
a practical standpoint, most common performance criteria @&pending on the cardinalityd| of this set.
systems where resource allocation arises are quantities sucgase 1: |A| = N. In this case we hava; = n} for all 4,
as throughput, mean delay, and blocking probability whicsp that, trivially,s = s*.
generally satisfy such properties. Case 2: |A| # N. This implies that there exist indexes

In what follows, there are two key results we will present, j such thatd; >0 andd; <0. Therefore, we can write the
Our first result is a necessary and sufficient condition for globfglllowing ordering:
optimalityin(}_iAz)_. The second re_sult isa_necessary c_o_ndition AL;(m; +d; + 1) > ALi(T; + di) > ALy(m; + 1)
for global optimality in (RA2) which requires an additional _
technical assumption in order to also become sufficient. Let = AL;(n;) (7)
s denote a solution of the optimization problgiRA2), i.e., where the first inequality is due to (6), the second is due
s is such that to A2), and the third is due to our assumption tBasat-

N isfies (4). However, ford; < -2, using A2), we have

L(s*) < L(s) foralls=[ni,---,ny] €S st Z”i:K' AL;(m;) > AL;(m; +d; +1) which contradicts (7). It follows

that for an allocation to satisfy (4) only; = —1 is possible,
(3) which in turn implies that (7) holds in equality, i.e.,

For simplicity, let3;, = 1 in (RA2)foralli=1,---,N for
the remainder of the paper. (If it is required to hawe# 1, Using A2), this implies thatl; = 1.
then one can include that in the definition bf.) This argument holds for angi, j) pair; therefore, we con-
Theorem 1:Under Assumptions Al) and A2), an allocatiorclude that the only possible candidate allocatigrsatisfying
§ = [A1,---,7n) is a global optimum [i.e., a solution of (4) are such that

RA2)] if and only if
( Jl1it and only i AL;(m; +1) IALJ(HJ) foralli,j € A,d;, =1,
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Let the difference in cost corresponding $oand s* be Proof. Suppose thai is a global optimum, and consider
A(s,s*). This is given by an allocations = [ny,---,nx] such thats # s. We can then
expressn; (0 < n; < K) as
N .
AG,8) = Y [Li(m) — Li(n})] m=md foralli=1, N
i;l whered; € {-K,---,—1,0,1,---, K} and subject to
= [Li(m:) — Li(7i + di)] N
p > d;i=0 (11)
igA Py
J
N N
= Z AL;(m;) — Z AL;(7; +1) =0 which follows from the fact thafn,,---,7n] is a feasible
i—1 =1 allocation. Leti* = argmax;=1 .. y {AL;(7;)}. If s #£35, it
P ey follows from (11) that there exists sonyesuch thatd; >0

and two cases arise.

where in the last step we use (9) add’, d; = 0. This Case 1:1f j = ", then

establishes that i§ = [0y, ---,7y] satisfies (4), then either _max_{AL;(ni)}
§=s" asin Case 1 or it belongs to a set of equivalent optimal =" _ B
allocations that satisfy the equality in (3). m > ALj(n;) = AL (- + di» ) > ALg- ()

Note that Theorem 1 gives a necessary and sufficigphere the last step is due to A2) sindg > 0.
condition that the optimal allocation must satisfy in terms of cage 2: If 5 £ 4*, then first apply Theorem 1 to the optimal

the cost differencea\L;(-) for ¢ = 1,---, N in only a small gjjocations to get
set of feasible allocations, namely the neighborhood of the
optimal allocationB(s*). ALy +1) > AL (7). (12)

Next, we will derive a different necessary and sufficient
condition for global optimality in solving.RA2), expressed
in terms of max;=1 ...y {AL;(n;)}. As we will see in the ~max {AL;j(n;)} > AL;(n;) = ALj(7; + d;)
proof of Theorem 2, necessity still relies on Assumptions Al) =L N
and A2) alone, but sufficiency requires an additional technical > ALj(m; +1) 2 AL+ (7+)
condition.

Then, we can write the following:

where the second inequality is due to A2) and the fact that

A3) Let [n1,---, 7] be an allocation such that d; > 1, and the last inequality is due to (12). Hence, (10) is
established.

~max_ {AL;(m;)} < max {AL;(n;)} Next, we show that if an allocatios satisfies (10) and

=l N =l N A3) holds, it also satisfies (4), from which, by Theorem 1,
we conclude that the allocation is a global optimum. Let

forall s = [ny, -, ny] € S If " = argmaxizi,.. N §* = argmaxi—; .. y {AL;i(m;)} and suppose that (4) does
{AL;(7;)}, then not hold. Then, there exists a+ i* such that
AL (7 ) > ALy () ALj(nj +1) <AL (i) = max {ALi(R)}.  (13)

] S Note that if no suchy were to be found, we would have
forallj =1,---,N, j # " AL;(@; +1) > AL (7;0) > ALy () for all j, k [because

This assumption guarantees a unique solutio{fd2) and, of A3)] and we would not be able to violate (4) as assumed
as mentioned above, it is only used to prove sufficiency ghove.
Theorem 2. If the condition is violated, i.e., there is a set Now, without loss of generality, let* = 1 andj = N [j
of optimal allocations, then, in the deterministic case, thetisfying (13)]. Then, using A2), A3), and (13), the feasible
algorithm will converge to one member of the set dependesfiocation[n, — 1,72, --,An—_1, 7y + 1] is such that
on the initial allocation. In the stochastic case, the algorithm
will oscillate between the members of the set as mentioned L1 (1)

the remark at the end of Section IV. =max {AL1(71), -, ALy(7in)}

_ Th_eorem 2:Under assumptions Al) and A2), if an alloca- > max {AL; (71 — 1), ALy(M2), -+, ALn(7ix + 1)}

tions = [ny,---,mn] is a global optimum [i.e., a solution of

(RA2)] then which contradicts (10) for the feasible allocatidn; —
1,72, -, in—1,nn + 1] and the theorem is proved. [ |

max {AL;(@;)} < max {ALi(n:)} (10) As already pointed out, A3) is not required in proving
i=1,,N T =1, N the necessity part of the theorem, but only the sufficiency.

Also, note that Theorem 2 provides a characterization of

for all s = [ny,---,nx] € S. If in addition A3) holds, then an optimal allocation in terms of only the largestZ;(-)

(10) also implies thag is a solution of(RA2). element in the allocation. What is interesting about (10) is
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that it can be interpreted as the discrete analog to continudasall : = 1,-.-, N, which clearly ensures that (15) may not
variable optimization problems. In such problems with equalityield 3, such thatn;: .. = 0, unlessn; , = 0 for all ¢ € Cy; in
constraints, it is well known that an optimal solution ighis case, however, (17) givés < 0, thereforen; j,+1 = n; &
characterized in terms of the partial derivatives of the costSecond, it is possible to violate; , < K if n; . = K for
function with respect to control variables (e.g., allocatiorsome: at stepk. In this case, however, sineg +---+n,, =
expressed as nonnegative real numbers); specifically, at fiewe must haveAL;(0) = —oco for all j # ¢ and, therefore,
optimal point all partial derivatives must be equal (e.gj; # i.
see [8]). In order to derive a similar result for a discrete Regarding 2) above, in (15) and (16) ties (i.e., if there is
optimization problem, one must replace derivatives by finiteore than one index that qualifies as eithigror j;) are
cost differences, such as the quantiti®g,;(-),¢ = 1,---, N, assumed to be arbitrarily broken. Moreover, in the case when
defined in (2). The next “best thing” to equality in dealingnax {AL;(-)} = min {AL;(-)} and |Cx| > 1, the choice of
with cost differences taken from a discrete set is to keep thegeand j; is also arbitrary, provided; # j;. Finally, for
differences as close as possible. This is expressed in termsiafplicity, we will adopt the following convention:
the maximum value of such finite differences at the optimal
point in condition (10). If i}, = p andé, < 0, theniz,, =p. (19)
Having established some necessary and sufficient conditionﬁ_his statement is trivial
that characterize the optimal allocation, namely Theorems 1
and 2, our next task is to develop an algorithm that iterativeg

if the maximization in (15) gives
unique value. If, however, this is not the case afjds

adjusts allocations on line. These conditions then serve te_rrgmed b)r/1arbltrglrllyIbreag;r;goaftlel, thzn vne ?_mpl?{ leave
determine a stopping condition for such an algorithm, gua 1S Index unchanged as fong@ss Utor £ > &, which Implies

anteeing that an optimal allocation has been found. In the n&;t all ALi(n; ) values remain unchanged.

. . . nterpretation of (14)—(18):Before proceeding with a de-
section, we propose such an algorithm taking advantage of (4. ) -
in Theorem 1. fa ed analysis of the processés; .}, &k = 0,1,---, for each

¢ = 1,---,N, let us provide an informal description and
interpretation of the full dynamic allocation scheme (14)—(18).
Looking at (15),i; identifies the user “most sensitive” to the

In this section, we present an iterative process for deteemoval of a resource among those users in th&getvhile
mining a globally optimal allocation and study its propertiesn (16), j; identifies the user who is “least sensitive.” Then,
which include a proof of convergence to such an allocatio(i4) forces a natural exchange of resources from the least to

I1l. ONLINE DETERMINISTIC OPTIMIZATION ALGORITHM

In particular, we generate sequencgs;.}.k = 0,1,--- the most sensitive user at théh step of this process, provided
for eachi = 1,---, N as follows. We define a sef, = the quantitys; is strictly positive (an interpretation afy is
{1,---, N} and initialize all sequences so that an allocatioprovided below). Otherwise, the allocation is unaffected, but
S0 = [n10,---,nn o] is feasible. Then, let the user with indexj; is removed from the sef; through
‘ 1 0= it and. > 0 (18). Thus, as the process evolves, users are gradually removed
D L !f T andék % 0 14y from this set. As we will show in the next section, the process
Mik+1 = ””‘ +1 ! ﬂf] = Ji andor > (14) terminates in a finite number of steps when this set contains a
Tk otherwise single element (user index), and the corresponding allocation

wherei?, j%, 6, andC; are defined as follows: is a globally optimal one. o

. As defined in (17),6x represents the “potential improve-

i = arg max {AL;(nix) } (15) ment” (cost reduction) incurred by a transition from allocation

gk = argmmin {ALi(n; 1)} (16) 10 s Thatls

1€Cy
bk = ALz (niy k) — ALjz (njp ke + 1) 17 b = L(sk) = Lisns1) (20)
o —JG—{rh 6 <0 (18) Which is seen as follows:
ML G, otherwise.
L(si) — L(sr41)
To complete the specification of this process, we need to: N N

1) ensure that the constraiit< n,; < K is never violated = ZLv‘,(m,k) — ZLi(ni,k—l—l)
in (14) and 2) resolve the possibility that eithigrin (15) or im1 im1
Jx in (16) is not uniquely defined. = Li: (niy 1) + Ly (nje 1) — Liz (ngz 0 — 1)

Regarding 1) above, the constraint may be violated in one Ly (ng e+ 1)
of two ways. First, it may be violated if; , = 0 for some d gk
i andi = i%, 6 >0 in (14). Observe, however, thatZ;(0) = AL (niz 1) — ALj: (njp ik +1) = &y
is undefined in (2), which in turn would make the definitions
of i3, j; in (15) and (16), respectively, undefined, unlessi all
such that,; ; = 0 are excluded from the sé,. Alternatively,
we will henceforth set

Note that if 6 > 0, which implies that the cost will be re-
duced by allocatios;. 1, then the reallocation is implemented
in (14). If, on the other handj; < 0, this implies no cost
reduction under the candidate allocatsn 1, ands; remains
AL;(0) = —o0 unchanged as seen in (14).
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A. Properties of the Resource Allocation Process C;, 1> m and, therefore, the allocation process will terminate,

We begin by establishing in Lemma 3.1 below a numb&  Will be removed fromC, for somem <I<m+ N —1.
of properties that the sequences; .} and {C;} in (14) and This discussion also serves to_ point qut an important dif-
(18), respectively, satisfy. Based on these properties, we V&jfence between P5 and P6, Wh'ch*’ at first 3|ght_, seem exact
show that{s;}, wheres, = [, ---.7x.1], CONverges to a uals of each other. In P5, a uget= i}, for somek will never

globally optimal allocation. We will also use them to determinE the future take any resources fram other users. On the other
u

an upper bound for the number of steps required to reach t %E(rje |niVP6 itis not true that a USﬁthjk will neyer il1n the
global optimum, give away any resources to other users; rather, user
Lemma 3.1: The process defined by (14)—(18) is characte
ized by the following properties.
P1: AL;:(-) is nonincreasing ik = 0,1,---, that is

may give awayat most one resource® other users. To clarify
{ﬁis we consider the following scenario. df > 0, then from
(14) np 41 = npr + 1. Now, if there existsn > & such that
ir, = p andé,, >0, thenny 1 = np o — 1 > nypp SiNCe
Npm = Np k+1 = Np i + 1. Thus, at stepn > k userp gives

ALZ‘2+1 (niZ+17k+l) < ALzz (nzi7k) for all k = 0, 1, sl away a resource.
(21) The next result establishes an upper bound in the number of
steps required for the process defined by (14)—(18) to converge
P2: AL;:(-) is almost alwaysnondecreasing ink = to afinal allocation A final allocations;, is defined to be one
0,1,---, that is at stepL with |Cz| = 1. At this point, we may allow one
additional step to empt{;,, but this is unnecessary since no
ALy (ng: , k4b) further change irs;, is possible.
> ALj: (ﬂj;,k) forall k=0,1,--- andb € {1,2}. Lemma 3.2: The process defined by (14)-(18) reaches a
22) final state (s,C) in L steps such thafC| = 1 and L <
K +2(N —1).
. o ; Proof: See Appendix I.
P3: Letp = ij, and suppose there exists some- & such Theorem 3:Let 8 = [n1,---,7n| be the final allocation

thatj;, = p andp # 4 for all k<I<m. Then of the process (14)—(18). Thesjs a global optimum [i.e., a

solution of (RA2)].
Proof: First, by Lemma 3.2, a final allocation exists. We

P4: Letp = j; and suppose there exists so i such will next show that this allocation satisfies

that<;, = p andp # j; for all k<! <m. Then, there exists AL;j(m; +1) > AL;(m;) for anyi, j. 27)
someq,1 < ¢ < N — 1, such that -

Crn-l—l = Crn - {P} (23)

] We establish this by contradiction. Suppose there exjsty
Conross = {Cm+q —{p}, I |Curgra]>1 (24) such that (27) is violated, i.eAL, (7, + 1) < ALy(7,), and
{r}, if [Cotgia| = 1. suppose thap, ¢ were removed fronC, andC;, respectively
(i.e., at steps:, [, respectively). Then, two cases are possible.
Case 1: k<. For p to be removed fronC; in (18), the
following should be truey; = p and . < 0. However

P5: Let 4 = p. Then

Npm < npp foranyk =0,1,-.-, and for allm > k.

P6: Let ji = p. Then where the first inequality is due ®. < 0, the second is due
to property P1 in (21), and the last is due to the definition of
Npam 2> Nps fOranyk =0,1,---, and for allm > k. iy. Therefore, our assumption is contradicted.
(26) Case 2: k> 1. Now ¢ is removed fronC; first, therefore

. o . ALg(ngg) =ALj; (nj; 1) < ALy (njy 1)
Proof: The proof of this lemma is included in
Appendix |. =ALy(npx) <ALp(np +1)

Properties P3 and P4 are particularly important in chagere the two equalities are due to (18) and the fact ghat
acterizing the behavior of the resource allocation process dRdp were removed frong; andC;,, respectively. In addition
(14)-(18) and in establishing the main results of this sectiofe first inequality is due to P2 in (22), and the last inequality
In particular, P3 states that if any ugeis |dent|f|eq asiy at s due to A2). Again, our assumption is contradicted.
any stepk of the process and ag,,m > k, then this user is  Tnerefore, (27) holds. We can now invoke Theorem 1, from
immediately removed from th€,,, set. This also implies that \yhich it follows that (27) implies global optimality. m

np,m 1S the number of resources finally allocategtdroperty  Corollary 3.1: The process (14)-(18) defines descent

P4 is a dual statement with a different implication. Once a usgigorithm, i.e.,
p is identified asj; at some stegs and asi},,m >k, then

m?

there are two possibilities: eithgrwill be the only user left in L(sy) > L(s;) for anyl> k.
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Proof: This follows immediately from (14) and (18) and The following is the modified process in a stochastic en-
the fact thatd, = L(sx) — L(sg+1) in (20). m vironment, denoted by{(ék,ék)}, with & = [k, N2k,
We conclude this section by presenting below a complete-, 7y x]. After proper initialization, at the:th iteration we
resource allocation algorithm which implements (14)—(18) arset
terminates by identifying a globally optimal allocation.

ALGORITHM (S1): ik —1, if i =1} andég(if, jp) >0
Tiksl =8 fip+1, if i =5 andéx(if, ) >0 (28)
1.0 Initialize: s© = [n{” ... Y], i ks otherwikse .
CO={1,-- ,Nkk=0
EvaluateD(n{*, - -, n{) = [AL; (n{¥), - -, where
ALy ()
If |C*)] =1 Goto4.0; Else Goto2.1 T oo ALY
| o _| ‘ ‘ ® ¢, = arg m&pf {AL (R k) } (29)
21 Seti* = argmax;cem [D(ny ', -, nx’)] iCCx

2.2 Setj* =argmin;cw [D(ngk), e ng\’f))] Ji = arg min {Af/f(k)(ﬁ%k)} (30)
2.3 EvaluateD(ngk), e ,n§f> -1, ,nj’f +1,--- ,ng\’f)) o ~;(€kc)’“ = F)
24 11 6® = AL (2™ +1) - AL (n(”) <0 Goto 3.1 O (1o gp) = ALE (75, 1) — ALZV (g, +1) - (31)
Else Goto3.2 5 T if & (7%
4 4 Co— 31, if 8032, 77) <0
3.1 Update allocationngf“) = n§f> -1 Cry1 = C’; Ui if |§k(|k_‘jf) (32)
k1 k o e
n( ) = n() +1; Ck, otherwise.
Wt = 0k for all m e ¢® andm # i*, j*
Setk ‘_(/Z)"‘ 1 a(r;g Gotgz.l. Itis clear that (28)—(32) define a Markov procé$,.Cy)},
3.2 Replaggc by € — {j*} whose state transition probability matrix is determined by
If |C |(§ 1 GOt(%l-O- Else Goto2.2 if, 75, and & (5, 7%). Before proceeding, let us point out that
40 s =[n;’,---,ny’]. STOP. the only structural difference in (28)—(32) compared to the

deterministic case of the previous section occurs in (32), where
we reset the, set every time that it contains only one element.

By doing so, we allow users that have been removed from the

In this section, we turn our attention to discrete reSOUrGe set due to noise to re-enter the user set at the next step.
allocation performed in astochasticsetting. When this is ¢ course, the actual values of alL,(-) are now replaced
the case, the cost functiofi(s) is usually an expectation by their estimatesAEf(k)(-).
whose exact value is difficult to obtain (except for very An obvious questién that arises from a practical stand-

simple model_s). we therefor_e resort to esUmateE(@p_ which . rPoint is that of obtaining the crucial cost difference estimates
may be obtained through simulation or through direct onli

F fk . . . ...
observation of a system. In either case, we denoté/ify) an ELi( )(ni)' At first S'g,ht’ o estgﬁt)e these quantities two
estimate ofL(s) based on observing a sample path for a tm@arr’:?le paths are required, one oy (n;) and another _for
period of lengtht. We are now faced with a problem of findingZi (7 — 1). However, for a large class of applications,
the optimal allocation using the noisy informatidi(s). one can exploit a variety of techniques_ based on pert_urbation

It should be clear that the algorithm described by (14)—(18)alysis (PA) and concurrent estimation (CE) for discrete-
does not work in a stochastic environment if we simply replag@yent systems (e.g., see [2] and [6]) to obtaid.! ™ (n;)
L(s) by its estimatel*(s). For instance, suppose thg>0; from a single sample path under an allocation;. Thus,
however, due to noise, we may obtain an estimates,of the convergence of the process above can be substantially
denoted bys;, such thats, < 0. In this case, rather thanaccelerated in many cases.
reallocating resources, we would remove a user from@he The following result simply establishes the fact that the
setpermanently This implies that this user can never receiv@1odification in (32) does not alter the properties of the
any more resources, hence the optimal allocation will nevédeterministic resource allocation process.
be reached. Theorem 4: The process described by (28)—(32), if driven

Therefore, certain modifications are necessary. In particulfly, deterministic quantities such tm'flif(k)(-) = AL;(-), will
we need to modify the process (14)—(18) in two ways. Firgtield the optimums®.
we will provide a mechanism through which users can re- Proof: If Afﬁf(k)(-) = AL,() for all ¢, the stochastic
enter theC set to compensate for the case where a ugemocess (28)—(32) is the same as its deterministic version
is erroneously removed because of noise. Second, we aidifore |C,| = 1 in a finite number of steps. However,
progressively improve the estimates of the cost differencascording to Theorem 3(;| = 1 means that the process
AL(s) so as to eliminate the effect of estimation noise; thisas reached the optimum and will not change thereaftem.
can often be achieved by increasing the observed sample patAs stated earlier, the second modification we impose is
length over which an estimate is taken. We will hencefortio eliminate the effect of estimation noise by increasing the
denote the length of such a sample path atktieiteration observed sample path length as the number of iterations in-
of our process byf (k). creases. For this purpose, we make the following assumptions.

IV. ONLINE STOCHASTIC OPTIMIZATION ALGORITHM
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A4) For every: and everyn;, the estimateiﬁ(ni) is ergodic Next, given any state(ék,ék) reached by our process
as the sample path length increases in the sense th@8)—(32), define

lim Li(n;) = Li(ni),  as. AF = UIALj (7 0) = max {ALi(ni )1} (34)
An‘lin ={JIAL:(n: ) = 1 ALz ~i ¢ - 35
AB) Let 6;(i,j) = AL;(7i; 1) — AL;(7v;x + 1). For every B ={1AL (A ) = min{ALi(Rix)}}. (35)

g% Ry — i .
6i (1, 7k) = 0, there is a constanty such that Observe thatd™™ and A" are, respectively, the sets of

Prob [Sk(fizhﬁ) < 0|61(3%, 55) = 0, (51, Cr) = (5,0)] mdgxg&k_ andj; defined in (15) and (16) of the deterministic

optimization process (with exact measurement). Recall that
iy, 7 need not be uniquat each steg, hence the need for
these sets. We then define

> po>0

for any £ and any pair(s,C).
Assumption A4) ensures that the effect of noise can be a;(s,C) =1 — Prob [i} € AP |(8,Ci) = (5,C)]  (36)

decreased py increasi.ng t_he estimation interval dvet bi(s,C) =1 — Prob [ji € A™M|3,,Ch) = (5,0)].  (37)
1,2,---. This assumption is stronger than actually needed
in Lemma 4.1 below, but it is mild and is satisfied byHere, [1 — ax(s,C)] is the probability that our stochastic
most systems of interest. Assumption A5) guarantees thaesource allocation process at stepcorrectly identifies an
an estimate does not always give one-side-biased incorreatex Z; as belonging to the se#j** (similarly for [1 —
information; it will only be needed once in the proof of Lemmay, (s, C)]). We will show in Lemma 4.3 that these probabilities
4.4. Both assumptions are mild in the context of discrete-evesre asymptotically one.

dynamic systems where such resource allocation problemgemma 4.2:For anys = [ny,n2,---,ny] € S and anyC
frequently arise. _
In the remainder of this section, we will study the process i di(s,C) = 0. (38)

{(ék,ék)} so as to establish its convergence properties. Our .

main result is Theorem 5, where we show that this processVioreover, define

converges in probability to the optimal allocatieh di, = sup I(nré))( d;(s,C). (39)
i>k (s

A. Properties of the Stochastic Resource Allocation Process Thendy, > di(s,C), dy, is monotone decreasing, and

We begin with an auxiliary result that will prove very helpful ]
in all subsequent analysis. Am di = 0. (40)
Lemma 4.1: Suppose that Assumption A4) holds and that

limg o0 f(k) = oo. Then, for any paitm;,n;j,i # j Proof: See Appendix II.

Lemma 4.3: Suppose that Assumption A4) holds. Then, for

;}im Prob[ALI®(n;) > Aijf(’“)(nj)] -0 every pair(s,C), we have
lim ax(s,C) =0, lim bi(s,C) = 0. (42)
and k—oo k—oo
khm Prob [Aji{(k)(ni) <A£§(k)(nj)] -1 Moreover, define
o aj = supmax a(s,C), by, = supmaxb(s,C). (42)
provided thatAL;(n;) < AL;j(n;). ik #C) ik ©C)
Pro_of: The proof of this lemma is included in Tpen ar > ax(s,C), by > bi(s,C), both a;, and by, are
Appendix II. . monotone decreasing, and
Next, we introduce some useful properties of the process
{8} in the following few lemmas. These properties pertain Jim ay, =0, i by = 0. (43)
to the asymptotic behavior of probabilities of certain events
crucial in the behavior of (3;,C;)}. We begin by defining ~ Proof: Given the definition of the setsdy* and
these events and corresponding probabilities. Ay the proof of the first part follows immediately from
First, let Lemma 4.1. The second part then follows from the fact that,
~ by their definitionsa; andb; are monotone decreasing. m
di(s,C) = 1 — Prob [L(sg41) < L(s)|(8%,Cr) = (5,C)] The last asymptotic property we need establishes the fact

(33) that there will be an improvement (i.e., strictly lower cost)
to an allocation at stej if that allocation is not optimal.
so that[1 — di(s,C)] is the probability that either some costHowever, this improvement may not occur within a single
reduction or no change in cost results from #tth transition step; rather, we show in Lemma 4.5 that such an improvement
in our process (i.e., the new allocation has at most the samay require a number of steps; beyond thekth step,
cost). We will show in Lemma 4.2 that the probability of thisvhere «;, satisfies certain requirements. A related property
event is asymptotically one, i.e., our process correspondsnteded to establish Lemma 4.5 is shown in Lemma 4.4; in
an asymptotic descent resource allocation algorithm. particular, if an allocation is not optimal at stép then the
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probability that this allocation remains unchanged ouwgr B. Convergence of Stochastic Resource Allocation Process

steps is asymptotically zero. , _ With the help of the properties established in the previous
To formulate the property above in a precise manner, W tion, we can prove the following theorem on the conver-

begin by choosing a sequence of integgsg } satisfying gence of the proces{s(ék,ék)} defined through (28)—(32).

Theorem 5: Suppose that Assumptions A4) and A5) hold

Jm ag =00, T axfar +bx) =0 and that the optimurs* is unique. Then the process described
klim (1 —dgsz)™ = (44) by (28)—(32) converges in probability to the optimal allocation
e st
where, for anyr, |z] = {n|n < z,n is integer} is the greatest Proof: We begin by defining three auxiliary quantities
integer smaller tharn. we shall use in the prOOf.
Such a sequencéay} exists. For example, any;, <  First, let us choose some>0 such that

| (max {d|x/2), ap+bi ) "2 limy 0 g = oo satisfies (44)
(without loss of generality, we assume th@ta;b. # O,

otherwise oy, can take any arbitrary value). The choice of . .
. k . y y val ) Note that such > 0 exists because of the discrete nature of
{as} is rather technical. Its necessity will be clear from th(f=h . - .

. e cost function and the finiteness of the number of feasible
proof of the following Lemmas 4.4 and 4.5. ; . .

. L allocations. Observe thatis a real numbestrictly lower than
Observe that if{ay, } satisfies (44), we also have . : .
S the smallest cost difference in the allocation process.
lim (1 — dy)™ =1 (45) Second, for an, set

e< gl;% {L(s) — L(s')|L(s) — L(¢') > 0}. (51)

k—oo
. Gs = [(L(s) — L(s"))/e].
sincedy < dix/2-
With this definition of«;, we now set Then
ex(8,C) =1 — Prob [L(Skta, ) < L(81)| (81, Cr) = (5,C)] L(s) = L(s") 2 gsc,  L(s) = L(s") <(+1)e.  (52)

(46)  Finally, we shall define a convenient sequeree,} that

satisfies (44). To do so, let = maxgcs g5, and, for anyk,
and observe thgt — ez (s, C)] is the probability that strict im- choose

provement (i.e., strictly lower cost) results when transitioning 1
from a state such that the allocation is not optimal to a future ¢, = {_ min {k, (max {d|x/q), ax + bk})—l/Q}J
stateq;, steps later. We will establish in Lemma 4.5 that this 2q
probability is asymptotically one. To do so, we first need the <L {k, (max {d /2y, ar + b }) "2}
following result, asserting that if an allocation is not optimal, T 2q ’ ’
then the cost remains unchanged dqr steps with asymptotic
probability zero.

Lemma 4.4: Suppose that A4) and A5) hold and gt }
satisfy (44). Consider an allocation= [ny,---,ny| # s*
and any seC. Then

Since the sequencegii} and {a; + b} are monotone
decreasing by their definitions, the sequefieg} is monotone
increasing and it is easy to verify that it satisfies (44).

The next step in the proof is to define a particular subse-
quence of{(s;,C;)} as follows. First, set: = k — qoy, and

klim Prob[L(sp4+1) = L), h=Fk, - k+oap — 1 observe that

(61,C) = (5.0)] = 0. @7) vk 2 k2 9

) Then, define a sequence of indeXes} with i = 0,---, ¢
Proof: See Appendix II. through
With the help of the lemma above, we obtain the following.
Lemma 4.5: Suppose that A4) and A5) hold. For any allo- o = «, Yi = Yim1 + oy, i=1,2,-,¢s.

cations = [n1,---,nn * and any set’ - i
s=[m nyl# s y For sufficiently largek such thate, > 1, it is easy to

lim ¢(s,C) = 0. (48) verify by induction that
k—oo

] z=yYo<n < - <Yq < k. (54)
Moreover, define

Now, for anyk andz defined above, consider a subsequence
er =sup max e;(s,C). (49) of {(5;,C;),i = x,---,k}, denoted byy = {(3,.,C,.),i =
izk 0C(5.0) 0,1,---, g}, Starting ats,, = &, = s, and such that either
there is ani,0 < ¢ < g, — 1 such that

L(éijrl) - L(éyg) < —e€
forallj =0,---,i—1ands,, =s",
Proof: See Appendix II. forallj=4,--- g

Theney > ex(s,C), e; is monotone decreasing and

klim ex = 0. (50)
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or Because{ (5, Cx)} is a Markov process, settingo,Co) =
LG,,,) - LG,) < —c (s,C), the previous inequality can be rewritten as
ands,, #s* foralli=0,---,¢ — 1. .
w # & Prob [§,, = 8|(s.C.) = (5,C)]
In other words, any such subsequence is “embedded” into %
the original proces$(s;,C;)} so as to give strictly decreasing > Z H
costs, and if it reaches the optimum it stays there afterwards.  (s,;.c;),i=1,--,q} c¥ i=1
The subsequence defined above has the additional propert = 5 = 5
hat q PIOPETY Prob [(8y,,Cy.) = (51, €ISy 1, Cyi ) = (81-1,Cin)]

8, =s" (55) In addition, let us decompose any subsequendato its

o ) _ ~ first (g — 1) elements and the remaining elemésy,,C,,).

This is obvious in the case whesg, = s* for some 1pus for any subsequence whosg — 1)th element is
g = 0.1,-,g. On the other hand, i, # s* forall (g ¢ ) there is a set of final states such that

i=0,1,---,¢s — 1, we must have (54,,Cq) € VU, so that we may write (58), as shown at the

L(8,,) — L3, ) < —¢, i=1,, g (56) bottom of the page. _ .
Let us now consider two possible cases regarding the value
Adding the ¢, inequalities above yields of s,,_1.
Case 1:If s,,_; = s*, then, aggregating over alf,,

—L{s,) < — . . :
L(su,,) = L(ss) < — s and recalling (55), we can write, for ang,,_; in some

or, sinces, = s subsequence o¥
L(s, ) — L(s*) < L(s) — L(s") — gse. .
’ > Prob[y, Co,)=(80..Ca)l By, 1 Cy, )
This inequality, together with (52), implies that (S4s,Cas )T
L(3,,) - Lis) < e = (. Cp)]

=Prob[s,, =53, _,,Cy._.)=(5,Cp 1)
Since e satisfies (51), we must havk(s, ) = L(s*) for Buse = 8 [Sus: Cue) = 7 Cars)]

all paths satisfying (56), which in turn implieg, =

since the optimuns* is assumed unique Therefore, for every NOW Iet us consider a subsequen{:@z, i)} with @ =

subsequence) = {(3,.,C, )i = 0,1,---,¢)} considered, Ya—1>""">¥s @Nd3y, , = $,, = s". Observing that all
(55) holds. subsequence$(s;,C;)} restncted tOsZ = s for all ¢« =
Before proceeding with the main part of the proof, let uu—1," > ¥q, fOrm a subset of all the subsequences above,

also define, for notational convenience, a $eto contain all @nd exploiting once again the Markov property of the process
subsequences of the forias specified above, or any part ofl (3,Ci)}, we can clearly write
any such subsequence, i.e., af($,,,Cy. ), -, (Sy..,Cu..)

with n < m andn,m € {0,1,---,qs}. Probs, =88, ,,Cy, ) =(8".Cp1)]
Then, for anys £ s* and anyC, all sample paths restricted Yas
to include some) € ¥ form a subset of all sample paths that > Z H
lead to a state such thag_ = s*, i.e,, {Cl =Ygy 1, 1Yas } =Yg, —1+1
Prob s, =$|(5,.C.) = (5.C)] Prob[(8:,C;) = (57, C)I(Gi-1,Cim1) = (57,C/y)]
> — (s C:
= Z i Prob[(3,,Cy.) = (8, i), whereC;, | = C4—1. Using the definition ofdy(s,C) in
{@,Co)yi=1, g} W ‘ L (33) and” noticing that, gives, = s* L(814+1) < L(8)
i=1,6/:C)=(5C)] s equivalent tod; = s* when the optimum is unique,

(57) each term in the product above can be replaced[lby

> HPxob 8,.,Cy;) = (51,C)| By, 1, Cyi ) = (8i21,Ci1)]
{(s C),7 1,-,1]_;}&“!1—
’Is_l . .
<H Prob[(8y,.Cy,) = (81,C:)|(8y,_,.Cyi_y) = (8i—1,Ci1)]
[(Si,Cg),i:l,“g(]s*l}C‘I/ i=1

X Z Prob [(éyqs7 é’yqs) (3(1576 )|(syq_g—l7cyqs—l) (S(Is17cq.sl)]> (58)
(8¢5 :Cas JET
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di_l(éi_l,éi_l)],i = y4.—1 + 1,- -+, 9, . In addition, from This procedure can now be repeated by decomposing a
Lemma 4.2, we havé, > di(s,C). Therefore subsequence) with (g; — 1) elements into its firs{g, — 2)
elements and the remaining elemésy; _,,C,.—1) and so on.
Prob [3,, =s"|(8,, ., fyq ) =(8",Cp )] Note_ that in this case the value of tr_le last state at _each step
. ® ® of this procedures,,_;,i = 1,---, g, iS not necessarily*.
> H (1—d;) > (1—d,, ,)¥e Vst However, |fsqs__i_1 = 8,_; = s, then Case 1.conS|dered
imyy 11 : earlier applies; ifs,,_;_1 # s*, then Case 2 applies.

Thus, afterg, such steps, we arrive at
Prob [8,, =$((8:.C.) = (5.C)]
where the last two inequalities follow from the fact thétis > (1 —dy)¥evo (1 —e,)%.

monotone decreasing and the fact that> x. Sincex > k/2 > |k/2] according to (53) and sincé

Case 2:If s,,_; # s, then by the definition of any
subsequence) € U, we must have a strict cost decreaseand ex are monotone decreasing according to (39) and (49),

i.e., L(s,, ) — L(sy, _,) < —e. Therefore, for anyC,, 1 in fespectively, we have

> (1= d s~ (59)

some subsequence &, we can now write de <djgy2; and e; <ejp2)-
> Prob[(,,,Cy,) = (84.Cq) Thus
(®us Caa)CF i Prob[5,, = s*[5,,C,]
|(‘§yqs—1vcyqs—1) = (S(Is_17cq.s_l)]) 2 (1 _ de/?J )yQS_yO(l _ eLk/QJ)q- (62)

= Prob[L(s, )— L(s, _,) < —¢
[ ~( vis) - S On the other hand, noting thgt, < & according to (54),
|8ya—15Crams) = (82.-1,C.—1)] consider{(3,C)} starting from(s,,C..). Then

= Prob[L(Sy,, 14, ) <Ly, ) Prob [ = 5°|(8,C.) = (5,0)]

8 d = (84.-1,Cq_ 60 . N
|(syqs—1 1 Y Ygs—1 ) (s(ls 1,%qs 1)] ( ) 2 Z Prob [(éyqs ; cyq_,‘) — (3*7cyqs)7 (517 cz)

recalling the choice ot in (51). (Ciiimyaq ok}

We can now make use of the definition &f(s,C) in (46) = (8, C) i =y 1k
and write oL

e 8:.C) = (5.0)]
Yas—1
= Prob[L(3y, ,1a, ) <L(,. ) where we have used the fact tisgt = s*. Using, once _again,
CTET T * the Markov property and the same argument as in Case 1
|8y 1 Cyop 1) = (8gs—1,Cq—1)]- earlier to introducedy,, we get

_ Then, making use of the monotonicity @é,i}_established Z Prob [, ,C, ) = (s",C, ), (5, C)
in Lemma 4.5 and the fact that > z forall i = 1,---, ¢, (Crimg k)
we get P

_(S* c) ,~:qum +17"'7k

Z Prob [(éyqs,éyqs) = (sqschs) |(saz7 az) (S,C)]

(8¢5:Cqs )ET

(G 1o ) = (s )] T iy P G = )
Z1l—ecy, 21— cs. (61) e s
- o y (82, Cr) = (8,C)]
Therefore, combining both cases, i.e., inequalities (59) and b1
(61), we obtain the inequality « H Prob [(§;L+1,5;L+1)
Z Prob [(éyQS’éyq;) = (s’ls7 C’Is) h=vas ~
(845:Cas YEW = (8", Cry1)|(81,Cn) = (s, Cp)]
|8yt Crges) = (831, Cg—1)] L i
> min {(1 — dg)¥ee Yo, 1= e} 2 (1= diryap)= 7" (1 = eppya)* }H (1= dn)
=Yqe

> (1 —dy)¥s"Ys"1(1 —¢,).
Returning to (57) and using the inequality above, we obtain
Prob [8,, =§((8:,Cs) = (5,C)]

> (1 —ey2)i(1 - de/QJ)k_m
= (1= epyz) (1 — dipyz)) ™

Consequently
2 (1= dy)?e="Yeemt (1 — eg) 5, s
1 Prob [§, =§"] = F[Prob [$; =s%|(5:,Cs) = (s,0)]]
X > [ Prob(,..C,0) > (1= eppy2)) (1 — dipy2) )1
{(8:,Cs),i=1,-,qs—1}€W i=1 =(1— @Lk/QJ)q[(l _ de/QJ)Oék]q — 1,

= (s:,Ci)

(éyi—17c~yi—1) = (si—lvci—l)]' ask — oo (63)
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where the limit follows from (50) in Lemma 4.5 and the choice Number of lterations (k)

of a; satisfying (45). This proves the; } converges tG*  Fig. 2. Typical trace for different initial allocations.
in probability. [ |
Remark: If the optimal allocations® is not unique, the - . . .
analysis above can be extended to show that convergenc@% satisfied since there might be several permutations of an

to a set of “equivalent’ allocations as long as each optimug'l\ cation tgat yﬁld the same performa.nce. fHowever, thli
is neighboring at least one other optimum. When this aris ges not affect the convergence properties of our approach,

in practice, what we often observe is oscillations betweds discussed in Section Il. Assumptions A2) and A4) are both
allocations that all yield optimal performance common for the problem considered and were verified through

simulation. Finally, using unbiased performance estimators,
one can also guarantee that A5) is satisfied and verify it
o _ ) _through simulation.

The deterministic algorithm of Section Il has been applied For this problem, one can directly apply the algorithm
to several resource allocation problems for which one c@@rresponding to the process (28)—(32). For simplicity, we

readily verify that it converges to an optimal allocation anflaye assumed that the arrival process is Poisson with rate
that it does so much faster than comparable algorithms such_ 5 o and all service times are exponential with rates

as exhaustive search, random search, and various forms of hill_ 1 o ; — 1,... 6. Furthermore, all routing probabilities
climbing (see [4]). In what follows, we will concentrate onyere chosen to be equal, i.@; = 1/6,i = 1,---,6. Fig. 2

. . . . . LA J ? ? R *
the algorithm applied tstochastiadiscrete resource allocationgpgyws typical traces of the evolution of the algorithm for this

problems. system whenV = 6 users andy = 24 buffer slots (resources).

As an application, we consider a buffer allocation problef, this problem, it is obvious that the optimal allocation is [4,
for a queueing system as shown in Fig. 1, where each Seers 4, 4, 4] due to symmetry.
represents a user and each buffer slot represents a resourgge to traces of Fig. 2 correspond to two different initial
that is to be allocated to a user. Jobs arrive at this systefications. In this case, the simulation length is increased
at a rateA and are routed to one of th¥ users with SOMe |ineqry in steps of 3000 events per iteration, and one can
probability p;,7 = 1---N. Each user is processing jobs at @iy see that even if we start at one of the worst possible

rate p;,i = 1N ar]d if a job is routed to a user With 5 10cations (e.g.,[19,1, 1, 1, 1, 1)), the cost quickly converges
a full queue, the job is lost. LeL;(n;) be the individual ;) o neighborhood of the optimal point.

job loss probability of theith server(n; is the number of 1o first issue that arises in the implementation of
buffers allocated to théh server). Our goal is to allocate aIIthe algorithm is obtaining the finite difference® =

K available buffer slots to the users in order to minimize tthil(nl) -..,ALn(ny)]. Note that this is an online
objective function Do SRGY

V. APPLICATIONS AND SIMULATION RESULTS

algorithm, so we can obsenjé, (71 ), -, Ly(7in)], where
N N [71,---,7n] is the nominal allocation, i.e., the allocation that
ZLi(m) s.b. Zm =K. the actual system is presently using. In order to obtain the
=1 =1 vectorD, we also need.(m; —1),i = 1,---, N, and for this

Remark: Here we have assumed that the coefficients of tigirpose we assume that the reader is familiar with schemes
individual cost functions ared; = 1 for all ¢ = 1,---,N that can extract such information from a single sample path
just for testing purposes. Note, however, that one could usich as finite perturbation analysis (FPA) and CE [2], [6].
any coefficients to introduce job classes or a simple form of In addition, every iteration requires an estimaé ;- (n- ),
prioritization into the model. which in turn required ;- (72;- +1). However, we do not know

Clearly, the structure of the objective function satisfies thie advance which user is going to be selected*adf it turns
separability assumption Al). In general, Assumption A3) isut that some FPA or CE technique can be easily implemented
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Fig. 3. Effect of f(k) on the convergence of the algorithm. Fig. 4. Effect of f(k) on the convergence of the algorithm.
with little additional computational cost, then one can use such TABLE |
a technique to evaluatéj(ﬁj + 1) for all j=1--- N AVERAGE NUMBER OF ITERATIONS FOR
and then just use only the value correspondingtowhen DIFFERENT SYSTEM UTILIZATION
this user index becomes available. If this is not the case and A | Ave k
this approach is computationally infeasible or too wasteful, an 182.0
alternative is the following. An FPA or CE technique may be 75.2
110.3

used to estimate the index&s j* and then change the nominal
allocation for some time interval in order to get an estimate of
Jij*(ﬁj* +1). If it turns out that this change was appropriate,
ie., 5“5;,5;:) >0, then this new allocation is maintained;out the efficiency of this algorithm, since it is able to converge
otherwise, we simply revert to the previous allocation and the optimum by visiting only a small number of allocations
continue with the algorithm execution. out of a large search space; in the example considered here, the
The next issue concerns the way in which we increase thearch space consists(@ff + N —1)!/KI(N—-1)!) = 118755
simulation lengthf (k). Here, we are faced with the usualllocations.
tradeoff encountered in stochastic optimization algorithms: A related issue arises in situations where the algorithm is
when % is small, using large values of(%) produces good used to track changes in the operating environment of the
estimates for the next iteration and hence the optimizatiegstem (e.g., changes in the arrival or processing rates in the
process is more likely to make a step toward the optimaxample of Fig. 1). In this case, if we alloyi(k) to become
but it forces the system to operate under a potentially higimfinitely large, then we lose the ability to adapt the allocation
cost allocation for a long period of time. Because of th® the new conditions. One may therefore be willing to sacrifice
ordinal nature of our algorithm, however, we take advantaggptimality for this adaptivity property.
of the fast convergence rate of ordinal estimates (see [7]) and_astly, we have investigated the performance of the algo-
rapidly reach a neighborhood of the optimal allocation eveithm as the system utilization changes. Table | shows the
though estimates of the corresponding cost may not be vexyerage number of iterations required (over ten different initial
accurate. The effect of the way in whick(k) is increased allocations) before the system described above remains at the
is seen in Fig. 3. When we increagék) using large steps optimal allocation forA/ = 50 consecutive iterations for
(3000 events), then we see that the algorithm convergesdifferent arrival rates wherf(0) = 10000 events andf (k)
the optimal allocation monotonically, but slowly. When wes increased by 10000 events at every iteration. As shown in
increasef (k) with smaller steps (500 events), then we see th@able |, when the system utilization is high (i.e\,= 5.0)
we converge to the neighborhood of the optimal much fastertaen in order to get good estimates of the loss probability
the expense of some oscillatory behavior. A magnified versitiirough simulation we need to run long simulations, and this
of Fig. 3 is shown in Fig. 4, where it can be seen that the reflected in the high number of iterations required before we
algorithm reaches the neighborhood of the optimal allocatiaettle to the optimal allocation. When the utilization is reduced
in about 17 000 events. Finally, from Figs. 3 and 4 it can bg. = 3.0), then convergence to the true loss probability is
easily seen that reducinf( %) further (to 50 events) causes thanuch faster, and therefore the algorithm settles at the optimal
system to change too fast resulting in slower convergenceimofewer iterations. Finally, when we decrease the utilization
the optimal allocation. Overall, however, it is worth pointingeven more A = 1.0), the simulation estimates converge even
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faster; however, the difference between the objective functionsCase 1: If i}, = 43, then, from A2)
at neighboring allocations becomes very small and the system
ends up oscillating between near-optimal allocations, which 2L (ipk) > ALi; (ni g — 1) = ALi | (nig | e1)-

in turn increases the number of |te_rat|ons that_ are requiredcgge 2: If it # i, = p, then there are two possible
before the system settles at the optimal allocation. Note thgfhcases.

the average.number of iterqtions may seem high; howevercase 2.1: I p = ji, sinced; >0, we have

most of the time the system is already in the neighborhood of

the optimal allocation. AL (nig k) > ALp(npp + 1) = ALz (i, k1)

Case 2.2:If p # j7, then by the definition of; and the
VI. CONCLUSIONS AND FUTURE WORK fact thatn, x = np k41

We have considered a class of resource allocation problems ALi: (niz 1) 2 ALp(npx) = ALizﬂ(”iz“:kH)-
which can be formulated as discrete optimization problems.
We have derived necessary and sufficient conditions for a u
globally optimal solution of the deterministic version of the The proof of P2 follows the lines of P1. More specifically,
problem and proposed an explicit algorithm which we hayeote that ifé, < 0, then, from (14) and the definition of;
shown to yield a globally optimal allocation. We have subsé.e. (16)] AL (. k41) = ALj:(nj; &), SO in this case
quently studied the stochastic version of the problem, in whiéh= 1. On the other hand, i, > 0, then there are two cases.
costs can only be estimated, and proved that an appropriatelf-ase 1:If ji = ji,, then, from A2)
modified version of this algorithm converges in probability to . . _ y y
the optimal allocation, assuming this allocation is unique. ALy (nig ) <ALjy (g +11) = Al (57, 1)

A crucial feature of our stochastic resource allocation aénd so agairb = 1.
gorithm is the fact that it is driven bgrdinal estimates; that ~ Case 2: If j; # j;,; = p, then there are two possible
is, each allocation step is the result of simple comparisons ©afbcases.
estimated quantities rather than theardinal values. Based Case 2.1:If p = ¢}, sinceé, >0, we have
on recent results demonstrating the fast convergence of such

estimates (often exponential, as in [7]), it is not surprising that ALj (g aern) = ALp(npp — 1)

the numerical results for the example presented in Section Vit now AL (npx —1) > ALj+(n;- ), thenb = 1. On the

suggest a very efficient resource allocation scheme for thig - 21 ﬁispgossiblta_thal% (;k’]’: 7 1) <AL».(n» Y
J p\Tip,k Ja\Tb k)

type of problem. It remains, however, to further analyze tr]ﬁ this case, we know thaf , , = p. Using P1 and the fact that
convergence rate of the process considered in Section IV, ' +1

which is the subject of ongoing research. We also note that a L, (nj;,  k+1+1) = ALyp(np a1 +1) = ALy(np k)

attractive feature of the discrete resource allocation algorithm — AL (ng 2)

is the absence of a “step size” parameter, which is necessary e

in gradient-based schemes and often crucial in guaranteeing clear thats,,; < 0 which implies thatC;; = Cy — {p}.

convergence. _ . _ . This fact and the definition of; imply that ALJ»;“(-) >
As mentioned in the introduction, an alternative approac@Ljf(.)’ so in this casé = 2.

for solving such discrete resource allocation problems in-Case 2.2:1f p # it, then by the definition ofjf and the

volves transforming them into continuous optimization prol§act thatn, x = nprt1

lems which may be solved using standard iterative gradient-

based schemes (see [3]). Although this approach was shown to ALy (nj; &) S ALp(np k) = ALy (njp, kt1)-

be promising, a full analysis of its properties and comparison

with the algorithm in this paper have yet to be carried out. Next, we prove property P3. First, note that whes i we
Finally, we should point out that the resource allocation protl')ﬁuSt h:aveSk - 0. Otherwise fr'om (1’4) we get; 511 :"‘n‘ }
lems studied in this paper are based on certain assumptions . " " n Erom (1’9) this imp;Iies th% * _ i*“:
regarding the cost structure of the problem. For example, Vg\a'ewhich vi(’)Iatejs our assumr;tion thats£ i* for ‘J]g1<l<’“m
have considered cost functions in probléRA2) which are T}]erefore withéy, > 0, (14) implies thatn ’i =g — 1'
separable in the sense that ttie user’s cost function depends n additior; o — n’ e 1 sin%eJr £ ?c’)r all l
only on the number of resources this user is allocated. TLJ e = TpkAL T Bk P74

: . RS Gch thatk <1< m andp € C,,. We then have
relaxation of these assumptions and its implication to our

approach is the subject of ongoing research. Om =ALix (nix, m) — ALy(npm +1)
=ALi;, (niy, m) — ALp(np k)
APPENDIX | =ALg; (niz, m) — ALz (niz 1) <0

PROOFS OFLEMMAS FOUND IN SECTION Il where the last inequality is due to P1. Therefore, (23) imme-

Proof of Lemma 3.1:To prove P1, first note that ify, < diately follows from (18). [ |
0, then, from (14)ALZ‘ZI+1(”Z‘Z+1J€+1) = AL (ni; x)- On the To prove P4, first note that whem = j; we must have
other hand, ifé; > 0, then there are two cases. b > 0. If 6, < 0, then from (18),p is removed fromCy, in
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which casey € C,,, for anym > & and it is not possible to have user through (14) or 2) one user index is removed fl&m

p =iy, as assumed. Therefore, with > 0, we getn, ;+1 = through (18), in which cas€],, ; = p, and we have the exact
npk + 1 from (14). Moreovern, ., = n, 141 = npi + 1,  Same situation as in stép[if Case 2) persists, clearly;| = 1
sincep # j; for all [ such thatk <! <m, andp € C,,. We for somel < k+ N — 1]. Under Case 1), because of property

now consider two possible cases. P5,p cannot receive any resources from other users, therefore
Case 1:If 6, >0, thenny i1 = npm — 1 = npi. The in the worst case will give away all of its initial resources
following subcases are now possible. to other users and will subsequently not be able to either give

Case 1.1:If there is at least ong < C,,4; such that or receive resources from other users. Singg < K for any
AL;(njmt1)> ALy mt1(npm+1), then we are assured thatk, it follows thatp can be involved in a number of steps that
iy # po I gh., = argmingec, ,, {ALi(nim41)} iS is bounded byK 4+ 1, where one is the extra step wheris
unique, then, sincg; = p and n, m41 = np i, it follows removed fromC; at somek. Finally, since there aréV users
from P2 thatj;;, ., = p. Now considers,,,1 and observe that undergoing this series of steps, in the worst case the process

terminates inN(K + 1) steps.
b1 = ALi:ﬁ+l(ni:ﬁ+l’nl+l) — ALy(npmt1 +1) This simple upper bound serves to establish the fact that the
= ALz‘;H(”i;H,mH) — AL, (npm) process always terminates in a finite number of steps. We will
—ALi (i mp1) = ALix (nge ) <0 use_thls fa_ct together with some of the properties in I__emma 3.1
ALY L T = to find a tighter upper bound. Let the initial allocation e
where the last inequality is due to P1. Therefore, from (189ince the process always terminates in a finite number of steps,
Cra2 = Crg1 — {p} and (24) holds fory = 1. there exists some final allocatigh = [71,---, %] Which,

If, on the other handj, ,, is not unique, then it is possiblegiven sy, is unique since the algorithm is deterministic. An
that j%, ., # p since we have assumed that ties are arbitrarigflocationn; ;. at thekth step can be written as follows:
broken. In this case, there are at magst< N — 1 steps
before j;,,, = p. This is because at step + 1 either

6771-1—1 S 0 and j:(n-l—l is removed fromcrn-l—lv or 6771—1—1 >0 Wheredi7k — {_K7 ceey _1707 17 .. 7K} and Ei\;l di,k =0

and, from (14),n;: m+2 = nj; ,m+1 + 1, I Which case o o 1"— 1 ... since all allocations are feasible. Now
ALj (s ,mt2) > AL (e mi1) from A2). The  gefine the following three sets:
same is true for any of the steps afterm. Then at step

Nk = M + dig

m+q+ 1, we gets,..,+1 < 0 by arguing exactly as in the Ap ={i: dix, >0}, By ={i: djj, =0}
case whergj, . ; is unique, withm +1 replaced byn +q+1, Cr ={i: dip <0}
and again (24) holds.
Case 1.2:If AL;(n;,+1) is the same for alfj € Cp, 41, and note that at the final state = 0 forall # = 1,---, N.

then it is possible that?, ., = p. In this caseg; <0 for all Due to P3, at every step we haifee Ay (recall that once a
I>m+ 1 due to A2). Thereforej?, ., will be removed from User is sglepted ag it can only give away resources to other
Cpnq1 through (18). Moreover, sincé,,; = p by (19), this users). Similarly, due to P4y € By U C.

process repeats itself for at magt< N — 1 steps resulting At every step of the process, there are only two possibilities.

iN Cotqr1 = {p}- 1) If 6,.>0, letp =14} € Ay andg = j; € B UCy. Then,
Case 2:If 6,, < 0 and j:, = r wherer # p, then at the next step, (14) implies théf .41 = d, » — 1 and
Cry1 = Cm — {r}. In this case, note thaf, ,; =iy, = p, and dgrt1 = dgp + L.

depending on the sign @f,,+1, we either go to Case 1 or we 2) If é; < 0, then a user index fronB;, is removed from
repeat the process of removing one additional user index from the setCy.

theC,, 11 set. In the event tha, < 0 for all I > m, all j; will Moreover, from the definitions of the three sets above, we
be removed from th€; set. The only remaining element inhave
this set isp, which reduces to Case 1.2 above. [ ] N N N
Property P5 follows from P3 by observing in (14) that the o a_ ‘ ‘
only way to getn,, ,,, >n,  is if j; = p andé; >0 for some ; dix=0= ; ik + ; diyk
k <1< m. However, P3 asserts that this is not possible, since i€AL i€Cy
p would be removed frond;. [ |

. and, therefore, we can write
Property P6 follows from P4 by a similar argument. The W wr

only way to getn,, ., <n, is if if = p andé; >0 for some N N
k <1<m. However, it is clear from the proof of P4 that Po= Y dip=—> din
p would either be removed frond;, possibly after a finite i=1 i=1
number of steps, or simply remain in this set until it is the last
element in it. m Wwhere0 <P, < Kforall k=0,1,---sinced <n;; < K.

Proof of Lemma 3.2:We begin by first establishing the Now let 7, be the initial value ofP, and let|Ao| be the
fact that the process terminates in a finite number of steipdfial cardinality of the setd,. We separate the number of
bounded byK (N + 1). This is easily seen as follows. Atsteps required to reach the final allocation into three categories.
any stepk, the process determines sorije(sayp) with two 1) Clearly, Py steps (not necessarily contiguous) are re-
possibilities: 1) either user gives one resource to some other quired to makeP;, = 0 for somek > 0 by removing

tC A tCCh
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one resource at each such step form usersd;,! < k. Then
During any such step, we ha¥g> 0 as in Case 1 above.
2) _ThesePQ steps would sufflc_e to empty the sdi, if Prob [L(Se41) > L(3)| 8k, Cr) = (8,C)]
it were impossible for user indexes to be added to it — Prob [5 (7* ;*)>0 and § (7* 7*)<O]
from the setB;,l < k. However, from property P4 it is T OD LR Tk AR T

possible for a usef such thatj € By, andj ¢ A; for all = > Prob[AL{ ™ (n;)
[ <k to receive at most one resource, in which case we {6,916k (d,5) <0}
havej € Ak..There are at mosy —| Ag| users with such _ Aijf(’“)(nj +1)>0
an opportunity, and henc¥ — | 4| additional steps are S e L
possible. During any such step, as in 1), we h&ve 0 arld (tk, Ji) = (4,7)]
as in Case 1 above. < > Prob [ALI® (n;)
3) Finally, we consider steps covered by Case 2 above. ((6,9)155 (i,5) <0}
g:cljtrer?:z,N — 1 steps are required to rea¢®y,| = 1 for _ Ai]f(k)(nj +1)>0]. (65)

Therefore, the number of stesrequired to reach the final
allocation is such thak < Py+ N —|A4g|+ N — 1. Observing L
thatPy < K and|A4g| > 1, we getL < K +2(N —1). Note
that | 40| = 0 implies that thes, = s, and in this case only _ - F ) - Fk)
N —1 steps [see 3) above] are required to reach the final state. ;i Prob[AL;(n;) — AL; ™ (n; 4 1) > 0] = 0.
Thus, N — 1 is the lower bound on the required number of

For each pair oft, j) satisfyingéx(i, ) < 0, we know from
emma 4.1 that

steps. n Taking this limit in (65), and also noticing the finiteness
of the set{(i, 5)|6x(¢, ) <0} for any pair(sy,Ci) = (8.C),
APPENDIX Il we obtain

PROOFS OFLEMMAS FOUND IN SECTION IV

Proof of Lemma 4.1:Let i dy (s.C)

-k -k = lim Prob[L(3 L(5)|(51,Ch) = (5,C)] =0
Fr = ALI® () — AL P (n,)) Jim Prob [L(Sir1) > L(Sw)|(8k, Cr) = (5,C)]

v =ALi(ni) — AL;(ng) <0. and the proof of (38) is complete.

Then, Assumption A4) antim; ... f(k) = oo guarantee Definition (39) immediately implies that; is monotone

that decreasing and tha} > di(s,C). The limit (40) then follows
o from (38). . |
Jm 2=z, as. Proof of Lemma 4.4:Givens;, = s,Cx, = C, consider the

. o . _eventL(s,41) = L(s;). According to the process (28)—(32)
Since a.s. convergence implies convergence in prObab'l'E}’nd (20)

we know that for every >0

klim Prob[|Zx — x| > ¢ = 0. If 61(5,, ji) >0, thenL(sy41) — L(sk) = —8x (i, jk)
and if 6, (45, 75) <0, thenL($p41) = L(5).
Settinge = —z > 0, we obtain

khm Prob [|i, — 2| > —a] = 0. (64) Therefore,L(sx+1) = L($) occurs if and only if

Finally, sinceProb [#; > 0] < Prob[|#x — z| > —x], it eith?r{(fk(fz’j;)>0’ btz 3x) = 0%
immediately follows from (64) that or {ox(iy, ji) < 0} (66)

Jim_ Prob[zx > 0] =0 for every k.

For notational convenience, consider, for dnythe events

which is the statement of the lemma. [ |
Proof of Lemma 4.2:Let 6,(¢,7) be defined as in As- T gE e e T ey
sumption A5). Givens, = s,Cx = C, consider the event Ay =100 75) > 0, &lay, 9x) = 0}
L(814+1) > L(8.). According to the process (28)—(32) and (20)and
s - . . - S =6, i) < 0V
If 5.(i%, 75) > 0, thenL(Sy1) — L(3) = —6x(it, 75) A =10k, ) = 0
and if 6, (47, ) <0, thenL(si11) = L(8k). Next, for any: > 1, define the following subset of

Therefore,L(8y+1) > L(8;) occurs if and only if ko ki =1

&(i5, 75y >0 and 6,(:%,75) <O0. R(i) = {h: 6u(55,55) <O, he{k, -, k+i—1}}
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and let];, be the cardinality of the sd%(ock) In addition, for Recalling the definition ofd},, we can write

any given integer, let R;(«;) denote such a set with exactly + _ + _
I elements. Then, define the set Pro b[A’L”Es’“’C’“) = (¢, €, AT (on = DA (o),
(skvck) = (37 C)]

Qi) = {k,- k4 — 1} — Ry(a) = Prob [ (if,, jis) > Oléw (if, . i) = 0,
(éh’aéh’) = (S/’C/)’.A—}_(Oék - 1),./47(0%),

containing all indexe& € {k,---,k + a3 — 1} which do not . 5
g { =1 61:C) = (5,0)

SatiSfy Sh(z;:vj;:) < 0.

Finally, define x Prob 8, (5, ) = 0,8, Cr) = (8,C'),
At (ay) = {47, for all h € Qr(az)} AT (o = DAL (), (31, Ci) = (,0)]
and Then, the Markov property of the process (28)—(32) implies

that
Prob [’A?L—,7 (éh’véh’) = (S/,c/),.A}—(CYk - 1)|Al_(ak)7
(8, Cr) = (s.C)]

A7 (on) = {45 b € Ry(on)}.

Depending on the value df, defined above, we can write

Prob [L(sn+1) = Lisn), h =k, - k4 — 1 = Prob [ (5, 75) > 016w (15, 75 ) = 0,
|(8%,Ch) = (5,C)] B, Cr) = (5,C)]
= Prob[L(Sni1) = L(sn) h =k, k+ap — 1, x Prob [6, (1%, 55) = 0, (31, Co) = (5, C"),
B <[]+ V(81 Cr) = (5.C)] AF (e, — DIAT (), (3, Ca) = (5,0)],
+Pr0b[‘~[’(§h+1) :L(éh)vﬁ’:kv"'vk"’_o‘k -1, (71)

However, by Assumption A5)
We will now consider each of the two terms in (67)P10b [6, (G5, 55> 0160 (55, 55) = 0, (3 é],) —(¢,C")]

separately.
The first term in (67) can be rewritten as < 1-po.
Prob [L@Gns1) = LGn), h =k, -k + g — 1, Thus, (71) be(~:omes
I < [C| + N|Gy, Cr) = (s, )] Prob [A}f, (81, Chr)
lc1+N =(¢,C"), Af (=D A; (), (31, Ci) = (5,C)]
Z Prob[L(snt1) = L(sp),h =k, -,k + ap — 1, < (1—po) Prob [8; (Lh’th )=0, (&1 7Ch y=(s,C"),
AT (ar—=1)| A7 (@), Br: Cr) = (5,C)]

I = 1|8, C) = (5,0)]. (68) s

. . . S (1—]70) PrOb [(sh’ach’) :( ’ )7

Using the notation we have introduced, observe that .A"'(a DA (), (3 e )= (5,0)]

T\ Ok — 7\ ), 9k, LE) = 9, .
Prob [L(8nq1) = L($n), h =k, -+ k+ o — 1, Using this inequality in (70), we obtain

jk = I|(‘§kvck) = (S,C)] P b[.A+( — % O —
_ ™ rob [A7 ()| A7 (), (8K, Cr) = (s,C)]
= > Prob[A7 (). Af ()[(31.Co) = (5.C)] < (1~ po) Prob [A* (e — DA (c0),

Ry (o) .
L s (81, Cr) = (5,C)].
= Y Prob[Af(aw)lA; (an), (8, Cr) = (5,0)] N ) : _
o) Continuing this recursive procedure, we finally arrive at
- Prob [A; ()| (8, Cr) = (5,C)]- Prob [Af (aw) A (ax), (8k,Cr) = (5,C)] < (1 —po)™*~*
(69) which allows us to obtain the following inequality from (68)
and (69):

Seth’ = k+ s — 1 and, without loss of generality, assume
thath’ & Ry(ay) (otherwise, ifh’ € Ry(ay) there must exist ~ Prob [L(8n41) = L(8n),h =k, -+, k+ap — 1,

some M such thatk + o, — M ¢ Ri(oy), and the same I < [C| + N|5x,Cr) = (376)]
argument may be used with’ = k + a3, — M). Then |C|_+N
N - ap—1
Prob [A ()| A7 (), (1. Co) = (5.C)] <> > -
— Prob [A,T,,A*(ak — 1) A7 (on), Gr.Cr) = (5.C)] 20 Bien)
Z PI‘Ob h/a S}L,’é'}L,) _ (SI,C/), |§i(])\};) [’AT (CYk)KSk,Ck) = (3, C)]
(s/,C") ap—T —1 ap—(|C|+N)
_ s < (1 =po)™* ™" <py (1 —po)™ :
Af (og — DIAT (o), (3, Cr) = (8,0)]. ; 0

(70) (72)
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Since0 < 1 — pp<1 by Assumption A5), and since

limg_, . ap = oo according to (44), the preceding inequality

implies that the first term in (67) is such that
klim Prob[L(Snt1) = L(8n),h =k, -,k + ap — 1,

Ik<|C|+N|(§k,Ck) I(S,C)] =0. (73)
Next we consider the second term in (67). Lgtbe the first
step afterk that we have eitheif, ¢ A or ji ¢ AR b =
Ek+1,--- k4 ag — 1. Clearly, k < .J < k + . We also
use (without confusion), = k + oy, to mean that}, € APe*
andy; € A forall h =k, k+1,---,k+ax — 1. Then the
second term in (67) can be written as
Prob [L(.§h+1) = L(éh), h=Fk---k+a,—1,
Li> [C] + NG, Ci) = (5,C)]
k+tap—1
= > Prob[L@n1) = LGEn),h=k, -,
J=k

k4o —1,1;>|C| +N,
T = J|G1.Cr) = (5.0)]
+ Prob [L(si41) = L(81), 4, € A™, jj, € A,
h=k, - k+a,—11,>[C|+ N, Cr)
=(s,C)]. (74)
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As for the second term in (74), we note the following facts.

1) Given thats; # s*, then either there is @ < Cr such
that 6;(i},7) >0 for any if € A=, or the setC,
first decreases tqﬁh| = 1 according to (32) and then
is reset toCy, in which case there is @ € Cy such
that 65 (43, j) > 0 (otherwises, would be the optimum
according to Theorem 1). Therefore, without loss of
generality, we assume that there ig & C;. such that
ox (i3, 7) >0 for any 43, € AP

2) As long as (66) holds anij, € ARax, j* € Awin

max {AL;(7; ;) } = max{ALi(n )},

JECH JECk
h=kk+1,--- k+a,—1.
3) One user is deleted from the sé, every time
oi(i3,75) < 0.
The previous facts 1)-3) imply that, when
L(éh-l—l) = L(éh)a
h=Fk---k+a,—1,

c Azlin’
INk > |C| + N

p max [k
th € Ah Jh

with probability one there exists &), k < M < k+ap — 1
such that

6l\~/lk ([’R]“J;]k) S 07 6}\~/Ik (LR]“J;]]\) >0.

We shall now consider each of the two terms in (74)

separately. In the first term, for anyk < .J < k+ay,, we have
Prob[L(sp41) = L(sp),h =k, -k + ap — 1,
L > [C| + N, Jy, = J|(3%,C1) = (5,C)]
< Prob [Jy = J|(8k,Ck) = (s,0)]
= Y Prob[Jy=J|(3s,Cr) =(5,C)]
{&.e)}

-Prob[(85,Cs) = (¢,C)|(8x,C) = (5,C)]  (75)

where the second step above follows from the Markov property

of (28)—(32). Moreover
Prob [J;, = J|(35,Cs) = (¢,C")]
< Prob[{1) ¢ A7} U {75 € AT} ((35,C5) = (,C")]
< Prob[if & A7™|(3s,Cs) = (¢,C)]
+Prob 55 & AF™|(35,C) = (+/,C")]
<ay+by <ap+by

where we have used (36), (37), (42), and the monotonicity
ay. andby,. This inequality, together with (75), implies that

[L(éh'l'l) = L(gh)vh = k7 T '7k + o — 17

L,>|C| + N, J,, = J|(3r,Cr) = (5,0)]
< (Oék - 1)(ak + bk)
By Lemma 4.3 and (44) it follows that

k4tap—1
Jim. ; Prob [L(Sn41) = L),

=

Ik‘,---,k‘—i—ak—1,jk>|C|+N,jk
= J|(81,Cr) = (,C)] = 0. (76)

Then, the second term in (74) becomes
Prob [L(8n41) = L(8n), ij, € AP™, i, € A,
h=k,o ko — 1 I> 0]+ NG, Ch) = (5.0)]
S Prob [6]\"41\' ('L}k\"lk ,j}k\"{k) S 0,
) > 0|(8k,Ca) = (.C)]

TE Tk
oy, ([’Mk I,

k+a,—1

= Z Prob [6x (i3, 53s) < 0,
M=k

(i, dhr) > 0| My, = M,
(ékvck) = (S,C)]

x Prob [M}, = M|(8x,Cr) = (s,C)]. (77)

Using Lemma 4.1, we know that
Prob [6y (T3, 73) < 0,8m (i3, J3s) > O[ My, = M,
(ékvék) = (37 c)]

2.

{G.5)EC w624 (3,5) >0}

of - -
Prob [6]\4(L,]) S 0|Mk = .2\47

(31, Cr) = (5,C)] — 0
ask — oc.
Therefore, we get from (77)
lim Prob [L(s41) = L) i} € A7, ji € A7,
h=k, - k+apr—1,L>[Cl+N
|(8%,Cr) = (5,C)] = 0.

The combination of this fact with (76) and (73) yields the
conclusion of the lemma. [ |
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Proof of Lemma 4.5:First, given (3,C;) = (s,C) and Thus
someay, defined as in (44), consider sample paths such thtol [L(5,,,) < L(5,),i =k, k+ax — 1
L(s;y1) S L(s;) foralli =k, k+1,-- -, k+ oy — 1. Observe I
that any such sample path can be decomposed into a set such |8k, Ci) = (5,€)]

that L(s;11) < L(s;) for somek < h < k+ a3 — 1 and a set ko
such thatl(5;41) = L(3;) forall i = k, k41, k+ap—1. = > I
Thus, we can write {L(sf)s%%'(iii’;jiﬁﬁ%;ak}Z=k+1
{LGiy1) SLGE),i=k, - k+ay—1} ~Prob(s:, Ci) = (s, )
={Fk <h<k+ar—1st. LEn41) <L), and |(8i—1,Ci—1) = (8i—1,Ci—1)]
L(sit1) < L(8),i =k, -,k +og — 1,0 # h} hton—1
U{LGiy1) = LG:),i =k, -,k + o — 1} (78) - 2. 11

{ (8:,C;),i=k+1, - k+tar—1, i=k+1

L(Si)SL(Sg_l),i=k+l,~~,k+ak71

Therefore

- [ Prob [(8:,C;) = (8i,Ci)|(8i—1,Ci—
Prob [L(sip1) < L) i =k, k+ap — 1 ( rob [(8;,C;) = (8:Ci)|(8i-1,Ci1)
(8%, Cr) = (s,C)] =(s;.1,Ci_1)]
=Prob[Ak < h<k . s.t. L(sp11) < L(sy,), and -
0 [L s L+~ak.s k(3;+1k) (&) > Prob((s;,C;)

] (3i+1)~_ . (&), 0=k, kg — 1, {(s;,C;),L(s;)<L(s;—1),j=k+oy}
4 7& h|(skvck) = (S,C)]

+Prob[LEi41) = L)1 =k, b o — 1 = elE G = Wlﬂj_l)])
|81, Ch) = (5,0)]
< Prob [L(3r4a,) < L(ék)|(.§k,Ck) = (s,C)] - > k+ﬁ_1
+ Prob [L(8i41) = L(8;),i =k, k+ag — 1 [ Gulhimhl o btan—L, =t
(8%, Cr) = (5,0)]. (79) Le)SL(ima)imhtl, ktap—1

- (Prob [(8;,C;) = (81,Ci)|(8i—1,Ci—1) = (8i—1,Ci—1)]
X Prob [L(Grta,) < L(Skrag—1)|Grtar—15Crtap—1)
= (sk—l—(yk—lack-i-(yk—l)])'

Now, recalling the definition ofl,(s,C) in (33), observe
that the last term in the product above is precisflly—
diton—1 Bkt —1,Crrar—1)]- Moreover, by Lemma 4.2 we

Using Lemma 4.4, the second term on the right-hand side
above vanishes as — oo, and (79) yields

klim Prob[L($;+1) < L(8;),i =k, - k+op — 1

|(8%,Cr) = (5,C)]. )
< lim Prob[L(8ita,) < L(3)|(3x,Cr) = (5,C)].

koo havedi i, —1 > ditay, -1 Btta,—1,Cria,—1). Therefore, we
(80) get
Prob 3 <L~Z‘,"Ik,---,k‘ c— 1
On the other hand, we can write rob[L(8 +1) (8:), o
|(8%,Cx) = (s,C)]

PI‘Ob[L(éH_l) SL(&Z),LIIC,,]C—‘,-CW -1 > (1_dk+ak—l) Z

§..C.) = (s.C 85,C3)i=h4 1, ktayr—1,

(8, Cr) = (5,C)] {L(s;()gh(i;q),i:k—l—l,---,lkc—l—(yk—l
= Z k4+ap—1 B
:,Ci)i=k+1,--k+a, . - S- ) = . .
{ e ikt . 2_1;[+1 Prob [(3;,C;) = (s:,C;)
. PrOb[(‘ii’CZ) (s“C) L_k+1 k+ak |(§7—laé7— ) (§7 lac7 1)]
|(skvck) = (S,C)] k+ap—1
. >z [ a-d)
The Markov property of ($x,Cy)} implies that i=k
> (1 —dy)™ (81)
Prob [(s;,C; i, Ci)yi=k+1,---k 4 . , .
rob [(8,C;) = (8i,Ci),é = k + o where the last inequality follows from Lemma 4.2, where it
|(3kack) (s,0)] was shown that/; is monotone decreasing in Hence, since
ktap L «y, satisfies (45), we get
4_11_1 Prob[(s:,Ci) = (s, Cs) klim Prob [L(si+1) < L(si),i =k, - k+ap — 1

1(8i—1,Ci_1) = (si_1,Ci_1)]. (3%, Cr)] = 1.
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Finally, using this limit, (80), and recalling the definition of[18] J. E. Wieselthier, C. M. Barnhart, and A. Ephremides, “Optimal admis-
e (s, C) in (46), we readily conclude that (48) holds. sion control in circuit-switched multihop radio networks,” Broc. 31st

IEEE Conf. Decision and Contrpll992, pp. 1011-1013.

Moreover, (49) immediately implies tha. is monotone [19] p. van and H. Mukai, “Stochastic discrete optimizatiorSIAM J.

decreasing an@; > ex(s,C). The limit (50) then follows Control Optim, vol. 30, 1992.
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