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Perturbation Analysis of Feedback-Controlled
Stochastic Flow Systems
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Abstract— Stochastic flow systems arise naturally or as ab-
stractions of Discrete Event Systems (DES), referred to as
Stochastic Flow Models (SFMs). In this paper, we consider
such systems operating with a feedback control mechanism,
building on earlier work that has studied such SFMs without
any feedback. Using Infinitesimal Perturbation Analysis (IPA),
we derive gradient estimators for loss and workload related
performance metrics with respect to threshold parameters used
for buffer control. These estimators are shown to be unbiased.
They are also shown to depend only on data observable from a
sample path of the actual DES. This renders them computable
in on-line environments and easily implementable for control
and performance optimization purposes. In the case of linear
feedback, we further show that the estimators are nonparametric.
Finally, we illustrate the use of these estimators in network con-
trol by combining them with standard gradient–based stochastic
optimization schemes and providing several simulation-based
examples.

Index Terms— Stochastic Flow Model, Discrete Event System,
Hybrid System, Perturbation Analysis.

I. I NTRODUCTION

A NATURAL modeling framework for many stochastic
Discrete Event Systems (DES) is provided through

queueing theory. However, “real-world” DES become increas-
ingly difficult to handle through queueing theory on an event-
by-event basis, especially for telecommunication and computer
networks with enormous traffic volumes. Stochastic Flow
Models (SFMs) provide an alternative modeling technique to
queueing theory with applications including communication
networks and manufacturing systems. Fluid models as abstrac-
tions of queueing systems were introduced in [1] and later
proposed in [2] for the analysis of multiplexed data streams
and in [3] for network performance. They have been shown to
be especially useful for simulating various kinds of high speed
networks [4],[5],[6],[7], as well as manufacturing systems [8].
In a queueing system described by a fluid model, we focus
on the behavior of aggregate flows and ignore the identity and
dynamics of individual customers. In aStochastic Flow Model
(SFM), we further treat flow rates asstochasticprocesses with
possible jumps viewed as events, thus capturing a high level
of generality for the traffic and service processes involved.
While the aggregation property of SFMs brings efficiency to
performance analysis, the resulting accuracy depends on traffic
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conditions, the structure of the underlying system, and the
nature of the performance metrics of interest. On the other
hand, SFMs often capture the critical features of the under-
lying “real” systems, which is useful in solvingcontrol and
optimizationproblems. In this case, estimating the gradient
of a given performance metric with respect to key parameters
becomes an essential task. Perturbation Analysis (PA) methods
[9],[10] are therefore suitable, if appropriately adapted to a
SFM viewed as a DES [11],[12],[13],[14]. In a single node
with threshold-based buffer control, Infinitesimal Perturbation
Analysis (IPA) has been shown to yield simple sensitivity
estimators for loss and workload metrics with respect to
threshold (or buffer size) parameters [13]. In the multiclass
case studied in [14], the estimators generally depend on traffic
rate information, but not on the stochastic characteristics of
the arrival and service processes involved. In addition, the
estimators obtained are unbiased under very weak structural
assumptions on the defining traffic processes. As a result, they
can be evaluatedbased on data observed on a sample path of
the actual (discrete-event) systemand combined with gradient-
based optimization schemes as shown in [13] and [14].

Queueing networks have been studied largely based on
the assumption that system state, typically queue length in-
formation, has no effect on arrival and service processes,
i.e., in the absence of feedback, thus ignoring a potentially
important feature of actual system design and operation. For
example the Random Early Detection (RED) algorithm in TCP
congestion control [15],[16] provides some form of feedback
for network management. The same is true for hedging point
policies in manufacturing systems [17],[18]. Unfortunately,
the presence of feedback significantly complicates analysis.
For instance, it is extremely difficult to derive closed-form
expressions of performance metrics such as average queue
length or mean waiting time, unless stringent assumptions
are made [19],[20],[21],[22], let alone developing analytical
schemes for performance optimization. It is equally difficult to
extend the theory of PA for DES in the presence of feedback.
Indeed, such work is absent from the PA literature to the best
of our knowledge.

Motivated by the importance of incorporating feedback to
stochastic DES as well as their SFM counterparts, and the
effectiveness of IPA methods applied to SFMs to date, the
purpose of this paper is to tackle the problem of deriving
IPA gradient estimators for SFMs with feedback mechanisms.
As a starting point, we consider a single-node SFM with
threshold-based buffer control as in [13]. An additive feed-
back mechanism is introduced by setting the inflow rate to
σ(t) − p(x(t)) whereσ(t) is the maximal external incoming
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flow rate, x(t) is the buffer content (state), andp(x) is a
feedback function. The main contribution of the paper is
the derivation of IPA gradient estimators for performance
metrics related to loss and workload levels with respect to
threshold parameters (equivalently, buffer sizes). Even though
the presence of feedback in the SFM considerably complicates
the task of carrying out IPA, we are able to show that such
IPA estimators are indeed possible to obtain for a large class of
feedback functionsp(x). These IPA estimators depend on data
observable on a sample path of the actual discrete event system
- not just the SFM which can be viewed as an abstraction of the
“real system”. Moreover, they do not depend on the stochastic
characteristics of the arrival and service processes. In the case
of linear feedback, we further show that the estimators are
nonparametric, in the sense that they do not even require any
parameter information – only simple event counting and timing
data. The presence of feedback also complicates proving the
unbiasedness of IPA estimators in that, unlike earlier work,
we must now identify and exclude certain parameter values,
as will be explained in detail.

The paper is organized as follows. First in Section 2, we
present the feedback-based buffer control problem in the SFM
setting and define the performance metrics and parameters of
interest. In Section 3, we carry out IPA by first deriving sample
derivatives of event times in our model and then obtaining the
IPA estimators for the gradients of the expected loss rate and
average workload with respect to threshold parameters. Section
4 is devoted to proofs of unbiasedness of these estimators
under mild technical conditions. The case of linear feedback is
discussed in Section 5. In Section 6 we illustrate the use of the
estimators by formulating optimization problems and solving
them through the use of standard gradient-based stochastic
optimization schemes. We finally outline a number of open
problems and future research directions in Section 7.

II. STOCHASTIC FLOW MODEL OF A QUEUEING SYSTEM

WITH FEEDBACK CONTROL

The stochastic flow system we consider consists of a server
with a buffer fed by a source as shown in Fig. 1. The buffer
content at timet is denoted byx(t) and it is limited toθ, which
may be viewed as a capacity or as a threshold parameter used
for buffer control as described in [13]. Thus,0 ≤ x(t) ≤ θ
and when the buffer level reachesθ flow loss occurs (i.e.,
customers are dropped in the underlying queueing system).
The maximal processing rate of the server is generally time-
varying and denoted byµ(t). The maximal rate of the source
at time t is denoted byσ(t), but the actual incoming rate is
σ(t)−p(x(t)), wherep(x) is a feedback function. We assume
that p(x) is a strictly monotonically increasing functionof x
(thus ensuring that the effect of feedback is more pronounced
as the buffer level increases) and that it is independent of
σ(t), µ(t), or θ. This feedback mechanism implies thatx(t)
is instantaneously available to the controller (this is true in
situations such as manufacturing systems, but unlikely to hold
in high-speed environments such as communication networks;
we discuss how we propose to deal with this important issue
in the last section of the paper). It is also assumed that the

stochastic processes{σ(t)} and {µ(t)} are independent of
the buffer levelx(t). Finally, we assume that the real-valued
parameterθ is confined to a closed and bounded (compact)
interval Θ and thatθ > 0 for all θ ∈ Θ.

σ(t)

-

p(x)

θ

µ(t)x(t)

Fig. 1. A SFM with feedback

Settingλ(t) = σ(t)− µ(t), the dynamics of the system are
described by the following equation:

dx(t)
dt+

=





0
whenx(t) = 0
andλ(t)− p(0) ≤ 0

0 whenx(t) = θ
andλ(t)− p(θ) ≥ 0

λ(t)− p(x(t)) otherwise

(1)

Assuming thatλ(t) and p(x) are both bounded functions,
note that x(t) is a continuous function oft. Similar to
[13], our purpose is to obtain sensitivity information of some
performance metrics with respect to key parameters so as to
implement stochastic optimization algorithms based on this
information. In this paper, we limit ourselves to the threshold
θ as the controllable parameter of interest. For a finitetime
horizon [0, T ], we define theaverage workloadas:

QT =
1
T

∫ T

0

x(t)dt (2)

and theloss rateas:

LT =
1
T

∫ T

0

1[x(t) = θ](λ(t)− p(θ))dt (3)

where1[·] is the usual indicator function. A typical optimiza-
tion problem is to determineθ∗ that minimizes a cost function
of the form

JT (θ) = γE[QT (θ)] + E[LT (θ)] (4)

where γ generally reflects the tradeoff between maintaining
proper workload and incurring high loss. We point out here
that the presence of feedback also has an effect on the cost
function structure, as further discussed in Section 6. Care must
also be taken in defining the previous expectations over a finite
time horizon, since they generally depend on initial conditions;
we shall assume that the queue is empty at time0.

In order to accomplish this optimization task, we rely on es-
timates ofdE[QT (θ)]/dθ anddE[LT (θ)]/dθ provided by the
sample derivativesdQT (θ)/dθ anddLT (θ)/dθ. Accordingly,
the main objective of the following sections is the derivation
of dQT (θ)/dθ anddLT (θ)/dθ, which we will pursue through
Infinitesimal Perturbation Analysis (IPA) techniques. For any
sample performance metricL(θ), the IPA gradient estimation
technique computesdL(θ)/dθ along an observed sample path.
If the IPA-based estimatedL(θ)/dθ satisfiesdE[L(θ)]/dθ =
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E[dL/dθ], it is unbiased. Unbiasedness is the principal con-
dition for making the application of IPA practical, since it
enables the use of the IPA sample derivative in stochastic
gradient-based algorithms. A comprehensive discussion of IPA
and its applications can be found in [9],[23] and [10].

III. IPA E STIMATION

As already mentioned, our objective is to estimate the
derivatives dE[QT (θ)]/dθ and dE[LT (θ)]/dθ through the
sample derivativesdQT (θ)/dθ and dLT (θ)/dθ, which are
commonly referred to as IPA estimators. In the process,
however, it will be necessary to determine and analyze IPA
derivatives for the buffer contentx(t; θ), where we includeθ
to stress the dependence on it, as well as for certain event
times to be defined, which also depend onθ.

We consider a sample path of the SFM of Fig. 1 over[0, T ].
For a fixedθ, the interval [0, T ] is divided into alternating
boundary periods and non-boundary periods. ABoundary
Period (BP) is defined as the time interval during which
x(t; θ) = θ or x(t; θ) = 0, and aNon-Boundary Period(NBP)
is defined as the time interval during which0 < x(t; θ) < θ.
BPs are further classified asEmpty Periods(EP) andFull
Periods (FP). An EP is an interval such thatx(t; θ) = 0; a
FP is an interval such thatx(t; θ) = θ.

For simplicity, we assume that at timet = 0, x(0; θ) =
0. We also assume that there areN NBPs in the interval
[0, T ], where N is a random number, and index NBPs by
n = 1, . . . , N . The starting and ending points of a NBP are
denoted byηn and ζn respectively. We define the following
two random sets of indices:

ΨF (θ) (5)

= {n: x(t; θ) = θ for all t ∈ [ζn−1, ηn), n = 1, . . . , N }
ΨE(θ)
= {n: x(t; θ) = 0 for all t ∈ [ζn−1, ηn), n = 1, . . . , N}
= {1, . . . , N} −ΨF (6)

Clearly, if n ∈ ΨF , the nth BP (which immediately precedes
the nth NBP) is a FP and ifn ∈ ΨE , thenth BP is an EP. A
typical sample path is shown in Fig. 2, which includes two
NBPs, i.e., [ηn, ζn) and [ηn+1, ζn+1), and three BPs. It is
worth noticing thatx(t; θ) is not necessarily differentiable,
as shown, for example, at timeτ ; this may be caused by a
discontinuity inσ(t) or µ(t).

t

x(t)

EP NBPn NBPn+1FP FP

ηn0

θ

ζn ηn+1 ζn+1τ

Fig. 2. A Typical Sample Path

A. Boundedness of Buffer Level Perturbations

In this section we establish an important boundedness
property forbuffer level perturbationsdefined as

∆x(t) = x(t; θ + ∆θ)− x(t; θ),

with respect to a perturbation∆θ. For simplicity, let us limit
ourselves to∆θ > 0; the case where∆θ < 0 can be similarly
analyzed. We state the boundedness property of∆x(t) in the
following lemma:

Lemma 1:For the system described in (1) and∆θ > 0,

0 ≤ ∆x(t) ≤ ∆θ, for all t ∈ [0, T ] (7)
Proof: See Appendix.

Similarly, for a perturbation∆θ < 0, we can prove that
∆θ ≤ ∆x(t) ≤ 0.

Corollary 1: If x(t; θ) is differentiable with respect toθ,
then

0 ≤ ∂x(t; θ)
∂θ

≤ 1

Proof: We have

∂x(t; θ)
∂θ+

= lim
∆θ→0+

x(t; θ + ∆θ)− x(t; θ)
∆θ

and from Lemma 1 we obtain:

0 ≤ x(t; θ + ∆θ)− x(t; θ)
∆θ

≤ ∆θ

∆θ
= 1

Combining the above two relationships gives0 ≤ ∂x(t;θ)
∂θ+ ≤

1. Similarly we obtain0 ≤ ∂x(t;θ)
∂θ− ≤ 1, thus completing the

proof.

B. Queue Content Sample Derivatives

Since we are interested in the sensitivity of performance
metrics, which are expressed as functions ofx(t; θ) as in
(2)-(3), it is natural to first study∂x(t;θ)

∂θ , the queue content
sample derivative. Before proceeding, however, we make some
assumptions regarding the class of feedback functionsp(x)
that we shall consider in our analysis. In particular, we
consider continuous piecewise differentiable functions of the
form

p(x) =





p1(x) if 0 ≤ x ≤ θ1

p2(x) if θ1 ≤ x ≤ θ2

...
pn(x) if θn−1 ≤ x ≤ θ

(8)

whereθ1 < . . . < θn−1 are real numbers and we make the
following assumption:

Assumption 1:pi(x), i = 1, . . . , n, are monotonically in-
creasing and continuously differentiable functions. Moreover,
there exists a constantCp < ∞ such that for allx ∈ [0, θ] and
all i = 1, . . . , n,

dpi(x)
dx

≤ Cp

Remark. If we allow p(x) to be discontinuous at some
specific valuex0, then it is possible to havex(t; θ) = x0 for
some finite period of time in some sample path. For example, if
x(t0; θ) = x0 andp(x−0 ) < λ(t) < p(x+

0 ) for a time interval
[t0, t1], then x(t; θ) = x0 for all t ∈ [t0, t1]. The discrete
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version of this phenomenon is chattering. For simplicity, in this
paper we do not deal with discontinuities inp(x). However,
since in practice such feedback functions may be of interest,
we point out that this situation can be handled in the same
framework as the one presented here, along the lines of the
work in [24].

The simplest class of feedback functions of the above
form is described by a two-segment piecewise differentiable
function

p(x) =
{

p1(x) if 0 ≤ x ≤ θ1

p2(x) if θ1 ≤ x ≤ θ
(9)

in which θ1 is a known parameter independent ofθ with
0 < θ1 < θ, andp1(x), p2(x) are continuously differentiable
monotonically increasing functions withp1(θ1) = p2(θ1). We
shall concentrate on feedback functions of this form, and it will
become clear that our analysis can be applied to any general
piecewise differentiable and monotonically increasing function
p(x) in (8). For simplicity, we setθ0 = 0, θ2 = θ, so that we
can consistently use the notationθj , j = 0, 1, 2, to indicate the
threecritical values that x(t; θ) can take in a typical sample
path.

We also assume:
Assumption 2:λ(t) is a piecewise constant function that

can take a finite number of valuesλ1, . . . , λL with λi <
λmax < ∞ for all i = 1, . . . , L.

Assumption 3:There exists an arbitrarily small positive
constantcθ such that for allt,

|λ(t)− p(θj)| ≥ cθ > 0, j = 0, 1, 2. (10)
Assumption 3 is mild, but, as we shall see, it is critical in

proving the existence of IPA sample derivatives. Combining
the two assumptions requires that

|λi − p(θj)| ≥ cθ for i = 1, . . . , L, j = 0, 1, 2 (11)

which implies

p(θj) ≤ λi − cθ or p(θj) ≥ λi + cθ

Sincep(·) is a strictly monotonically increasing function, we
obtain:

θj ≤ p−1(λi − cθ) or θj ≥ p−1(λi + cθ) (12)

for i = 1, . . . , L, j = 0, 1, 2. Therefore, defining the
following L invalid intervals∆i:

∆i =
[
p−1(λi − cθ), p−1(λi + cθ)

]
, i = 1, . . . , L, (13)

we conclude thatθj /∈ ∆i for all i = 1, . . . , L, as illustrated
in Fig. 3, and note that, for sufficiently smallcθ, there will
be no overlap among different∆i. This condition imposes a
constraint on the controllable parameterθ, which we originally
assumed to be defined over a closed and bounded (compact)
interval Θ. Letting ∆ = ∪L

i=1∆i, we now restrictθ to the
set Θ̃ = Θ − ∆. We shall also refer to avalid interval
as the maximal interval between two consecutive invalid
intervals. In practice, Assumptions 1-3 are not limiting. For
example, Assumption 2 fits common traffic models with on/off
sources and fixed service rates which are popular in computer
networks. Moreover, for any givenλ(t), one can always select
an appropriate set of valuesλ1, . . . , λL to approximateλ(t)

to any desirable accuracy level. Lastly, in Assumption 3,
by selectingcθ to be arbitrarily small the set∆ of invalid
parameter values becomes practically insignificant.

x0

λL+cθ

∆1

p(x)

λ1+cθ

λL-cθ

λ1-cθ

∆L

Fig. 3. Illustrating valid and invalid intervals forθj , j = 0, 1, 2.

Recall that a sample path of the SFM is decomposed into
alternating BPs and NBPs. We now refine this decomposition
to take into account the structure of the functionp(x). To
do so, we view the SFM as a DES in which we define the
following types ofevents: (i) A jump in λ(t), which is termed
anexogenousevent, reflecting the fact that its occurrence time
is independent of the controllable parameterθ, and (ii) The
buffer contentx(t; θ) reaches any one of the critical valuesθj ,
j = 0, 1, 2; this is termed anendogenousevent, to reflect the
fact that its occurrence time generally depends onθ. Note that
the combination of these events and the continuous dynamics
in (1) gives rise to a stochastic hybrid system model of the
underlying discrete event system of Fig. 1.

Based on these event definitions, we make the following
observations.(i) A NBP end eventis an endogenous event,
since its time,ζn, generally depends onθ. (ii) A NBP start
eventis an exogenous event: as seen in (1), the end of an EP
or FP at timeηn is always due to a change in the sign of
λ(t)− p(0) andλ(t)− p(θ) respectively. This is only feasible
when a jump inλ(t) occurs at timet according to Assumption
3, which is precisely what we defined as an exogenous event.
(iii) The point where the buffer content reachesθ1 (from either
below or above) is an endogenous event (by Assumption 3,
this event time is the same at the time when the buffer content
also leavesθ1).

Let us now consider a NBP[ηn, ζn(θ)), where we explicitly
indicate that its end point depends onθ. Let αn,i denote theith
time whenx(t; θ) = θ1 in this NBP, wherei = 1, . . . , In− 1,
in which In − 1 is the number of such events. It is possible
that In − 1 = 0 for a NBP, so that to maintain notational
consistency we setηn = αn,0 and ζn = αn,In . We can now
see that a sample path is decomposed into four sets of intervals
that we shall refer to asmodes: (i) Mode 0 is the setM0 of
all EPs contained in the sample path,(ii) Mode 1 is the set
M1 of intervals [αn,i, αn,i+1) such thatx(αn,i) = 0 or θ1

and 0 < x(t) < θ1 for all t ∈ (αn,i, αn,i+1), n = 1, . . . , N ,
(iii) Mode 2 is the setM2 of intervals [αn,i, αn,i+1) such
that x(αn,i) = θ or θ1 and θ1 < x(t; θ) < θ for all t ∈
[αn,i, αn,i+1), n = 1, . . . , N , and(iv) Mode 3 is the setM3
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of all FPs contained in the sample path. Note that the events
occurring at timesαn,i are all endogenous fori = 1, . . . , In

and we should writeαn,i(θ) to stress this fact; for notational
economy, however, we will only writeαn,i. Finally, recall that
for i = 0, we haveαn,0 = ηn, corresponding to an exogenous
event starting thenth NBP. The decomposition of a typical
NBP is illustrated in Fig. 4. The NBP[ηn, ζn(θ)) consists of
two M1 intervals and twoM2 intervals defined by the presence
of αn,1, αn,2,andαn,3. Moreover, note that at timet1 and t2
exogenous events may occur so that the time derivative of the
buffer contentx(t; θ) is discontinuous.

t

x(t)

θ

ηn ζn

0

θ1

αn,1 αn,2 αn,3t1 t2

NBPn

M1 M1M2 M2

Fig. 4. The Decomposition of a NBP

We shall also make one final assumption:
Assumption 4:For every θ, w.p.1, no two events (either

exogenous or endogenous) occur at the same time.
This assumption precludes a situation where the queue

content reaches the valueθ at the same timet as an exogenous
event which might cause it to drop belowθ; this would prevent
the existence of the derivative of the event time att (however,
one can still carry out perturbation analysis with one-sided
derivatives as in [13]). Moreover, by Assumption 4,N , the
number of NBPs in the sample path, is locally independent
of θ (since no two events may occur simultaneously, and the
occurrence of exogenous events does not depend onθ, there
exists a neighborhood ofθ within which, w.p.1, the number
of NBPs in [0, T ] is constant). Hence, the random index sets
ΨF andΨE defined in (6) are also locally independent ofθ.

In what follows, we shall concentrate on a typical NBP
[ηn, ζn(θ)) and drop the indexn from the event timesαn,i in
order to simplify notation. It is also convenient at this point
to define the following:

A(t; θ) = λ(t)− p(x(t; θ)) (14)

Although A(t; θ) depends onθ, we shall write it asA(t)
for the sake of simplicity, unless it is essential to indicate
its dependence onθ. In the following lemma we identify the
structure of the queue content derivative∂x(t;θ)

∂θ and show that
it depends on the event time derivatives∂αi

∂θ :
Lemma 2:Let [αi, αi+1) be an interval in a typical NBP,

whereαi is the ith time whenx(t; θ) = θ1. Under Assump-
tions 1-4, for allt ∈ [αi, αi+1),

∂x(t; θ)
∂θ

= −∂αi

∂θ
A(α+

i )e−ρ(t)+1 [x(αi; θ) = θ] e−ρ(t) (15)

where

ρ(t) =
∫ t

αi

dp(x)
dx

dt (16)

Proof: See Appendix.
Lemma 2 makes it clear that the queue content sample

derivative ∂x(t;θ)
∂θ depends on the event time derivative∂αi

∂θ .
Thus, in the next section we address the issue of evaluating
these derivatives. The remaining terms in (15) involve: detect-
ing the events such that the buffer content reaches the levelθ
or θ1; the traffic rate information inA(α+

i ) at times when
the buffer content reaches the levelθ1; and the evaluation
of ρ(t). Specifically, note thatdp(x)

dx is generally a function
of x(t; θ), so that an integration of the sample path over an
interval [αi, t] is required to evaluateρ(t). This evaluation
becomes very simple in the case of a linear feedback function
p(x), as we will see in Section 5.

Before proceeding with the analysis of the event time
derivatives∂αi

∂θ , we provide an alternative way of representing
(15) that we will occasionally use:

∂x(t; θ)
∂θ

= Ki(θ)e−ρ(t)

where

Ki(θ) = 1 [x(αi; θ) = θ]−A(α+
i )

∂αi

∂θ
.

A detailed discussion on the role ofKi(θ) can be found in
the proof of Lemma 2 in the Appendix. Finally, a useful
relationship we can derive from the above lemma is the
following:

∫ αi+1

αi

∂

∂θ

[
∂x(t; θ)

∂t

]
dt =

Ei∑

l=0

∫ tl+1

tl

∂

∂θ

[
∂x(t; θ)

∂t

]
dt

=
Ei∑

l=0

∫ tl+1

tl

∂

∂t

[
∂x(t; θ)

∂θ

]
dt

=
Ei∑

l=0

∂x(t; θ)
∂θ

∣∣∣∣
tl+1

tl

=
∂x(t; θ)

∂θ

∣∣∣∣
αi+1

αi

= Ki(θ)
[
e−ρ(αi+1) − 1

]
(17)

where we have used (49) and (16). Recalling (1) and the
definition of A(t; θ) in (14), we can also write the above
relationship as

∫ αi+1

αi

∂A(t; θ)
∂θ

dt = Ki(θ)
[
e−ρ(αi+1) − 1

]
(18)

C. Event Time Sample Derivatives

We derive the sample derivative∂αi

∂θ through three lemmas
which cover the possible values thatx(αi; θ) can take in an
interval [αi, αi+1).

Lemma 3:Under Assumptions 1-4, if a FP ends at timeαi,
i.e., x(αi; θ) = θ, then

∂αi

∂θ
= 0

Proof: See Appendix.
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Lemma 4:Under Assumptions 1-4, if an EP ends at time
αi, i.e., x(αi) = 0, then

∂αi

∂θ
= 0

Proof: See Appendix.
The above two lemmas deal withαi ending intervals in

modesM0 and M3. Next, we obtain the sample derivatives
∂αi

∂θ for the remaining modesM1 andM2.
Lemma 5:Under Assumptions 1-4, for an interval

[αi, αi+1), i = 0, . . . , In − 1, in a NBP:

∂αi+1

∂θ
=

A(α+
i )e−ρ(αi+1)

A(αi+1)
· ∂αi

∂θ
+

1 [x(αi+1; θ) = θ]
A(αi+1)

− 1 [x(αi; θ) = θ] e−ρ(αi+1)

A(αi+1)
(19)

with ∂α0
∂θ = 0.

Proof: See Appendix.
The combination of Lemmas 3, 4 and 5 provides a sim-

ple linear recursive relationship for obtaining the event time
sample derivative∂αi

∂θ . In particular, (19) provides this sample
derivative over a NBP with initial condition∂α0

∂θ = 0 at the
start of any NBP. It also follows from (19) that this derivative
remains zero as long asx(αi; θ) 6= θ and x(αi+1; θ) 6= θ.
With the help of these lemmas, we can now obtain the sample
derivative ∂ζn

∂θ that corresponds to the end point of a NBP
[ηn, ζn(θ)). Let us first extend the definition ofρ(t) in (16) to
any interval[t1, t2):

ρ(t2, t1) =
∫ t2

t1

dp(x)
dx

dt (20)

and we establish the following result.
Lemma 6:Under Assumptions 1-4, for a NBP[ηn, ζn(θ)),

∂ζn

∂θ
=

1
A(ζn)

{1 [x(ζn; θ) = θ]

−1 [x(ηn; θ) = θ] e−ρ(ζn,ηn)
}

(21)
Proof: See Appendix.

We are now in a position to obtain the sample derivatives
of the performance metrics defined in (3) and (2).

D. IPA Sample Derivative of Loss Rate

Recalling the definition of the loss rateLT in (3), we have

LT (θ) =
1
T

∫ T

0

1[x(t; θ) = θ](λ(t)− p(θ))dt (22)

=
1
T

∑

n∈ΨF

∫ ηn

ζn−1

A(t; θ)dt

We then establish the following.
Theorem 1:Under Assumptions 1-4, the IPA estimator of

the loss rateLT (θ) with respect toθ is

dLT (θ)
dθ

= − 1
T

∑

n∈ΨF

{1 + (ηn − ζn−1)p′(θ) (23)

−1 [x(ηn−1; θ) = θ] e−ρ(ζn−1,ηn−1)
}

where

p′(θ) ≡ dp(x)
dx

∣∣∣∣
x=θ

Proof: Since[ζn−1,ηn) is a FP, we havex(t; θ) = θ for
all t ∈ [ζn−1,ηn). Thus, as in (40), we have

∂A(t; θ)
∂θ

= − dp(x)
dx

∣∣∣∣
x=θ

≡ −p′(θ)

Recalling thatΨF is locally independent ofθ, it follows from
(22) that

dLT (θ)
dθ

=
1
T

∑

n∈ΨF

{
A(ηn)

∂ηn

∂θ
−A(ζn−1)

∂ζn−1

∂θ

−
∫ ηn

ζn−1

p′(θ)dt

}

=
1
T

∑

n∈ΨF

{
A(ηn)

∂ηn

∂θ
−A(ζn−1)

∂ζn−1

∂θ

−(ηn − ζn−1)p′(θ)}
Invoking Lemmas 3 and 4, we have∂ηn

∂θ = 0. Note that if
n ∈ ΨF we must havex(ζn−1) = θ, while x(ηn−1) = 0 or
θ. Thus, using Lemma 6, (23) immediately follows.

It is interesting to observe that this IPA estimator has the
important property of beingnonparametric, in the sense that
no information regarding the characteristics of the stochastic
processes involved appears in (23), including any flow rate
parameters. In fact, for any NBP that starts with an EP and
ends with a FP, the only action required is measuring the length
of the ensuing FP,[ηn − ζn−1] (the value ofp′(θ) is known
for any θ, given the feedback functionp(x)). If the NBP that
ends atζn−1 is one that started with the end of a FP, then
the additional terme−ρ(ζn−1,ηn−1) needs to be calculated; this
simply involves the time instantsζn−1, ηn and the knownp(x)
for evaluating the integral in (20). More importantly, observe
that the information involved in (23) can bedirectly obtained
from the actual discrete event system, since all that is needed
is detecting a queue level reaching or exceeding a valueθ
and then measuring the amount of time that it stays above
θ. Therefore, (23) may be used with actual system data, not
requiring the implementation of a SFM.

E. IPA Sample Derivative of Average Workload

Recalling the definition of the average workloadQT in (2),
and making use of the lemmas previously derived, we obtain
the following IPA estimator.

Theorem 2:Under Assumptions 1-4, the IPA estimator of
the workloadQT (θ) with respect toθ is

dQT (θ)
dθ

=
1
T

{ ∑

n∈ΨF

(ηn − ζn−1) (24)

+
N∑

n=1

In−1∑

i=0

∫ αn,i+1

αn,i

Kn,i(θ)e−ρ(t,αn,i)dt

}

where

Kn,i(θ) = 1 [x(αn,i; θ) = θ]−A(α+
n,i)

∂αn,i

∂θ
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Proof: Using (2) and the definitions ofΨE and ΨF in
(6) we have:

dQT (θ)
dθ

=
1
T

d

dθ

{ ∑

n∈ΨE

∫ ηn

ζn−1

0 · dt +
N∑

n=1

∫ ζn

ηn

x(t; θ)dt

+
∑

n∈ΨF

∫ ηn

ζn−1

θdt

}

=
1
T

d

dθ

{
N∑

n=1

∫ ζn

ηn

x(t; θ)dt +
∑

n∈ΨF

θ(ηn − ζn−1)

}

SinceN andΨF are locally independent ofθ, it follows that

dQT (θ)
dθ

=
1
T

{
N∑

n=1

[
x(ζn; θ)

∂ζn

∂θ
− x(ηn; θ)

∂ηn

∂θ
+

∫ ζn

ηn

∂x(t; θ)
∂θ

dt

]

+
∑

n∈ΨF

[
(ηn − ζn−1) + θ(

∂ηn

∂θ
− ∂ζn−1

∂θ
)
]}

(25)

Invoking Lemmas 3 and 4, we have∂ηn

∂θ = 0. Moreover, since
x(ζn) = θ · 1 [(n + 1) ∈ ΨF ] we have

N∑
n=1

x(ζn; θ)
∂ζn

∂θ
=

∑

(n+1)∈ΨF

θ
∂ζn

∂θ
=

∑

n∈ΨF

θ
∂ζn−1

∂θ

where we take into account the fact the last NBP may end at
time T and have no BP following it, in which caseζN = T ;
hence,∂ζN

∂θ = 0 and the above equation still holds. Thus, (25)
reduces to

dQT (θ)
dθ

=
1
T

{ ∑

n∈ΨF

(ηn − ζn−1) +
N∑

n=1

∫ ζn

ηn

∂x(t; θ)
∂θ

dt

}

Let [αi, αi+1), i = 0, . . . , In−1 be the intervals contained in
the NBP [ηn, ζn). Then, using (49) andρ(t, αn,i) as defined
in (20) immediately gives (24).

Similar to the IPA estimator (23), the one in (24) also
requires a timer for measuring the length of every FP
[ηn − ζn−1]. In addition, however, we need to evaluateKn,i(θ)
at every endogenous eventαi in a NBP. This, in turn, involves
the sample derivative∂αi

∂θ , as seen in (45), which requires the
recursive evaluation (19). In general, this evaluation involves
some rate information in the form ofA(α+

i ), i.e., knowledge
of the value ofλ(t) when an eventαi takes place. Thus, unlike
(23), the IPA estimator (24) is not nonparametric. Finally,
note that the analysis leading to the estimators (23) and (24)
can be readily generalized to any piecewise differentiable and
monotonically increasing functionp(x) in (8) with more than
two segments, as long as the events corresponding to the buffer
level crossing any one of the thresholds are observed and that
the functionρ(t2, t1) is evaluated for any interval[t1, t2).

Remark. By settingp(x) = 0, the SFM reduces to the one
studied in [13] in the absence of feedback. We can readily
verify that Theorems 1 and 2 withp(x) = 0 yield the same
results as Theorems 5 and 6 of [13].

IV. U NBIASEDNESS OFIPA ESTIMATORS

In this section we establish the unbiasedness of the IPA
estimators (23) and (24) for SFM. The presence of feedback
in our SFM makes this task somewhat more challenging than
in earlier work, such as [13] where no feedback was present.

Normally, the unbiasedness of an IPA derivativedL(θ)/dθ
for some performance metricL(θ) is ensured by the following
two conditions (see [25], Lemma A2, p.70):(i) For every
θ ∈ Θ̃, the sample derivative exists w.p.1, and(ii) W.p.1, the
random functionL(θ) is Lipschitz continuous throughout̃Θ,
and the (generally random) Lipschitz constant has a finite first
moment. Consequently, establishing unbiasedness reduces to
verifying the Lipschitz continuity ofL(θ) over Θ̃. In the case
of LT (θ), however, the existence of invalid intervals inΘ,
originating from the presence of feedback, creates a problem
that we circumvent in what follows. In order to proceed, we
shall need one additional very mild technical condition:

Assumption 5:Let W (θ) be the number of jumps ofλ(t) in
the time interval[0, T ]. Then, for anyθ ∈ Θ̃, E [W (θ)] < ∞.

Lemma 7:Let θ andθ +∆θ, ∆θ > 0, be in the same valid
interval in Θ̃. Then, under Assumptions 1-5, w.p.1.,

|∆LT | ≤ r∆θ

wherer is a random variable with a finite expectation.
Proof: See Appendix.

A similar result is obtained for the case∆θ < 0. We can
now establish the unbiasedness of the IPA estimatordLT (θ)

dθ ,
as well as that ofdQT (θ)

dθ , as follows:
Theorem 3:Assumeθ is in a valid interval inΘ̃. Then,

under Assumptions 1-5, the IPA estimators (23) and (24) are
unbiased, i.e.,

dE[LT (θ)]
dθ

= E

[
dLT (θ)

dθ

]
,

dE[QT (θ)]
dθ

= E

[
dQT (θ)

dθ

]

Proof: In the case ofQT (θ), we have, for∆θ > 0,

∆QT = QT (θ + ∆θ)−QT (θ)

=
1
T

[∫ T

0

x(t; θ + ∆θ)dt−
∫ T

0

x(t; θ)dt

]

=
1
T

∫ T

0

∆x(t)dt

Recalling the boundedness of∆x(t) in Lemma 1, we obtain
0 ≤ ∆QT ≤ ∆θ. Similarly, for ∆θ < 0, we obtain∆θ ≤
∆QT ≤ 0. Thus, QT (θ) is Lipschitz continuous and the
unbiasedness result follows directly from the known fact (see
[25], Lemma A2, p.70) that an IPA derivativedL(θ)

dθ is unbiased
if (i) For everyθ ∈ Θ̃, the sample derivative exists w.p.1, and
(ii) W.p.1, the random functionL(θ) is Lipschitz continuous
throughoutΘ̃, and the (generally random) Lipschitz constant
has a finite first moment.

In the case ofLT (θ), as mentioned earlier, the Lipschitz
continuity does not hold generally for allθ ∈ Θ̃ because of
the existence of the invalid intervals. But the unbiasedness
can still be obtained as follows. Letθ be in an arbitrary valid
interval in Θ̃ and consider a sequence{θ′n} = {θ + ∆θn},
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n = 1, 2, . . ., selected so that all its elements belong to the
same valid interval, and such that

lim
n→∞

∆θn = 0, lim
n→∞

θ′n = θ

Then, define

fn =
LT (θ′n)− LT (θ)

∆θn

where

lim
n→∞

fn =
dLT (θ)

dθ
= f

and, by Lemma 7,

|fn| ≤ r=Cp +
∣∣∣∣ max
j=1,...,L

[λj − p(θ)]
∣∣∣∣

R

Tcθ

SinceE [r] < ∞, fn is integrable and the unbiasedness result
follows by the Dominated Convergence Theorem [26].

V. THE L INEAR FEEDBACK CASE

In this section we consider the special case of a linear
feedback function, i.e.,

p(x) = cx (26)

for all x ≥ 0 andc > 0. In this case, a NBP[ηn, ζn(θ)) is no
longer decomposed into subintervals, since there is no endoge-
nous event contained in the NBP. In other words, the sample
path now consists of three modes only:M0 corresponding to
EPs,M2 corresponds to FPs, andM1 corresponding to NBPs.

Given (26), we obtain for (16):

ρ(t) =
∫ t

ηn

∂p(x)
∂x

dt = c(t− ηn) (27)

and (46) reduces to

Kn(θ) = 1 [x(ηn; θ) = θ] (28)

since, by Lemmas 3 and 4, we have∂ηn

∂θ = 0. Note that the
indexing is now over NBPs,n = 1, 2, . . ., since there are no
endogenous events based on which we previously subdivided
a NBP. Accordingly, the queue content derivative in (15)
becomes, for anyt ∈ [ηn, ζn(θ)),

∂x(t; θ)
∂θ

= 1 [x(ηn; θ) = θ] e−c(t−ηn) (29)

Using (27), the result of Lemma 6 becomes

∂ζn

∂θ
=

1
A(ζn)

{1 [x(ζn; θ) = θ]

−1 [x(ηn; θ) = θ] e−c(ζn−ηn)
}

The IPA estimator (23) becomes

dLT (θ)
dθ

= − 1
T

∑

n∈ΨF

{1 + c(ηn − ζn−1) (30)

−1 [x(ηn−1; θ) = θ] e−c(ζn−1−ηn−1)
}

and we can clearly see that this isnonparametricand re-
quires only simple timers to evaluate the duration of NBPs

[ηn−1, ζn−1) and FPs[ζn−1, ηn). Finally, using (29), the IPA
estimator (24) reduces to

dQT (θ)
dθ

=
1
T

{ ∑

n∈ΨF

(ηn − ζn−1)

+
N∑

n=1

∫ ζn

ηn

1 [x(ηn; θ) = θ] e−c(t−ηn)dt

}

=
1
T

∑

n∈ΨF

{
(ηn − ζn−1) +

1− e−c(ζn−ηn)

c

}
(31)

Unlike the general case in (24), here we find that the work-
load IPA estimator is alsononparametricand involves only
timers for measuring the durations of FPs and their ensuing
NBPs. Thus, from an implementation standpoint, using linear
feedback enables the use of IPA estimators in control and
optimization problems with same ease as in the no feedback
case in, for example, [13], as further discussed in the next
section.

VI. OPTIMAL BUFFERCONTROL USING SFM-BASED IPA
ESTIMATORS

A. Cost Function Structure

In this section we discuss the influence of feedback on the
structure of cost functions defined to formulate optimization
problems. Similar to [13], the cost function we consider has the
form of (4), i.e.,J(θ) = γQT +LT , reflecting the tradeoff be-
tween loss and workload (equivalently, throughput and system
delay). This tradeoff, however, is complicated by feedback: As
the thresholdθ increases, the amount of suppressed flow (the
flow not admitted into the system) increases and this has to
be either rejected or held at the supply source1. This effect is
certainly undesirable and has to be taken into account when
defining throughput. Therefore, the role played by feedback in
this tradeoff needs to be carefully identified.

Let us adopt a pricing-based approach to reveal the effect
of feedback on throughput. In an actual (discrete event)
queueing system with the proposed feedback mechanism,
every customer trying to enter the server belongs to one of
the following three classes:(i) it is rejected before entering
the system because of the source rate suppression;(ii) it
enters the system but is dropped because of overflow;(iii)
it is successfully served. Moreover, we assume that(a) two
customers of different classes have a price difference, and(b)
two customers of the same class have the same price. Our
pricing strategy is toimpose a nonnegative price on every
packet according to its classand minimize the total cost. The
price is set to1 for each customer dropped because of loss
(overflow), or0 for each customer successfully served, based
on the premise that dropped customers should be penalized
the most and those successfully served should be penalized
the least. On the other hand, for each customer suppressed
before it could enter the system, the price iss with 0 < s < 1,

1Flow supression may be realized by a variety of mechanisms; for example,
by letting the supply source hold the flow until the buffer content is below the
threshold. As a result, the flow is delayed but not necessarily lost. However,
we shall not go into details regarding these mechanisms.
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since this justifies the presence of a source rate suppression
mechanism through which customers are not necessarily lost
but rather delayed. It is worth pointing out that our purpose
here is not to discuss a precise pricing scheme, but only to
gauge the effect of feedback by a pricing-based approach
using the relative price values0, s, 1. The total price for all
customers during the time interval[0, T ] is then:

P (θ) = [sRT (θ) + LT (θ)] · T (32)

in which RT (θ) is the suppression rate of the system and
LT (θ) is the loss rate. Moreover, let us consider the particular
case of linear feedback, so that

RT (θ) =
1
T

∫ T

0

p(x(t; θ))dt =
1
T

∫ T

0

cx(t; θ)dt = cQT (θ)

(33)
combining (32) and (33) suggests

P (θ)
T

= csQT (θ) + LT (θ) (34)

as the metric for throughput reduction due to overflow and
source rate suppression.

On the other hand, taking both throughput and delay (equiv-
alently, workload by Little’s Law [10]) into consideration, an
overall cost function may be determined as

J(θ) =
P (θ)
T

+ dQT (θ) = (cs + d)QT (θ) + LT (θ) (35)

in which the parameters reflects the agreement between
the server and the supply source andd reflects the relative
importance between throughput efficiency and latency. In
summary, the form of this cost function looks similar to that
in previous work [13], i.e., it is a linear combination ofQT (θ)
andLT (θ). However, the coefficient ofQT (θ) is split into two
parts, corresponding to the effect of throughput (affected by
feedback throughc) and delay respectively.

B. Numerical Results

Based on the preceding discussion of the cost function
structure, we present some numerical examples limiting our-
selves here to the linear feedback case. As suggested before,
the solution to an optimization problem defined for an actual
queueing system may be approximated by the solution to the
same problem based on a SFM of the system. However, the
simple form of the IPA estimators of the loss rate and workload
obtained through (24) and (23) actually allows us to use data
from theactualsystem in order to estimate sensitivities that, in
turn, may be used to solve an optimization problem of interest.

Let us now consider the linear feedback buffer control
problem for the actual DES with cost function (35) and
illustrate one of several possible means to quantify system
performance objectives:

JDES
T (θ) = γE[QDES

T (θ)] + E[LDES
T (θ)] (36)

in which γ = cs + d as detailed in the previous section.
The problem of determiningθ∗ to minimizeJDES

T (θ) above
may be addressed through a standard stochastic approximation
algorithm (details on such algorithms, including conditions

required for convergence to an optimum may be found, for
instance, in [27]):

θn+1 = θn − νnHn(θn, ωDES
n ), n = 0, 1, . . . (37)

whereHn(θn, ωDES
n ) is an estimate ofdJDES

T /dθ evaluated
at θ = θn and based on information obtained from a sample
path of the DES denoted byωDES

n (to differentiate it from
sample pathsωSFM

n obtained through a SFM of the DES)
and {νn} is a step size sequence. What we have obtained
in (30) and (31) gives us an IPA estimator ofJSFM

T (θ),
the cost obtained for the SFM corresponding to the actual
DES. Notice, however, that the form of these SFM-based IPA
estimators enables their values to be obtained from data of
anactual (discrete-event) system: The expressions in (30) and
(31) simply require (i) detecting when the buffer level reaches
θ or 0, and (ii ) timing the length of BPs and NBPs. These are
data available on a sample path of the DES. In other words, the
form of the IPA estimators is obtained by analyzing the system
as a SFM, but the associatedvalues can be obtained from
real data from the underlying DES. Obviously, the resulting
gradient estimatorHn(θn, ωDES

n ) is now an approximation
leading to a sub-optimal solution of the above optimization
problem; however, as extensively discussed in prior work (e.g.,
[13]) this approximation recoversθ∗ with great accuracy.

Note that {θn} in (37) is a sequence of real numbers.
Applied to the actual queueing system, we define the control
policy as follows: as a customer enters the system (if not
suppressed due to the feedback effect), it is accepted if the
buffer contentx(t) ≤ θ or dropped because of overflow when
x(t) > θ. Finally, note that, after a control update, the state
must be reset to zero, in accordance with our convention that
all performance metrics are defined over an interval with an
initially empty buffer. In the case of off-line control (as in
the numerical examples we present), this simply amounts to
simulating the system after resetting its state to 0. In the more
interesting case of on-line control, we proceed as follows.
Suppose that thenth iteration ends at timeτn and the state
is x(θn; τn) [in general,x(θn; τn) > 0]. At this point, the
threshold is updated and its new value isθn+1. Let τ0

n be the
next time that the buffer is empty, i.e.,x(θn+1; τ0

n) = 0. At
this point, the(n + 1)th iteration starts and the next gradient
estimate is obtained over the interval[τ0

n, τ0
n + T ], so that

τn+1 = τ0
n + T and the process repeats. The implication is

that over the interval no estimation is carried out while the
controller waits for the system to be reset to its proper initial
state; therefore, sample path information available over[τn, τ0

n]
is effectively wasted as far as gradient estimation is concerned.

Figure 5 shows examples of the application of (37) to a
single-node system with linear feedback under four different
parameter settings (scenarios). The service rateµ(t) = 2400
remains constant throughout the simulation. In all four cases,
σ(t) is piecewise constant. In scenarios 1 and 2, each interval
over whichσ(t) remains constant is a random variable with a
Pareto distributionPareto(1/2r, 2), i.e., a cdfF (x;A, B) =
1 − (

A
x

)B
for Pareto(A,B). In scenarios 3 and 4, each in-

terval is exponentially distributed with parameterr. Therefore
for all scenarios the expected length of such intervals is1/r.
At the end of each interval, the next value ofσ(t) is generated
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Fig. 5. Numerical results for four different scenarios

according to a transition probability matrix. For simplicity, we
assume that all elements of the transition probability matrix
are equal and the only feasible value of these elements is
q = 1/m, in which m is the number of valuesσ(t) can take.
For different scenarios,σ(t) value sets, the feedback factor
c and overflow penaltyγ also vary. Table 1 summarizes the
settings for all four scenarios. Also shown in the table are
θ0, the initial threshold value, andθ∗, the threshold value
obtained through (37). In Fig. 5, the curve “DES” denotes the
cost functionJT (θ) obtained through exhaustive simulation
for different (discrete) values ofθ with T = 50000; the curve
“IPA Algo.” represents the optimization process (37) with the
simulation time horizon for each step of (37) set toT ′ = 10,
and with constant step sizeν = 2.5. As shown in Fig. 5,
the gradient-based algorithm (37) converges to or very near
the optimal threshold (the threshold value that corresponds
to the minimum of the DES curve) even when the per-step
simulation time horizon is so short that the performance
with the same time horizon significantly deviates from the
“DES” curve. This is an indication of how the optimal control
parameter can be recovered through a SFM, even though the
corresponding performance estimates obtained by the SFM
may be inadequate, as is clearly the case in Scenario 2 of
Fig. 5 for example.

In Fig. 6 we also show the effect ofT ′, the simulation time
horizon for each step of (37) on its convergence. We observe
that the smaller the IPA estimation intervalT ′ becomes, the
slower the algorithm converges. When the value is too small,
i.e.,T ′ = 5 in this case, the threshold finally oscillates between
the values 15 and 25, the actual optimum beingθ∗ = 16.4.
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Fig. 6. Convergence as a function of IPA estimation interval

VII. C ONCLUSIONS ANDFUTURE WORK

SFMs have recently been used to capture the dynamics of
complex DES so as to implement control and optimization
methods based on estimating gradients of performance metrics.
In doing so, we exploit the simple form of the IPA estimators
of these performance gradients and the fact that they depend
only on data directly observable along a sample path of the
actual system (not just the SFM which is an abstraction of the
system). Systems considered to date have not included any
feedback mechanism in their operation. In this paper, we have
taken the first step towards incorporating feedback by consid-
ering a single-node SFM with threshold-based buffer control
and controllable inflow rate based on buffer content feedback.
We have developed IPA estimators for the loss volume and
average workload as functions of the threshold parameter, and
shown their unbiasedness, despite the complications brought
about by the presence of feedback. The simplicity of the
estimators, especially in the linear feedback case, suggests
their application to on-line control of networks, as illustrated
in Section 6.

The work in this paper opens up a variety of possible
extensions. First, the framework presented here can be readily
applied to piecewise differentiable feedback functionsp(x)
with more than two segments or with discontinuities. More-
over, the sensitivity analysis we carried out for the threshold
parameterθ can be extended to all threshold parameters
θ1, . . . , θn−1 of the feedback function (8). On the other hand,
there are several issues regarding the feedback mechanism.
First of all, the feedback formα(t) − p(x) implies several
requirements on the server and the supply source:(i) the form
of p(x) requires continuous observation of the buffer content
x(t); (ii) this information has to be instantaneously transferred
back to the source;(iii) the source has to be able to apply
the additive rate control continuously. These requirements may
seriously hinder the application of this feedback mechanism in
some settings, notably high-speed communication networks.
Motivated by this consideration, we are pursuing the study
of IPA estimators for alternative feedback mechanisms. For
example, of special interest in practice is multiplicative feed-
back of the formp(x)σ(t), wherep(x) may be, for instance,
a piecewise constant function, making implementation of such
a mechanism particularly simple (i.e., by probabilistically
dropping incoming customers) [28],[29]. Preliminary work
also suggests that a similar analysis may be carried out for an
exponential feedback functionp(x) = e−cx. Along the same
lines, by properly selectingp(x), it is possible to emulate
other forms of feedback such as the popular TCP congestion
control scheme.

Of obvious interest is also the possibility to obtain gradient
estimators with respect to parameters of the controller. For ex-
ample, in the linear feedback case in (26), sensitivity estimates
of performance metrics with respect to the “gain”c would be
instrumental in tuning such a controller. Our ongoing work
suggests that this is indeed possible.

Finally, as mentioned earlier, a critical assumption in this
paper is that state information is instantaneously available. In
some cases, the delay involved in providing such information
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Scenario r q = 1
m

σ value set (×103) c s d γ θ0 θ∗
1 10 0.333 34,28,22 5 0.5 5 7.5 95 27.3
2 10 0.333 34,28,22 20 0.5 20 30 60 16.4
3 10 0.125 34,33,32,29,26,25,19,14 5 0.5 7.5 10 95 20.1
4 10 0.125 34,33,32,29,26,25,19,14 13 0.5 13.5 20 95 16.1

TABLE I

SUMMARY OF PARAMETER SETTINGS FOR FOUR SCENARIOS

to a controller can be significant. To address this problem,
alternative feedback mechanisms are needed; for example,
a piecewise constantp(x) implies that the controller needs
to be notified only when the buffer content reaches one
or more critical levels that trigger some action (capturing
a “quantization” in the state feedback). In this case, the
effect of a communication delay can be incorporated in the
proper selection of these critical levels (adjustable controller
parameters). This is a crucial issue that we are currently
investigating.

Appendix
Proof: [Lemma 1] At any time, a state trajectory has to be

in one of the following three aggregate states: EP, NBP or FP.
Therefore, there are nine possibilities for the joint aggregate
states corresponding to the nominal and perturbed sample
paths for a givenθ and∆θ. For example (EP,NBP) indicates
that the nominal sample path is in an EP and the perturbed
sample path is in a NBP. Let us consider joint sample paths
and lettl denote thelth time instant when either the nominal
or the perturbed sample path experiences a transition from
one aggregate state to another. Thus, we decompose[0, T ]
into intervals[tl, tl+1), l = 0, . . . , B − 1, wheret0 = 0 and
B is the total number of such intervals. We now proceed by
induction overl = 0, . . . , B − 1.

For the first time interval corresponding tol = 0, since, by
assumption,x(0; θ + ∆θ) = x(0; θ) = 0, ∆θ has no effect
and we have∆x(t) = 0 < ∆θ for all t ∈ [t0, t1). Next,
we assume that0 ≤ ∆x(t) ≤ ∆θ for all t ∈ [tl−1, tl) with
l > 1, and will establish the same conclusion for allt ∈
[tl, tl+1). We accomplish this by considering all possible nine
cases identified above.

1. (EP,EP): Trivially,∆x(t) = x(t; θ + ∆θ) = x(t; θ) =
0 < ∆θ, for all t ∈ [tl, tl+1).

2. (EP,NBP): Sincex(t; θ) = 0 for all t ∈ [tl, tl+1), from
(1) we haveλ(t) − p(0) ≤ 0 for all t ∈ [tl, tl+1). Moreover,
since p(x) is monotonically increasing,p(x(t; θ + ∆θ)) ≥
p(x(t; θ)) = p(0), which implies

dx(t; θ + ∆θ)
dt

= λ(t)− p(x(t; θ + ∆θ)) ≤ λ(t)− p(0) ≤ 0
(38)

Therefore,∆x(t) ≤ ∆x(tl) ≤ ∆θ, for all t ∈ [tl, tl+1), where
the second inequality is due to the induction hypothesis and
the continuity ofx(t; θ). It is also clear that∆x(t) ≥ 0.

3. (EP,FP): Sincex(tl; θ + ∆θ) = θ + ∆θ andx(tl; θ) = 0,
we get∆x(tl) = θ+∆θ > ∆θ which (recalling the continuity
of x(t; θ)) contradicts the induction hypothesis. Therefore, this
case is impossible.

4. (NBP,EP): Sincex(t; θ + ∆θ) = 0 for all t ∈ [tl, tl+1)
and the induction hypothesis and continuity ofx(t; θ) require
that x(tl; θ + ∆θ) ≥ x(tl; θ), it follows that x(tl; θ) = 0.
In addition, since the perturbed path is in an EP, we have
λ(t) − p(0) ≤ 0. These two facts, imply thatx(t; θ) =
0 for all t ∈ [tl, tl+1). This contradicts the assumption that
the nominal sample path is in a NBP. Hence, this case is
impossible.

5. (NBP,NBP): From (1), we have:

dx(t; θ)
dt

= λ(t)− p(x)

and
dx(t; θ + ∆θ)

dt
= λ(t)− p(x(t; θ + ∆θ)),

which implies

d∆x(t)
dt

= − [p(x(t; θ + ∆θ))− p(x(t; θ))] (39)

for t ∈ [tl, tl+1). Combining the above equation with the
induction hypothesis that∆x(tl) ≥ 0 (recalling the continuity
of x(t; θ)) and the monotonicity ofp(·), we obtainp(x(tl; θ+
∆θ))− p(x(tl; θ)) ≥ 0. It follows that

d∆x(t)
dt

≤ 0

for t ≥ tl as long as∆x(t) ≥ 0, t ∈ [tl, tl+1), hence
∆x(t) ≤ ∆x(tl) ≤ ∆θ. Suppose that∆x(τ) = 0 for some
τ ∈ [tl, tl+1). Then, by (39), d∆x(t)

dt = 0 for t ≥ τ , i.e.,
x(t; θ +∆θ)) = x(t; θ), which implies that both sample paths
coincide until the next transition to an EP or FP attl+1.
Therefore,∆x(t) ≥ 0 for all t ∈ [tl, tl+1).

6. (NBP,FP): Sincex(tl; θ + ∆θ) = θ + ∆θ, the induction
hypothesis∆x(tl) ≤ ∆θ (recalling the continuity ofx(t; θ))
and the fact thatx(t; θ) ≤ θ imply that x(tl; θ) = θ. On
the other hand, since the perturbed sample path is in a FP,
λ(t)−p(θ +∆θ) ≥ 0. The monotonicity ofp(x) then implies
that λ(t) − p(θ) > 0, t ∈ [tl, tl+1). Since x(tl; θ) = θ, it
follows that the nominal sample path is also in a FP, which
contradicts the assumption that it is in a NBP. So this case is
infeasible.

7. (FP,EP): Sincex(tl; θ) = θ andx(tl; θ + ∆θ) = 0, we
get ∆x(tl) < 0, which contradicts the induction assumption
∆x(tl) ≥ 0, and this case is also infeasible.

8. (FP,NBP): In this case,x(t; θ) = θ for all t ∈ [tl, tl+1)
and the induction hypothesis∆x(tl) ≥ 0 (recalling the
continuity ofx(t; θ)) implies thatx(tl; θ+∆θ) ≥ θ. Moreover,
we show next thatx(t; θ + ∆θ) ≥ θ for all t ∈ [tl, tl+1). If
x(tl; θ + ∆θ) = θ for someτ ∈ [tl, tl+1), we get form (1):

dx(τ ; θ + ∆θ)
dτ+

= λ(τ)− p(θ) ≥ 0
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where the inequality is due to the fact that the nominal sample
path is in a FP, i.e.,λ(t) − p(θ) ≥ 0 for all t ∈ [tl, tl+1).
Therefore, the perturbed sample path is constrained in this
case byθ ≤ x(t; θ + ∆θ) ≤ θ + ∆θ, and it follows that
0 ≤ ∆x(t) ≤ ∆θ for all t ∈ [tl, tl+1).

9. (FP,FP): Sincex(t; θ) = θ andx(t; θ + ∆θ) = θ + ∆θ,
it is clear that for allt ∈ [tl, tl+1) we have0 < ∆x(t) = ∆θ.

This completes the inductive proof.
Proof: [Lemma 2] We begin the proof by further decom-

posing the interval[αi, αi+1) into subintervals defined by all
exogenous events in(αi, αi+1). Let tl be the time instant when
the lth exogenous event occurs in(αi, αi+1), l = 1, . . . , Ei,
whereEi is the (random) number of these exogenous events.
For notational simplicity we setαi = t0 and αi+1 = tEi+1.
In the interval (tl, tl+1), l = 1, 2, . . ., λ(t) is constant and
p(x) is differentiable and we can see that∂x(t;θ)

∂θ exists and is
continuous with respect tot. For all t ∈ (tl, tl+1), (1) gives

∂x(t; θ)
∂t

= A(t; θ)

Differentiating with respect toθ and recalling thatλ(t) is
independent ofθ, we have from (14)

∂A(t; θ)
∂θ

= −∂p(x)
∂θ

= −dp(x)
dx

∂x(t; θ)
∂θ

(40)

so that

∂

∂θ

[
∂x(t; θ)

∂t

]
= −dp(x)

dx

∂x(t; θ)
∂θ

(41)

Define

ρl(t) =
∫ t

tl

dp(x)
dx

dt. (42)

Then, (41) can be rewritten as:

∂

∂t

[
∂x(t; θ)

∂θ

]
= −∂ρl(t)

∂t

∂x(t; θ)
∂θ

(43)

Solving this equation we obtain fort ∈ (tl, tl+1):

∂x(t; θ)
∂θ

= kle
−ρl(t) (44)

in which

kl =
∂x(t; θ)

∂θ

∣∣∣∣
t=t+l

Sincetl for l ≥ 1 is the occurrence time of an exogenous
event (whenλ(t) switches from one value to another), it
is locally independent ofθ. By Assumption 4 only this
exogenous event occurs attl, and ∂x(t;θ)

∂θ is continuous attl,
thus,

∂x(t; θ)
∂θ

∣∣∣∣
t=t+l

=
∂x(tl; θ)

∂θ
=

∂x(t; θ)
∂θ

∣∣∣∣
t=t−l

On the other hand, whenl = 0, t0 = αi depends onθ. Let
us define

Ki(θ) ≡ ∂x(t; θ)
∂θ

∣∣∣∣
t=α+

i

(45)

which can be determined as follows. Since

x(t; θ) = x(αi; θ) +
∫ t

αi

A(τ ; θ)dτ,

differentiating with respect toθ, we obtain:

∂x(t; θ)
∂θ

=
∂x(αi; θ)

∂θ
+

∫ t

αi

∂A(τ ; θ)
∂θ

dτ −A(α+
i )

∂αi

∂θ

where, recalling the definition of the event timesαi, i =
0, . . . , I, there are three possible values thatx(αi) can take:
θ, θ1 or 0. Thus,

∂x(αi; θ)
∂θ

= 1 [x(αi) = θ]

Since the boundedness of∂p(x)
∂x and ∂x(t;θ)

∂θ is guaranteed
by Assumption 1 and Corollary 1 respectively, from (40) we
obtain: ∣∣∣∣

∂A(t)
∂θ

∣∣∣∣ =
∣∣∣∣
dp(x)
dx

∣∣∣∣
∣∣∣∣
∂x

∂θ

∣∣∣∣ ≤ Cp

Therefore,

Ki(θ) = 1 [x(αi; θ) = θ]−A(α+
i )

∂αi

∂θ
(46)

Returning to (44) for alll = 0, 1, 2, . . . we now have:

∂x(t1; θ)
∂θ

= Ki(θ)e−ρ0(t1) (47)

∂x(tl; θ)
∂θ

=
∂x(tl−1; θ)

∂θ
e−ρl−1(tl), for l > 1 (48)

Recalling the definition ofρl(t) in (42), let

ρ(t) =
∫ t

αi

dp(x)
dx

dt

and note that fort ∈ (tl, tl+1), ρ(t) =
∑l

i=1 ρi−1(ti) +
ρl(t). Thus, combining (47)-(48) with (44) gives

∂x(t; θ)
∂θ

= Ki(θ)e−ρ(t) for all t ∈ [αi, αi+1) (49)

which is precisely (15).
Proof: [Lemma 3] If x(t; θ) decreases fromθ at timeαi,

this defines the start of a NBP which, as already seen, is an
exogenous event, independent ofθ. Specifically, from (1) we
must haveλ(α−i )−p(θ) ≥ 0 andλ(α+

i )−p(θ) < 0 whereλ(t)
is independent ofθ. ¿From Assumption 3,λ(α−i )−p(θ) > cθ,
λ(α+

i )−p(θ) < −cθ. Therefore, there exists a neighborhood of
θ within which a change ofθ does not affectαi. This implies
that αi is locally independent ofθ and the result follows.

Proof: [Lemma 4] The proof is similar to that of the
previous lemma, withλ(α−i )−p(0) ≤ 0 andλ(α+

i )−p(0) > 0.

Proof: [Lemma 5] We have
∫ αi+1

αi

A(t; θ)dt = x(αi+1; θ)− x(αi; θ) (50)

Depending on the values ofx(αi; θ) and x(αi+1; θ), we
have the following possible cases:

Case 1: x(αi; θ) = x(αi+1; θ), so that
∂
∂θ [x(αi+1; θ)− x(αi; θ)] = 0.

Case 2: x(αi; θ) = 0, x(αi+1; θ) = θ1, so that
∂
∂θ [x(αi+1; θ)− x(αi; θ)] = 0.

Case 3: x(αi; θ) = θ1, x(αi+1; θ) = θ, so that
∂
∂θ [x(αi+1; θ)− x(αi; θ)] = 1.
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Case 4: x(αi; θ) = θ, x(αi+1; θ) = θ1, so that
∂
∂θ [x(αi+1; θ)− x(αi; θ)] = −1.

Case 5: x(αi; θ) = θ1, x(αi+1; θ) = 0, so that
∂
∂θ [x(αi+1; θ)− x(αi; θ)] = 0.

Combining these cases yields∂∂θ [x(αi+1; θ)− x(αi; θ)] =
1 [x(αi+1; θ) = θ] − 1 [x(αi; θ) = θ], which can take three
possible values:1, 0, and−1. Thus, from (50) we get

∂

∂θ

[∫ αi+1

αi

A(t; θ)dt

]
= 1 [x(αi+1; θ) = θ]−1 [x(αi; θ) = θ]

(51)
Let tl be the time instant when thelth exogenous event occurs
in (αi, αi+1), l = 1, . . . , Ei, whereEi is the (random) number
of these exogenous events. Then,

∂

∂θ

[∫ αi+1

αi

A(t; θ)dt

]
=

∂

∂θ

[
Ei∑

l=0

∫ tl+1

tl

A(t; θ)dt

]

=
Ei∑

l=0

∂

∂θ

∫ tl+1

tl

A(t; θ)dt

=
Ei∑

l=0

{
A(t−l+1)

∂tl+1

∂θ
−A(t+l )

∂tl
∂θ

+
∫ tl+1

tl

∂A(t; θ)
∂θ

dt

}

= A(α−i+1)
∂αi+1

∂θ
−A(α+

i )
∂αi

∂θ

+ Ki(θ)
[
e−ρ(αi+1) − 1

]

where we have made use of (18). Therefore, using (51), the
above equation yields

∂αi+1

∂θ
=

1
A(α−i+1)

{
A(α+

i )
∂αi

∂θ
−Ki(θ)

[
e−ρ(αi+1) − 1

]

+1 [x(αi+1; θ) = θ]− 1 [x(αi; θ) = θ]}

Note that for alli > 0, αi corresponds to an endogenous event,
therefore, by Assumption 4, there can be no jump inA(t) at
t = αi, i > 0, i.e.,A(α−i+1) = A(αi+1) for all i = 0, . . . , In−
1 (we must still writeA(α+

i ), however, to account for the
jump at t = α0 which initiates the NBP). Then, recalling the
definition of Ki(θ) in (45), the expression above reduces to

∂αi+1

∂θ
=

1
A(αi+1)

{
A(α+

i )
∂αi

∂θ
e−ρ(αi+1)

+1 [x(αi+1; θ) = θ]− 1 [x(αi; θ) = θ] e−ρ(αi+1)
}

which is precisely (19). The fact that the initial condition for
this recursion is∂α0

∂θ = 0 follows from Lemmas 3, 4.

Proof: [Lemma 6] Assume there areIn − 1 endogenous
events in(ηn, ζn) and recall thatα0 = ηn and αIn = ζn.
Applying Lemma 5 to all intervals[αi, αi+1) contained in

[ηn, ζn) we obtain:

A(α−1 )
∂α1

∂θ
−A(α+

0 )
∂α0

∂θ
e−ρ(α1,α0)

= 1 [x(α1; θ) = θ]− 1 [x(α0; θ) = θ] e−ρ(α1,α0)

A(α−2 )
∂α2

∂θ
−A(α+

1 )
∂α0

∂θ
e−ρ(α2,α1)

= 1 [x(α2; θ) = θ]− 1 [x(α1; θ) = θ] e−ρ(α2,α1)

...

A(α−In
)
∂αIn

∂θ
−A(α+

In−1)
∂αIn−1

∂θ
e−ρ(αIn ,αIn−1)

= 1 [x(αIn
; θ) = θ]− 1 [x(αIn−1; θ) = θ] e−ρ(αIn ,αIn−1)

We notice that for0 < i < In, 1 [x(αi; θ) = θ] = 0,
otherwise the NBP would end before timeαIn

. Moreover,
by Assumption 4, no exogenous event occurs at timeαi for
i > 0, thereforeA(α−i ) = A(α+

i ) = A(αi) for i > 0. In view
of these facts, we get

A(α1)
∂α1

∂θ
−A(α+

0 )
∂α0

∂θ
e−ρ(α1,α0)

= −1 [x(α0; θ) = θ] e−ρ(α1,α0)

A(α2)
∂α2

∂θ
−A(α1)

∂α0

∂θ
e−ρ(α2,α1) = 0

...

A(αIn−1)
∂αIn−1

∂θ
−A(αIn−2)

∂αIn−2

∂θ
e−ρ(αIn−1,αIn−2) = 0

A(αIn)
∂αIn

∂θ
−A(αIn−1)

∂αIn−1

∂θ
e−ρ(αIn ,αIn−1)

= 1 [x(αIn ; θ) = θ]

Multiplying the ith equation above byeρ(αi,α1) and sum-
ming up the results we obtain:

A(αIn)
∂αIn

∂θ
eρ(αIn ,α1) −A(α+

0 )
∂α0

∂θ
e−ρ(α1,α0)

= 1 [x(αIn ; θ) = θ] eρ(αIn ,α1) − 1 [x(α0; θ) = θ] e−ρ(α1,α0)

Recall thatα0 = ηn, αIn = ζn and ∂ηn

∂θ = 0 (Lemmas
3, 4). Observing, in addition, thatρ(αIn , α1) + ρ(α1, α0) =
ρ(ζn, ηn) we obtain:

A(ζn)
∂ζn

∂θ
= 1 [x(ζn; θ) = θ]− 1 [x(ηn; θ) = θ] e−ρ(ζn,ηn)

which gives (21).
Proof: [Lemma 7] Similar to (22), for the perturbed

sample path with∆θ > 0, we have

LT (θ + ∆θ)

=
1
T

∫ T

0

1[x(t; θ + ∆θ) = θ + ∆θ][λ(t)− p(θ + ∆θ)]dt

Setting∆LT = LT (θ + ∆θ)− LT (θ), we get

∆LT =
1
T

∫ T

0

{1 [x(t; θ + ∆θ) = θ + ∆θ] [λ(t)− p(θ + ∆θ)]

−1 [x(t; θ) = θ] [λ(t)− p(θ)]} dt

Considering the possible values ofx(t; θ) andx(t; θ + ∆θ)
at any timet, there are four cases:
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1. x(t; θ) = θ, x(t; θ + ∆θ) = θ + ∆θ: In this case,
1 [x(t; θ + ∆θ) = θ + ∆θ] = 1 [x(t; θ) = θ] = 1.

2. x(t; θ) = θ, x(t; θ + ∆θ) < θ + ∆θ: In this case,
1 [x(t; θ + ∆θ) = θ + ∆θ] = 0, 1 [x(t; θ) = θ] = 1.

3. x(t; θ) < θ, x(t; θ+∆θ) = θ+∆θ: This case is infeasible
because it implies that∆x(t) > ∆θ which violates Lemma 1.

4. x(t; θ) < θ, x(t; θ + ∆θ) < θ + ∆θ: In this case,
1 [x(t; θ + ∆θ) = θ + ∆θ] = 1 [x(t; θ) = θ] = 0.

Thus, the expression for∆LT above is non-zero only under
cases 1 and 2, corresponding tox(t; θ) = θ. Let us decompose
[0, T ] into intervals corresponding to the feasible cases above
and denote these intervals byVi, i = 1, 2, . . ., and their lengths
by |Vi|. Moreover, let

Ψ1 = {i : x(t; θ) = θ, x(t; θ + ∆θ) = θ + ∆θ for all t ∈ Vi}
Ψ2 = {i : x(t; θ) = θ, x(t; θ + ∆θ) < θ + ∆θ for all t ∈ Vi}
Thus,

∆LT =
1
T

{ ∑

i∈Ψ1

∫

Vi

[p(θ)− p(θ + ∆θ)] dt

+
∑

i∈Ψ2

∫

Vi

[p(θ)− λ(t)] dt

}
(52)

We will prove that both terms in the right-hand-side bracket
of the above equation are bounded. For the first term, we have

∣∣∣∣∣
∑

i∈Ψ1

∫

Vi

[p(θ)− p(θ + ∆θ)] dt

∣∣∣∣∣
= |p(θ)− p(θ + ∆θ)|

∑

i∈Ψ1

|Vi|

≤ Cp∆θ
∑

i∈Ψ1

|Vi| ≤ CpT∆θ (53)

where the first inequality is due to Assumption 1 and the
Generalized Mean Value Theorem applied top(x) with x ∈
[θ, θ + ∆θ].

For the second term, sincei ∈ Ψ2, we have

x(t; θ) = θ andλ(t)− p(θ) ≥ 0 for all t ∈ Vi

By Assumption 2,|λ(t)− p(θ)| ≥ cθ, so we get

λ(t)− p(θ) ≥ cθ (54)

Sinceθ and θ + ∆θ are in the same valid interval iñΘ, we
can also show that

λ(t)− p(θ + ∆θ) ≥ 0

To establish this inequality, suppose thatλ(t)−p(θ+∆θ) < 0.
Then, from the continuity ofp(·), there existx∗ and t∗ such
that

λ(t∗)− p(x∗) = 0, θ ≤ x∗ ≤ θ + ∆θ, t∗ ∈ Vi (55)

This implies an invalid interval betweenθ andθ + ∆θ which
contradicts our assumption thatθ andθ + ∆θ are in the same
valid interval. Thus, in view of this inequality and Assumption
2 which requires that|λ(t)− p(θ + ∆θ)| ≥ cθ, we get

λ(t)− p(θ + ∆θ) ≥ cθ (56)

Sincep(x) is a monotonically increasing function, combining
(54) and (56) we obtain:

λ(t)− p(x) ≥ cθ for all x ∈ [θ, θ + ∆θ] (57)

Recall that fori ∈ Ψ2, we havex(t; θ) = θ and x(t; θ +
∆θ) < θ+∆θ. In addition, by Lemma 1, we have∆x ≥ 0, so
thatx(t; θ+∆θ) ≥ θ. Thus, for allt ∈ Vi, θ ≤ x(t; θ+∆θ) <
θ + ∆θ, and it follows from (1) and (57) that

∂x(t; θ + ∆θ)
∂t

= λ(t)− p(x(t; θ + ∆θ)) ≥ cθ, (58)

Sinceθ ≤ x(t; θ+∆θ) < θ+∆θ, the starting point of such
an intervalVi is either (i) the start of a FP in the nominal
path, or(ii) the end of a FP in the perturbed path. However,
due to (58), the latter case is not possible, since starting with
the end of a FP requires∂x(t;θ+∆θ)

∂t+ < 0. Thus, for i ∈ Ψ2,
the starting point ofVi is the start of a FP in the nominal path
at some timeτi,0.

Regarding the end ofVi, it can occur if either(i) the end
of a FP occurs in the nominal path, i.e.,x(t; θ) ceases to be
at θ at some timeτi,1, or (ii) the start of a FP occurs in the
perturbed path, i.e.,x(t; θ+∆θ) reachesθ+∆θ at some time
τi,2.

Combining the above observations, we have

|Vi| = min(τi,1, τi,2)− τi,0 ≤ τi,2 − τi,0

whereτi,2− τi,0 is upper-bounded by the time needed for the
perturbed sample path to evolve fromθ to θ +∆θ under (58),
i.e., τi,2 − τi,0 ≤ ∆θ/(∂x(t;θ+∆θ)

∂t ) ≤ ∆θ/cθ. Thus,

|Vi| ≤ ∆θ

cθ

Then, returning to the second term of (52), we have
∣∣∣∣∣
∑

i∈Ψ2

∫

Vi

[p(θ)− λ(t)] dt

∣∣∣∣∣

≤
∣∣∣∣∣
∑

i∈Ψ2

∫

Vi

∣∣∣∣ max
j=1,...,L

[λj − p(θ)]
∣∣∣∣ dt

∣∣∣∣∣

≤
∣∣∣∣ max
j=1,...,L

[λj − p(θ)]
∣∣∣∣
∣∣∣∣∣
∑

i∈Ψ2

∫

Vi

dt

∣∣∣∣∣

≤
∣∣∣∣ max
j=1,...,L

[λj − p(θ)]
∣∣∣∣

∑

i∈Ψ2

|Vi|

≤
∣∣∣∣ max
j=1,...,L

[λj − p(θ)]
∣∣∣∣
R∆θ

cθ
(59)

whereR ≡ |Ψ2| is the number of intervals in[0, T ] that belong
to the setΨ2. As mentioned earlier, the end of such aVi

interval corresponds to either the end of a FP in the nominal
sample path or the start of a FP in the perturbed sample path,
i.e.,

R ≤ F (θ) + F (θ + ∆θ)

whereF (θ), F (θ+∆θ) are the numbers of FPs in the nominal
and the perturbed sample paths respectively. Moreover,F (θ)
is bounded byW (θ), the number of switches ofλ(t) in [0, T ];
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similarly, F (θ + ∆θ) is bounded byW (θ + ∆θ). Recalling
Assumption 5, we have

E[R] ≤ E [W (θ) + W (θ + ∆θ)] < ∞
Combining (53) and (59) we finally obtain:

|∆LT | ≤ 1
T

{
CpT +

∣∣∣∣ max
j=1,...,L

[λj − p(θ)]
∣∣∣∣

R

cθ

}
∆θ

and by setting

r=Cp +
∣∣∣∣ max
j=1,...,L

[λj − p(θ)]
∣∣∣∣

R

Tcθ

the proof is complete.
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