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Abstract—This paper uses stochastic fluid models (SFMs) for
control and optimization (rather than performance analysis) of
communication networks, focusing on problems of buffer control.
We derive gradient estimators for packet loss and workload related
performance metrics with respect to threshold parameters. These
estimators are shown to be unbiased and directly observable from
a sample path without any knowledge of underlying stochastic
characteristics, including traffic and processing rates (i.e., they
are nonparametric). This renders them computable in online
environments and easily implementable for network management
and control. We further demonstrate their use in buffer control
problems where our SFM-based estimators are evaluated based
on data from an actual system.

Index Terms—Communication network, perturbation analysis,
stochastic fluid network.

I. INTRODUCTION

A NATURAL modeling framework for packet-based
communication networks is provided through queuing

systems. However, the huge traffic volume that networks are
supporting today makes such models highly impractical. It may
be impossible, for example, to simulate at the packet level a
network slated to transport packets at gigabit-per-second rates.
If, on the other hand, we are to resort to analytical techniques
from classical queuing theory, we find that traditional traffic
models, largely based on Poisson processes, need to be re-
placed by more sophisticated stochastic processes that capture
the bursty nature of realistic traffic; in addition, we need to
explicitly model buffer overflow phenomena which typically
defy tractable analytical derivations.

An alternative modeling paradigm, based on stochastic fluid
models (SFMs), has been recently considered for the purpose
of analysis and simulation. Introduced in [1] and later proposed
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in [2] for the analysis of multiplexed data streams and network
performance [3], SFMs have been shown to be especially useful
for simulating various kinds of high-speed networks [4]–[10].
The fluid-flow worldview can provide either approximations to
queuing-based models or primary models in their own right. In
any event, its justification rests on a molecular view of packets
in moderate-to-heavy loads over high-speed transmission links,
where the effect of an individual packet or cell on the entire
traffic process is virtually infinitesimal, not unlike the effect of
a water molecule on the water flow in a river.

The efficacy of a SFM rests on its ability to aggregate mul-
tiple events. For example, a discrete event simulation run of an
ATM link operating at 622 Mb/s may have to process over a
million events per second. On the other hand, if traffic arrives
from the source at rates that are piecewise-constant functions
of time, then a simulation run would process only one event
per rate change. Thus, 30 rate changes per second (as in certain
video encoders) may require the processing of only 30 events
per second. In effect, the SFM paradigm allows the aggregation
of multiple events, associated with the movement of individual
packets/cells over a time period of a constant flow rate, into a
single event associated with a rate change. It foregoes the iden-
tity and dynamics of individual packets and focuses instead on
the aggregate flow rate.

For the purpose of performance analysis with quality of ser-
vice (QoS) requirements, the accuracy of SFMs depends on
traffic conditions, the structure of the underlying system, and
the nature of the performance metrics of interest. By foregoing
the identity of individual packets, the SFM paradigm is more
suitable for network-related measures, such as buffer levels and
packet loss volumes, rather than packet-related measures such
as sojourn times (although it is still possible to define fluid-
based sojourn times [11]). A QoS metric that depends on the
identity of certain packets, for example, cannot be obviously
captured by a fluid model. Moreover, some metrics may depend
on higher-order statistics of the distributions of the underlying
random variables involved, which a fluid model may not be able
to accurately capture.

In this paper, our goal is to explore the use of SFMs for the
purpose ofcontrol and optimizationrather thanperformance
analysis. In this case, it is reasonable to expect that the solution
of an optimization problem can be identified through a model
which captures only those features of the underlying “real”
system that are needed to lead to the right solution, even though
the corresponding optimal performance may not be accurately
estimated. Even if the exact solution cannot be obtained by such
“lower-resolution” models, one can still obtain near-optimal
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points that exhibit robustness with respect to certain aspects of
the model they are based on. Such observations have been made
in several contexts (e.g., [12]), including recent results related
to SFMs reported in [13] and [21] where a connection between
the SFM and queuing-system-based solution is established for
various optimization problems in queuing systems.

With this in mind, we consider here optimization problems
for single-node SFMs involving loss volume and workload
levels; both are network-related performance metrics associated
with buffer control or call-admission control. In a typical buffer
control problem, for instance, the optimization problem in-
volves the determination of a threshold (measured in packets or
bytes) that minimizes a weighted sum of loss volume and buffer
content. As the motivating example presented in Section II
illustrates, a solution of this problem based on a SFM gives a
close approximation to the solution of the associated queuing
model. Since solving such problems usually relies on gradient
information, estimating the gradient of a given cost function
with respect to the aforementioned threshold parameters in a
SFM becomes an essential task. Perturbation analysis (PA)
methods [14], [15] are therefore suitable, if appropriately
adapted to a SFM viewed as a discrete-event system. Liu and
Gong [16], for example, have used PA to analyze an infinite-ca-
pacity SFM, with incoming traffic rates as the parameters of
interest. In this paper, we show that infinitesimal perturbation
analysis (IPA) yields remarkably simple sensitivity estimators
for packet loss and workload metrics with respect to threshold
or buffer size parameters. These estimators also turn out to
be nonparametricin the sense that they are computable from
data directly observable along a sample path, requiring no
knowledge of the underlying probability law, including distri-
butions of the random processes involved, or even parameters
such as traffic or processing rates. In addition, the estimators
obtained are unbiased under very weak structural assumptions
on the defining traffic processes. Therefore, the IPA gradient
estimators that we derive can be readily used for online control
purposes to perform periodic network management functions in
order to guarantee negotiated QoS parameters and to improve
performance. For instance, a network can monitor its relative
loss rate and mean buffer contents for a period of time, and then
adjust admission parameters, provision transmission capacities,
or reassign threshold levels in order to improve performance.
Such management functions have not been standardized,
and typically are performed in ad-hoc ways by monitoring
performance levels. Aside from solving explicit optimization
problems, IPA gradient estimators simplify the implementation
of sensitivity analysis.

The contributions of this paper are as follows. First, we con-
sider a single-node SFM and derive IPA gradient estimators for
performance metrics related to loss and workload levels with
respect to threshold parameters (equivalently, buffer sizes). One
can derive such estimators by either 1) considering the finite dif-
ference of a performance metric as a function of the finite dif-
ference of a parameter and then use explicit limit arguments to
obtain an unbiased estimate of the performance metric deriva-
tive, or 2) deriving the sample derivative for the performance
metric involved, and then proving that it indeed yields an unbi-
ased estimate. The former approach provides clear insights into

the dynamic process of generation and propagation of perturba-
tions, which is very helpful in understanding how to extend the
approach to multiple fluid classes and multiple nodes. In addi-
tion, it requires no technical conditions on the traffic processes
or the sample functions involved. However, this approach is te-
dious, even for a simple single-node model. The latter approach
is simpler and more elegant, at the expense of some mild tech-
nical conditions needed to justify the evaluation of the sample
derivative. It requires, however, some results from the first ap-
proach in order to prove unbiasedness of the derived estima-
tors. Thus, in this paper, we start with the former approach, and
then show that the estimators derived are equivalent to the latter,
which we subsequently adopt. Based on these estimators, we
also present simple algorithms for implementing them on line,
taking advantage of their nonparametric nature.

The second contribution of this paper is to make use of the
IPA gradient estimators derived to tackle buffer control as an
optimization problem. In particular, we seek to determine the
threshold value that minimizes a given performance metric.
Packet-by-packet buffer control can be applied after the session
admission decision is made in order to dynamically adjust
network resources so as to minimize some cost based on the
promised QoS. We use a standard gradient-based stochastic
optimization scheme, where we estimate the gradient of the
performance function with respect to the threshold parameter
on the SFM; however, due to the simplicity of this gradient
estimator, we evaluate itbased on data observed on a sample
path of the actual (discrete-event) system. Thus, we use the
SFM only to obtain a gradient estimator; the associated value
at any operating point is obtained from real system data.

The paper is organized as follows. First, in Section II, we mo-
tivate our approach with a buffer control problem in the SFM
setting and show the application of IPA to it. In Section III, we
describe the detailed SFM setting and define the performance
metrics and parameters of interest. In Section IV, we derive
IPA estimators for the sensitivities of the expected loss rate and
workload with respect to threshold parameters (equivalently,
buffer sizes) and show their unbiasedness. This is first demon-
strated by a direct approach based on finite differences. The IPA
approach is then generalized by evaluating sample derivatives
(at the expense of introducing some mild technical conditions);
these are shown to provide unbiased performance derivative es-
timators which are of nonparametric nature. Algorithms for im-
plementing the derivative estimators obtained are also provided.
In Section V, we show how the SFM-based derivative estimates
can be used on line using data from theactualsystem (not the
SFM) in order to solve buffer control problems. Finally, in Sec-
tion VI we outline a number of open problems and future re-
search directions motivated by this work.

II. A M OTIVATING EXAMPLE: THRESHOLD-BASED

BUFFERCONTROL

This section presents a motivating example of buffer control
in the setting of both a queuing model and a SFM and then com-
pares the two. Consider a network node where buffer control
at the packet level takes place using a simple threshold-based
policy: when a packet arrives and the queue length is below a
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Fig. 1. Buffer control in a single node.

given amount , it is accepted; otherwise, it is rejected. Let
denote the expected loss rate, i.e., the expected rate of

packet overflow at steady state, and let denote the mean
queue length when the threshold is. We then define the cost
function

(1)

where is a penalty associated with rejecting a packet. Thus,
captures the tradeoff between providing satisfactory

service (low delay) and rejecting too many packets. Since,
arguably, the notion of steady state is hard to justify in many
networks, and since control decisions need to be made period-
ically or in response to apparent adverse network conditions,
a more realistic performance measure is one where and

are replaced by and , the expected loss
rate and mean queue length, respectively, over the time-interval

. We then consider

(2)

to be the cost function of interest. Care must be taken in defining
the previous expectations over a finite time-horizon, since they
generally depend on the initial conditions; for the time being,
we shall assume that the queue is empty at time , and
revisit this point later. Fig. 1 depicts the queuing system under
consideration.

The packet arrival process is modeled as anON–OFFsource so
that packets arrive at a peak rateduring anON period, followed
by an OFF period during which no packets arrive. The packet
processing rate is. For the example used here and illustrated in
Fig. 1, the number of arrivals in eachON period is geometrically
distributed with parameter and arrival rate ; the
OFFperiod is exponentially distributed with parameter ;
and the service rate is . Thus, the traffic intensity of the
system is , where is
the average length of anON period and is the average length
of an OFF period. The cost function in this problem is
piecewise constant, hence gradient-based algorithms cannot be
used. However, by exhaustively simulating this queuing system
and averaging over 25 sample paths of length time
units and estimating over different discrete values of,
we obtained the curve labeled “DES” in Fig. 2, using a rejection
penalty . One can see that the optimal threshold value
in this example is .

Next, we adopt a simple SFM for the same system, treating
packets as “fluid.” During anON period, the fluid volume in
the buffer, , increases at rate (we assume ,

Fig. 2. Cost versus threshold comparison for DES and SFM.

otherwise there would be no buffer accumulation), while during
anOFF period it decreases at a rate. The cost function in this
model is

(3)

where is the threshold used to reject incoming fluid
when the buffer fluid volume reaches level. The corre-
sponding expected loss rate and mean buffer fluid volume
over the time-interval are denoted by and

, respectively. Simulating this model under the
same ON–OFF conditions as before over many values of
results in the curve labeled “SFM” in Fig. 2. The important
observation is that the two optima are close, whereas the
difference in the actual cost estimates can be substantial
(especially for a lightly loaded system). In fact, and

, as compared to and
the optimal .

Based on this observation, we are motivated to study means
for efficiently identifying solutions to problems formulated in
a SFM setting. It is still difficult to obtain analytical solutions,
however, since expressions for and are un-
available, unless the arrival and service processes in the actual
system are very simple. Therefore, one needs to resort to itera-
tive methods such as stochastic approximation algorithms (e.g.,
[17]), which are driven by estimates of the gradient of a cost
function with respect to the parameters of interest.

In the case of the aforementioned simple buffer control
problem, we are interested in estimating based on
directly observed (simulated) data. We can then seek to obtain

such that it minimizes through an iterative scheme of
the form

(4)

where is a step size sequence and is an
estimate of evaluated at and based on informa-
tion obtained from a sample path of the SFM denoted by .
However, as we will see, the simple form of to
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Fig. 3. The basic SFM.

be derived also enables us to apply the same scheme to the orig-
inal discrete-event system

(5)

where is the threshold used for theth iteration and
is a sample path of the discrete event system. In other words,
analyzing the SFM provides us with thestructureof a gradient
estimator whose actual value can be obtained based on data from
the actual system. In Fig. 2, the curve labeled “Opt.Algo.” cor-
responds to this process and illustrates how one can indeed re-
cover the optimal threshold .

III. SFM SETTING

The SFM setting is based on the fluid-flow worldview,
where “liquid molecules” flow in a continuous fashion. The
basic SFM, used in [11] and shown in Fig. 3, consists of a
single-server (spigot) preceded by a buffer (fluid storage tank),
and it is characterized by five stochastic processes, all defined
on a common probability space as follows:

• : the input flow (inflow) rate to the SFM;
• : the service rate, i.e., the maximal fluid discharge

rate from the server;
• : the output flow (outflow) rate from the SFM, i.e.,

the actual fluid discharge rate from the server;
• : the buffer occupancy or buffer content, i.e., the

volume of fluid in the buffer;
• : the overflow (spillover) rate due to excessive in-

coming fluid at a full buffer.
The previous processes evolve over a time interval for

a given fixed . The inflow process and the ser-
vice-rate process are assumed to be right-continuous
piecewise constant, with and

. Let denote the size of the
buffer, which is the variable parameter we will concentrate on
for the purpose of IPA. The processes and , along
with the buffer size , define the behavior of the SFM. In par-
ticular, they determine the buffer content, , the overflow
rate , and the output flow . The notational depen-
dence on indicates that we will analyze performance metrics
as functions of the given. We will assume that the real-valued
parameter is confined to a closed and bounded (compact) in-
terval ; to avoid unnecessary technical complications, we as-
sume that for all .

The buffer content is determined by the following one-
sided differential equation:

if and

if and

otherwise

(6)

with the initial condition for some given ; for
simplicity, we set throughout the paper. The outflow rate

is given by

if

if
(7)

where we point out that if we allow , then
. The overflow rate is given by

if

if .
(8)

This SFM can be viewed as a dynamic system whose input con-
sists of the twodefiningprocesses and along with
the buffer size , its state is comprised of the buffer content
process, and its output includes the outflow and overflow pro-
cesses. The state and output processes are referred to asderived
processes, since they are determined by the defining processes.
Since the input sample functions (realizations) of and

are piecewise constant and right-continuous, the state
trajectory is piecewise linear and continuous in, and
the output function is piecewise constant. Moreover, the
state trajectory can be decomposed into two kinds of intervals:
empty periodsandbusy periods. Empty periods (EPs) are max-
imal intervals during which the buffer is empty, while busy pe-
riods (BPs) are supremal intervals during which the buffer is
nonempty. Observe that during an EP the system is not neces-
sarily idle since the server may be active; see (7). Note also that
since is continuous in, EPs are always closed intervals,
whereas BPs are open intervals unless containing one of the end
points 0 or . The outflow process becomes important
in modeling networks of SFMs and it will not concern us any
further here, since our interest in this paper lies in single-node
systems.

Let be a random function defined over the
underlying probability space . Strictly speaking, we
write to indicate that this sample function depends on
the sample point , but will suppress unless it is nec-
essary to stress this fact. In what follows, we will consider two
performance metrics, theLoss Volume and theCumula-
tive Workload(or justWork) , both defined on the interval

via the following equations:

(9)

(10)

where, as already mentioned, we assume that .
Observe that is the expected loss rateover
the interval , a common performance metric of interest
(from which related metrics such asloss probabilitycan also
be derived). Similarly, is theexpected buffer
content over . We may then formulate optimization
problems such as the determination of that minimizes
a cost function of the form
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where represents a rejection cost due to overflow. In order
to accomplish this task, we rely on estimates of
and provided by the sample derivatives
and for use in stochastic gradient-based schemes.
Accordingly, the objective of the next section is the estimation
of the derivatives of and , which we will pursue
through infinitesimal perturbation analysis (IPA) techniques
[14], [15]. Henceforth, we shall use the “prime” notation to de-
note derivatives with respect to, and will proceed to estimate
the derivatives and . The corresponding sample
derivatives are denoted by and , respectively.

IV. IPA WITH RESPECT TOBUFFERSIZE OR THRESHOLD

As already mentioned, we will concentrate on the buffer size
in the SFM previously described or, equivalently, a threshold

parameter used for buffer control. We assume that the processes
and are independent of and of the buffer con-

tent. Thus, we consider network settings operating with proto-
cols such as ATM and UDP, but not TCP. Our objective is to
estimate the derivatives and through the sample
derivatives and which are commonly referred to
as infinitesimal perturbation analysis (IPA) estimators; compre-
hensive discussions of IPA and its applications can be found
in [14] and [15]. The IPA derivative-estimation technique com-
putes and along an observed sample path. An
IPA-based estimate of a performance metric derivative

is unbiasedif . Unbi-
asedness is the principal condition for making the application
of IPA practical, since it enables the use of the sample (IPA)
derivative in control and optimization methods that employ sto-
chastic gradient-based techniques.

We consider sample paths of the SFM over . For a fixed
, the interval is divided into alternating EPs and

BPs. Suppose there are busy periods denoted by ,
, in increasing order. Then, by (9) and (10), the sample

performance functions assume the following form:

(11)

(12)

As mentioned earlier, the processes and are as-
sumed piecewise constant. This implies that, w.p. 1, there exist
a random integer and an increasing sequence of time
points , gener-
ally dependent upon the sample path, such that is a jump
(discontinuity) point of ; clearly, is con-
tinuous at all points other than . We will assume
that has a finite expectation, i.e., .

Viewed as a discrete-event system, aneventin a sample path
of the SFM may be eitherexogenousor endogenous. An exoge-
nous event is a jump in either or . An endogenous
event is defined to occur when the buffer becomes full or empty.

We note that the times at which the bufferceases to befull or
empty are locally independent of, because they correspond
to a change of sign in the difference function (by
a random function being “locally independent” of we
mean that for a given there exists such that for every

, w.p. 1 , where may
depend on both and on the sample path). Thus, given a BP,
its starting point is one where the buffer ceases to be empty and
is therefore locally independent of, while its end point gen-
erally depends on. Denoting these points by and we
express as

for some random integer . The BPs can be classified according
to whether some overflow occurs during them or not. Thus, we
define the random set

for some

For every , there is a (random) number of
overflow periodsin , i.e., intervals during which the buffer is
full and . Let us denote these overflow periods
by , , in increasing order and express
them as . Observe
that the starting time generally depends on, whereas
the ending time is locally independent of, since it corre-
sponds to a change of sign in the difference function ,
which has been assumed independent of. Finally let

(13)

where denotes the cardinality of a set, i.e., is the number
of BPs in during which some overflow is observed. To
summarize, the following points hold true.

• There are busy periods in , with
.

• iff some overflow occurs during ; we set
.

• For each , there are overflow periods in ,
i.e., , .

A typical sample path is shown in Fig. 4, where ,
, , , and .

As mentioned in Section I, we present two ways of deriving
IPA estimators: 1) by evaluating the finite differences
and as functions of , obtaining left and/or right
sample derivatives (depending on whether or ),
taking limits as , and finally exploring if they yield
unbiased estimates of and ; or 2) by explicitly
evaluating and , which requires some additional
technical assumptions. We will first proceed with the former
approach and consider only the loss volume metric ;
the analysis for is similar, though a bit more involved
(see also [18]). In pursuing this approach, we will also derive
some results that will be used to establish the unbiasedness of
the estimators and obtained through the latter
approach.
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Fig. 4. A typical sample path of a SFM.

A. IPA Using Finite Difference Analysis

The stochastic component of the SFM manifests itself
in the duration of the intervals defined by exogenous event
occurrences corresponding to jumps in either or .
Let , , be the point process defined by these
exogenous event times. For convenience, letand denote
the (constant) inflow rate and service rate, respectively, over the
interval . Note that we do not impose any restrictions
on the probability law of the intervals defined by these events.

The main result of this section is to show that the sample
derivative , i.e., the sensitivity of the loss volume with
respect to , is given by , and that this is an unbiased es-
timator of . Recall that is simply the count of busy
periods in which at least one overflow period is observed. More-
over, this remarkably simple estimator is independent of any as-
sumptions on the traffic process or service process, as well as of
the rates involved and even, i.e., it isnonparametric.

The starting point in IPA is to consider anominal sample
path under some buffer size (equivalently, admission threshold)

and aperturbedsample path resulting from perturbingby
, while keeping the realizations of the processes and

unchanged, hence, leaving , , un-
changed. For simplicity, we limit ourselves to the case where

, leading to an estimate of the right sample derivative of
; the case where is similar, leading to an estimate

of the left sample derivative of . We then define

where denotes the nominal sample buffer content at time
and denotes the perturbed sample buffer content

at the same time. Similarly, we define perturbations for some
additional sample path quantities as follows. First, setting
, let

(14)

be the total loss volume observed over an interevent interval
, and define

(15)

In addition, let

(16)

and note that is simply the amount of
change in the buffer content from time to time . There-
fore, is the queue content obtained at time if the
queue were allowed to become negative or to exceed. We may
then define

Finally, we define a perturbation in the ending time of a BP as

For notational simplicity, we shall henceforth suppress the ar-
guments of all quantities , , , .

Consider a typical BP , and all possible events that can take
place in it, so as to determine how associated perturbations are
either generated (due to ) or propagated from the previous
event. The th busy period is initiated by an exogenous event
at time , for some , such that , and let us
assume that . Regarding the next exogenous event at
time there are two possible cases to consider:

Case I: . In this case, is given by (16)
and we have [see also Fig. 5(a)]

Clearly, .
Case II: . In this case, the queue content in the

perturbed path can increase beyondup to the perturbed value
. Then, as also seen in Fig. 5(b)

(17)

(18)

provided that is such that . To
consider the case where , let the length of
the overflow period in the nominal path be and note that

Thus, if , then it is easy to see
that the shaded area in Fig. 5(b) reduces to a triangle with area

. We then get

(19)

(20)
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(a)

(b)

Fig. 5. (a) Case I: No perturbation generation (y (�) � �). (b) Case II:
Perturbation generation for0 < �� � y (�)� �.

Using the standard notation , we can combine
(17) and (18) with (19) and (20) to write

(21)

(22)

Equations (21) and (22) capture the perturbationgeneration
process due to . The next step is to study how perturbations
can bepropagated, assuming the general situation .
Doing so leads to the following result, which describes the
complete queue content perturbation dynamics and establishes
bounds for .

Lemma 1: For all

(23)

and

if

if
(24)

where is the length of an EP ending at with if
no such period exists, and is the length of an overflow period
ending at with if no such period exists.

Proof: See the Appendix.
An immediate consequence of Lemma 1 is that a queue con-

tent perturbation may propagate across busy periods depending
on the length of the EP separating these busy periods. This is
because when an event
occurs at time that ends an EP of length. Moreover, re-
calling that the endpoints of busy periods are denoted by ,

, the perturbation in can be easily obtained
by noticing in Fig. 8(a) [Case 1.2) in the proof of Lemma 1] that

(25)

provided that , where and are the inflow
rate and service rate at the time the BP ends. To account for the
fact that the th BP may contain an overflow interval of length

with , in (25) can be replaced
by in view of (24). If,
on the other hand, , then the th and th
busy periods are merged, which implies that includes
the entire length of the th busy period.

Next, we identify bounds for (a generalization of the
bounds for and can also be found in [11]).

Lemma 2: For all

(26)

Proof: See the Appendix.
Recall that if at least one overflow period is observed in the

th BP, then . Making use of the standard indicator
function if and zero otherwise, we
have the following result, which allows us to characterize the
cumulative loss perturbation at the end of a BP, which we will
denote by , .

Lemma 3: Consider a BP with ,
, and . Assuming

for all , the cumulative loss
perturbation at the end of this busy period is

(27)

Proof: See the Appendix.
In simple terms, the loss perturbation dependsonly on the

presence of an overflow within the observed busy period and
not their number. It is noteworthy that this perturbation does
not explicitly depend on any values that or may take
or the nature of the stochastic processes involved. Considering
Lemma 3, note that it allows us to analyze all busy periods sepa-
rately and accumulate loss perturbations at the end of the sample
path over all busy periods observed; this, however, is contingent
on the fact that when a BP starts with an exogenous
event at . On the other hand, we saw that a consequence of
Lemma 1 is following an EP of
length , i.e., the buffer content perturbation may not be zero
when a BP starts, depending on the length of the EP separating
it from the preceding BP.

We can now derive an unbiased derivative estimate for our
performance metric by establishing the following result.

Theorem 4: The (right) derivative of the expected loss,
, is given by

(28)

where is the (random) number of busy periods contained in
, including a possibly incomplete last busy period.
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Proof: We have

where from Lemma 3, provided
for all . It follows that

where we have used the definition in (13).
If for some , then the

only additional effect comes from
in (53). Then, consider

where is the conditional pdf of given
, and let . Recalling that

from Lemma 1, we get

and it follows that

(29)

The cumulative loss perturbation due to events such that
is bounded from below by

where is the length of an overflow interval after theth exoge-
nous event, with if no such overflow interval is present,
and is the total number of exogenous events in .
This cumulative loss perturbation is also bounded from above
by zero, since from Lemma 2. Using (29), we get,
given some

and

where, by assumption, . This completes the
proof.

An immediate implication of this theorem is that is an
unbiased estimator of

(30)

This estimator is extremely simple to implement: (30) is merely
a counter of all busy periods observed in in which at least
one overflow takes place. Again, no knowledge of the traffic or
processing rates is required, nor does (30) depend on the nature
of the random processes involved.

Using the aformentioned finite-difference approach, it is also
possible to derive an unbiased estimator for (see
[18]), but it is considerably more tedious; we will see how to
derive the same estimator in the next section by simpler means.
Finally, note that (28) was derived using ; thus, the
analysis has to be repeated for in order to evaluate the
left sample derivative, and, although this does not present any
conceptual difficulties, it adds to the tediousness of the finite
difference analysis we have pursued thus far.

B. IPA Using Sample Derivatives

In this section, we derive explicitly the sample derivatives
and of the loss volume and work, defined

in (11) and (12), respectively. We then show that they
provide unbiased estimators of the expected loss volume
sensitivity and the expected work sensitivity

.
Since we are concerned with the sample derivatives

and , we have to identify conditions under which they
exist. Observe that any endogenous event time (a time point
when the buffer becomes full or empty) is generally a function
of ; see also (6). Denoting this point by , the derivative

exists as long as is not a jump point of the differ-
ence process . Recall that the times at which the
buffer ceases to be full or empty are locally independent of,
because they correspond to a change-of-sign of the difference
sample function , which does not depend on. Ex-
cluding the possibility of the simultaneous occurrence of two
events, the only situation preventing the existence of the sample
derivatives and involves an interval during which

and , as seen in (8); in this case,
the one-sided derivatives of and exist and can be
obtained with the approach of the previous section. In order to
keep the analysis simple, we will focus only on the differentiable
case. Therefore, the analysis that follows rests on the following
technical conditions.

Assumption 1:

a) W.p. 1, .
b) For every , w.p. 1, no twoeventsmay occur at the

same time.
Remark: We stress the fact that the aforementioned condi-

tions for ensuring the existence of the sample derivatives
and are very mild. Part b) is satisfied whenever the cumu-
lative distribution functions (cdfs) (or conditional cdfs) charac-
terizing the intervals between exogenous event occurrences are
continuous. For example, in the simple case where
and can only take two values, 0 and , suppose that
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the inflow process switches from to 0 after time
units w.p. 1. The buffer then becomes full exactly when an ex-
ogenous event occurs, and the loss volume sample function ex-
periences a discontinuity w.p. 1. Such situations can only arise
for a small-finite subset of (for which one can still calculate
either the left or right derivatives) and they are of limited prac-
tical consequence.

We next derive the IPA derivatives of and . Re-
call that , i.e., the number of BPs containing at
least one overflow period.

Theorem 5: For every

(31)

Proof: Recalling that , we have, from
(11)

(32)

which after differentiation yields

(33)

Note that the derivative in (33) is taken along a sample path. The
set , though depending on, can be viewed as a constant for
the purpose of taking the derivative. The reason is that, by virtue
of Assumption 1b), it is locally independent of, similarly to the
endogenous event times discussed in the first part of Section IV
(i.e., for every fixed , w.p. 1 there exists , such that,
for every , ; although this

generally depends on the given sample path, our derivative
is taken along a specific sample path, hence, (33) is justified).

Next, we focus on a particular with and we
shall suppress the indexto simplify the notation. Accordingly,
the BP in question is denoted by , and there are

overflow periods in , denoted by ,
. A typical scenario is depicted in Fig. 4, where

in the first BP we have . The loss volume over is given
by the function

(34)

We next prove that

(35)

from which (31) immediately follows in view of (32)–(34).
From the definition of in (8), we can rewrite (34) as

(36)

Since the points , , and the jump points
of constituteevents, and since w.p. 1 no two events
can occur at the same time by Assumption 1b), the function

must be continuous w.p. 1 at the points ,

. Consequently, by taking derivatives with respect to
in (36) we obtain

(37)

Next, consider the individual terms in the previous sum (see also
Fig. 4 for an illustration).

1) If , then the buffer is neither full nor empty in the
interval . Since the buffer content evolves from

to , (6) implies

and, upon taking derivatives with respect to

(38)

2) If , then the buffer is neither full nor empty in the
interval . Since

we obtain, by (6)

and upon differentiating with respect to

(39)

Finally, (37)–(39) imply (35), which immediately implies
(31) and the proof is complete.

Note that Theorem 5 is consistent with Theorem 4. However,
Theorem 4 includes a direct proof of the unbiasedness of the
estimator , whereas the present approach requires a sep-
arate proof that the sample derivative is in
fact unbiased. The unbiasedness of this IPA derivative will be
proven later, after we establish the IPA derivative of the work

defined in (12).
Theorem 6: For every ,

(40)

Proof: We focus on a particular BP with ,
and again suppress the notational dependency onfor the sake
of simplicity. Accordingly, consider a BP ,
and denote its overflow periods by ,

, for some (e.g., in the first BP
of Fig. 4). Define the function

(41)

It suffices to prove that

(42)

since this would immediately imply (40). Since is contin-
uous in , taking the derivative with respect toin (41) and let-
ting denote the partial derivative with respect toyields

(43)
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since the BP ends at , hence, . To evaluate
this partial derivative (which exists at allexcept and

) we consider all possible cases regarding the location
of in the BP (see Fig. 4).

1) . In this case, the buffer is neither empty
nor full in this interval. It follows, using (6), that

Since the right-hand side is independent of, we have
.

2) , . Since is
an overflow period, in these intervals, hence,

.
3) , . Here, the buffer

is neither empty nor full in the interval , while
. It follows, using (6), that

and upon differentiating with respect to, we obtain
.

4) . This case is identical to the previous one,
yielding .

In summary, for all (Case 1), and
for all (Cases 2–4). Therefore, it

follows from (43) that (42) holds, implying (40) and completing
the proof.

In simple terms, the contribution of a BP, , to the sample
derivative in (40) is the length of the interval defined by
the first point at which the buffer becomes full and the end of
the BP. Once again, as in (31), observe that the IPA derivative

is nonparametric, since it requires only the recording
of times at which the buffer becomes full [i.e., ] and
empty [i.e., ] for any with . We also remark
that the same IPA derivative can be obtained through the finite
difference analysis of the previous section (see [18]), but with
considerably more effort.

1) IPA Unbiasedness:We next prove the unbiasedness of
the IPA derivatives and previously obtained. Al-
though we have already shown in (28) that is an unbiased
estimate of , we supply an alternative and greatly
simplified proof based on the direct derivation of the IPA esti-
mator in this section and on some of the results of the finite-dif-
ference analysis in Section IV-A. By a similar technique, we
also supply a proof of the unbiasedness of the IPA estimator

in (40). These proofs, jointly with the sample-derivative
technique for obtaining the estimators, suggest the possibility
of extensive generalizations to the functional forms of and

(beyond piecewise constant), to be explored in a forth-
coming paper (also, see [19] and [10]).

In general, the unbiasedness of an IPA derivative has
been shown to be ensured by the following two conditions (see
[20, Lemma A2, p. 70]).

Condition 1: For every , the sample derivative
exists w.p. 1.

Condition 2: W.p. 1, the random function is Lipschitz
continuous throughout , and the (generally random) Lipschitz
constant has a finite first moment.

Consequently, establishing the unbiasedness of and
as estimators of and ,

respectively, reduces to verifying the Lipschitz continuity of
and with appropriate Lipschitz constants. Recall

that is the random number of all exogenous events in
and that we have assumed .

Theorem 7: Under Assumption 1

1) if , then the IPA derivative is an
unbiased estimator of ;

2) the IPA derivative is an unbiased estimator of
.

Proof: Under Assumption 1, Condition 1 holds for
and . Therefore, it only remains to establish Condition 2.

First, consider . Recalling (14) and (15), we can write

by partitioning into intervals defined by suc-
cessive exogenous events. Then, by Lemma 2,
, so that

i.e., is Lipschitz continuous with constant . Since
, this establishes unbiasedness.

Consider next the sample function , defined by (12)
and fix and . By Lemma 1, , hence the
difference satisfies the
inequalities

Consequently, in view of (12)

that is, is Lipschitz continuous with constant. This
completes the proof.

Remark: For the more commonly used performance met-
rics (the expected loss rate over ) and

(the expected buffer content over ), the
Lipschitz constants in Theorem 7 become and 1, re-
spectively. As , the former quantity typically converges
to the exogenous event rate.

V. OPTIMAL BUFFER CONTROL USING

SFM-BASED IPA ESTIMATORS

As suggested in Section II and illustrated in Fig. 2, the
solution to an optimization problem defined for an actual
network node (i.e., a node that operates as a queuing system)
may be accurately approximated by the solution to the same
problem based on a SFM of the node. However, this may not be
always the case. On the other hand, the simple form of the IPA
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estimators of the expected loss rate and expected buffer content
obtained through (31) and (40) allows us to use data from the
actual (real-world) system in order to estimate sensitivities
that, in turn, may be used to solve an optimization problem
of interest. In other words, theform of the IPA estimators is
obtained by analyzing the system as a SFM, but the associated
valuesare based on real data. In particular, an algorithm for
implementing the estimators (31) and (40) is given as follows.

IPA Estimation Algorithm
Initialize a counter and a cumula-
tive timer .
Initialize .
If an overflow event is observed at time

and :
—Set .
If a busy period ends at time and

:
—Set and
—Reset .
If , and :
—Set and .

The final values of and provide the IPA derivatives
and respectively. We remark that the “overflow” and
“end of BP” events are readily observable during actual net-
work operation. In addition, we point out once again that these
estimates are independent of all underlying stochastic features,
including traffic and processing rates. Finally, the algorithm is
easily modified to apply to any interval .

Let us now return to the buffer control problem presented in
Section II, where the objective was to determine a threshold
that minimizes a cost function of the form

trading off the expected loss rate with a rejection penaltyfor
the expected queue length. If a SFM is used instead, then the
cost function of interest becomes

and the optimal threshold parameter,, may be determined
through a standard stochastic approximation algorithm based on
(4). The gradient estimator is the IPA estimator
of based on (31) and (40)

(44)

evaluated over a simulated sample path of length , fol-
lowing which a control update is performed through (4) based
on the value of .

The interesting observation here is that the same estimator
may be used in (5) as follows. If a packet arrives and is rejected,

the time this occurs is recorded asin the aforementioned algo-
rithm. At the end of the current busy period, the counterand
timer are updated. Thus, the exact same expression as in the
right-hand side of (44) can be used to update the threshold

(45)

Note that, after a control update, the state must be reset to zero,
in accordance with our convention that all performance metrics
are defined over an interval with an initially empty buffer.
In the case of offline control, this simply amounts to simulating
the system after resetting its state to 0. In the more interesting
case of online control, we proceed as follows. Suppose that the

th iteration ends at time and the state is [in gen-
eral, ]. At this point, the threshold is updated
and its new value is . Let be the next time that
the buffer is empty, i.e., . At this point, the

th iteration starts and the next gradient estimate is ob-
tained over the interval , so that
and the process repeats. The implication is that over the interval

no estimation is carried out while the controller waits
for the system to be reset to its proper initial state; therefore,
sample path information available over is effectively
wasted as far as gradient estimation is concerned.

Fig. 6 depicts examples of the application of this scheme to
a single-node SFM under six different parameter settings (sce-
narios), summarized in Table I. As in Fig. 2, “DES” denotes
curves obtained by estimating over different (discrete)
values of , “SFM” denotes curves obtained by estimating
over different values of, and “Opt.Algo.” represents the opti-
mization process (45), where we maintain real-valued thresh-
olds throughout. The first three scenarios correspond to a high
traffic intensity compared to the remaining three. For each ex-
ample, is the optimal threshold obtained through exhaus-
tive simulation. In all simulations, anON–OFF traffic source is
used with the number of arrivals in eachON period geometri-
cally distributed with parameterand arrival rate ; theOFFpe-
riod is exponentially distributed with parameter; and the ser-
vice rate is fixed at . Thus, the traffic intensity of the system

is , where is the average
length of anON period and is the average length of an
OFF period. The rejection cost is . For simplicity,
in (45) is taken to be a constant . Finally, in all cases

. As seen in Fig. 6, the threshold value obtained
through (45) using the SFM-based gradient estimator in (44) ei-
ther recovers or is close to it with a cost value extremely
close to ; since in some cases the cost function is nearly
constant in the neighborhood of the optimum, it is difficult to
determine the actual optimal threshold, but it is also practically
unimportant since the cost is essentially the same. We have also
implemented (45) with estimated over shorter
interval lengths and , with virtually iden-
tical results. Looking at Fig. 6, it is worth observing that deter-
mining as an approximation to through offline analysis
of the SFM would also yield good approximations, further sup-
porting the premise of this paper that SFMs provide an attractive
modeling framework for control and optimization (not just per-
formance analysis) of complex networks.
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Fig. 6. Optimal threshold determination in an actual system using SFM-based gradient estimators—Scenarios 1–6.

TABLE I
PARAMETER SETTINGS FORSIX EXAMPLES

VI. CONCLUSION AND FUTURE WORK

SFMs can adequately describe the dynamics of high-speed
communication networks, where they may be used to approxi-
mate discrete event models or constitute primary models in their
own right. When control and optimization are of primary impor-
tance (rather than performance analysis), a SFM may be used
as a means for accurately determining an optimal parameter
setting, even though the corresponding performance evaluated
through the SFM may not be particularly accurate. With this
premise in mind, we have considered single-node SFMs from
the standpoint of IPA derivative estimation. In particular, we
have developed IPA estimators for the loss volume and work as
functions of the buffer size, and shown them to be unbiased and
nonparametric. The simplicity of the estimators and their non-

parametric property suggest their application to online network
management. Indeed, for a class of buffer control problems,
we have shown how to use an optimization scheme (and illus-
trated it through numerical examples) for a discrete-event model
(viewed as a real, queuing-based single-node system) using the
IPA gradient obtained from its SFM counterpart. Interestingly,
there is no IPA derivative for the discrete event model, since its
associated control parameter is discrete.

For the loss volume performance function, the IPA derivative
has been developed by two separate techniques: finite difference
analysis, and a sample derivative analysis. The former method is
more elaborate, but sheds light on the structure of the derivative
estimator. The second method is more direct and elegant, but its
unbiasedness proof requires some results obtained by the anal-
ysis of the former method. The sample-derivative method was
also applied to the IPA estimator of the buffer workload perfor-
mance function.

The sample derivative analysis holds the promise of consider-
able extensions to multiple SFMs as models of actual networks
and to multiple flow classes that can be used for differentiating
traffic classes with different quality-of-service (QoS) require-
ments. Ongoing research has already led to very encouraging
results, reported in [18], involving IPA estimators and associated
optimization for flow control purposes in multinode models. Fi-
nally, for the purpose of session-by-session admission control,
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preliminary work suggests that one can use sensitivity informa-
tion with respect to inflow rates (which can be obtained through
an approach similar to the one presented in this paper) and con-
tribute to the development of effective algorithms, yet to be ex-
plored.

APPENDIX

Proof of Lemma 1:Looking at any segment of the sample
path over an interval , there are two possibilities: ei-
ther or . First, suppose that
and consider the event which occurs at time . There are
three cases to analyze.

Case 1.1) . In this case, as seen in Fig. 7, we have

(46)

Case 1.2) and . In this
case, as seen in Fig. 8(a), theth BP ends and it is fol-
lowed by an EP of length , which in turn ends at time

. Clearly

(47)

Case 1.3) and . This rep-
resents a situation where an EP of lengthis eliminated
in the perturbed path, i.e., . As seen
in Fig. 8(b), the buffer content perturbation becomes

(48)

Next, let us assume that . We then have three cases
as follows.

Case 2.1) and . It is easy to
see [Fig. 9(a)] that this is identical to Case 1.1) yielding
(46).

Case 2.2) and . The
perturbed buffer content cannot exceed , since

from (21); therefore,
and the situation is identical to that of Fig. 9(a),

again yielding (46).
Case 2.3) . As seen in Fig. 9(b)

as in Case II where perturbation generation was con-
sidered. Once again, however, it is possible that

, so that we write, similarly to Case II

(49)

We may now establish (23) by combining (46)–(49) and by ob-
serving that i) in (48), with ,
therefore , and ii) in (49), .

Next, by combining (46)–(48) we obtain the first part of (24),
observing that in Case 1.1). To obtain the second part,
we combine (46) and (49), observing that when in (49),
we get , since from (23), which
reduces to (46) corresponding to Cases 2.1)–2.2).

Fig. 7. Case 1.1):y (�) � 0.

(a)

(b)

Fig. 8. (a) Case 1.2):y (�) < 0 andy (�)+�y � 0. (b) Case 1.3):
y (�) < 0 andy (�) + �y > 0.

Proof of Lemma 2:Proceeding as in the proof of Lemma 1,
we first consider the case and get the following.

Case 1.1) . In this case, as seen in Fig. 7, we have

(50)

Case 1.2) and . Clearly,
as seen in Fig. 8(a)

(51)

Case 1.3) and . This rep-
resents a situation where an EP of lengthis eliminated
in the perturbed path, i.e., . As seen
in Fig. 8(b), no loss is involved in either path

(52)
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(a)

(b)

Fig. 9. (a) Cases 2.1)–2.2):y (�) � �. (b) Case 2.3):y (�) > �.

Next, let us assume that and we have the fol-
lowing.

Case 2.1) and . It is easy to
see [Fig. 9(a)] that this is identical to Case 1.1) yielding
(50).

Case 2.2) and . As argued
in the proof of Lemma 1, the situation is identical to that
of Fig. 9(a), again yielding (50).

Case 2.3) . If , then
. Otherwise,
, and we get

. Thus

(53)

We may now combine (50)–(53). Observe that in (53)
, since we have already established that

in Lemma 1. Moreover,
if , and if

, where from
Lemma 1. This yields (26).

Proof of Lemma 3:Proceeding as in the proof of Lemma 2,
we get in (50)–(52), i.e., in all cases except Case
2.3) where (53) applies

Suppose the first overflow interval in the BP ends at. Under
the assumption for all

, it follows from (17) and (18) that and
. Moreover, from Lemma 1, (24) gives

for all . Therefore, (53) gives
after every subsequent overflow interval, and we get

.
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