
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998 881

Ordinal Optimization for a Class of Deterministic and
Stochastic Discrete Resource Allocation Problems

Christos G. Cassandras,Fellow, IEEE, Liyi Dai, Member, IEEE, and Christos G. Panayiotou

Abstract—The authors consider a class of discrete resource
allocation problems which are hard due to the combinatorial
explosion of the feasible allocation search space. In addition, if
no closed-form expressions are available for the cost function of
interest, one needs to evaluate or (for stochastic environments)
estimate the cost function through direct online observation or
through simulation. For the deterministic version of this class of
problems, the authors derive necessary and sufficient conditions
for a globally optimal solution and present an online algorithm
which they show to yield a global optimum. For the stochastic
version, they show that an appropriately modified algorithm,
analyzed as a Markov process, converges in probability to the
global optimum. An important feature of this algorithm is that
it is driven by ordinal estimates of a cost function, i.e., simple
comparisons of estimates, rather than their cardinal values.
They can therefore exploit the fast convergence properties of
ordinal comparisons, as well as eliminate the need for “step size”
parameters whose selection is always difficult in optimization
schemes. An application to a stochastic discrete resource allo-
cation problem is included, illustrating the main features of their
approach.

Index Terms—Discrete-event systems, resource allocation, sto-
chastic optimization.

I. INTRODUCTION

DISCRETE optimization problems often arise in the con-
text of resource allocation. A classic example is the

buffer (or kanban) allocation problem in queueing models of
manufacturing systems [10], [20], where a fixed number of
buffers (or kanban) must be allocated over a fixed number
of servers to optimize some performance metric. Another
example is the transmission scheduling problem in radio
networks [5], [18], where a fixed number of time slots forming
a “frame” must be allocated over several nodes. In the basic
model we will consider in this paper, there are identical
resourcesto be allocated over user classesso as to optimize
some system performance measure (objective function). Let
the resources be sequentially indexed so that the “state”
or “allocation” is represented by the -dimensional vector

Manuscript received March 28, 1997; revised November 4, 1997. Recom-
mended by Associate Editor, E. K. P. Chong. This work was supported in
part by the National Science Foundation under Grants EEC-95-27422 and
ECS-9624279, by AFOSR under Contract F49620-95-1-0131, and by the Air
Force Rome Laboratory under Contract F30602-95-C-0242.

C. G. Cassandras is with the Department of Manufacturing Engineering,
Boston University, Boston, MA 02215 USA.

L. Dai is with the Department of Systems Science and Mathematics,
Washington University, St. Louis, MO 63130 USA.

C. G. Panayiotou is with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA 01003 USA.

Publisher Item Identifier S 0018-9286(98)04895-8.

, where is the user class
index assigned to resourceLet be the finite set of feasible
resource allocations

where “feasible” means that the allocation may have to be
chosen to satisfy some basic requirements such as stability
or fairness. Let be the class cost associated with the
allocation vector The class ofresource allocationproblems
we consider is formulated as

where is a weight associated with user class is a
special case of a nonlinear integer programming problem (see
[14], [16], and references therein) and is in general NP-hard
[14]. However, in some cases, depending upon the form of
the objective function (e.g., separability, convexity), efficient
algorithms based on finite-stage dynamic programming or
generalized Lagrange relaxation methods are known (see [14]
for a comprehensive discussion on aspects of deterministic
resource allocation algorithms). Alternatively, if noa priori
information is known about the structure of the problem, then
some form of a search algorithm is employed (e.g., simulated
annealing [1], genetic algorithms [13]).

In general, the system we consider operates in a stochastic
environment; for example, users may request resources at
random time instants or hold a particular resource for a random
period of time. In this case, in becomes a random
variable, and it is usually replaced by Moreover, we
wish to concentrate on complex systems for which no closed-
form expressions for or are available. Thus,

must be estimated through Monte Carlo simulation
or by direct measurements made on the actual system. Problem

then becomes a stochastic optimization problem over
a discrete state space.

While the area of stochastic optimization overcontinuous
decision spaces is rich and usually involves gradient-based
techniques as in several well-known stochastic approximation
algorithms [15], [17], the literature in the area ofdiscrete
stochastic optimization is relatively limited. Most known ap-
proaches are based on some form of random search, with the
added difficulty of having toestimatethe cost function at every
step. Such algorithms have been recently proposed by Yan and
Mukai [19] and Gonget al. [9]. Another recent contribution to
this area involves theordinal optimization approach presented
in [11]. Among other features, this approach is intended

0018–9286/98$10.00 1998 IEEE

882 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

to exploit the fact that ordinal estimates are particularly
robust with respect to estimation noise compared to cardinal
estimates (see also [7]); that is, estimating the correct order of
two costs based on noisy measurements is much easier than
estimating the actual values of these costs. The implication
is that convergence of such algorithms is substantially faster.
These recent contributions are intended to tackle stochastic
optimization problems of arbitrary complexity, which is one
reason that part of the ordinal optimization approach in [11]
includes a feature referred to as “goal softening.” On the
other hand, exploiting the structure of some resource allocation
problems can yield simpler optimization schemes which need
not sacrifice full optimality. For example, in [3] an approach is
proposed whereby introducing auxiliary control variables, the
original discrete optimization problem is transformed
into a continuous optimization problem. The latter may then
be solved through a variant of a stochastic approximation
algorithm.

In this paper, we first consider the deterministic version of
problem for a class of systems that satisfy the separa-
bility and convexity assumptions, A1) and A2), respectively,
defined in Section II. Subsequently, we provide a necessary
and sufficient condition for global optimality, based on which
we develop an optimization algorithm. We analyze the proper-
ties of this algorithm and show that it yields a globally optimal
allocation in a finite number of steps. We point out that, unlike
resource allocation algorithms presented in [14], an important
feature of the proposed algorithm is that every allocation in
the optimization process remains feasible so that our scheme
can be usedonline to adjust allocations as operating conditions
(e.g., system parameters) change over time. Next, we address
the stochastic version of the resource allocation problem. By
appropriately modifying the deterministic algorithm, we obtain
a stochastic optimization scheme. We analyze its properties
treating it as a Markov process and prove that it converges
in probability to a globally optimal allocation under mild
conditions.

As will be further discussed in the sequel, two features
of the resource allocation scheme we analyze are worth
noting because of their practical implications. All iterative
reallocation steps are driven by ordinal comparisons, which,
as mentioned earlier, are particularly robust with respect to
noise in the estimation process. Consequently: 1) as in other
ordinal optimization schemes (e.g., [11] and [12]), conver-
gence is fast because short estimation intervals are adequate
to guide allocations toward the optimal and 2) there is no
need for “step size” or “scaling” parameters which arise in
algorithms driven by cardinal estimates of derivatives or finite
differences; instead, based on the result of comparisons of
various quantities, allocations are updated by reassigning one
resource with respect to the current allocation. This avoids the
difficult practical problem of selecting appropriate values for
these parameters, which are often crucial to the convergence
properties of the algorithm.

The rest of the paper is organized as follows. In Section II,
we use Assumption A1) to transform to an equivalent
problem Subsequently, we consider the deterministic
version of problem and present a characterization of the

optimal allocation under certain conditions. In Section III, we
propose an iterative descent algorithm and show convergence
to a globally optimal allocation in a finite number of steps.
In Section IV, we treat the stochastic version of the problem
and develop an algorithm for solving it. We analyze the
algorithm as a Markov process and show that it converges
in probability to a globally optimal allocation. In Section V,
we present an application to a stochastic resource allocation
problem and illustrate the properties of our approach through
several numerical results. We conclude with Section VI, where
we summarize the work done and identify further research
directions in this area.

II. CHARACTERIZATION OF OPTIMAL ALLOCATIONS

In order to specify the class of discrete resource allocation
problems we shall study in this paper, we define

(1)

where is the standard indicator function and is simply
the number of resources allocated to user classunder some
allocation We shall now make the following assumption

A1) depends only on the number of resources as-
signed to class, i.e.,

This assumption asserts that resources are indistinguishable,
as opposed to cases where the identity of a resource assigned
to user affects that user’s cost function. Even though A1)
limits the applicability of the approach to a class of resource
allocation problems, it is also true that this class includes a
number of interesting problems. Examples include: 1) buffer
allocation in parallel queueing systems where the blocking
probability is a function of the number of buffer slots assigned
to each server (for details, see Section V); note, however,
that A1) does not hold in the case of atandemqueueing
system; 2) cellular systems where the call loss probability of
each cell depends only on the number of channels assigned to
each cell; and 3) scheduling packet transmissions in a mobile
radio network, where the resources are thetime slots in a
transmission frame (see [5] and [18]).

Under A1), we can see that an allocation written as the
-dimensional vector can be replaced by

the -dimensional vector In this case, the
resource allocation problem is reformulated as

The cardinality of the state space involved in is
given by so that
an exhaustive search is generally not feasible. Deterministic
resource allocation problems with a separable cost function
have been studied in the literature (for a thorough treatment see
[14]). Several algorithms based on the theory of generalized
Lagrange multipliers are presented in [14, Ch. 4] where the
optimal solution can be determined in polynomial time. These
algorithms are based on relaxing the resource constraint so

CASSANDRASet al.: ORDINAL OPTIMIZATION 883

that the determination of an optimal solution is based on ex-
amining several infeasible allocations. Moreover, all relevant
information (in the form of an individual user cost vector

) is ob-
tained prior to the optimization procedure. In other words,
these are intended to beoffline algorithms. As mentioned in
the previous section, however, our ultimate goal is to solve
stochastic resource allocation problems where the cost function
is not available in closed-form. This requires that: 1) we resort
to estimates of and for all
over some observation period and 2) we iterate after every
such observation period by adjusting the allocation which,
therefore,must remain feasibleat every step of this process.
It is for this reason that we wish to deriveonline discrete
optimization algorithms. We shall first deal with issue 2)
above in Sections II and III. We will then address issue 1)
in Section IV.

In addition to A1), we will make the following assumption
regarding the cost functions of interest:

A2) For all is such that

where

(2)

with boundary values

and

This assumption is the analog of the usual convex-
ity/concavity requirement for the vast majority of gradient-
driven optimization over continuous search spaces. It is the
assumption that typically allows an extremum to be a global
optimum. The alternative is to settle for local optima. From
a practical standpoint, most common performance criteria in
systems where resource allocation arises are quantities such
as throughput, mean delay, and blocking probability which
generally satisfy such properties.

In what follows, there are two key results we will present.
Our first result is a necessary and sufficient condition for global
optimality in The second result is a necessary condition
for global optimality in which requires an additional
technical assumption in order to also become sufficient. Let

denote a solution of the optimization problem , i.e.,
is such that

for all

(3)

For simplicity, let in for all for
the remainder of the paper. (If it is required to have
then one can include that in the definition of)

Theorem 1: Under Assumptions A1) and A2), an allocation
is a global optimum [i.e., a solution of

] if and only if

for any (4)

Proof: First, define the set

for some

which includes all feasible neighboring points to
, i.e., vectors which differ from by 1 and 1

in two distinct components (recall that).
To prove that (4) is a necessary condition, assume thatis a
global optimum. Then, from (3), it is clear that
for all From this we can write

or

and, therefore

for any (5)

To prove the sufficiency of (4), let be an
allocation that satisfies (4), and let be a
global optimum. Therefore, satisfies (5), i.e.,

for any (6)

Let for all where
and subject to the constraint

which follows from the constraint Then,
define the set There are now two cases
depending on the cardinality of this set.

Case 1: In this case we have for all
so that, trivially,

Case 2: This implies that there exist indexes
such that and Therefore, we can write the

following ordering:

(7)

where the first inequality is due to (6), the second is due
to A2), and the third is due to our assumption thatsat-
isfies (4). However, for using A2), we have

which contradicts (7). It follows
that for an allocation to satisfy (4) only is possible,
which in turn implies that (7) holds in equality, i.e.,

(8)

Using A2), this implies that
This argument holds for any pair; therefore, we con-

clude that the only possible candidate allocationssatisfying
(4) are such that

for all

(9)

884 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Let the difference in cost corresponding toand be
This is given by

where in the last step we use (9) and This
establishes that if satisfies (4), then either

as in Case 1 or it belongs to a set of equivalent optimal
allocations that satisfy the equality in (3).

Note that Theorem 1 gives a necessary and sufficient
condition that the optimal allocation must satisfy in terms of
the cost differences for in only a small
set of feasible allocations, namely the neighborhood of the
optimal allocation

Next, we will derive a different necessary and sufficient
condition for global optimality in solving expressed
in terms of As we will see in the
proof of Theorem 2, necessity still relies on Assumptions A1)
and A2) alone, but sufficiency requires an additional technical
condition.

A3) Let be an allocation such that

for all If
then

for all

This assumption guarantees a unique solution to and,
as mentioned above, it is only used to prove sufficiency of
Theorem 2. If the condition is violated, i.e., there is a set
of optimal allocations, then, in the deterministic case, the
algorithm will converge to one member of the set dependent
on the initial allocation. In the stochastic case, the algorithm
will oscillate between the members of the set as mentioned in
the remark at the end of Section IV.

Theorem 2: Under assumptions A1) and A2), if an alloca-
tion is a global optimum [i.e., a solution of

] then

(10)

for all If in addition A3) holds, then
(10) also implies that is a solution of

Proof: Suppose that is a global optimum, and consider
an allocation such that We can then
express as

for all

where and subject to

(11)

which follows from the fact that is a feasible
allocation. Let If it
follows from (11) that there exists somesuch that
and two cases arise.

Case 1: If then

where the last step is due to A2) since
Case 2: If then first apply Theorem 1 to the optimal

allocation to get

(12)

Then, we can write the following:

where the second inequality is due to A2) and the fact that
and the last inequality is due to (12). Hence, (10) is

established.
Next, we show that if an allocation satisfies (10) and

A3) holds, it also satisfies (4), from which, by Theorem 1,
we conclude that the allocation is a global optimum. Let

and suppose that (4) does
not hold. Then, there exists a such that

(13)

Note that if no such were to be found, we would have
for all [because

of A3)] and we would not be able to violate (4) as assumed
above.

Now, without loss of generality, let and [
satisfying (13)]. Then, using A2), A3), and (13), the feasible
allocation is such that

which contradicts (10) for the feasible allocation
and the theorem is proved.

As already pointed out, A3) is not required in proving
the necessity part of the theorem, but only the sufficiency.
Also, note that Theorem 2 provides a characterization of
an optimal allocation in terms of only the largest
element in the allocation. What is interesting about (10) is

CASSANDRASet al.: ORDINAL OPTIMIZATION 885

that it can be interpreted as the discrete analog to continuous
variable optimization problems. In such problems with equality
constraints, it is well known that an optimal solution is
characterized in terms of the partial derivatives of the cost
function with respect to control variables (e.g., allocations
expressed as nonnegative real numbers); specifically, at the
optimal point all partial derivatives must be equal (e.g.,
see [8]). In order to derive a similar result for a discrete
optimization problem, one must replace derivatives by finite
cost differences, such as the quantities
defined in (2). The next “best thing” to equality in dealing
with cost differences taken from a discrete set is to keep these
differences as close as possible. This is expressed in terms of
the maximum value of such finite differences at the optimal
point in condition (10).

Having established some necessary and sufficient conditions
that characterize the optimal allocation, namely Theorems 1
and 2, our next task is to develop an algorithm that iteratively
adjusts allocations on line. These conditions then serve to
determine a stopping condition for such an algorithm, guar-
anteeing that an optimal allocation has been found. In the next
section, we propose such an algorithm taking advantage of (4)
in Theorem 1.

III. ONLINE DETERMINISTIC OPTIMIZATION ALGORITHM

In this section, we present an iterative process for deter-
mining a globally optimal allocation and study its properties,
which include a proof of convergence to such an allocation.
In particular, we generate sequences
for each as follows. We define a set

and initialize all sequences so that an allocation
is feasible. Then, let

if and
if and
otherwise

(14)

where and are defined as follows:

(15)

(16)

(17)

if
otherwise.

(18)

To complete the specification of this process, we need to:
1) ensure that the constraint is never violated
in (14) and 2) resolve the possibility that either in (15) or

in (16) is not uniquely defined.
Regarding 1) above, the constraint may be violated in one

of two ways. First, it may be violated if for some
and in (14). Observe, however, that

is undefined in (2), which in turn would make the definitions
of in (15) and (16), respectively, undefined, unless all
such that are excluded from the set Alternatively,
we will henceforth set

for all which clearly ensures that (15) may not
yield such that unless for all in
this case, however, (17) gives therefore

Second, it is possible to violate if for
some at step In this case, however, since

we must have for all and, therefore,

Regarding 2) above, in (15) and (16) ties (i.e., if there is
more than one index that qualifies as eitheror) are
assumed to be arbitrarily broken. Moreover, in the case when

and the choice of
and is also arbitrary, provided Finally, for

simplicity, we will adopt the following convention:

If and then (19)

This statement is trivial if the maximization in (15) gives
a unique value. If, however, this is not the case andis
determined by arbitrarily breaking a tie, then we simply leave
this index unchanged as long as for which implies
that all values remain unchanged.

Interpretation of (14)–(18):Before proceeding with a de-
tailed analysis of the processes for each

let us provide an informal description and
interpretation of the full dynamic allocation scheme (14)–(18).
Looking at (15), identifies the user “most sensitive” to the
removal of a resource among those users in the setwhile
in (16), identifies the user who is “least sensitive.” Then,
(14) forces a natural exchange of resources from the least to
the most sensitive user at theth step of this process, provided
the quantity is strictly positive (an interpretation of is
provided below). Otherwise, the allocation is unaffected, but
the user with index is removed from the set through
(18). Thus, as the process evolves, users are gradually removed
from this set. As we will show in the next section, the process
terminates in a finite number of steps when this set contains a
single element (user index), and the corresponding allocation
is a globally optimal one.

As defined in (17), represents the “potential improve-
ment” (cost reduction) incurred by a transition from allocation

to That is

(20)

which is seen as follows:

Note that if which implies that the cost will be re-
duced by allocation then the reallocation is implemented
in (14). If, on the other hand, this implies no cost
reduction under the candidate allocation and remains
unchanged as seen in (14).

886 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

A. Properties of the Resource Allocation Process

We begin by establishing in Lemma 3.1 below a number
of properties that the sequences and in (14) and
(18), respectively, satisfy. Based on these properties, we will
show that where converges to a
globally optimal allocation. We will also use them to determine
an upper bound for the number of steps required to reach this
global optimum.

Lemma 3.1:The process defined by (14)–(18) is character-
ized by the following properties.

P1: is nonincreasing in that is

for all

(21)

P2: is almost alwaysnondecreasing in
that is

for all and

(22)

P3: Let , and suppose there exists some such
that and for all Then

(23)

P4: Let and suppose there exists some such
that and for all Then, there exists
some such that

if
if

(24)

P5: Let Then

for any and for all

(25)

P6: Let Then

for any and for all

(26)

Proof: The proof of this lemma is included in
Appendix I.

Properties P3 and P4 are particularly important in char-
acterizing the behavior of the resource allocation process in
(14)–(18) and in establishing the main results of this section.
In particular, P3 states that if any useris identified as at
any step of the process and as then this user is
immediately removed from the set. This also implies that

is the number of resources finally allocated toProperty
P4 is a dual statement with a different implication. Once a user

is identified as at some step and as then
there are two possibilities: eitherwill be the only user left in

and, therefore, the allocation process will terminate,
or will be removed from for some

This discussion also serves to point out an important dif-
ference between P5 and P6, which, at first sight, seem exact
duals of each other. In P5, a user for some will never
in the future take any resources from other users. On the other
hand, in P6 it is not true that a user will never in the
future give away any resources to other users; rather, user
may give awayat most one resourceto other users. To clarify
this we consider the following scenario. If then from
(14) Now, if there exists such that

and then since
Thus, at step user gives

away a resource.
The next result establishes an upper bound in the number of

steps required for the process defined by (14)–(18) to converge
to a final allocation. A final allocation is defined to be one
at step with At this point, we may allow one
additional step to empty but this is unnecessary since no
further change in is possible.

Lemma 3.2:The process defined by (14)–(18) reaches a
final state in steps such that and

Proof: See Appendix I.
Theorem 3: Let be the final allocation

of the process (14)–(18). Then,is a global optimum [i.e., a
solution of].

Proof: First, by Lemma 3.2, a final allocation exists. We
will next show that this allocation satisfies

for any (27)

We establish this by contradiction. Suppose there exist
such that (27) is violated, i.e., and
suppose that were removed from and respectively
(i.e., at steps respectively). Then, two cases are possible.

Case 1: For to be removed from in (18), the
following should be true: and However

where the first inequality is due to the second is due
to property P1 in (21), and the last is due to the definition of

Therefore, our assumption is contradicted.
Case 2: Now is removed from first, therefore

where the two equalities are due to (18) and the fact that
and were removed from and respectively. In addition,
the first inequality is due to P2 in (22), and the last inequality
is due to A2). Again, our assumption is contradicted.

Therefore, (27) holds. We can now invoke Theorem 1, from
which it follows that (27) implies global optimality.

Corollary 3.1: The process (14)–(18) defines adescent
algorithm, i.e.,

for any

CASSANDRASet al.: ORDINAL OPTIMIZATION 887

Proof: This follows immediately from (14) and (18) and
the fact that in (20).

We conclude this section by presenting below a complete
resource allocation algorithm which implements (14)–(18) and
terminates by identifying a globally optimal allocation.

ALGORITHM (S1):

Initialize:

Evaluate

If Goto Else Goto
Set
Set
Evaluate

If Goto
Else Goto
Update allocation:

for all and
Set and Goto

Replace by
If Goto Else Goto

IV. ONLINE STOCHASTIC OPTIMIZATION ALGORITHM

In this section, we turn our attention to discrete resource
allocation performed in astochasticsetting. When this is
the case, the cost function is usually an expectation
whose exact value is difficult to obtain (except for very
simple models). We therefore resort to estimates of which
may be obtained through simulation or through direct online
observation of a system. In either case, we denote by an
estimate of based on observing a sample path for a time
period of length We are now faced with a problem of finding
the optimal allocation using the noisy information

It should be clear that the algorithm described by (14)–(18)
does not work in a stochastic environment if we simply replace

by its estimate For instance, suppose that
however, due to noise, we may obtain an estimate of
denoted by such that In this case, rather than
reallocating resources, we would remove a user from the
setpermanently. This implies that this user can never receive
any more resources, hence the optimal allocation will never
be reached.

Therefore, certain modifications are necessary. In particular,
we need to modify the process (14)–(18) in two ways. First,
we will provide a mechanism through which users can re-
enter the set to compensate for the case where a user
is erroneously removed because of noise. Second, we will
progressively improve the estimates of the cost differences

so as to eliminate the effect of estimation noise; this
can often be achieved by increasing the observed sample path
length over which an estimate is taken. We will henceforth
denote the length of such a sample path at theth iteration
of our process by

The following is the modified process in a stochastic en-
vironment, denoted by with

After proper initialization, at the th iteration we
set

if and
if and
otherwise

(28)

where

(29)

(30)

(31)

if
if
otherwise.

(32)

It is clear that (28)–(32) define a Markov process
whose state transition probability matrix is determined by

and Before proceeding, let us point out that
the only structural difference in (28)–(32) compared to the
deterministic case of the previous section occurs in (32), where
we reset the set every time that it contains only one element.
By doing so, we allow users that have been removed from the

set due to noise to re-enter the user set at the next step.
Of course, the actual values of all are now replaced
by their estimates,

An obvious question that arises from a practical stand-
point is that of obtaining the crucial cost difference estimates

At first sight, to estimate these quantities two
sample paths are required, one for and another for

However, for a large class of applications,
one can exploit a variety of techniques based on perturbation
analysis (PA) and concurrent estimation (CE) for discrete-
event systems (e.g., see [2] and [6]) to obtain
from a single sample path under an allocation Thus,
the convergence of the process above can be substantially
accelerated in many cases.

The following result simply establishes the fact that the
modification in (32) does not alter the properties of the
deterministic resource allocation process.

Theorem 4: The process described by (28)–(32), if driven
by deterministic quantities such that will
yield the optimum

Proof: If for all the stochastic
process (28)–(32) is the same as its deterministic version
before in a finite number of steps. However,
according to Theorem 3, means that the process
has reached the optimum and will not change thereafter.

As stated earlier, the second modification we impose is
to eliminate the effect of estimation noise by increasing the
observed sample path length as the number of iterations in-
creases. For this purpose, we make the following assumptions.

888 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

A4) For every and every the estimate is ergodic
as the sample path length increases in the sense that

a.s.

A5) Let For every
there is a constant such that

for any and any pair

Assumption A4) ensures that the effect of noise can be
decreased by increasing the estimation interval over

This assumption is stronger than actually needed
in Lemma 4.1 below, but it is mild and is satisfied by
most systems of interest. Assumption A5) guarantees that
an estimate does not always give one-side-biased incorrect
information; it will only be needed once in the proof of Lemma
4.4. Both assumptions are mild in the context of discrete-event
dynamic systems where such resource allocation problems
frequently arise.

In the remainder of this section, we will study the process
so as to establish its convergence properties. Our

main result is Theorem 5, where we show that this process
converges in probability to the optimal allocation

A. Properties of the Stochastic Resource Allocation Process

We begin with an auxiliary result that will prove very helpful
in all subsequent analysis.

Lemma 4.1:Suppose that Assumption A4) holds and that
Then, for any pair

and

provided that
Proof: The proof of this lemma is included in

Appendix II.
Next, we introduce some useful properties of the process

in the following few lemmas. These properties pertain
to the asymptotic behavior of probabilities of certain events
crucial in the behavior of We begin by defining
these events and corresponding probabilities.

First, let

(33)

so that is the probability that either some cost
reduction or no change in cost results from theth transition
in our process (i.e., the new allocation has at most the same
cost). We will show in Lemma 4.2 that the probability of this
event is asymptotically one, i.e., our process corresponds to
an asymptotic descent resource allocation algorithm.

Next, given any state reached by our process
(28)–(32), define

(34)

(35)

Observe that and are, respectively, the sets of
indexes and defined in (15) and (16) of the deterministic
optimization process (with exact measurement). Recall that

need not be uniqueat each step hence the need for
these sets. We then define

(36)

(37)

Here, is the probability that our stochastic
resource allocation process at stepcorrectly identifies an
index as belonging to the set (similarly for

). We will show in Lemma 4.3 that these probabilities
are asymptotically one.

Lemma 4.2:For any and any

(38)

Moreover, define

(39)

Then is monotone decreasing, and

(40)

Proof: See Appendix II.
Lemma 4.3:Suppose that Assumption A4) holds. Then, for

every pair we have

(41)

Moreover, define

(42)

Then both and are
monotone decreasing, and

(43)

Proof: Given the definition of the sets and
the proof of the first part follows immediately from

Lemma 4.1. The second part then follows from the fact that,
by their definitions, and are monotone decreasing.

The last asymptotic property we need establishes the fact
that there will be an improvement (i.e., strictly lower cost)
to an allocation at step if that allocation is not optimal.
However, this improvement may not occur within a single
step; rather, we show in Lemma 4.5 that such an improvement
may require a number of steps beyond the th step,
where satisfies certain requirements. A related property
needed to establish Lemma 4.5 is shown in Lemma 4.4; in
particular, if an allocation is not optimal at step then the

CASSANDRASet al.: ORDINAL OPTIMIZATION 889

probability that this allocation remains unchanged over
steps is asymptotically zero.

To formulate the property above in a precise manner, we
begin by choosing a sequence of integers satisfying

(44)

where, for any is the greatest
integer smaller than

Such a sequence exists. For example, any
satisfies (44)

(without loss of generality, we assume that
otherwise can take any arbitrary value). The choice of

is rather technical. Its necessity will be clear from the
proof of the following Lemmas 4.4 and 4.5.

Observe that if satisfies (44), we also have

(45)

since
With this definition of we now set

(46)

and observe that is the probability that strict im-
provement (i.e., strictly lower cost) results when transitioning
from a state such that the allocation is not optimal to a future
state steps later. We will establish in Lemma 4.5 that this
probability is asymptotically one. To do so, we first need the
following result, asserting that if an allocation is not optimal,
then the cost remains unchanged forsteps with asymptotic
probability zero.

Lemma 4.4:Suppose that A4) and A5) hold and let
satisfy (44). Consider an allocation
and any set Then

(47)

Proof: See Appendix II.
With the help of the lemma above, we obtain the following.
Lemma 4.5:Suppose that A4) and A5) hold. For any allo-

cation and any set

(48)

Moreover, define

(49)

Then is monotone decreasing and

(50)

Proof: See Appendix II.

B. Convergence of Stochastic Resource Allocation Process

With the help of the properties established in the previous
section, we can prove the following theorem on the conver-
gence of the process defined through (28)–(32).

Theorem 5: Suppose that Assumptions A4) and A5) hold
and that the optimum is unique. Then the process described
by (28)–(32) converges in probability to the optimal allocation

Proof: We begin by defining three auxiliary quantities
we shall use in the proof.

First, let us choose some such that

(51)

Note that such exists because of the discrete nature of
the cost function and the finiteness of the number of feasible
allocations. Observe thatis a real numberstrictly lower than
the smallest cost difference in the allocation process.

Second, for any set

Then

(52)

Finally, we shall define a convenient sequence that
satisfies (44). To do so, let and, for any
choose

Since the sequences and are monotone
decreasing by their definitions, the sequence is monotone
increasing and it is easy to verify that it satisfies (44).

The next step in the proof is to define a particular subse-
quence of as follows. First, set and
observe that

(53)

Then, define a sequence of indexes with
through

For sufficiently large such that it is easy to
verify by induction that

(54)

Now, for any and defined above, consider a subsequence
of denoted by

starting at and such that either
there is an such that

for all and

for all

890 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

or

and for all

In other words, any such subsequence is “embedded” into
the original process so as to give strictly decreasing
costs, and if it reaches the optimum it stays there afterwards.

The subsequence defined above has the additional property
that

(55)

This is obvious in the case where for some
On the other hand, if for all

we must have

(56)

Adding the inequalities above yields

or, since

This inequality, together with (52), implies that

Since satisfies (51), we must have for
all paths satisfying (56), which in turn implies
since the optimum is assumed unique. Therefore, for every
subsequence considered,
(55) holds.

Before proceeding with the main part of the proof, let us
also define, for notational convenience, a setto contain all
subsequences of the formas specified above, or any part of
any such subsequence, i.e., any
with and

Then, for any and any all sample paths restricted
to include some form a subset of all sample paths that
lead to a state such that , i.e.,

(57)

Because is a Markov process, setting
the previous inequality can be rewritten as

In addition, let us decompose any subsequenceinto its
first elements and the remaining element
Thus, for any subsequence whose th element is

there is a set of final states such that
so that we may write (58), as shown at the

bottom of the page.
Let us now consider two possible cases regarding the value

of
Case 1: If then, aggregating over all

and recalling (55), we can write, for any in some
subsequence of

Now let us consider a subsequence with
and Observing that all

subsequences restricted to for all
form a subset of all the subsequences above,

and exploiting once again the Markov property of the process
we can clearly write

where Using the definition of in
(33) and noticing that, given
is equivalent to when the optimum is unique,
each term in the product above can be replaced by

(58)

CASSANDRASet al.: ORDINAL OPTIMIZATION 891

In addition, from
Lemma 4.2, we have Therefore

(59)

where the last two inequalities follow from the fact that is
monotone decreasing and the fact that

Case 2: If then by the definition of any
subsequence we must have a strict cost decrease,
i.e., Therefore, for any in
some subsequence of we can now write

(60)

recalling the choice of in (51).
We can now make use of the definition of in (46)

and write

Then, making use of the monotonicity of established
in Lemma 4.5 and the fact that for all
we get

(61)

Therefore, combining both cases, i.e., inequalities (59) and
(61), we obtain the inequality

Returning to (57) and using the inequality above, we obtain

This procedure can now be repeated by decomposing a
subsequence with elements into its first
elements and the remaining element and so on.
Note that in this case the value of the last state at each step
of this procedure, is not necessarily
However, if then Case 1 considered
earlier applies; if then Case 2 applies.

Thus, after such steps, we arrive at

Since according to (53) and since
and are monotone decreasing according to (39) and (49),
respectively, we have

and

Thus

(62)

On the other hand, noting that according to (54),
consider starting from Then

where we have used the fact that Using, once again,
the Markov property and the same argument as in Case 1
earlier to introduce we get

Consequently

as (63)

892 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Fig. 1. Queueing system withN parallel servers.

where the limit follows from (50) in Lemma 4.5 and the choice
of satisfying (45). This proves that converges to
in probability.

Remark: If the optimal allocation is not unique, the
analysis above can be extended to show that convergence is
to a set of “equivalent” allocations as long as each optimum
is neighboring at least one other optimum. When this arises
in practice, what we often observe is oscillations between
allocations that all yield optimal performance.

V. APPLICATIONS AND SIMULATION RESULTS

The deterministic algorithm of Section III has been applied
to several resource allocation problems for which one can
readily verify that it converges to an optimal allocation and
that it does so much faster than comparable algorithms such
as exhaustive search, random search, and various forms of hill
climbing (see [4]). In what follows, we will concentrate on
the algorithm applied tostochasticdiscrete resource allocation
problems.

As an application, we consider a buffer allocation problem
for a queueing system as shown in Fig. 1, where each server
represents a user and each buffer slot represents a resource
that is to be allocated to a user. Jobs arrive at this system
at a rate and are routed to one of the users with some
probability Each user is processing jobs at a
rate and if a job is routed to a user with
a full queue, the job is lost. Let be the individual
job loss probability of the th server is the number of
buffers allocated to theth server). Our goal is to allocate all

available buffer slots to the users in order to minimize the
objective function

Remark: Here we have assumed that the coefficients of the
individual cost functions are for all
just for testing purposes. Note, however, that one could use
any coefficients to introduce job classes or a simple form of
prioritization into the model.

Clearly, the structure of the objective function satisfies the
separability assumption A1). In general, Assumption A3) is

Fig. 2. Typical trace for different initial allocations.

not satisfied since there might be several permutations of an
allocation that yield the same performance. However, this
does not affect the convergence properties of our approach,
as discussed in Section II. Assumptions A2) and A4) are both
common for the problem considered and were verified through
simulation. Finally, using unbiased performance estimators,
one can also guarantee that A5) is satisfied and verify it
through simulation.

For this problem, one can directly apply the algorithm
corresponding to the process (28)–(32). For simplicity, we
have assumed that the arrival process is Poisson with rate

and all service times are exponential with rates
Furthermore, all routing probabilities

were chosen to be equal, i.e., Fig. 2
shows typical traces of the evolution of the algorithm for this
system when users and buffer slots (resources).
In this problem, it is obvious that the optimal allocation is [4,
4, 4, 4, 4, 4] due to symmetry.

The two traces of Fig. 2 correspond to two different initial
allocations. In this case, the simulation length is increased
linearly in steps of 3000 events per iteration, and one can
easily see that even if we start at one of the worst possible
allocations (e.g., [19, 1, 1, 1, 1, 1]), the cost quickly converges
to the neighborhood of the optimal point.

The first issue that arises in the implementation of
the algorithm is obtaining the finite differences

Note that this is an online
algorithm, so we can observe where

is the nominal allocation, i.e., the allocation that
the actual system is presently using. In order to obtain the
vector we also need and for this
purpose we assume that the reader is familiar with schemes
that can extract such information from a single sample path
such as finite perturbation analysis (FPA) and CE [2], [6].

In addition, every iteration requires an estimate
which in turn requires However, we do not know
in advance which user is going to be selected asIf it turns
out that some FPA or CE technique can be easily implemented

CASSANDRASet al.: ORDINAL OPTIMIZATION 893

Fig. 3. Effect off(k) on the convergence of the algorithm.

with little additional computational cost, then one can use such
a technique to evaluate for all
and then just use only the value corresponding towhen
this user index becomes available. If this is not the case and
this approach is computationally infeasible or too wasteful, an
alternative is the following. An FPA or CE technique may be
used to estimate the indexes and then change the nominal
allocation for some time interval in order to get an estimate of

If it turns out that this change was appropriate,
i.e., then this new allocation is maintained;
otherwise, we simply revert to the previous allocation and
continue with the algorithm execution.

The next issue concerns the way in which we increase the
simulation length Here, we are faced with the usual
tradeoff encountered in stochastic optimization algorithms:
when is small, using large values of produces good
estimates for the next iteration and hence the optimization
process is more likely to make a step toward the optimal,
but it forces the system to operate under a potentially high-
cost allocation for a long period of time. Because of the
ordinal nature of our algorithm, however, we take advantage
of the fast convergence rate of ordinal estimates (see [7]) and
rapidly reach a neighborhood of the optimal allocation even
though estimates of the corresponding cost may not be very
accurate. The effect of the way in which is increased
is seen in Fig. 3. When we increase using large steps
(3000 events), then we see that the algorithm converges to
the optimal allocation monotonically, but slowly. When we
increase with smaller steps (500 events), then we see that
we converge to the neighborhood of the optimal much faster at
the expense of some oscillatory behavior. A magnified version
of Fig. 3 is shown in Fig. 4, where it can be seen that the
algorithm reaches the neighborhood of the optimal allocation
in about 17 000 events. Finally, from Figs. 3 and 4 it can be
easily seen that reducing further (to 50 events) causes the
system to change too fast resulting in slower convergence to
the optimal allocation. Overall, however, it is worth pointing

Fig. 4. Effect off(k) on the convergence of the algorithm.

TABLE I
AVERAGE NUMBER OF ITERATIONS FOR

DIFFERENT SYSTEM UTILIZATION

out the efficiency of this algorithm, since it is able to converge
to the optimum by visiting only a small number of allocations
out of a large search space; in the example considered here, the
search space consists of
allocations.

A related issue arises in situations where the algorithm is
used to track changes in the operating environment of the
system (e.g., changes in the arrival or processing rates in the
example of Fig. 1). In this case, if we allow to become
infinitely large, then we lose the ability to adapt the allocation
to the new conditions. One may therefore be willing to sacrifice
optimality for this adaptivity property.

Lastly, we have investigated the performance of the algo-
rithm as the system utilization changes. Table I shows the
average number of iterations required (over ten different initial
allocations) before the system described above remains at the
optimal allocation for consecutive iterations for
different arrival rates when events and
is increased by 10 000 events at every iteration. As shown in
Table I, when the system utilization is high (i.e.,)
then in order to get good estimates of the loss probability
through simulation we need to run long simulations, and this
is reflected in the high number of iterations required before we
settle to the optimal allocation. When the utilization is reduced

then convergence to the true loss probability is
much faster, and therefore the algorithm settles at the optimal
in fewer iterations. Finally, when we decrease the utilization
even more the simulation estimates converge even

894 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

faster; however, the difference between the objective functions
at neighboring allocations becomes very small and the system
ends up oscillating between near-optimal allocations, which
in turn increases the number of iterations that are required
before the system settles at the optimal allocation. Note that
the average number of iterations may seem high; however,
most of the time the system is already in the neighborhood of
the optimal allocation.

VI. CONCLUSIONS AND FUTURE WORK

We have considered a class of resource allocation problems
which can be formulated as discrete optimization problems.
We have derived necessary and sufficient conditions for a
globally optimal solution of the deterministic version of the
problem and proposed an explicit algorithm which we have
shown to yield a globally optimal allocation. We have subse-
quently studied the stochastic version of the problem, in which
costs can only be estimated, and proved that an appropriately
modified version of this algorithm converges in probability to
the optimal allocation, assuming this allocation is unique.

A crucial feature of our stochastic resource allocation al-
gorithm is the fact that it is driven byordinal estimates; that
is, each allocation step is the result of simple comparisons of
estimated quantities rather than theircardinal values. Based
on recent results demonstrating the fast convergence of such
estimates (often exponential, as in [7]), it is not surprising that
the numerical results for the example presented in Section V
suggest a very efficient resource allocation scheme for this
type of problem. It remains, however, to further analyze the
convergence rate of the process considered in Section IV,
which is the subject of ongoing research. We also note that an
attractive feature of the discrete resource allocation algorithm
is the absence of a “step size” parameter, which is necessary
in gradient-based schemes and often crucial in guaranteeing
convergence.

As mentioned in the introduction, an alternative approach
for solving such discrete resource allocation problems in-
volves transforming them into continuous optimization prob-
lems which may be solved using standard iterative gradient-
based schemes (see [3]). Although this approach was shown to
be promising, a full analysis of its properties and comparison
with the algorithm in this paper have yet to be carried out.
Finally, we should point out that the resource allocation prob-
lems studied in this paper are based on certain assumptions
regarding the cost structure of the problem. For example, we
have considered cost functions in problem which are
separable in the sense that theth user’s cost function depends
only on the number of resources this user is allocated. The
relaxation of these assumptions and its implication to our
approach is the subject of ongoing research.

APPENDIX I
PROOFS OFLEMMAS FOUND IN SECTION III

Proof of Lemma 3.1:To prove P1, first note that if
then, from (14), On the

other hand, if then there are two cases.

Case 1: If then, from A2)

Case 2: If then there are two possible
subcases.

Case 2.1: If since we have

Case 2.2: If then by the definition of and the
fact that

The proof of P2 follows the lines of P1. More specifically,
note that if then, from (14) and the definition of
[i.e. (16)] so in this case

On the other hand, if then there are two cases.
Case 1: If then, from A2)

and so again
Case 2: If then there are two possible

subcases.
Case 2.1: If since we have

If now then On the
other hand, it is possible that
In this case, we know that Using P1 and the fact that

it is clear that which implies that
This fact and the definition of imply that

so in this case
Case 2.2: If then by the definition of and the

fact that

Next, we prove property P3. First, note that when we
must have Otherwise, from (14), we get
for all From (19), this implies that

which violates our assumption that for
Therefore, with (14) implies that
In addition, since for all
such that and We then have

where the last inequality is due to P1. Therefore, (23) imme-
diately follows from (18).

To prove P4, first note that when we must have
If then from (18), is removed from in

CASSANDRASet al.: ORDINAL OPTIMIZATION 895

which case for any and it is not possible to have
as assumed. Therefore, with we get

from (14). Moreover,
since for all such that and We
now consider two possible cases.

Case 1: If then The
following subcases are now possible.

Case 1.1: If there is at least one such that
then we are assured that

If is
unique, then, since and it follows
from P2 that Now consider and observe that

where the last inequality is due to P1. Therefore, from (18),
and (24) holds for

If, on the other hand, is not unique, then it is possible
that since we have assumed that ties are arbitrarily
broken. In this case, there are at most steps
before This is because at step either

and is removed from or
and, from (14), in which case

from A2). The
same is true for any of the steps after Then at step

we get by arguing exactly as in the
case where is unique, with replaced by
and again (24) holds.

Case 1.2: If is the same for all
then it is possible that In this case, for all

due to A2). Therefore, will be removed from
through (18). Moreover, since by (19), this

process repeats itself for at most steps resulting
in

Case 2: If and where then
In this case, note that , and

depending on the sign of we either go to Case 1 or we
repeat the process of removing one additional user index from
the set. In the event that for all all will
be removed from the set. The only remaining element in
this set is which reduces to Case 1.2 above.

Property P5 follows from P3 by observing in (14) that the
only way to get is if and for some

However, P3 asserts that this is not possible, since
would be removed from
Property P6 follows from P4 by a similar argument. The

only way to get is if and for some
However, it is clear from the proof of P4 that

would either be removed from possibly after a finite
number of steps, or simply remain in this set until it is the last
element in it.

Proof of Lemma 3.2:We begin by first establishing the
fact that the process terminates in a finite number of steps
bounded by This is easily seen as follows. At
any step the process determines some(say) with two
possibilities: 1) either user gives one resource to some other

user through (14) or 2) one user index is removed from
through (18), in which case , and we have the exact
same situation as in step[if Case 2) persists, clearly
for some]. Under Case 1), because of property
P5, cannot receive any resources from other users, therefore
in the worst case will give away all of its initial resources
to other users and will subsequently not be able to either give
or receive resources from other users. Since for any

it follows that can be involved in a number of steps that
is bounded by where one is the extra step whenis
removed from at some Finally, since there are users
undergoing this series of steps, in the worst case the process
terminates in steps.

This simple upper bound serves to establish the fact that the
process always terminates in a finite number of steps. We will
use this fact together with some of the properties in Lemma 3.1
to find a tighter upper bound. Let the initial allocation be
Since the process always terminates in a finite number of steps,
there exists some final allocation which,
given is unique since the algorithm is deterministic. An
allocation at the th step can be written as follows:

where and
for all since all allocations are feasible. Now
define the following three sets:

and note that at the final state for all
Due to P3, at every step we have (recall that once a
user is selected as it can only give away resources to other
users). Similarly, due to P4,

At every step of the process, there are only two possibilities.

1) If let and Then,
at the next step, (14) implies that and

2) If then a user index from is removed from
the set

Moreover, from the definitions of the three sets above, we
have

and, therefore, we can write

where for all since
Now let be the initial value of and let be the

initial cardinality of the set We separate the number of
steps required to reach the final allocation into three categories.

1) Clearly, steps (not necessarily contiguous) are re-
quired to make for some by removing

896 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

one resource at each such step form users
During any such step, we have as in Case 1 above.

2) These steps would suffice to empty the set if
it were impossible for user indexes to be added to it
from the set However, from property P4 it is
possible for a user such that and for all

to receive at most one resource, in which case we
have There are at most users with such
an opportunity, and hence additional steps are
possible. During any such step, as in 1), we have
as in Case 1 above.

3) Finally, we consider steps covered by Case 2 above.
Clearly, steps are required to reach for
some

Therefore, the number of stepsrequired to reach the final
allocation is such that Observing
that and we get Note
that implies that the , and in this case only

steps [see 3) above] are required to reach the final state.
Thus, is the lower bound on the required number of
steps.

APPENDIX II
PROOFS OFLEMMAS FOUND IN SECTION IV

Proof of Lemma 4.1:Let

Then, Assumption A4) and guarantee
that

a.s.

Since a.s. convergence implies convergence in probability,
we know that for every

Setting we obtain

(64)

Finally, since it
immediately follows from (64) that

which is the statement of the lemma.
Proof of Lemma 4.2:Let be defined as in As-

sumption A5). Given consider the event
According to the process (28)–(32) and (20):

If then

and if then

Therefore, occurs if and only if

and

Then

and

and

(65)

For each pair of satisfying we know from
Lemma 4.1 that

Taking this limit in (65), and also noticing the finiteness
of the set for any pair
we obtain

and the proof of (38) is complete.
Definition (39) immediately implies that is monotone

decreasing and that The limit (40) then follows
from (38).

Proof of Lemma 4.4:Given consider the
event According to the process (28)–(32)
and (20)

If then

and if then

Therefore, occurs if and only if

either

or (66)

for every
For notational convenience, consider, for anythe events

and

Next, for any define the following subset of

CASSANDRASet al.: ORDINAL OPTIMIZATION 897

and let be the cardinality of the set In addition, for
any given integer let denote such a set with exactly

elements. Then, define the set

containing all indexes which do not
satisfy

Finally, define

for all

and

Depending on the value of defined above, we can write

(67)

We will now consider each of the two terms in (67)
separately.

The first term in (67) can be rewritten as

(68)

Using the notation we have introduced, observe that

(69)

Set and, without loss of generality, assume
that (otherwise, if there must exist
some such that , and the same
argument may be used with Then

(70)

Recalling the definition of we can write

Then, the Markov property of the process (28)–(32) implies
that

(71)

However, by Assumption A5)

Thus, (71) becomes

Using this inequality in (70), we obtain

Continuing this recursive procedure, we finally arrive at

which allows us to obtain the following inequality from (68)
and (69):

(72)

898 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Since by Assumption A5), and since
according to (44), the preceding inequality

implies that the first term in (67) is such that

(73)

Next we consider the second term in (67). Letbe the first
step after that we have either or

Clearly, We also
use (without confusion) to mean that
and for all Then the
second term in (67) can be written as

(74)

We shall now consider each of the two terms in (74)
separately. In the first term, for any we have

(75)

where the second step above follows from the Markov property
of (28)–(32). Moreover

where we have used (36), (37), (42), and the monotonicity of
and This inequality, together with (75), implies that

By Lemma 4.3 and (44) it follows that

(76)

As for the second term in (74), we note the following facts.

1) Given that then either there is a such
that for any , or the set
first decreases to according to (32) and then
is reset to in which case there is a such
that (otherwise would be the optimum
according to Theorem 1). Therefore, without loss of
generality, we assume that there is a such that

for any
2) As long as (66) holds and

3) One user is deleted from the set every time

The previous facts 1)–3) imply that, when

with probability one there exists a
such that

Then, the second term in (74) becomes

(77)

Using Lemma 4.1, we know that

as

Therefore, we get from (77)

The combination of this fact with (76) and (73) yields the
conclusion of the lemma.

CASSANDRASet al.: ORDINAL OPTIMIZATION 899

Proof of Lemma 4.5:First, given and
some defined as in (44), consider sample paths such that

for all Observe
that any such sample path can be decomposed into a set such
that for some and a set
such that for all
Thus, we can write

and

(78)

Therefore

and

(79)

Using Lemma 4.4, the second term on the right-hand side
above vanishes as and (79) yields

(80)

On the other hand, we can write

The Markov property of implies that

Thus

Now, recalling the definition of in (33), observe
that the last term in the product above is precisely

Moreover, by Lemma 4.2 we
have Therefore, we
get

(81)

where the last inequality follows from Lemma 4.2, where it
was shown that is monotone decreasing in Hence, since

satisfies (45), we get

900 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

Finally, using this limit, (80), and recalling the definition of
in (46), we readily conclude that (48) holds.

Moreover, (49) immediately implies that is monotone
decreasing and The limit (50) then follows
from (48).

REFERENCES

[1] E. Aarts and J. Korst,Simulated Annealing and Boltzmann Machines.
New York: Wiley, 1989.

[2] C. G. Cassandras,Discrete Event Systems, Modeling, and Performance
Analysis. Homewood, IL: Irwin, 1993.

[3] C. G. Cassandras and V. Julka, “A new approach for some combinatori-
ally hard stochastic optimization problems,” inProc. 31st Ann. Allerton
Conf. Commun., Control, and Computing, 1993.

[4] , “Descent algorithms for discrete resource allocation problems,”
in Proc. 33rd Conf. Decision and Control, 1994, pp. 2639–2644.

[5] , “Scheduling policies using marked/phantom slot algorithms,”
Queueing Systems: Theory and Appl., vol. 20, pp. 207–254, 1995.

[6] C. G. Cassandras and C. G. Panayiotou, “Concurrent sample path
analysis of discrete event systems,” inProc. 35th IEEE Conf. Decision
and Control, 1996, pp. 3332–3337.

[7] L. Dai, “Convergence properties of ordinal comparison in the simulation
of discrete event dynamic systems,”J. Optimization Theory and Appl.,
vol. 91, pp. 363–388, 1996.

[8] R. G. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., vol. COM-25, pp. 73–85,
1977.

[9] W. B. Gong, Y. C. Ho, and W. Zhai, “Stochastic comparison algorithm
for discrete optimization with estimation,” inProc. 31st IEEE Conf.
Decision and Control, 1992.

[10] Y. C. Ho, M. A. Eyler, and T. T. Chien, “A gradient technique for
general buffer storage design in production line,”Int. J. Production Res.,
vol. 17, no. 6, pp. 557–580, 1979.

[11] Y. C. Ho, R. S. Sreenivas, and P. Vakili, “Ordinal optimization in
DEDS,” J. Discrete Event Dynamic Systems: Theory and Appl., vol. 2,
pp. 61–88, 1992.

[12] Y. C. Ho, “Heuristics, rule of thumb, and the 80/20 proposition,”IEEE
Trans. Automat. Contr., vol. 39, pp. 1025–1027, 1994.

[13] J. H. Holland, Adaptation in Natural and Artificial Systems. Univ.
Michigan Press, 1975.

[14] T. Ibaraki and N. Katoh,Resource Allocation Problems: Algorithmic
Approaches. Cambridge, MA: MIT Press, 1988.

[15] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum
of a regression function,”Ann. Math. Statistics, vol. 23, pp. 462–466,
1952.

[16] R. G. Parker and R. L. Rardin,Discrete Optimization. Boston: Aca-
demic, 1988.

[17] H. Robbins and S. Monro, “A stochastic approximation method,”Ann.
Math. Statistics, vol. 22, pp. 400–407, 1951.

[18] J. E. Wieselthier, C. M. Barnhart, and A. Ephremides, “Optimal admis-
sion control in circuit-switched multihop radio networks,” inProc. 31st
IEEE Conf. Decision and Control, 1992, pp. 1011–1013.

[19] D. Yan and H. Mukai, “Stochastic discrete optimization,”SIAM J.
Control Optim., vol. 30, 1992.

[20] H. Yan, X. Y. Zhou, and G. Yin, “Finding optimal number of Kanbans
in a manufacturing system via stochastic approximation and perturbation
analysis,” inProc. 11th Int. Conf. Analysis and Optimization of Systems,
1994, pp. 572–578.

Christos G. Cassandras(S’82–M’82–SM’91–F’96), for a photograph and
biography, see p. 655 of the May 1998 issue of this TRANSACTIONS.

Liyi Dai (M’90) received the B.S. degree from
Shandong University, Shandong, China, in 1983, the
M.S. degree from the Institute of Systems Science,
Academia Sinica, Beijing, China, in 1986, and the
Ph.D. degree from Harvard University, Cambridge,
MA, in 1993.

From 1986 to 1988, he was with the Institute of
Systems Science, Academia Sinica. Since 1993, he
has been an Assistant Professor in the Department
of Systems Science and Mathematics at Washington
University, St. Louis, MO. His research interests

include discrete-event dynamic systems, simulation, stochastic optimization,
communication systems, and singular systems. He has published over 35
papers in various journals and is the author ofSingular Control Systems
(Berlin: Springer-Verlag, 1989).

Dr. Dai is listed inWho’s Who Among Asian Americansand is a recipient
of the NSF CAREER award. He is an Associate Editor of the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL.

Christos G. Panayiotou received the B.S. degree
in electrical engineering from the University of
Massachusetts, Amherst, in 1994. He is now a
Ph.D. candidate in electrical engineering and is
pursuing an MBA degree at the Isenberg School of
Management, both at the aforementioned university.

His research interests include optimization and
control of discrete-event systems, computer simula-
tion, communication networks, and manufacturing
systems.

Mr. Panayiotou is a member of Tau Beta Pi.

