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Perturbation Analysis of Feedback-Controlled
Stochastic Flow Systems
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Abstract— Stochastic flow systems arise naturally or as ab- conditions, the structure of the underlying system, and the
stractions of Discrete Event Systems (DES), referred to as nature of the performance metrics of interest. On the other
Stochastic Flow Models (SFMs). In this paper, we consider pnanq SEMs often capture the critical features of the under-

such systems operating with a feedback control mechanism,I ing “real” t hich i ful | Vi trol and
building on earlier work that has studied such SFMs without ying “real” sysiems, which IS useful In solvingontrol an

any feedback. Using Infinitesimal Perturbation Analysis (IPA), Optimizationproblems. In this case, estimating the gradient
we derive gradient estimators for loss and workload related of a given performance metric with respect to key parameters
performance metrics with respect to threshold parameters used pecomes an essential task. Perturbation Analysis (PA) methods
for buffer control. These estimators are shown to be unbiased. [9],[10] are therefore suitable, if appropriately adapted to a
They are also shown to depend only on data observable from a SEM vi d DES [111[121.1131.1141. | inal d
sample path of the actual DES. This renders them computable - viewed as a [11],[12],[ ]’[_ _]' n a single no_ e
in on-line environments and eas”y imp|ementab|e for control W|th thl‘eshold—based buffer COI’]tI‘Ol, InflnlteSImal Perturbaﬂon
and performance optimization purposes. In the case of linear Analysis (IPA) has been shown to yield simple sensitivity
feedback, we further show that the estimators are nonparametric. estimators for loss and workload metrics with respect to

Finally, we illustrate the use of these estimators in network con- threshold (or buffer size) parameters [13]. In the multiclass
trol by combining them with standard gradient—based stochastic tudied in 1141, th timat I.I d d traffi
optimization schemes and providing several simulation-based case studied in [14], the estimators generally depend on traffic

examples. rate information, but not on the stochastic characteristics of
the arrival and service processes involved. In addition, the
estimators obtained are unbiased under very weak structural
assumptions on the defining traffic processes. As a result, they
can be evaluatedased on data observed on a sample path of
. INTRODUCTION the actual (discrete-event) systemd combined with gradient-
NATURAL modeling framework for many stochastichased optimization schemes as shown in [13] and [14].
Discrete Event Systems (DES) is provided through Queueing networks have been studied largely based on
queueing theory. However, “real-world” DES become increaghe assumption that system state, typically queue length in-
ingly difficult to handle through queueing theory on an eventermation, has no effect on arrival and service processes,
by-event basis, especially for telecommunication and computey., in the absence of feedback, thus ignoring a potentially
networks with enormous traffic volumes. Stochastic Flownportant feature of actual system design and operation. For
Models (SFMs) provide an alternative modeling technique t&xample the Random Early Detection (RED) algorithm in TCP
queueing theory with applications including communicatiosongestion control [15],[16] provides some form of feedback
networks and manufacturing systems. Fluid models as abstrig-network management. The same is true for hedging point
tions of queueing systems were introduced in [1] and latgblicies in manufacturing systems [17],[18]. Unfortunately,
proposed in [2] for the analysis of multiplexed data streantise presence of feedback significantly complicates analysis.
and in [3] for network performance. They have been shown Bpr instance, it is extremely difficult to derive closed-form
be especially useful for simulating various kinds of high speegkpressions of performance metrics such as average queue
networks [4],[5],[6],[7], as well as manufacturing systems [8]ength or mean waiting time, unless stringent assumptions
In a queueing system described by a fluid model, we focage made [19],[20],[21],[22], let alone developing analytical
on the behavior of aggregate flows and ignore the identity agehemes for performance optimization. It is equally difficult to
dynamics of individual customers. InStochastic Flow Model extend the theory of PA for DES in the presence of feedback.
(SFM), we further treat flow rates asochastigprocesses with Indeed, such work is absent from the PA literature to the best
possible jumps viewed as events, thus capturing a high leeg¢lour knowledge.
of generality for the traffic and service processes involved. Motivated by the importance of incorporating feedback to
While the aggregation property of SFMs brings efficiency tetochastic DES as well as their SFM counterparts, and the
performance analysjshe resulting accuracy depends on traffieffectiveness of IPA methods applied to SFMs to date, the
. . . _ urpose of this paper is to tackle the problem of deriving
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by ARO under grant DAAD19-01-0610. threshold-based buffer control as in [13]. An additive feed-
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nyu@bu.edu;cgc@bu.edu). o(t) — p(x(t)) whereo(t) is the maximal external incoming
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flow rate, z(¢) is the buffer content (state), ane(z) is a stochastic processess(t)} and {u(t)} are independent of
feedback function. The main contribution of the paper ithe buffer levelxz(¢). Finally, we assume that the real-valued
the derivation of IPA gradient estimators for performancgarameterd is confined to a closed and bounded (compact)
metrics related to loss and workload levels with respect boterval © and thatd > 0 for all 6 € ©.

threshold parameters (equivalently, buffer sizes). Even though

the presence of feedback in the SFM considerably complicates ¢

the task of carrying out IPA, we are able to show that such b
IPA estimators are indeed possible to obtain for a large class of a X @
feedback functiong(x). These IPA estimators depend on data

observable on a sample path of the actual discrete event system
- not just the SFM which can be viewed as an abstraction of the p(x)
“real system”. Moreover, they do not depend on the stochastic

characteristics of the arrival and service processes. In the Cage1. A SFM with feedback
of linear feedback, we further show that the estimators are

nonparametri¢in the sense that they do not even require any Setting\(t) = o (t) — u(t), the dynamics of the system are
parameter information — only simple event counting and timingescribed by the following equation:

data. The presence of feedback also complicates proving the

unbiasedness of IPA estimators in that, unlike earlier work, 0 whenz(t) =
we must now identify and exclude certain parameter values,dz(t) and A(t) _p( ) <
as will be explained in detail. 7t Yo whenz(t) = 1)

The paper is organized as follows. First in Section 2, we and A(t ) (9) 20
present the feedback-based buffer control problem in the SFM A(t) —p((t))  otherwise
setting and define the performance metrics and parameters\eéuming that\(¢) and p(z) are both bounded functions,
interest. In Section 3, we carry out IPA by first deriving sampleote that z(¢) is a continuous function of. Similar to
derivatives of event times in our model and then obtaining thi#3], our purpose is to obtain sensitivity information of some
IPA estimators for the gradients of the expected loss rate gmerformance metrics with respect to key parameters so as to
average workload with respect to threshold parameters. Sectimplement stochastic optimization algorithms based on this
4 is devoted to proofs of unbiasedness of these estimatformation. In this paper, we limit ourselves to the threshold
under mild technical conditions. The case of linear feedbackdsas the controllable parameter of interest. For a fitiitee
discussed in Section 5. In Section 6 we illustrate the use of therizon [0, 7|, we define theaverage workloadas:
estimators by formulating optimization problems and solving

T
them through the use of standard gradient-based stochastic Qr = 1 / x(t)dt 2)
optimization schemes. We finally outline a number of open T Jo
problems and future research directions in Section 7. and theloss rateas:
ll. STOCHASTIC FLOW MODEL OF A QUEUEING SYSTEM T T/O = OM) — p(O))dt ®)

WITH FEEDBACK CONTROL where1[-] is the usual indicator function. A typical optimiza-

The stochastic flow system we consider consists of a ser#@n problem is to determing* that minimizes a cost function
with a buffer fed by a source as shown in Fig. 1. The buff&f the form
content at time is denoted by:(¢) and it is limited tod, which .
may be viewed as a capacity(o)r as a threshold parameter used Jr(0) = 7ElQr(0)] + ElL(0)] “)
for buffer control as described in [13]. Thug,< z(t) < 8 where~ generally reflects the tradeoff between maintaining
and when the buffer level reachésflow loss occurs (i.e., proper workload and incurring high loss. We point out here
customers are dropped in the underlying queueing systeitmat the presence of feedback also has an effect on the cost
The maximal processing rate of the server is generally timimction structure, as further discussed in Section 6. Care must
varying and denoted by(t). The maximal rate of the sourcealso be taken in defining the previous expectations over a finite
at timet is denoted by (¢), but the actual incoming rate istime horizon, since they generally depend on initial conditions;
o(t) —p(z(t)), wherep(z) is afeedback functionWe assume we shall assume that the queue is empty at time
that p(x) is a strictly monotonically increasing functioaf x In order to accomplish this optimization task, we rely on es-
(thus ensuring that the effect of feedback is more pronouncimhates ofdE[Qr(0)]/d0 anddE[L1(6)]/d0 provided by the
as the buffer level increases) and that it is independent sdmple derivativedQr(0)/d6 and dLr(0)/df. Accordingly,

o(t), u(t), or 8. This feedback mechanism implies that) the main objective of the following sections is the derivation
is instantaneously available to the controller (this is true of dQr(0)/df anddLr(6)/df, which we will pursue through
situations such as manufacturing systems, but unlikely to hdtdfinitesimal Perturbation Analysis (IPA) techniques. For any
in high-speed environments such as communication networkample performance metri¢(6), the IPA gradient estimation
we discuss how we propose to deal with this important isstechnique computes£(0)/df along an observed sample path.
in the last section of the paper). It is also assumed that tlighe IPA-based estimaté((6)/df satisfiesdE[L(6)]/d0 =
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E[dL/dd], it is unbiased. Unbiasedness is the principal co. Boundedness of Buffer Level Perturbations

dition for making the application of IPA practical, since it |, this section we establish an important boundedness

enables the use of the IPA sample derivative in StOChaSgFoperty forbuffer level perturbationslefined as
gradient-based algorithms. A comprehensive discussion of IPA

and its applications can be found in [9],[23] and [10]. Az(t) = z(t;0 + A0) — x(t;0),

with respect to a perturbatioAd. For simplicity, let us limit

ourselves taAAfd > 0; the case wherd\d < 0 can be similarly

analyzed. We state the boundedness propertxoft) in the
As already mentioned, our objective is to estimate tHellowing lemma:

derivatives dE[Qr(0)]/d0 and dE[Ly(6)]/d0 through the  Lemma 1:For the system described in (1) add > 0,

sample derivativesiQr(6)/df and dLr(0)/df, which are

I1l. IPA ESTIMATION

commonly referred to as IPA estimators. In the process, Proof: OSS A:'(t) Sd.Aa’ for all ¢ € 0,7 (7)

however, it will be necessary to determine and analyze IPA _. root. - >ee Appenaix. m

derivatives for the buffer content(¢; #), where we include Similarly, for a perturbationA¢ < 0, we can prove that

to stress the dependence on it, as well as for certain evé}’%S Ax(t) < 0. - . .

times to be defined, which also dependfn orollary 1: If z(t;0) is differentiable with respect td,
We consider a sample path of the SFM of Fig. 1 déef]. then dx(t; )

For a fixedd, the interval[0,T] is divided into alternating 0=< 90 =1

boundary periods and non-boundary periods.BaAundary

Period (BP) is defined as the time interval during which  prgof: We have
x(t;0) = 6 or (¢t;0) = 0, and aNon-Boundary PeriogNBP) . . .

is defined as the time interval during whieh< z(t;6) < 6. Ox(t:0) _ i 20+ AF) — a(t;6)

BPs are further classified @mpty Periods(EP) andFull 90+ Af—0F Ab
Periods (FP). An EP is an interval such thatt;0) = 0; a  and from Lemma 1 we obtain:
FP is an interval such that(¢; 6) = 6. x(t;0 + A0) — x(t;0) _ Af

For simplicity, we assume that at time= 0, z(0;6) = 0< A6 < N 1

0. We also assume that there al& NBPs in the interval Bx(t 0)
[0,7T], where N is a random number, and index NBPs by Combining the above two r(?La;tlonshlps gies: <
n=1,...,N. The starting and ending points of a NBP aré- Similarly we obtain0 < < 1, thus completlng the
denoted bynn and ¢, respectively. We define the following Proof: u
two random sets of indices:

B. Queue Content Sample Derivatives

Ur(0) ®) Since we are interested in the sensitivity of performance
={niz(t;0)=0forallt € [(o—1,m:),n=1,....,N }  metrics, which are expressed as functionsagf;6) as in

U5 (6) (2)-(3), it is natural to first study?“%%) the queue content

= {n:z(t:0)=0forall t € [(o_1,mn), n=1,...,N} sample derivative. Before proceeding, however, we make some

assumptions regarding the class of feedback functjgns
that we shall consider in our analysis. In particular, we
consider continuous piecewise differentiable functions of the

={1,...,N} - Up (6)

Clearly, if n € U, thenth BP (which immediately precedes

the nth NBP) is a FP and if, € U5, the nth BP is an EP. A 0 pi(z) ifO0<z<6,
typical sample path is shown in Fig. 2, which includes two pa(z) if 01_< x < 0
NBPs, i.e., [, ¢,) and [g,41,Ce+1), and three BPs. It is p(z) =< . o (8)
worth noticing thatz(t; ) is not necessarily differentiable, :
as shown, for example, at time this may be caused by a pu(z) if 0,1 <x<0
discontinuity ino(t) or u(t). wheref; < ... < 6,_; are real numbers and we make the
following assumption:
X(®) Assumption 1:p;(z), ¢ = 1,...,n, are monotonically in-
¢ creasing and continuously differentiable functions. Moreover,
\ there exists a constant, < oo such that for alk: € [0, 6] and
alli=1,...,n,
3 dpi(z) <o,
Ty S ey, T ne1 Remark. If we allow p%x to be discontinuous at some
EP «--NBP,»~ FP < NBP, »FP t
3 ; specific valuerxy, then it is possible to have(t; 0) = z, for

_ _ some finite period of time in some sample path. For example, if
Fig. 2. A Typical Sample Path z(to;0) = zo andp(zy) < A(t) < p(zg) for a time interval
[to,t1], thenz(¢;0) = =z for all ¢t € [to,t1]. The discrete
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version of this phenomenon is chattering. For simplicity, in thi® any desirable accuracy level. Lastly, in Assumption 3,
paper we do not deal with discontinuities jiiz). However, by selectingecy to be arbitrarily small the sef\ of invalid
since in practice such feedback functions may be of intereggrameter values becomes practically insignificant.

we point out that this situation can be handled in the same

framework as the one presented here, along the lines of the px) ,
work in [24].

The simplest class of feedback functions of the above A+ey
form is described by a two-segment piecewise differentiable A-Cy
function () f0<z<b

P | < x <01
p) = { o) if 01 <z<0 ©)
in which 6, is a known parameter independent ®fwith A+c,
0 < 6y < 6, andp;(x), p2(z) are continuously differentiable A-c
monotonically increasing functions with (1) = p2(61). We vl
shall concentrate on feedback functions of this form, and it will ,

become clear that our analysis can be applied to any general 0 4 4

piecewise differentiable and monotonically increasing function

p(g[;) in (8). For simplicity, we setly = 0, #; = 0, so that we Fig. 3. lllustrating valid and invalid intervals fat;, j = 0,1, 2.

can consistently use the notatiép j = 0, 1, 2, to indicate the

threecritical valuesthat z(¢; §) can take in a typical sample Recall that a sample path of the SFM is decomposed into

path. alternating BPs and NBPs. We now refine this decomposition
We also assume: to take into account the structure of the functipfx). To
Assumption 2:\(t) is a piecewise constant function thado so, we view the SFM as a DES in which we define the
can take a finite number of values,..., A\, with \; < following types ofevents (i) A jump in A(t), which is termed
Amax < oo foralli=1,..., L. anexogenougvent, reflecting the fact that its occurrence time
Assumption 3:There exists an arbitrarily small positiveis independent of the controllable parameferand (ii) The
constantcy such that for allt, buffer contentz(¢; 6) reaches any one of the critical valugs
) 4 =0,1,2; this is termed arendogenougvent, to reflect the
[A(t) = p(6)] 2 co >0, j=0,1,2. (10)  fact that its occurrence time generally depend® oNote that

Assumption 3 is mild, but, as we shall see, it is critical iy combination of these events and the continuous dynamics
proving the eX|st.ence of I.PA sample derivatives. Combining (1) gives rise to a stochastic hybrid system model of the
the two assumptions requires that underlying discrete event system of Fig. 1.

N —p(0;)| >¢cg fori=1,...,L, j=0,1,2 (11) Based on these event definitions, we make the following
o observations(i) A NBP end eventis an endogenous event,
which implies since its time(,,, generally depends oft (ii) A NBP start
p(6;) <X —co oF p(6;) >\ +co eventis an exogenous event: as seen in (1), the end o_f an EP
_ _ _ _ _ _ _ or FP at timen, is always due to a change in the sign of
S|ncgp(-) is a strictly monotonically increasing function, we) () — »(0) and A(t) — p(6) respectively. This is only feasible
obtain: when a jump in\(¢) occurs at time according to Assumption
0; < p L\ — cp) or 0; > P (N + ) (12) 3-,‘\.NhiCh is precisely what we defined as an exogenous event.
(#i1) The point where the buffer content reachegfrom either
fori = 1,...,L, j = 0,1,2. Therefore, defining the below or above) is an endogenous event (by Assumption 3,
following L invalid intervals A;: this event time is the same at the time when the buffer content
1y 14y o also leaved),).
Aj=[p7'(Ni—co)p (Niteo)], i=1,...,L (13) Let us now consider a NBRy,., ¢, (6)), where we explicitly
we conclude that; ¢ A; for all i =1,..., L, as illustrated indicate that its end point depends érlLet «, ; denote theth

in Fig. 3, and note that, for sufficiently smalj, there will time whenz(¢;0) = 6; in this NBP, where = 1,...,1, — 1,

be no overlap among differerk;. This condition imposes a in which I,, — 1 is the number of such events. It is possible
constraint on the controllable paramefewhich we originally that 7,, — 1 = 0 for a NBP, so that to maintain notational
assumed to be defined over a closed and bounded (compaot)sistency we sef, = a, o and(, = «, 1,. We can now
interval ©. Letting A = UL | A;, we now restrictd to the see thata sample path is decomposed into four sets of intervals
set©® = © — A. We shall also refer to aalid interval that we shall refer to amodes (i) Mode 0 is the setM of

as the maximal interval between two consecutive invalidl EPs contained in the sample pathi) Mode 1 is the set
intervals. In practice, Assumptions 1-3 are not limiting. Fob/; of intervals o, ;, ap i+1) such thatx(a, ;) = 0 or 6,
example, Assumption 2 fits common traffic models with on/ofind0 < z(t) < 6; for all t € (o, i, 0p,i41), n =1,..., N,
sources and fixed service rates which are popular in compufét) Mode 2 is the setM, of intervals [c, ;, o i41) SUCh
networks. Moreover, for any giveR(t), one can always selectthat z(a,, ;) = 6 or 6, and 6, < z(t;0) < 6 for all t €

an appropriate set of values, ..., A, to approximater(t) [an,¥nit1), n=1,...,N, and(iv) Mode 3 is the setM;
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of all FPs contained in the sample path. Note that the events Proof: See Appendix. [ ]
occurring at timesy,, ; are all endogenous far=1,...,1, Lemma 2 makes it clear that the queue content sample
and we should writey,, ;(0) to stress this fact; for notatlonaldenvauve t 9x(t:0) depends on the event time denvaU%
economy, however, we will only write,, ;. Finally, recall that Thus, in the next section we address the issue of evaluating
for i = 0, we havew, o = 1, corresponding to an exogenoushese derivatives. The remaining terms in (15) involve: detect-
event starting the:th NBP. The decomposition of a typicaling the events such that the buffer content reaches the devel
NBP is illustrated in Fig. 4. The NBR,,, (,(0)) consists of or 6,; the traffic rate information inA(«;") at times when
two M, intervals and twad\/; intervals defined by the presencehe buffer content reaches the lewdl; and the evaluation

of a1, 0 2,8nd v, 3. Moreover, note that at timg andt,  of p(t). Specifically, note that??) is generally a function
exogenous events may occur so that the time derivative of thiez(¢; ), so that an integration of the sample path over an

buffer contentz(t; 6) is discontinuous. interval [«;,t] is required to evaluate(t). This evaluation
becomes very simple in the case of a linear feedback function
X0 p(z), as we will see in Section 5.
) M, M, M, M, Before proceeding with the analysis of the event time
derivatives%‘gi, we provide an alternative way of representing
(15) that we will occasionally use:
91
Ox(t:0) _ 1oy —p(t)
| 50 K;(0)e
T 4w L a4, tay, AN where
NBP,
Ki(6) = 1 fr(o;6) = 0] — A(o)
Fig. 4. The Decomposition of a NBP
A detailed discussion on the role @f;(#) can be found in
We shall also make one final assumption: the proof of Lemma 2 in the Appendix. Finally, a useful
Assumption 4:For every ¢, w.p.1, no two events (either relationship we can derive from the above lemma is the

exogenous or endogenous) occur at the same time. following:
This assumption precludes a situation where the queue
content reaches the valdeat the same timé as an exogenous /am 0 {a x(t; 0 }

I
QnnguMmuMm

event which might cause it to drop beldwthis would prevent 20 ot
the existence of the derivative of the event time ftowever,

one can still carry out perturbation analysis with one-sided

derivatives as in [13]). Moreover, by Assumption &, the

number of NBPs in the sample path, is locally independent

) {ax(m)}dt

9 [9x(4:6)
/l o

of 6 (since no two events may occur simultaneously, and the _ dx(t; 0) s
occurrence of exogenous events does not depend| tmere B 90 |,
exists a neighborhood daf within which, w.p.1, the number o (t; 0) |+

of NBPs in[0,T7] is constant). Hence, the random index sets =~

U and ¥ g defined in (6) are also locally independentéof
In what follows, we shall concentrate on a typical NBP = K;(0) {e—ﬂ(am) — 1} (17)

[, ¢ (8)) and drop the index from the event timesy,, ; in

order to simplify notation. It is also convenient at this pointvhere we have used (49) and (16). Recalling (1) and the

to define the following: definition of A(¢;0) in (14), we can also write the above
A(:0) = A1) — pla(t: 0)) (14) relationship as

Although A(t;0) depends org, we shall write it asA(t) /ai+1 0A(:0) ., _ Kq(0) [e—p(am) _ 1} (18)

for the sake of simplicity, unless it is essential to indicate o o6

its dependence of. In the following lemma we identify the

structure of the queue content denvat@l% and show that ~ Event Time Sample Derivatives
it depends on the event time denvanv%

Lemma 2:Let [a;,o41) be an interval in a typical NBP, We derive the sample derivativ&: through three lemmas
whereaq; is theith time whenz(t;6) = 6. Under Assump- Which cover the possible values thato;; 6) can take in an

tions 1-4, for allt € [a;, aiy1), interval [a;, i1 1). . . .
Lemma 3:Under Assumptions 1-4, if a FP ends at timg
0x(t;0) Oy

= —— + 7p(t) ;e = 7p(t) i.e., l; 9 == 9, then
50 50 Aa])e +1[z(a;;0) =0e (15) (o 0)

where dp() dai _ 0
_ p 00
P(t) _/a el (16) Proof: See Appendix. [




IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. XX, NO. Y, MONTH 2004 6

Lemma 4:Under Assumptions 1-4, if an EP ends at tim&here

(o778 i.e.,CC(Oéi) =0, then p/(e) = dp(x)
dz |,_,
Do -0 Proof: Since[(,—1.m,) is a FP, we have:(t;§) = 6 for
.00 '
Proof: See Appendix. - all t € [(—1,mn). Thus, as in (40), we have
The above two lemmas deal with; ending intervals in 0A(t;0) _ dp(z) -
modes M, and M3. Next, we obtain the sample derivatives 00 dr |,_, p
Oa; -

ag- for the remaining modes/; and M. _ Recalling that¥ » is locally independent of, it follows from
Lemma 5:Under  Assumptions 1-4, for an intervaly,y ¢

[Oéi,ai+1), i=0,...,1, —1, in a NBP:

dLT(e) 1 377n 8(717
daipy _Alaf)e ™) 9a; | 1[e(ait1;6) = 0] 0 T > {A(nn)ae — AlGn-1) =5, -
o0 Aloisr) o0 Aloviyr) ne¥s
. o _ (041 1) Mn
~ 1[z(a;0) =0 e Pl (19) —/ p/(9)dt}
A(ai+1) n—1
. 1 877n aCn—l
h 2o =, - — _
wit 00 0 . T Z {A(%) 90 A(Cn—l) 90
Proof: See Appendix. [ ] neEvy
The combination of Lemmas 3, 4 and 5 provides a sim- —(n = Cu)P'(0)}

ple linear recursive relationship for obtaining the event time ]
sample derivativé2:. In particular, (19) provides this sample/nvoking Lemmas 3 and 4, we ha"%qol_ = 0. Note that if
derivative over a NBP with initial conditiof2e = 0 at the 7 € ¥r We must haver(C,—1) = 0, while z(n,1) = 0 or
start of any NBP. It also follows from (19) that this derivativé/- Thus, using Lemma 6, (23) immediately follows. ~ ®
remains zero as long as(a;;0) # 6 and z(a;.1;0) # 6. It is interesting to observe that this IPA estimator has the

With the help of these lemmas, we can now obtain the sam}jiaPortant property of beingonparametri¢ in the sense that

derivative %% that corresponds to the end point of a NBFIO information regarding the characteristics of the stochastic
[, Ca (). Let us first extend the definition @f(¢) in (16) to Processes involved appears in (23), including any flow rate

any interval[t, ¢,): parameters. In fact, for any NBP that starts with an EP and
ends with a FP, the only action required is measuring the length
pltarts) = /t"’ dp(x) it (20) of the ensuing FPj, — ¢,_1] (the value ofp’(0) is known
’ . dz for any 6, given the feedback functiop(z)). If the NBP that
ends at(,,_; is one that started with the end of a FP, then
the additional terme—(¢»-172-1) needs to be calculated; this
simply involves the time instants,_1, 7, and the knowrp(z)

1

and we establish the following result.
Lemma 6:Under Assumptions 1-4, for a NBR,,, (.(9)),

9¢, 1 1 N for evaluating the integral in (20). More importantly, observe
a0 A(¢) {1 [2(Gn:6) = 0] that the information involved in (23) can lirectly obtained
_ from the actual discrete event systesince all that is needed
— . — p(Cnsmn)
] 1.[3:(77"’9) = 0le } (21) is detecting a queue level reaching or exceeding a vélue
Proof: Seg Appe”‘?"%- ) ) -, and then measuring the amount of time that it stays above
We are now in a posmon to .obta|.n the sample derivatives Therefore, (23) may be used with actual system data, not
of the performance metrics defined in (3) and (2). requiring the implementation of a SFM.
D. IPA Sample Derivative of Loss Rate E. IPA Sample Derivative of Average Workload

Recalling the definition of the loss rafer in (3), we have  Recalling the definition of the average worklo@d- in (2),
and making use of the lemmas previously derived, we obtain

Ly(0) = L /T 1[z(t;0) = 0](\(t) — p(0))dt (22) the following IPA estimator.
0

:f . Theorem 2:Under Assumptions 1-4, the IPA estimator of
=7 Z / A(t; 0)dt the workloadQr(6) with respect td is
new n—1
r dQr(0) 1
We then establish the following. =7 2 (n=G) (24)
Theorem 1:Under Assumptions 1-4, the IPA estimator of "?FI .
. . n Qn i1
the loss ratel () with respect ta is n Z Z / Kn7i<9)e—p(t,aw,,i)dt}
dLT(tg) 1 , n=1 =0 Y %n,i
=—= 1 — e

aan,i

—1[z(np-1;0) = 0] e_p«“*l’”“*)} K, i(0)=1[z(an0) =0] — A(a:{z)w
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Proof: Using (2) and the definitions of z and ¥ in IV. UNBIASEDNESS OFIPA ESTIMATORS
(6) we have: In this section we establish the unbiasedness of the IPA
dQr(6) 14d Nn N o estimators (23) and (24) for SFM. The presence of feedback
0 T Z / 0-dt+ Z/ z(t; 0)dt in our SFM makes this task somewhat more challenging than
nevg n=1""n in earlier work, such as [13] where no feedback was present.
Normally, the unbiasedness of an IPA derivatii#(§)/d¢
+ Z / edt} for some performance metri&(9) is ensured by the following
ne¥r two conditions (see [25], Lemma A2, p.70)i) For every
Cn 6 € ©, the sample derivative exists w.p.1, afid) W.p.1, the
ng {Z/ o (t; 0)dt + ZP: 00 — Cna } random functionZ(6) is Lipschitz continuous througho@,
neV g

and the (generally random) Lipschitz constant has a finite first
Since N and ¥ are locally independent df, it follows that moment. Consequently, establishing unbiasedness reduces to
verifying the Lipschitz continuity ofZ(#) over ©. In the case
dQr(0) of Lr(0), however, the existence of invalid intervals @,
originating from the presence of feedback, creates a problem

de
{i l - 3Cn o O /cn dx(t;0) dt] that we circumvent in what follows. In order to proceed, we
=1 7

90 90 shall need one additional very mild technical condition:
Assumption 5:Let W (6) be the number of jumps of(¢) in
Z { = o) (877n OG-t )} } (25) the time intervall0, 7']. Then, for anyd € ©, E [W(0)] < oc.
evp

N \

00 ol Lemma 7:Let 6 and6 + Af, Ad > 0, be in the same valid
interval in ©. Then, under Assumptions 1-5, w.p.1.,

Invoking Lemmas 3 and 4, we ha\i’ge£ = 0. Moreover, since

2(Ca) = 0-1[(n+1) € U] we have |ALr| < rAf
N 8C ac ac wherer is a random variable with a finite expectation.
Z (Cn:0) = = Z 6 6; = Z 9#_1 Proof: See Appendix. (]
n=1 (n+1)eTp nevy A similar result is obtained for the cag®d < 0. We can

where we take into account the fact the last NBP may end a(%w establish the unblasedness of the IPA estim §§

-ﬂQT
time T' and have no BP following it, in which casg; = T} as well as that o , as follows:

henceZX = 0 and the above equation still holds. Thus, (25) Theorem 3: Assumee is in a valid interval in©. Then,
under Assumptions 1-5, the IPA estimators (23) and (24) are

reduces to
unbiased, i.e.,
dQr(0) _ 1
i (g e [ o)) gl )

. . ) Proof: In the case o 0), we have, forAg > 0,
Let [a;, i41), @ = 0,...,I,—1 be the intervals contained in Qr(0)

the NBP [n,,, (). Then, using (49) ang(t, o, ;) as defined AQr = Qr (0 + AB) — Qr(0)
in (20) immediately gives (24). ] T T
Similar to the IPA estimator (23), the one in (24) also = 1 [/ x(t;9+A9)dt—/ m(t;@)dt]
requires a timer for measuring the length of every FP T 0
[ — Cn—1]. In addition, however, we need to evaluée ;(¢) 1 7T
at every endogenous evemtin a NBP. This, in turn, involves = f/ Az

the sample derivatlvé’a"—et, as seen in (45), which requires the
recursive evaluation (19). In general, this evaluation involvéecalling the boundedness ofx(t) in Lemma 1, we obtain
some rate information in the form of(a;"), i.e., knowledge 0 < AQr < A#f. Similarly, for A < 0, we obtainAf <
of the value of\(¢) when an event; takes place. Thus, unlike AQr < 0. Thus, Qr(f) is Lipschitz continuous and the
(23), the IPA estimator (24) is not nonparametric. Finallynbiasedness result follows directly from the known fact (see
note that the analysis leading to the estimators (23) and (33%], Lemma A2, p.70) that an IPA derlvatl\i’& is unbiased
can be readily generalized to any piecewise differentiable aifidi) For everyf € O, the sample derivatlve eX|sts w.p.1, and
monotonically increasing functiop(x) in (8) with more than (i) W.p.1, the random functio(6) is Lipschitz continuous
two segments, as long as the events corresponding to the bufieoughout®, and the (generally random) Lipschitz constant
level crossing any one of the thresholds are observed and thas a finite first moment.
the functionp(tz,t1) is evaluated for any intervat,, ¢3). In the case ofLr(6), as mentioned earlier, the Lipschitz
Remark. By settingp(z) = 0, the SFM reduces to the onecontinuity does not hold generally for all € © because of
studied in [13] in the absence of feedback. We can readilye existence of the invalid intervals. But the unbiasedness
verify that Theorems 1 and 2 with(z) = 0 yield the same can still be obtained as follows. Létbe in an arbitrary valid
results as Theorems 5 and 6 of [13]. interval in © and consider a sequendé’,} = {6 + Ad,},
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n=12..
same valid interval, and such that

lim Af, =0, lim 0, =60
Then, define
4 Lr(0) — Lr(0)
" Ab,,
where ALy (0)
. _ T _
s fo=—g— =1

and, by Lemma 7,

R

< r= R "
|fn] < 7=Cp+ jff?..X,L[/\’ p(0)] Tep

., selected so that all its elements belong to the,,—1,(,—1) and FPS[,_1,7,). Finally, using (29), the IPA

estimator (24) reduces to

dQr(9) 1
d@ - T EZ\I, (7777, Cn—l)
nevp
N Cn
+ / 1[z(n,;0) = 0] ec(t"”)dt}
n=1""n
1 1— 676(@1,*"771)
=7 Z {(Un = Gn-1) + c} (31)
nevp

Unlike the general case in (24), here we find that the work-
load IPA estimator is alsmonparametricand involves only

timers for measuring the durations of FPs and their ensuing
NBPs. Thus, from an implementation standpoint, using linear

SinceE [r] < oo, f, is integrable and the unbiasedness resugedback enables the use of IPA estimators in control and

follows by the Dominated Convergence Theorem [26]. B

V. THE LINEAR FEEDBACK CASE

In this section we consider the special case of a Iinea\lyI

feedback function, i.e.,
(26)

for all z > 0 andc¢ > 0. In this case, a NBPy,,, (,(0)) is no

p(x) = cx

optimization problems with same ease as in the no feedback
case in, for example, [13], as further discussed in the next
section.

OPTIMAL BUFFERCONTROL USING SFM-BASED IPA
ESTIMATORS

A. Cost Function Structure
In this section we discuss the influence of feedback on the

longer decomposed into subintervals, since there is no endogjgucture of_co_st functions defined to _formulate o_ptimization
nous event contained in the NBP. In other words, the samfleoblems. Similar to [13], the cost function we consider has the

path now consists of three modes only, corresponding to
EPs, M, corresponds to FPs, ard; corresponding to NBPs.
Given (26), we obtain for (16):

_ [T opla)
o) = | 5 dt=clt=m) (27)
and (46) reduces to
Kn(0) = 1[z(nm;0) = 0] (28)

since, by Lemmas 3 and 4, we ha%ﬂ = 0. Note that the
indexing is now over NBPsy = 1,2,. .., since there are no
endogenous events based on which we previously subdivi
a NBP. Accordingly, the queue content derivative in (1
becomes, for any € [, (,.(0)),

39:(25, 0) _ . _ 7C(t7"7n)
Using (27), the result of Lemma 6 becomes
G, 1 o
~1[w(nn; 0) = 0] =7}
The IPA estimator (23) becomes
dLr(0) 1
=7 2 (e =G (30)

nevp

—1[z(n,_1;0) = 0] e—c(cn,l-n”,l)}

and we can clearly see that this m@nparametricand re-

form of (4), i.e.,J(0) = vQr + Lz, reflecting the tradeoff be-
tween loss and workload (equivalently, throughput and system
delay). This tradeoff, however, is complicated by feedback: As
the threshold increases, the amount of suppressed flow (the
flow not admitted into the system) increases and this has to
be either rejected or held at the supply sotirdehis effect is
certainly undesirable and has to be taken into account when
defining throughput. Therefore, the role played by feedback in
this tradeoff needs to be carefully identified.

Let us adopt a pricing-based approach to reveal the effect
of feedback on throughput. In an actual (discrete event)

Gueuoeueing system with the proposed feedback mechanism,

very customer trying to enter the server belongs to one of

e following three classegi) it is rejected before entering
the system because of the source rate suppression;it
enters the system but is dropped because of overfloi)
it is successfully served. Moreover, we assume thattwo
customers of different classes have a price difference,(&nd
two customers of the same class have the same price. Our
pricing strategy is tompose a nonnegative price on every
packet according to its classnd minimize the total cost. The
price is set tol for each customer dropped because of loss
(overflow), or0 for each customer successfully served, based
on the premise that dropped customers should be penalized
the most and those successfully served should be penalized
the least. On the other hand, for each customer suppressed
before it could enter the system, the price with 0 < s < 1,

IFlow supression may be realized by a variety of mechanisms; for example,
by letting the supply source hold the flow until the buffer content is below the
threshold. As a result, the flow is delayed but not necessarily lost. However,

quires only simple timers to evaluate the duration of NBR& shall not go into details regarding these mechanisms.
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since this justifies the presence of a source rate suppressiequired for convergence to an optimum may be found, for
mechanism through which customers are not necessarily lostance, in [27]):

but ra_ther delayfad. It is worth point_in_g out that our purpose Brrir = O — vy Hy (6, wPPS), n=0.1,... (37
here is not to discuss a precise pricing scheme, but only to "
gauge the effect of feedback by a pricing-based approashere H,,(0,,,w?*%) is an estimate ofl.J2* /df evaluated
using the relative price value s, 1. The total price for all at# = 6,, and based on information obtained from a sample

customers during the time intervil, 7] is then: path of the DES denoted hyPZ% (to differentiate it from
sample pathsoSFM obtained through a SFM of the DES)
P(0) = [sRr(0) + Lr(0)] - T (32)  and {v,} is a step size sequence. What we have obtained

in which Rr(¢) is the suppression rate of the system anl] (30) and (31) gives us an IPA estimator @ (),

Lz(0) is the loss rate. Moreover, let us consider the particulffe cost obtained for the SFM corresponding to the actual
case of linear feedback. so that DES. Notice, however, that the form of these SFM-based IPA

T r estimators enables their values to be obtained from data of

Ry (0) = l/ p(a(t;0))dt = l/ ca(t; 0)dt = cQr(0) an actgal (discret_e—gvent) system: The expressions in (30) and
T Jo 0 (31) simply requirei detecting when the buffer level reaches
33 gor 0, and {i) timing the length of BPs and NBPs. These are

combining (32) and (33) suggests data available on a sample path of the DES. In other words, the
P(9) form of the IPA estimators is obtained by analyzing the system
T esQr(9) + Lr(0) (34) as a SFM, but the associatedluescan be obtained from

as the metric for throughput reduction due to overflow ar{gal data from the underlying DES. Obviously, the resulting

source rate suppression gradient estimatot,, (,,,w?*%) is now an approximation

On the other hand, taking both throughput and delay (equi\g_ading to a sub-optimal solution of the above optimization
alently, workload by Little’s Law [10]) into consideration, an

problem; however, as extensively discussed in prior work (e.g.,
overall cost function may be determined as [13]) this approxmanon re-coven%k with great accuracy.
Note that{6,} in (37) is a sequence of real numbers.
P(0) Applied to the actual queueing system, we define the control
J(0) = —= +dQr(0) = d 0)+ Lr(0) (35 ) ’ :
(6) T +dQr(0) = (es+d) Qr(0) + Lr(6) - (39) policy as follows: as a customer enters the system (if not

in which the parameter reflects the agreement betweesuppressed due to the feedback effect), it is accepted if the
the server and the supply source ahdeflects the relative buffer contentz(t) < ¢ or dropped because of overflow when
importance between throughput efficiency and latency. #{t) > 6. Finally, note that, after a control update, the state
summary, the form of this cost function looks similar to thafust be reset to zero, in accordance with our convention that
in previous work [13], i.e., it is a linear combination ©f-(9) all performance metrics are defined over an interval with an
and Ly (). However, the coefficient a1 (6) is split into two initially empty buffer. In the case of off-line control (as in

parts, corresponding to the effect of throughput (affected Bye numerical examples we present), this simply amounts to
feedback througlz) and delay respectively. simulating the system after resetting its state to 0. In the more

interesting case of on-line control, we proceed as follows.
Suppose that theth iteration ends at time,, and the state
is x(0,;7,) [in general,xz(0,;7,) > 0]. At this point, the
Based on the preceding discussion of the cost functigfireshold is updated and its new valuejs. ;. Let 70 be the
structure, we present some numerical examples limiting owext time that the buffer is empty, i.ex(6,,1;7°) = 0. At
selves here to the linear feedback case. As suggested befgiig, point, the(n + 1)th iteration starts and the next gradient
the solution to an optimization problem defined for an actugktimate is obtained over the internval’, 70 + 77, so that
queueing system may be approximated by the solution to the,;, = 70 + 7" and the process repeats. The implication is
same problem based on a SFM of the system. However, that over the interval no estimation is carried out while the
simple form of the IPA estimators of the loss rate and workloagbntroller waits for the system to be reset to its proper initial
obtained through (24) and (23) actually allows us to use dajgate; therefore, sample path information available oygr?]
from theactualsystem in order to estimate sensitivities that, iy effectively wasted as far as gradient estimation is concerned.
turn, may be used to solve an optimization problem of interest.Figure 5 shows examples of the application of (37) to a
Let us now consider the linear feedback buffer contrgingle-node system with linear feedback under four different
problem for the actual DES with cost function (35) angarameter settings (scenarios). The service gigit¢ = 2400
illustrate one of several possible means to quantify syste@mains constant throughout the simulation. In all four cases,
performance objectives: o(t) is piecewise constant. In scenarios 1 and 2, each interval
over whicho (t) remains constant is a random variable with a
JPP2(0) = VEIQT" (9)] + E[L7"(6) (36) Pareto diStriE)ljtionPareto(l/Qr, 2), i.e., a cdfF(z; A, B) =
in which v = ¢s + d as detailed in the previous sectionl — (g)B for Pareto(A, B). In scenarios 3 and 4, each in-
The problem of determining* to minimize J225(9) above terval is exponentially distributed with parameteiTherefore
may be addressed through a standard stochastic approximatarall scenarios the expected length of such intervals/is
algorithm (details on such algorithms, including conditionat the end of each interval, the next valuecdf) is generated

B. Numerical Results
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750 800

Scenario 1
650 ‘\ 700
. 550 - W' + 600 1

350 1 —e—DES 400

VII. CONCLUSIONS ANDFUTURE WORK

Scenario 2

SFMs have recently been used to capture the dynamics of
complex DES so as to implement control and optimization

2
© 500

—e—DES
—a—IPA Algo.

250 —a—IPA Algo. 300 methods based on estimating gradients of performance metrics.
0 20 40 60 80 100 0 20 40 60 . . N .
Threshold Threshold In doing so, we exploit the simple form of the IPA estimators
i of these performance gradients and the fact that they depend
m sqenario s seenario ¢ only on data directly observable along a sample path of the

L i actual system (not just the SFM which is an abstraction of the
5 system). Systems considered to date have not included any

500 . . . . .
Barvn o DY feedback mechanism in their operation. In this paper, we have

O m s o 10 . o o o taken the first step towards incorporating feedback by consid-
Threshold Threshold ering a single-node SFM with threshold-based buffer control

and controllable inflow rate based on buffer content feedback.

Fig. 5. Numerical results for four different scenarios We have developed IPA estimators for the loss volume and

average workload as functions of the threshold parameter, and
shown their unbiasedness, despite the complications brought
according to a transition probability matrix. For simplicity, weypoyt by the presence of feedback. The simplicity of the
assume that all elements of the transition probability matristimators, especially in the linear feedback case, suggests
are equal and the only feasible value of these elementsiigir application to on-line control of networks, as illustrated
g = 1/m, in which m is the number of values(¢) can take. i, sSection 6.
For different scenariosy(t) value sets, the feedback factor The work in this paper opens up a variety of possible

¢ and overflow penaltyy also vary. Table 1 summarizes the,y ensions. First, the framework presented here can be readily
settmgs.fc_)r. all four scenarios. Also shown in the table algplied to piecewise differentiable feedback functigrs)

6o, the initial threshold value, and”, the threshold value \ith more than two segments or with discontinuities. More-
obtained through (37). In Fig. 5, the curve “DES” denotes thger, the sensitivity analysis we carried out for the threshold
cost function.Jr(#) obtained through exhaustive S'mUIat'OrbarameterG can be extended to all threshold parameters
for different (discrete) values af with 7' = 50000; the curve 01,..., 0,_, of the feedback function (8). On the other hand,

“IPA Algo.” represents the optimization process (37) with thehere are several issues regarding the feedback mechanism.
simulation time horizon for each step of (37) setlto= 10, Fjrst of all, the feedback formu(t) — p(z) implies several
and with constant step size = 2.5. As shown in Fig. 5, yequirements on the server and the supply souigehe form

the gradient-based algorithm (37) converges to or Very n&gr, . requires continuous observation of the buffer content
the optimal threshold (the threshold value that correspongls,). ;) this information has to be instantaneously transferred
to the minimum of the DES curve) even when the per-sigpck to the sourcefiii) the source has to be able to apply
simulation time horizon is so short that the performanGge aqditive rate control continuously. These requirements may
with the same time horizon significantly deviates from thegyioysly hinder the application of this feedback mechanism in
“DES” curve. This is an indication of how the optimal controkyme settings, notably high-speed communication networks.
parameter can be recovered through a SFM, even though {isiivated by this consideration, we are pursuing the study
corresponding performance estimates obtained by the SiM|pa estimators for alternative feedback mechanisms. For
may be inadequate, as is clearly the case in Scenario 2,9 mpje, of special interest in practice is multiplicative feed-
Fig. 5 for example. _ _ . back of the formp(z)o(t), wherep(z) may be, for instance,

In Fig. 6 we also show the effect GF', the simulation time 5 pjiecewise constant function, making implementation of such
horizon for each step of (37) on its convergence. We obseryemechanism particularly simple (i.e., by probabilistically
that the smaller_the IPA estimation interval becomes, the dropping incoming customers) [28],[29]. Preliminary work
slower the algorithm converges. When the value is too smalfs, syggests that a similar analysis may be carried out for an
i.e.,T" = 5in this case, the threshold finally oscillates betweeékponential feedback function(z) = e~*. Along the same

the values 15 and 25, the actual optimum being=16.4.  |ines, by properly selectingp(x), it is possible to emulate
other forms of feedback such as the popular TCP congestion
700 N Scenario 2 . i Convergence (Scenario 2) COﬂtI’O| SCheme

e Of obvious interest is also the possibility to obtain gradient
oot estimators with respect to parameters of the controller. For ex-

Cost
IS
S
3
Threshold

w ¥ yﬁx zz ample, in the linear feedback case in (26), sensitivity estimates
0] —DES = T=100| of performance metrics with respect to the “gaintvould be
o s WY ———— instrumental in tuning such a controller. Our ongoing work
Threshold 7 Neratons suggests that this is indeed possible.
Finally, as mentioned earlier, a critical assumption in this
Fig. 6. Convergence as a function of IPA estimation interval paper is that state information is instantaneously available. In

some cases, the delay involved in providing such information
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Scenario[[ r [ ¢= o value set 103) c | s d ~ [ 60 | 6*
1 10 0.333 34,28,22 5 105 5 751 95| 27.3
2 10 0.333 34,28,22 20 | 0.5 20 30 | 60 | 16.4
3 10 0.125 | 34,33,32,29,26,25,19,14 5 | 05| 7.5 10 | 95 | 20.1
4 10 0.125 | 34,33,32,29,26,25,19,14 13 | 0.5 | 135 | 20 | 95 | 16.1
TABLE |

SUMMARY OF PARAMETER SETTINGS FOR FOUR SCENARIOS

to a controller can be significant. To address this problem,4. (NBP,EP): Sincer(t;60 + Af) = 0 for all ¢ € [t;, t;41)
alternative feedback mechanisms are needed; for exampled the induction hypothesis and continuityadf; 0) require

a piecewise constani(z) implies that the controller needsthat z(¢;;0 + Af) > z(#;;0), it follows that z(¢;;0) = 0.

to be notified only when the buffer content reaches one addition, since the perturbed path is in an EP, we have
or more critical levels that trigger some action (capturing(t) — p(0) < 0. These two facts, imply that(t;6) =

a “quantization” in the state feedback). In this case, thefor all ¢ € [t;,#,41). This contradicts the assumption that
effect of a communication delay can be incorporated in thke nominal sample path is in a NBP. Hence, this case is
proper selection of these critical levels (adjustable controllanpossible.

parameters). This is a crucial issue that we are currently5. (NBP,NBP): From (1), we have:

investigating. dx(t; 0
B9 — zt) - pla)
Appendix and 0+ A)
Proof: [Lemma 1] At any time, a state trajectory has to be ’T = At) — p(z(t; 0 + AG)),
in one of the following three aggregate states: EP, NBP or FP. . h imoli
Therefore, there are nine possibilities for the joint aggregavt\g“C Implies
states corresponding to the nominal and perturbed sample dAz(t) = [p(x(t:0 + A0)) — p(x(t;0))] (39)

paths for a giverf and Ad. For example (EP,NBP) indicates dt
that the nominal sample path is in an EP and the perturbied ¢+ < [t;,¢,,,). Combining the above equation with the
sample path is in a NBP. Let us consider joint sample pathgluction hypothesis thahz(¢;) > 0 (recalling the continuity
and lett; denote thdth time instant when either the nominalof z(¢; #)) and the monotonicity of(-), we obtainp(z (t;; 6 -+

or the perturbed sample path experiences a transition froug)) — p(z(#;;6)) > 0. It follows that

one aggregate state to another. Thus, we decom{iodd dAz(t)
into intervals|t;, t;+1), { = 0,...,B — 1, wheret, = 0 and

B is the total number of such intervals. We now proceed t% | Adt h
induction overl = 0,...,B — 1. rt as long asAz(t) > 0, t € [fi,t41), hence

> 4
For the first time interval corresponding te= 0, since, by Ax(t) < Aw(tl_)l_hg A&b. Slé%podsfxg)]a%xé? - 0>for some
assumptionz(0; 0 + Af) = z(0;0) = 0, A has no effect 7 € [t1,ti). Then, by (39), 7=z~ = 0 for ¢ > 7, e,
and we haveAz(t) — 0 < A for all ¢ € [to,t1). Next, x(zlf;t9.+ Ae)).: x(t;0), which |pjp||es that both sample paths
we assume thad < Az(t) < A6 for all ¢ € [f,_1,#) with coincide until the next transition to an EP or FP tat;.

! > 1, and will establish the same conclusion for alle Therefore, Az (t) > 0 for all ¢ € [, tr+1).

) . . . . 6. (NBP,FP): Sincex(t;;0 + Af) = 6 + A6, the induction
ggsté;li)cievr:{[eifizgcgtr)nop\)/lfh this by considering all possible mnﬁypothesisAx(tl) < A6 (recalling the continuity ofz(t; 6))

T s ., and the fact that:(¢;0) < 6 imply that z(¢;;0) = 6. On
L. (ERPEP): Trivially, Az(t) = z(t:6 + Af) = =(t0) = the other hand, since the perturbed sample path is in a FP,
0 < A, forall t € [t;,ti41)-

- Af) > 0.Th ici hen impli
2. (EP,NBP): Sincex(t;0) = 0 for all t € [t;,¢;11), from A(t)—p(0+A6) 2 0. The monotonicity ofp(x) then implies

h — . Si 10) = [
(1) we haveA(t) — p(0) < 0 for all ¢t € [t;,¢;1). Moreover, that At) = p(6) > 0, t € [fn,tya). Since(t; 0) = 0, it

: ) tonically i . 0L AD) > follows that the nominal sample path is also in a FP, which
since p(x) is monotonically increasingp(x(t;0 + A9)) = qhiradicts the assumption that it is in a NBP. So this case is
p(z(t;0)) = p(0), which implies

infeasible.
dz(t; 0 + AG) 7. (FP,EP): Sincex(t;;0) = 6 andz(t;;0 + Af) = 0, we
g = MO —plet0+A6) < At) —p(0) <0 get Az(#) < 0, which contradicts the induction assumption
(38) Az(t;) > 0, and this case is also infeasible.
Therefore Ax(t) < Az(t;) < A, for all ¢ € [t;,¢,11), where 8. (FP,NBP): In this case;(t;0) = 6 for all t € [t;,t111)
the second inequality is due to the induction hypothesis aadd the induction hypothesidz(t;) > 0 (recalling the
the continuity ofz(¢; ). It is also clear tha\z(t) > 0. continuity ofz(¢; 9)) implies thatx(¢;; 0+ A6) > 6. Moreover,
3. (EP,FP): Since:(t;;0 + Af) = 6 + Af andz(t;;0) = 0, we show next that:(¢;60 + Af) > 6 for all t € [t;,t;41). If
we getAz(t;) = 6+A60 > A which (recalling the continuity (t;; 0 + Af) = 6 for somer € [t;,t,41), we get form (1):
of x(t; #)) contradicts the induction hypothesis. Therefore, this dz(7;0 + AB)
case is impossible. — g = A1) —p(0) 20

<0
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where the inequality is due to the fact that the nominal sampdéferentiating with respect t@, we obtain:

path is in a FP, i.e.\(t) — p(f) > 0 for all t € [t;,ti41).

Therefore, the perturbed sample path is constrained in this
case by < xz(t;0 + Af) < 0+ A6, and it follows that

0 < Az(t) < Affor all t € [t t11).
9. (FP,FP): Sincer(t;0) = 0 andx(¢t;0 + Af) = 6 + A,
it is clear that for allt € [t;,t;4+1) we have0 < Az(t) = Af.
This completes the inductive proof. |

Proof: [Lemma 2] We begin the proof by further decom-
posing the intervala;, «; 1) into subintervals defined by all
exogenous events {fav;, «;11). Lett; be the time instant when

the Ith exogenous event occurs (o, a;41), L = 1,..., E;,

Ox(t;0)  Ox(ay;0) . /t 0A(T;0) Oa
0 o 00 06
where, recalling the definition of the event times, i =
0,...,1, there are three possible values th#ty;) can take:
8, 6, or 0. Thus,
Oz (a3 0)
00

Since the boundedness

dr — A(aj)

= 1[z(a;) = 0]

8 and 22(5%) is guaranteed

by Assumption 1 and Corollary 1 respectively, from (40) we

where E; is the (random) number of these exogenous eventhtain:

For notational simplicity we set,; = to and ;11 = tg,41-

In the interval (¢;,t;41), I = 1,2,..., A(¢) is constant and

p(z) is differentiable and we can see t (t:6)

continuous with respect tb For allt € (¢;,t;41), (1) gives
0x(t; 0)
ot
Differentiating with respect t@ and recalling that\(¢) is
independent o/, we have from (14)

0A(t;0) _ Op(z) dp(x) 0x(t; 0)

= A(t;0)

00 00  dz 00 (40)
so that
9 [0x(t;0)] _  dp(z) 0z(t;6)
a0 { ot } N dx 00 (41)
Define ‘g (z)
_ p\x
Then, (41) can be rewritten as:
o [0xz(t;0)] 78pl(t) 0x(t;0)
ot [ a0 } N ot o6 (43)
Solving this equation we obtain fare (¢, t;41):
al’(t, 9) - —pi(t)
50 ke (44)
in which
b — 0x(t; 0)
o0 t=t,"

i i i
7 exists and is Therefore,

OA(t) dp(z)||0x
P Sy e <
%2 = |5 [ <
+ 8041'
Ki(6) = 1[e(ais0) = 6] - Alef) 5 (46)
Returning to (44) for all =0,1,2,... we now have:
Orlli0) _ g gye=rotes (@)
al‘(tl,e) . 8m(tl71,9) —pi—1(t)
0 50 e , forli>1 (48)
Recalling the definition of,(¢) in (42), let

dp(z)

t
t) = —dt
o(t) / s

and note that fort € (t;,¢111), p(t) = S, pio1(t:) +
pi(t). Thus, combining (47)-(48) with (44) gives

%ngm@fw>mmMemﬂm) (49)
which is precisely (15). [ ]

Proof: [Lemma 3] If z(¢; 0) decreases frorf at time ;,

this defines the start of a NBP which, as already seen, is an

exogenous event, independentéofSpecifically, from (1) we
must have\(a; ) —p(0) > 0 andA(a;") —p(6) < 0 whereA(t)
is independent of. ¢ From Assumption 3\(a; ) —p(6) > ¢,

Ma)—p(#) < —cq. Therefore, there exists a neighborhood of

3

# within which a change of does not affecty;. This implies

Sincet, for [ > 1 is the occurrence time of an exogenougqat «; Is locally independent of and the result follows. m

event (when\(t) switches from one value to another),

it

Proof: [Lemma 4] The proof is similar to that of the

is locally independent off. By Assumption 4 only this Previouslemma, witt(a; )—p(0) < 0 andA(a;")—p(0) > 0.

exogenous event occurs @t and % is continuous at;,
thus,

0x(t; 0) ~ Ox(t;0)  Ox(t;0)
00 1=t 99 06 -
On the other hand, wheh= 0, t; = «; depends or. Let
us define Dx(t:0)
(L
K;(0) = —— 45
=51 _, (45)

k3

which can be determined as follows. Since

x(t;0) = x(a; 0) + /t A(r;0)dr,

[ |
Proof: [Lemma 5] We have
Qi1
[ w0 = s(aini0) - s(0z0)  (60)
Depending on the values af(«;;0) and x(a;11;6), we
have the following possible cases:

Case 1 z(ay;0) = x(a;41;60), so that
% [2(iy1;0) — x(c;; 0)] = 0.

Case 2 z(a;0) = 0, z(a;41;0) = 61, so that
% [2(iy1;0) — x(e;; 0)] = 0.

{Case 3 z(a;;0) = 61, x(ay1;0) = 0, so that
% [2(tit150) — z(ay;60)] =1
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Case 4 z(wa;;0) = 9, (ozl+1,9) = ¢, so that [n,,(,) we obtain:
% [ac(ai+1;9) —JU(O(Za )] = _ 8@1 I aao —p(a1,a0)
Case 5 z(aj;0) = 64, I‘(Oti+1;9) = 0, so that Aoy )W — A(og )We nee
37 [w(ir1;0) — (i 0)] = 0. =1[z(a1;0) = 0] — 1 [z(ag;0) = ] e~Pler:0)
Combining these cases yieI% [x(vit1;0) — z(y; 0)] = _ day 1900 taman)
1[a(aiz130) = 0] — 1[z(as;0) = 0], which can take three A(az) - — Alay) e 7™
possible valuesi, 0, and —1. Thus, from (50) we get = 1[z(az:0) = 0] — 1 [z(ay;0) = 0] o—Plaz,an)
o[ o] = 1o =0 1o =0
- t;0)dt| =1 |x(a;r1;0) =0]—1|x(;;0) =
00 a; A A(a )8a[ _ (aJF )aaI"71 —plar, ar, —1)
(51) 5700 =17 90
Let ¢; be the time instant when tHéh exogenous event occurs  — 1 [z(az,;0) = 0] — 1[x(ar, _1;0) = 0] e—Plar, ar,—1)
in (a;,ai41), 1 =1,..., E;, whereE; is the (random) number . )
of these exogenous events. Then, We notice that for0 < i < I, 1[z(a;;6) =60] = 0,

otherwise the NBP would end before time, . Moreover,
by Assumption 4, no exogenous event occurs at timdor

9 m+1 tia i > 0, thereforeA(a; ) = A(aj") = A(w;) for i > 0. In view
20 [ A(t:0) dt} 9 [Z / A(t;9) dt} of these facts, we get
E; ¢ 8041 8040 _
9 1 A T At 220 p—plen,a0)
:Za*/ A(t; 0)dt (1) 5y —Alaw) e
=0 =1 [x(ao,Q) — 9] —p(a1,a0)
E;
8tl+1 + atl (90[2 80{0 —p(az,a1) _
:Z{ (t) 5+ — At 55 Alaz) g — Alan) e 75 =0
/ aA t; 9 }
day, day, _
8a . Alag, 1) agé ! — Ao, —2)78]9 2 e—plam-nam,-2) —
A i+1 _ + 2
Y a0 (a)) a0 A(aln)aaln fA(ozIn—ﬂaaI — e POm 0 -1)
E(0) [emrtoen) 1] o6 2
=1[z(ayg,;0) =0

Multiplying the ith equation above by?(®i-1) and sum-

where we have made use of (18). Therefore, using (51), th Hehg up the results we obtain:

above equation yields

Alos )80% ePlar, o) _A(abi-)%e—p(al,ao)
Oy 1 A Oa; —plait1) oo (ar,,0n) o0 —ple,e0)
90 Alagy) (a3 )ae K;(0) [@ ’ _1i = 1[z(ar,;0) = ]’ —1[z(ap; ) = ] e” 7
+1 [z(0i4150) = 0] — 1 [2(as;0) = 0]} Recall thatag = 7, a7, = ¢, and G = 0 (Lemmas

3, 4). Observing, in addition, that(ay,, ) + plag,ap) =

, we obtain:
Note that for alli > 0, a; corresponds to an endogenous ever(t),(C” i)

therefore, by Assumption 4, there can be no jumplift) at A(Cn)% =1[2(Ca;0) = 0] — 1 [x(n,; 0) = 0] e~ Crmm)
t=oa;i>0ie,A(a;) = Ala) foralli =0,...,1,— oL ’ ’
1 (we must still write A(a;"), however, to account for the which gives (21). [ |
jump att = ap which initiates the NBP). Then, recalling the Proof: [Lemma 7] Similar to (22), for the perturbed
definition of K;(6) in (45), the expression above reduces tosample path withtAd > 0, we have

L (6 + A9)

8(39“ = : ){ (o] >§,‘; o) 7/ 2(t;0+ AG) = 6 + AGA() — p(6 + AY
Q41 p( + )]dt

) — P ) — —p(ait1)
+1[z(ip1;0) = 0] — 1 [z(a;;0) = 0] e Pt } Seting ALy — Lr(0 -+ A0) — Ly (0), we get

1 T
which is precisely (19). The fact that the initial condition foAL7 = T/ {1[z(t;0 + Af) = 0+ AB] [A(t) — p(6 + Af)]
this recursion isaﬁ% = 0 follows from Lemmas 3, 4. ] 1 ;9 o N dt
Proof: [Lemma 6] Assume there aré, — 1 endogenous ~1z(:0) = 01 A®) — p(O)]}
events in(n,,¢,) and recall thatoy = 7, and a;, = (.. Considering the possible values ©oft; 8) andx(t; 0 + Af)
Applying Lemma 5 to all intervalda;, ;1) contained in at any timet, there are four cases:
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1. z(t;0) = 0, z(t;0 + AG) = 6 + Af: In this case, Sincep(z) is a monotonically increasing function, combining

1[x(t;0 + A0) =60+ A0 = 1[x(t;0) = 0] = 1. (54) and (56) we obtain:
2. z(t;0) = 0, x(t;0 + Af) < 6 + Af: In this case,
1[z(t;0 + A0) =60+ A0 =0, 1[z(t;0) = 6] = 1. At) —p(x) > ¢y forall zelh, 0+ Af) 57)

3.2(t;0) < 0, x(t; 0+A0) = 6+ A0: This case is infeasible Recall that fori € ¥, we havez(t;§) = 0 and z(t; 0 +
because it implies thahz(¢) > A# which violates Lemma 1. A@) < 0+ A6. In addition, by Lemma 1, we havaz > 0, so
4. a(t:0) < 0, 2(t:0 + A0) < 6+ AG: In this case, ynay, (194 AG) > 6. Thus, for allt € Vi, 6 < z(t; 0+ Af) <

Lla(t0 + A0) = 0 + A6] = 1[z(t;6) = 6] = 0. 6 + A6, and it follows from (1) and (57) that
Thus, the expression fak L1 above is non-zero only under

cases 1 and 2, correspondingut@; ) = 6. Let us decompose Ox(t;0 + AG) AE) = p(a(t; 0+ AB)) > ¢ (58)

[0, T] into intervals corresponding to the feasible cases above ot
and denote these intervals by, i = 1,2, ..., and their lengths  gjcep < 2(t;0+ Af) < 6+ Ad, the starting point of such
by [V;|. Moreover, let an intervalV; is either (i) the start of a FP in the nominal

Uy ={i: 2(t;0) =0, 2(t;0 + A9) = 0 + Ad for all t € V;} path, or(ii) the end of a FP in the perturbed path. However,
e " due to (58), the latter case is not possible, since starting with
Vo ={i: 2(t;0) =0, 2(t;0+ A9) <O+ Abforallt € Vi} ooy of a FP require@2E0+29 o Thus, fori € s,

-
Thus, the starting point oV is the gﬁart of a FP in the nominal path
at some timer; o.

ALy = 1 { Z / [p(6) — p(0 + AB)] dt Regarding the end of;, it can occur if either(i) the end

T iew, Vi of a FP occurs in the nominal path, i.e(t;0) ceases to be
at ¢ at some timer; 1, or (it) the start of a FP occurs in the

+ Z / [p(0) — (1)) dt} (52) perturbed path, i.ez(t; 04+ Af) reached) + Af at some time

iew, 7 Vi Ti 2+

We will prove that both terms in the right-hand-side bracket ©OMPIning the above observations, we have

of the above equation are bounded. For the first term, we have V3| = min(mi1,7i.2) — Tio < Tio — Tio
whereT; » — 7; ¢ IS upper-bounded by the time needed for the
perturbed sample path to evolve frahto 6 + A6 under (58),
e, Tio — 710 < AG/(ZEIERDY < Ag/c,. Thus,

> ; [p(8) — p(6 + AB)] dt

€W, g

= [p(6) — p(0 + A0)| > |Vi|

€Wy AO

Vi < —

< CyA0 Y |Vi| < C,TAS (53) co
i€y Then, returning to the second term of (52), we have

where the first inequality is due to Assumption 1 and the
Generalized Mean Value Theorem appliedpta:) with = €

> | toto) = xc)ae

[9,9 + Ae]. 1€EWsy
For the second term, sindec ¥,, we have
2(t;0) = 0 and A(t) — p(6) > 0 for all £ € V; < z@: /V jmmax [A; p(‘m‘ dt
1€EWo K
By Assumption 2|\(t) — p(6)| > cp, SO we get
< | max [\ —p(0)]|| > / dt
At) —p(0) = co (54) J=be L iew, Vi
Sinced and 6 + A4 are in the same valid interval i®, we < | max [\ — p(0)] Z \4
can also show that = =t Pt ’
Mt) —p(0 +46) 2 0 < | max - p(O)| 2 (59)
Jj=1,..., 0

To establish this inequality, suppose thét) —p(6+Af) < 0.
Then, from the continuity ofi(-), there existz* andt* such whereR = |U,| is the number of intervals ifY), T'] that belong
that to the set®,. As mentioned earlier, the end of suchva
interval corresponds to either the end of a FP in the nominal
sample path or the start of a FP in the perturbed sample path,

This implies an invalid interval betweehandf + A6 which i.e.,
contradicts our assumption thatandé + Aé are in the same R < F(0) +F(0+ Ad)

lid i I. Thus, in vi f this i li A i
\Zlav:/(;ilgrgerr;/f;uiresufr;;lr;\\(/gvz(;9(; fg‘gﬂuj ICIZ ?Ar: gestsumptloQ/vhereF(G), F(0+ A6) are the numbers of FPs in the nominal

and the perturbed sample paths respectively. Moredvét)
At) —p(0+ A8) > ¢ (56) is bounded by (9), the number of switches of(¢) in [0, T7;

At) —p(z*) =0, 0<z*<0+A0, t*eV; (55)
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similarly, F(8 + Af) is bounded byiV (6 + A#). Recalling [21]
Assumption 5, we have
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[22] M. A. Wortman, R. L. Disney, and P. C. Kiessler, “The M/GI/1 bernoulli
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