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Abstract—This paper uses stochastic fluid models (SFMs) for in [2] for the analysis of multiplexed data streams and network
control and optimization (rather than performance analysis) of performance [3], SFMs have been shown to be especially useful
communication networks, focusing on problems of buffer control. for simulating various kinds of high-speed networks [4]-[10].

We derive gradient estimators for packet loss and workload related The fluid-fl dvi de eith imati i
performance metrics with respect to threshold parameters. These e fluid-flow worldview can provide either approximations to

estimators are shown to be unbiased and directly observable from gqueuing-based models or primary models in their own right. In
a sample path without any knowledge of underlying stochastic any event, its justification rests on a molecular view of packets
characteristics, including traffic and processing rates (i.e., they in moderate-to-heavy loads over high-speed transmission links,
are nonparametric). This renders them computable in online \yhere the effect of an individual packet or cell on the entire

environments and easily implementable for network management ' o NP .
and control. We further demonstrate their use in buffer control  traffic process is virtually infinitesimal, not unlike the effect of

problems where our SFM-based estimators are evaluated based @ water molecule on the water flow in a river.

on data from an actual system. The efficacy of a SFM rests on its ability to aggregate mul-
Index Terms—Communication network, perturbation analysis, tPle events. For example, a discrete event simulation run of an
stochastic fluid network. ATM link operating at 622 Mb/s may have to process over a

million events per second. On the other hand, if traffic arrives
from the source at rates that are piecewise-constant functions
of time, then a simulation run would process only one event
NATURAL modeling framework for packet-basedper rate change. Thus, 30 rate changes per second (as in certain
communication networks is provided through queuingideo encoders) may require the processing of only 30 events
systems. However, the huge traffic volume that networks aper second. In effect, the SFM paradigm allows the aggregation
supporting today makes such models highly impractical. It may multiple events, associated with the movement of individual
be impossible, for example, to simulate at the packet levelpackets/cells over a time period of a constant flow rate, into a
network slated to transport packets at gigabit-per-second ratgngle event associated with a rate change. It foregoes the iden-
If, on the other hand, we are to resort to analytical techniquty and dynamics of individual packets and focuses instead on
from classical queuing theory, we find that traditional traffithe aggregate flow rate.
models, largely based on Poisson processes, need to be ré&or the purpose of performance analysis with quality of ser-
placed by more sophisticated stochastic processes that captize (QoS) requirements, the accuracy of SFMs depends on
the bursty nature of realistic traffic; in addition, we need ttraffic conditions, the structure of the underlying system, and
explicity model buffer overflow phenomena which typicallythe nature of the performance metrics of interest. By foregoing
defy tractable analytical derivations. the identity of individual packets, the SFM paradigm is more
An alternative modeling paradigm, based on stochastic flusdiitable for network-related measures, such as buffer levels and
models (SFMs), has been recently considered for the purpgseket loss volumes, rather than packet-related measures such
of analysis and simulation. Introduced in [1] and later propose@d sojourn times (although it is still possible to define fluid-
based sojourn times [11]). A QoS metric that depends on the
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points that exhibit robustness with respect to certain aspectdiué dynamic process of generation and propagation of perturba-
the model they are based on. Such observations have been ntimehes, which is very helpful in understanding how to extend the
in several contexts (e.g., [12]), including recent results relatagproach to multiple fluid classes and multiple nodes. In addi-
to SFMs reported in [13] and [21] where a connection betwedion, it requires no technical conditions on the traffic processes
the SFM and queuing-system-based solution is established dothe sample functions involved. However, this approach is te-
various optimization problems in queuing systems. dious, even for a simple single-node model. The latter approach
With this in mind, we consider here optimization problemis simpler and more elegant, at the expense of some mild tech-
for single-node SFMs involving loss volume and workloadical conditions needed to justify the evaluation of the sample
levels; both are network-related performance metrics associatkdivative. It requires, however, some results from the first ap-
with buffer control or call-admission control. In a typical buffeiproach in order to prove unbiasedness of the derived estima-
control problem, for instance, the optimization problem intors. Thus, in this paper, we start with the former approach, and
volves the determination of a threshold (measured in packetgloen show that the estimators derived are equivalent to the latter,
bytes) that minimizes a weighted sum of loss volume and buffe@hich we subsequently adopt. Based on these estimators, we
content. As the motivating example presented in Section dlso present simple algorithms for implementing them on line,
illustrates, a solution of this problem based on a SFM givestaking advantage of their nonparametric nature.
close approximation to the solution of the associated queuingThe second contribution of this paper is to make use of the
model. Since solving such problems usually relies on gradid®A gradient estimators derived to tackle buffer control as an
information, estimating the gradient of a given cost functiooptimization problem. In particular, we seek to determine the
with respect to the aforementioned threshold parameters itheeshold value that minimizes a given performance metric.
SFM becomes an essential task. Perturbation analysis (Pgcket-by-packet buffer control can be applied after the session
methods [14], [15] are therefore suitable, if appropriatelgdmission decision is made in order to dynamically adjust
adapted to a SFM viewed as a discrete-event system. Liu aretwork resources so as to minimize some cost based on the
Gong [16], for example, have used PA to analyze an infinite-caromised QoS. We use a standard gradient-based stochastic
pacity SFM, with incoming traffic rates as the parameters optimization scheme, where we estimate the gradient of the
interest. In this paper, we show that infinitesimal perturbatiqrerformance function with respect to the threshold parameter
analysis (IPA) yields remarkably simple sensitivity estimatorsn the SFM; however, due to the simplicity of this gradient
for packet loss and workload metrics with respect to threshaddtimator, we evaluate ifased on data observed on a sample
or buffer size parameters. These estimators also turn outptath of the actual (discrete-event) systehus, we use the
be nonparametricin the sense that they are computable frorBFM only to obtain a gradient estimator; the associated value
data directly observable along a sample path, requiring abany operating point is obtained from real system data.
knowledge of the underlying probability law, including distri- The paper is organized as follows. First, in Section II, we mo-
butions of the random processes involved, or even parametigrate our approach with a buffer control problem in the SFM
such as traffic or processing rates. In addition, the estimatausiting and show the application of IPA to it. In Section IIl, we
obtained are unbiased under very weak structural assumptidescribe the detailed SFM setting and define the performance
on the defining traffic processes. Therefore, the IPA gradiemtetrics and parameters of interest. In Section IV, we derive
estimators that we derive can be readily used for online contt®A estimators for the sensitivities of the expected loss rate and
purposes to perform periodic network management functionsiimorkload with respect to threshold parameters (equivalently,
order to guarantee negotiated QoS parameters and to imprbuéfer sizes) and show their unbiasedness. This is first demon-
performance. For instance, a network can monitor its relatigérated by a direct approach based on finite differences. The IPA
loss rate and mean buffer contents for a period of time, and thegoproach is then generalized by evaluating sample derivatives
adjust admission parameters, provision transmission capaciti@s the expense of introducing some mild technical conditions);
or reassign threshold levels in order to improve performandbese are shown to provide unbiased performance derivative es-
Such management functions have not been standardizémators which are of nonparametric nature. Algorithms for im-
and typically are performed in ad-hoc ways by monitoringlementing the derivative estimators obtained are also provided.
performance levels. Aside from solving explicit optimizationn Section V, we show how the SFM-based derivative estimates
problems, IPA gradient estimators simplify the implementatioran be used on line using data from #&ual system (not the
of sensitivity analysis. SFM) in order to solve buffer control problems. Finally, in Sec-
The contributions of this paper are as follows. First, we cotion VI we outline a number of open problems and future re-
sider a single-node SFM and derive IPA gradient estimators fegarch directions motivated by this work.
performance metrics related to loss and workload levels with
respect to threshold parameters (equivalently, buffer sizes). One
can derive such estimators by either 1) considering the finite dif-
ference of a performance metric as a function of the finite dif-
ference of a parameter and then use explicit limit arguments toThis section presents a motivating example of buffer control
obtain an unbiased estimate of the performance metric derivathe setting of both a queuing model and a SFM and then com-
tive, or 2) deriving the sample derivative for the performangeares the two. Consider a network node where buffer control
metric involved, and then proving that it indeed yields an unbat the packet level takes place using a simple threshold-based
ased estimate. The former approach provides clear insights iptdicy: when a packet arrives and the queue length is below a

II. A MOTIVATING EXAMPLE: THRESHOLD-BASED
BUFFER CONTROL
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Fig. 2. Cost versus threshold comparison for DES and SFM.
whereR is a penalty associated with rejecting a packet. Thus,
J(C) captures the tradeoff between providing satisfactontherwise there would be no buffer accumulation), while during
service (low delay) and rejecting too many packets. SincanoFF period it decreases at a rage The cost function in this
arguably, the notion of steady state is hard to justify in manyodel is
networks, and since control decisions need to be made period-
ically or in response to apparent adverse network conditions, JSEMgy = "My + R- T (0) (3)
a more realistic performance measure is one wigr@) and
Q(C) are replaced byl (C) and Q,(C), the expected loss Wheref € R is the threshold used to reject incoming fluid
rate and mean queue length, respectively, over the time-inter¢4ien the buffer fluid volume reaches levél The corre-

[0, T]. We then consider sponding expected loss rate and mean buffer fluid volume
- B over the time-interval0, T'] are denoted byfwaM(e) and
Jp(C)=Qr(C)+ R - Lp(C) @ @37 (8), respectively. Simulating this model under the

same ON-OFF conditions as before over many values ®f

to be the cost function of interest. Care must be taken in definipgsults in the curve labeled “SFM” in Fig. 2. The important
the previous expectations over a finite time-horizon, since thgﬁservaﬂon is that the two optima are close, whereas the
generally depend on the initial conditions; for the time beingifference in the actual cost estimates can be substantial
we shall assume that the queue is empty at time 0, and (especially for a lightly loaded system). In faét, = 13 and
revisit this point later. Fig. 1 depicts the queuing system undgf¥»(13) —= 17.073, as compared to(13) = 18.127 and
consideration. the optimal.J;(C*) = J(15) = 18.012.

The packet arrival process is modeled a®BROFFsource so  Based on this observation, we are motivated to study means
that packets arrive at a peak rateluring anon period, followed  for efficiently identifying solutions to problems formulated in
by anorF period during which no packets arrive. The packej SFM setting. It is still difficult to obtain analytical solutions,
processing rate i8. For the example used here and illustrated ifgyyever, since expressions @E?FM(Q) andff«FM(e) are un-
Fig. 1, the number of arrivals in eacin period is geometrically gyajlaple, unless the arrival and service processes in the actual
distributed with parameter = 0.05 and arrival ratev = 2; the  gystem are very simple. Therefore, one needs to resort to itera-
Orrperiod is exponentially distributed with parametes 0.1, e methods such as stochastic approximation algorithms (e.g.,
and the service rate = 1.01. Thus, the traffic intensity of the [17]), which are driven by estimates of the gradient of a cost
system isx(1/ap)/B((1/ap) +(1/1)) = 0.99, wherel/apis  fynction with respect to the parameters of interest.
the average length of a period andl /.. is the average length |, the case of the aforementioned simple buffer control
of an oFF period. The cost funct.ioﬂT(C) in this problem is problem, we are interested in estimatidgy /df based on
piecewise constant, hence gradient-based algorithms cannogpgetly observed (simulated) data. We can then seek to obtain

used. However, by exhaustively simulating this queuing systef sych that it minimizes/(#) through an iterative scheme of
and averaging over 25 sample paths of lerigte 100000 time  he form

units and estimatingr(C) over different discrete values 6f,

we obtained the curve labeled “DES” in Fig. 2, using arejection ¢, ., =6,, — v, H,,(6,,, w5 ™M), n=0,1,... (4
penalty R = 50. One can see that the optimal threshold value
in this example iC* = 15. where {1, } is a step size sequence afg (6, w; ) is an

Next, we adopt a simple SFM for the same system, treatiegtimate ofl./r /df evaluated af = 6,, and based on informa-
packets as “fluid.” During aroN period, the fluid volume in tion obtained from a sample path of the SFM denoted Y .
the buffer,z(¢), increases at rate — 3 (we assumer > 3, However, as we will see, the simple form &, (6,,, w> ") to
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< 0 - with the initial conditionz(6;0) = zo for some givenc; for
ot) 03] simplicity, we set:o = 0throughout the paper. The outflow rate
A1) 8(6;t) is given by
—x(1) — 3(t), if x(6;t) >0
?@/ st = {0 1 ™
alt), ifz(0;t)=0

Fig- 3. The basic SFM. where we point out that if we allow = 0, then§(6;t) =

min{«a(t), A(¢)}. The overflow ratey(#; ¢) is given by
g-

be derived also enables us to apply the same scheme to the ori
max{«a(t) — A(t), 0}, ifx(6;t)=16
v(6;t) = { (®)

inal discrete-event system
Crst = Co — vp Ho(Cr, wPES), n=0,1,... (5) 0, if 2(0;1) <.
This SFM can be viewed as a dynamic system whose input con-
ists of the twalefiningprocesse$«(¢) } and{/3(¢)} along with
e buffer sized, its state is comprised of the buffer content
rocess, and its output includes the outflow and overflow pro-

whereC,, is the threshold used for theh iteration ando?£*

is a sample path of the discrete event system. In other wor
analyzing the SFM provides us with tegructureof a gradient
estimator whose actual value can be obtained based on data f es. The state and output processes are referredeid

the actual systgm. In Fig. 2, th'e curve labeled Opt.AIgo. COE)'rocesses, since they are determined by the defining processes.
responds to t_hls process an*d |IIusrtrates how one can mdeedgﬁl—ce the input sample functions (realizations){af#)} and
cover the optimal threshold™ = 15. {3(t)} are piecewise constant and right-continuous, the state
trajectoryz(€;t) is piecewise linear and continuousdnand
ll. SFM SETTING the output functiony(#; t) is piecewise constant. Moreover, the

The SFM setting is based on the fluid-flow worldviewstate trajectory can be decomposed into two kinds of intervals:
where “liquid molecules” flow in a continuous fashion. Thempty periodsindbusy periodsEmpty periods (EPs) are max-
basic SFM, used in [11] and shown in Fig. 3, consists of imal intervals during which the buffer is empty, while busy pe-
single-server (spigot) preceded by a buffer (fluid storage tankijpds (BPs) are supremal intervals during which the buffer is
and it is characterized by five stochastic processes, all defireahempty. Observe that during an EP the system is not neces-

on a common probability spac€, F, P) as follows: sarily idle since the server may be active; see (7). Note also that

« {a(t)}: the input flow (inflow) rate to the SFM; sincex(#;t) is continuous irt, EPs are always closed intervals,

« {B(t)}: the service rate, i.e., the maximal fluid discharg@hereas BPs are open intervals unless containing one of the end
rate from the server: points 0 orT. The outflow proces$é(¢)} becomes important

« {8(¢)}: the output flow (outflow) rate from the SFM, i.e.,in modeling networks of SFMs and it will not concern us any
the actual fluid discharge rate from the server; further here, since our interest in this paper lies in single-node

« {x(¢)}: the buffer occupancy or buffer content, i.e., thgystems.
volume of fluid in the buffer: Let £(#): © — R be a random function defined over the

« {y(t)}: the overflow (spillover) rate due to excessive intinderlying probability spacg?, F, P). Strictly speaking, we
coming fluid at a full buffer. write £(6, w) to indicate that this sample function depends on

The previous processes evolve over a time intetyal] for  the sample point € €, but will suppressv unless it is nec-
a given fixedZ > 0. The inflow procesg«(t)} and the ser- €ssary to stress this fact. In what follows, we will consider two
vice-rate procesg/3(¢)} are assumed to be right-continuougerformance metrics, tHeoss VolumeLr(¢) and theCumula-
piecewise constant, with < ay,in < (t) < amax < oo and tive Workload(or justWork) Qr(6), both defined on the interval
0 < Bumin < A1) < Pmax < oc. Letf denote the size of the [0, 7] via the following equations:
buffer, which is the variable parameter we will concentrate on

T
for the purpose of IPA. The processes(t)} and{3(t)}, along Ly() = / ¥(6;t) dt 9)
with the buffer size?, define the behavior of the SFM. In par- 0
ticular, they determine the buffer contemtg;¢), the overflow T
rate~(6;¢), and the output flows(#; t). The notational depen- Qr(f) = /0 z(6;t) dt (10)

dence or? indicates that we will analyze performance metrics

as functions of the giveé. We will assume that the real-valuedwhere, as already mentioned, we assume @ 0) = 0.
paramete# is confined to a closed and bounded (compact) ifPbserve that1/1T’) E[Lr(#)] is the expected loss ratever
terval ©; to avoid unnecessary technical complications, we ae interval[0, 7], a common performance metric of interest

sume that) > 0 for all § € ©. (from which related metrics such &sss probabilitycan also
The buffer content(#; ¢) is determined by the following one- be derived). Similarly(1/7") E[Qr(#)] is the expected buffer
sided differential equation: content over [0, 7]. We may then formulate optimization
0 it 2(6; £)=0 anda(t)— B(t) <0 problems such as the determination &f that minimizes
dz(6; 1) ’ _ I ' = a cost function of the form
= 0, if z(8;t)=60anda(t)—p(t)>0 (6) 1 R 1 R

a(t)—pB(t), otherwise J(0) = 7 ElQr(0)] + 7 ElLr(0)] = 7 Jo(0) + 7 JL(0)
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We note that the times at which the buffarases to béull or
%rmpty are locally independent éf because they correspond

. o to a change of sign in the difference functiaft) — 3(¢) (by
anddJo(6)/df provided by the sample derivativé&r(6)/dd a random functionf(6) being “locally independent” of we

anddQr(6)/df for use in stochastic gradient-hased SChem&siean that for a givefl there existsA¢ > 0 such that for every
Accordingly, the objective of the next section is the estimatiogl € (6— A9, 6+ AB), w.p. Lf(8) = f(6), whereAd may

of the derivatives of/.(6) and J(#), which we will pursue depend on botk and on the sample path). Thus, given aBpP

through infinitesimal perturbation analysis (IPA) technique-§s starting point is one where the buffer ceases to be empty and
[14], [15]. Henceforth, we shall use the “prime” notation to deI g poInt | W ! Py

note derivatives with respect t§ and will proceed to estimate 's therefore locally independent 6f while its end point gen-
Il .D ing th [ 4 ‘
the derivatives/; (¢) and .J;(6). The corresponding sampleera y depends ofl. Denoting these points . andr (¢) we

B,
derivatives are denoted Hy,.(6) and@Q/-(6), respectively. express;, as

where R represents a rejection cost due to overflow. In ord
to accomplish this task, we rely on estimatesddf,(#)/dé

Bk:(ﬁk,nkw)), /{}I]., ,K
IV. IPA WITH RESPECT TOBUFFER SIZE OR THRESHOLD
for some random integédt . The BPs can be classified according

As already mentioned, we will concentrate on the buffer sizg whether some overflow occurs during them or not. Thus, we
# in the SFM previously described or, equivalently, a thresholgkfine the random set
parameter used for buffer control. We assume that the processes
{a(t)} and{3(¢)} are independent df and of the buffer con- &(9) .= {k € {1, ..., K}: z(t) = 6,
tent. Thus, we consider network settings operating with proto- a(t) — B(t) > 0 for somet € (&, ().
cols such as ATM and UDP, but not TCP. Our objective is to ’

esti_ma_te the/ derivative;i’L(e) ar_1d J5(0) through the sample £, everyk € &(6), there is a (random) numbéd), > 1 of
derivativesL7.(¢) andQ7-(#) which are commonly referred to o erfiow periodsn By, i.e., intervals during which the buffer is

as infinitesimal perturbation analysis (IPA) estimators; comprey and a(t) — B(t) > 0. Let us denote these overflow periods
hensive discussions of IPA and its applications can be fouag Fi m = 1, ..., My, in increasing order and express

in [14] and [15]. The IPA derivative-estimation technique compem asF, . = [, m(0), Vk.m], Kk =1,..., K.Observe
putesL7(f) and Q%(?) along an observed sample pathAn it the starting time, ...(¢) generally depends oh whereas
IPA-based estimaté @) of a performance metric derivativeq ending timey_,,, is locally independent of, since it corre-
dE[L(6)]/d0 is unbiasedf dEL()]/d6 = E[L'(6)]. Unbi-  ghondsto achange of signin the difference funciiéh) —5(t),

asedness is the principal condition for making the applicatifhich has been assumed independertt &finally let
of IPA practical, since it enables the use of the sample (IPA)

derivative in control and optimization methods that employ sto- B(6) = |2(6)| (13)
chastic gradient-based techniques.

We consider sample paths of the SFM ojéerT]. Forafixed  \here|-| denotes the cardinality of a set, i.B(#) is the number
¢ € ©, the interval[0, T is divided into alternating EPs andof BPs in [0, 7' during which some overflow is observed. To

BPs. Suppose there afé busy periods denoted bx, & = summarize, the following points hold true.
1, ..., K,inincreasing order. Then, by (9) and (10), the sample , There arek busy periods in[0, 7], with B, =
performance functions assume the following form: e m(0), k=1,... K. ’
« k € &(0) iff some overflow occurs durind3;; we set
K B(8) = |2(6)|.
Lr(0) = Z / ~v(6;t) dt (11) » For eacht € ®(6), there areM;, overflow periods in53;,,
k=1 v B i.e.,j’-"kym = [ukym(ﬁ), Uk7m], m=1,..., M.
K A typical sample path is shown in Fig. 4, whefé = 3,
Qr(6) = Z / x(6;t) dt. (12) ¢ = {1, 3}_, M, = 2, MQ- =0,andM;3 = 1. N
1 7 B As mentioned in Section |, we present two ways of deriving

IPA estimators: 1) by evaluating the finite differencg&.(6)

As mentioned earlier, the procesdegt)} and{3(¢)} are as- and AQr(#) as functions ofAd, obtaining left and/or right
sumed piecewise constant. This implies that, w.p. 1, there exssimple derivatives (depending on wheth& < 0 or Ag > 0),
arandom integeN(7T") > 0 and an increasing sequence of tim¢aking limits asA¢ — 0, and finally exploring if they yield
points0 = ¢o < t1 < -+ < ty(1) < tnry+1 = T, gener- unbiased estimates off(¢) and J;(6); or 2) by explicitly
ally dependent upon the sample pathsuch that; is a jump evaluatingL/.(#) and Q/.(#), which requires some additional
(discontinuity) point ofx(¢) — 3(¢); clearly,«a(t) — 3(¢) is con-  technical assumptions. We will first proceed with the former
tinuous at all points other thatg, . .., £ (7). We will assume approach and consider only the loss volume mefrig6);
that N(T') has a finite expectation, i.e5[N(T)] < oc. the analysis foQ(#) is similar, though a bit more involved

Viewed as a discrete-event systemgeaentin a sample path (see also [18]). In pursuing this approach, we will also derive
of the SFM may be eitherxogenousr endogenousAn exoge- some results that will be used to establish the unbiasedness of
nous eventis ajump in eith¢e(¢) } or {(¢)}. An endogenous the estimatorsL’.(#) and Q/-(¢) obtained through the latter
event is defined to occur when the buffer becomes full or empgpproach.
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Fig. 4. A typical sample path of a SFM.

A. IPA Using Finite Difference Analysis and note thato; — f3;)[4i+1 — A;i] is simply the amount of

The stochastic component of the SFM manifests itsdif'@nge in the buffer content from tinag to time A;,. There-

in the duration of the intervals defined by exogenous evelf® i+1(6) is the queue content obtained at tindg., if the

occurrences corresponding to jumps in eithgt) or B(t). queue were allowed to become negative or to exée¥de may
Let {4;},i = 1,2, ..., be the point process defined by thesi1€n define

exogenous evgnt times. For conv.enlencealleand/}.i denote Ayi(8, A8) = y;(8 + A8) — i (6).

the (constant) inflow rate and service rate, respectively, over the

interval[A;, A;41). Note that we do notimpose any restrictionginally, we define a perturbation in the ending time of a BP as
on the probability law of the intervals defined by these events.

The main result of this section is to show that the sample &7 (6, A8) = (6 + A0) —m(0),  k=1,2,....
der|vat|veLT(9), l.e., the sensitivity of thelloss volqme WlthFor notational simplicity, we shall henceforth suppress the ar-
respect td, is given by—B(6), and that this is an unbiased es- .
. , S guments of all quantitieAx;, Ay;, AL;, Any,.
timator of J; (#). Recall thatB(#) is simply the count of busy ; . :

. . 3 S Consider a typical BB, and all possible events that can take
periods in which at least one overflow period is observed. More- o . . .
. . . . lace in it, so as to determine how associated perturbations are
over, this remarkably simple estimator is independent of any as;, )
en?er generated (due tg) or propagated from the previous

sumpt|on_s on the traffic PTOCESS Of SETVICE Process, as well aglent. Thekth busy period is initiated by an exogenous event
the rates involved and eveéhi.e., it isnonparametric

The starting point in IPA is to consider mominal sample attimeg,, = A;, for some, such thaty, — /3 > 0, and let us
gp P sume thaf\z; = 0. Regarding the next exogenous event at

path under some buffer size (equivalently, admission threshof@]eA‘ there are two possible cases to consider:
6 and aperturbedsample path resulting from perturbifigby Casgrll: yir1(8) < 6. In this caseyi 1 (8) is given.by (16)

A#, while keeping the realizations of the proces&e& )} and .
{B(t)} unchanged, hence, leaviqg4;}, ¢ = 1,2, ..., un- and we have [see also Fig. 5(a)]

changed. For simplicity, we limit ourselves to the case where Zip1(0) =yip1(0)
A6 > 0, leading to an estimate of the right sample derivative of
Lz(6); the case wherAd < 0 is similar, leading to an estimate Li(6) =0.

of the left sample derivative dfr(6). We then define Clearly, Azsy1 = Aysys = ALijs = 0.

Case II: y;11(6) > 6. In this case, the queue content in the
perturbed path can increase bey@hap to the perturbed value

wherez;(#) denotes the nominal sample buffer content at timeeJr A6. Then, as also seen in Fig. 5(b)

Az;(0,A0) = 2,(0 + A8) — z;(6)

A; andz; (6 + _Ae) de_no_tes the perturbed sample _buffer content Azt =A0 (17)
at the same time. Similarly, we define perturbations for some
additional sample path quantities as follows. First, settlpg= ALip =-A6 (18)
0, let provided thatAé is such thatd < A8 < y;41(8) — 6. To

A, consider the case wheesfd > y;11(6) — 0, let the length of

Li(6) = / ~(6;t) dt, t1=1,2, ... (14) the overflow period in the nominal path & and note that
A
. _ g Y10

be the total loss volume observed over an interevent interval YT = B

[A;—1, 4A;), and define . .
Thus, if A8 > y;11(0) — 8 = (e, — 3;) F;, then itis easy to see

ALi(8, A8) = Li(6 + A8) — Li(6). (15) that the shaded area in Fig. 5(b) reduces to a triangle with area
(1/2)(c; — f3;)F?. We then get

In addition, let Aziyr = (i — B)F; (19)
Yir1(0) = 2:(0) + (o — Bi)[Air1 — Ail (16) ALy = (0 — i) Fi. (20)
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k =1, 2, ..., the perturbation imy(#) can be easily obtained
by noticing in Fig. 8(a) [Case 1.2) in the proof of Lemma 1] that

Af

Xitl \ A (6) = % — o (25)

provided thatAf < (53; — «;)1;, wherea; andj3; are the inflow
rate and service rate at the time the BP ends. To account for the
Xi fact that thetth BP may contain an overflow interval of length

A Ajsl F; with A8 > (o — 3)F; + Ax;, A in (25) can be replaced
CY

by A8 — [A0 — Az; — (co; — B;) F;]T < A6 in view of (24). If,
on the other hand\d > (5; — «;)1;, then thekth and(k + 1)th
busy periods are merged, which implies the4,(#) includes
the entire length of thek + 1)th busy period.
Next, we identify bounds foAL; (a generalization of the
Xisl bounds forAz; andAL; can also be found in [11]).
Lemma2:Forall:i =1, 2, ...

A4 Vil
- Xt + Axyg

—AO < AL; <0. (26)

Proof: See the Appendix.

Ai Airi Recall that if at least one overflow period is observed in the

(b) kth BP, thenk € ®(#). Making use of the standard indicator

Fig. 5. (a) Case I: No perturbation generatign,((¢) < 6). (b) Case Il function1[k € ®(0)] = 1 if k € ®(#) and zero otherwise, we
Perturbation generation for < A8 < y;.+.(6) — 0. have the following result, which allows us to characterize the

cumulative loss perturbation at the end of a BP, which we will

Using the standard notatia]* = max(x, 0), we can combine d€n0te bYAr(A), & =1, ..., K.

(17) and (18) with (19) and (20) to write Lemma 3: Consider a BR3y, = (&, m(6)) with & = A4;,
Azx; =0, andA4,, < m(0) < Apg1. AssumingAd — Az; —
(; — Bi)F; < 0foralli = j, ..., m, the cumulative loss
Az = A0 — [A — (o — B)ETT (21) perturbation at the end of this busy period is

A(A) = —A01k € ©(0)], k=1,....,K. (27)

Equations (21) and (22) capturg the perturbattj;e!meratiop Proof: See the Appendix.
process due tehd. The next step is to study how perturbations |, simple terms, the loss perturbation dependsy on the

can bepropagated assuming the general situatianz; > 0. yeqence of an overflow within the observed busy period and
Doing so leads to the following result, which describes e, their number. It is noteworthy that this perturbation does

complete queue content perturbation dynamics and eStab"SHSFexplicitly depend on any values thatt) or 3(t) may take

bounds forAz;. or the nature of the stochastic processes involved. Considering
Lemma 1:Foralli =1, 2, ... Lemma 3, note that it allows us to analyze all busy periods sepa-
rately and accumulate loss perturbations at the end of the sample
0< Az; < A6 (23) path over all busy periods observed, this, however, is contingent
on the fact thatAz; = 0 when a BP starts with an exogenous
event at4;. On the other hand, we saw that a consequence of
Lemma lisAz; 1 = [Az; — (8; — «;)I;] T following an EP of
[Az;— (B — o) ] T, if o;—/3; <0 length 7;, i.e., the buffer content perturbation may not be zero
{ AG—[AO—Az;—(ci—B)F]+. if ai— B3>0 (24)  \when aBP starts, depending on the length of the EP separating
’ I T it from the preceding BP.
wherel; is the length of an EP ending a1, with I, = 0 if We can now derive an unbiased derivative estimate for our
no such period exists, add is the length of an overflow period performance metric by establishing the following result.
ending at4,;,, with F; = 0 if no such period exists. Theorem 4:The (right) derivative of the expected loss,
Proof: See the Appendix. E[L7(w)], is given by
An immediate consequence of Lemma 1 is that a queue con-
tent perturbation may propagate across busy periods depending/E[Lr(6)]
on the length of the EP separating these busy periods. Thisis  df B
becauseAr; 1 = [Az; — (8 — «;);]t > 0 when an event
occurs at timed; ; that ends an EP of length. Moreover, re- whereK is the (random) number of busy periods contained in
calling that the endpoints of busy periods are denotegi§), [0, 7], including a possibly incomplete last busy period.

and
Az

K

> 1k € o(0)]

k=1

-E — —E[B®)] (28)
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Proof: We have An immediate implication of this theorem is thaB(6) is an
dE[L1(6)] _ 1 unbiased estimator @fE[Lr(60)]/d6
—————= = lim — E[ALr(6)]
de A6—0 Af dE[L7(6)] B o 20
1 K 4o oat - _B( ) ( )
= lim — E ) Au(A6)
Af—0 AY k=1 This estimator is extremely simple to implement: (30) is merely

a counter of all busy periods observedin?] in which at least
one overflow takes place. Again, no knowledge of the traffic or
processing rates is required, nor does (30) depend on the nature

whereA,(Af) = —A01[k € &(6)] from Lemma 3, provided
Al — Az; — (o, — 3;) F; < 0forall 4; € [0, T7. It follows that

dE[Ly(8)] K of the random processes involved.
dgT =-E Z 1[k € (8)]| = —E[B(O)] Using the aformentioned finite-difference approach, it is also
=1 possible to derive an unbiased estimatordai{Q ()] /d6 (see
where we have used the definition in (13). [18]), but it is considerably more tedious; we will see how to

If A0—Ax;—(a;—3;)F; > 0forsomeA; € [0, T], thenthe derive the same estimator in the next section by simpler means.
only additional effect comes froddL; 1 = —(a; — 3;)F; < 0 Finally, note that (28) was derived usingf > 0; thus, the
in (53). Then, consider analysis has to be repeated fhé < 0 in order to evaluate the

left sample derivative, and, although this does not present any
Bl~(ai = Bi)F|A0 = Aw; > (i = (i) F] conceptual difficulties, it adds to the tediousness of the finite
Ab—Az; difference analysis we have pursued thus far.
= / —zf(x)dx
0

_ N . B. IPA Using Sample Derivatives
where f(-) is the conditional pdf of«; — 3;) F; given Af —
Ax; > (o — B3)F;, and letf(-) < ¢ < oo. Recalling that
0 < Az; < A6 from Lemma 1, we get

In this section, we derive explicitly the sample derivatives
Li(6) and Q/-(8) of the loss volume and work, defined
in (11) and (12), respectively. We then show that they

Af—Aw; - ae provide unbiased estimators of the expected loss volume
/0 —zf(z)dw 2 /0 —of(z) d sensitivity dE[L1(6)]/df and the expected work sensitivity
A8 dE[QT(Q)]/dQ.
> / —AOf(z)dr Since we are concerned with the sample derivatiesd)
0 and Q/-(8), we have to identify conditions under which they
A exist. Observe that any endogenous event time (a time point
> A9/ —cdx = —¢(A§)? when the buffer becomes full or empty) is generally a function
0 of #; see also (6). Denoting this point ky9), the derivative
and it follows that #(6) exists as long a#(f) is not a jump point of the differ-
2 ence proces$a(t) — 3(t)}. Recall that the times at which the
El=(oi = Bi)F] 2 —c(A9)". (29) " putfer ceaseﬁ tE) )be fu(II )c}r empty are locally independert, of
The cumulative loss perturbation due to events such thHzcause they correspond to a change-of-sign of the difference

AL;+1 = —(«; — B;)F; is bounded from below by sample functiorx(¢) — 8(¢), which does not depend @h Ex-
N(TY cluding the possibility of the simultaneous occurrence of two
Z (s — B)F; events, the only situation preventing the existence of the sample

derivativesL’-(¢) andQ/-(¢) involves an interval during which

_ _ xz(t) = #anda(t) — 3(t) = 0, as seen in (8); in this case,
whereF; |sthe_length of_an overflowmterva! aftertm eX0g€- the one-sided derivatives df(8)andQ(#) exist and can be
nous event, with; = 0 if no such overflow interval is present, gptained with the approach of the previous section. In order to
and N(T) is the total number of exogenous event§inT].  keep the analysis simple, we will focus only on the differentiable

This cumulative loss perturbation is also bounded from aboygse. Therefore, the analysis that follows rests on the following
by zero, sinceAL; < 0 from Lemma 2. Using (29), we get, technical conditions.

i=1

given someN (7)) Assumption 1:
N(T) ;| ND a) W.p. 1,a(t) — B(t) # 0.
im — ;= B)F. | > lim — — 2 b) For everyd € ©, w.p. 1, no twoeventanay occur at the
Alggo Al B Z (=) | = Alél)lilo A6 Z <(&9) ) i ¥ P /
im1 i=1 same time.
— lim [~cAON(T)] Remark: We stress the fact that the aforementioned condi-
260 tions for ensuring the existence of the sample derivath/gd)
and andQ’-(6) are very mild. Part b) is satisfied whenever the cumu-
lim [-cAGE[N(T)]=0 lative distribution functions (cdfs) (or conditional cdfs) charac-
AG—0

terizing the intervals between exogenous event occurrences are
where, by assumptionfZ[N(T)] < oo. This completes the continuous. For example, in the simple case whgig = 3
proof. m anda(t) can only take two values, 0 ard > 3, suppose that
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the inflow process switches from to 0 afteré/(« — 3) time 1, ..., M. Consequently, by taking derivatives with respect to
units w.p. 1. The buffer then becomes full exactly when an e#-in (36) we obtain

ogenous event occurs, and the loss volume sample function ex- M

periences a discontinuity w.p. 1. Such situations can only arise N() = — Z [(um(0)) — Bum (O], (6). (37)

for a small-finite subset o® (for which one can still calculate m=1

either the left or right derivatives) and they are of limited praqyext, consider the individual terms in the previous sum (see also
tical consequence. Fig. 4 for an illustration).

We next derive the IPA derivatives éf;(6) andQr(6). Re-

1) If m = 1, then the buffer is neither full nor empty in the
call that B(8) = |®(#)|, i.e., the number of BPs containing at ) It P

interval (¢, w1 (#)). Since the buffer content evolves from

least one overflow period. P
=0t 0) =4, (6 I
Theorem 5: For everyé € © (&) © x(u(:;g ) (6) implies
Lp(6) = —B(0). (31) /5 [at) = ()] dt = 6
Proof: Recalling thatB, = (¢, 7:(6)), we have, from and, upon taking derivatives with respectto
(11) [a(us(8)) — Bur(8))]uy (0) = 1. (38)
7 (6) 2) If m > 1, then the buffer is neither full nor empty in the
Lp(8) = / v(6;t) dt (32) interval (vy,_1, tm(6)). SINCET (Vy_1) = #(um(F)) =
ked(e) 7Sk 6 we obtain, by (6)
which after differentiation yields /’“”(e)w(t) _ BB dt =0
d @ Yt
Li(0) = Z 7 ~(6; ) dt. (33) and upon differentiating with respect o
: Sk
Her [t (8)) = Bluum (6))]u1,(6) = 0. (39)
Note that the derivative in (33) is taken along a sample path. Therinaly, (37)=(39) imply (35), which immediately implies
set®(#), though depending oy can be viewed as a constant for(31) and the proof is complete. -

the purpose of taking the derivative. The reasonis that, by virtuengte that Theorem 5 is consistent with Theorem 4. However,
of Assumption 1b), itis locally independent@fsimilarly tothe  thegrem 4 includes a direct proof of the unbiasedness of the
endogenous event times discussed in_ the first part of SeCtiO”égtimator—B(e), whereas the present approach requires a sep-
(i.e., for every fixedd, w.p. 1 there exista\d > 0, such thgt, arate proof that the sample derivatifié.(§) = —B(6) is in

for everyd € [6 — Af, 6 + Af], ©(8) = (6); although this act unpiased. The unbiasedness of this IPA derivative will be

Af generally depends on the given sample path, our derivatiyg, en |ater, after we establish the IPA derivative of the work
is taken along a specific sample path, hence, (33) is justified). 7(8) defined in (12).

Next, we focus on a particuladB,with &£ € ®(¢) and we ~ Theorem 6: For everyd € ©
shall suppress the indéxto simplify the notation. Accordingly, '

the BP in question is denoted /= (¢, 7(6)), and there are Qr(6) = > [m(B) — w1 (0)]. (40)
M > 1 overflow periods in3, denoted byF,,, = [u,,(8), vm], ked()
m=1,..., M. Atypical scenario is depicted in Fig. 4,_Where Proof: We focus on a particular BB, with k& € @(6),
in the first BP we havé/ = 2. The loss volume oveB is given  and again suppress the notational dependendyfonthe sake
by the function of simplicity. Accordingly, consider a BB, = (&, n(6)),
(6 and denote its overflow periods h§,, = [wn(6), vm],
A6) :/ ~(6;1) dt. (34) m=1,..., M, forsomeM > 1 (e.g.,.M = 2in the first BP
¢ of Fig. 4). Define the function
n(6)
We next prove that ¢(6) = / 2(0:8) dt. (41)
§
M) = -1 35
) (35) It suffices to prove that
from which (31) immediately follows in view of (32)—(34). 7 (8) = n(6) — u.(6) (42)

From the definition ofy(8; ¢) in (8), we can rewrite (34) as ] ] ) i ] ] ] )
since this would immediately imply (40). Singé#; t) is contin-

M, uous int, taking the derivative with respect éoin (41) and let-
MO) = / ( )[Oé(t) — B()]dt. (36) tingz'(6;t) denote the partial derivative with respecttyields
m=1 Y um(®
n(6)
Since the points,,,(#), m = 1, ..., M, and the jump points ¢(9) = /5 @'(81) dt + x(6;1(9)) (6)

of a(t) — () constituteeventsand since w.p. 1 no two events ®
; ; ; n
can occur at the same time by Assumption 1b), the function _ / (6 1) dt
¢

a(t) — B(t) must be continuous w.p. 1 at the points(6), m = (43)
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since the BP ends af(¢), hencex(6;7(6)) = 0. To evaluate  Condition 2: W.p. 1, the random functiofi(6) is Lipschitz
this partial derivative (which exists at allexceptt = «,, and continuous throughou®, and the (generally random) Lipschitz
t = v,,) we consider all possible cases regarding the locaticonstant has a finite first moment.

of ¢t in the BPB;, = (&, n(#)) (see Fig. 4). Consequently, establishing the unbiasedness&/gfg) and
1) t € (¢ uy(6)). In this case, the buffer is neither empty?7(¢) as estimators oflE[Lr(6)]/df and dE[Qr(6)]/d6,
nor full in this interval. It follows, using (6), that respectively, reduces to verifying the Lipschitz continuity of

Lr(8) andQr(8) with appropriate Lipschitz constants. Recall
t that N(T') is the random number of all exogenous events in
o(65t) = [ la(r) = ) dr. 10, 7] and that we have assum@AN(T)] < .
¢ Theorem 7: Under Assumption 1
Since the right-hand side is independentfpfve have 1) if E[N(T)] < oo, then the IPA derivativdl’-(#) is an

x'(6;t) = 0. unbiased estimator ofE[Lr(8)]/db;

2) t € (un(6), vp), m=1..., M. Since(u,(8), vy)is 2) the IPA derivativeQ/-(¢) is an unbiased estimator of
an overflow periodg (6, t) = 6 in these intervals, hence, dE[Qr(6)]/d6.
z'(6;t) = 1. Proof: Under Assumption 1, Condition 1 holds fbe-(6)

3) t € (Um, Um1(6)),m =1, ..., M —1.Here, the buffer andQ(6). Therefore, it only remains to establish Condition 2.

is neither empty nor full in the interval,,, t), while First, considef.(8). Recalling (14) and (15), we can write

z(0;v,,) = 6. It follows, using (6), that
N(T)

AL7(6)= 3 ALi(6)
[a(r) = A(r)] dr 2

-t
z(6;t) =46 +/
) . ) by partitioning[0, 7] into intervals[A4;_1, A;) defined by suc-
a/n(‘; ;J)pon 1d|fferent|at|ng with respect #) we obtain  .ogjve exogenous events. Then, by Lemmagd < AL; <
x'(0;t) = 1.
4) t € (vpr, (). This case is identical to the previous one(,)' so that
yielding z’(6;¢) = 1. |AL7(6)] < N(T)| A
In summaryz’(6;t) = 0forall ¢t € (¢, u1(8)) (Case 1), and
2'(6;¢) = Lforall t € (u1(0), n(8)) (Cases 2—4). Therefore, iti.e., L1 () is Lipschitz continuous with consta{ (7). Since
follows from (43) that (42) holds, implying (40) and completing® [V (17)] < oo, this establishes unbiasedness.
the proof. [ Consider next the sample functi@pr(6), defined by (12)
In simple terms, the contribution of a BB, to the sample and fixd andA§ > 0. By Lemma 10 < Az; < A#d, hence the
derivativeQ’-(6) in (40) is the length of the interval defined bydifferenceAz (6, Ad;t) := x(6 + A6;t) — z(0; t) satisfies the
the first point at which the buffer becomes full and the end dfiequalities
the BP. Once again, as in (31), observe that the IPA derivative
Q/-(6) is nonparametric, since it requires only the recording 0 < Az(0, Ab;t) < Af.
of times at which the buffer becomes full [i.e«, 1 (#)] and
empty [i.e.,n.(8)] for any B, with & € (). We also remark
that the same IPA derivative can be obtained through the finite T
difference analysis of the previous section (see [18]), but with |AQT(8)| = ‘/ Ax(f, Ab;t) dt
considerably more effort. 0
1) IPA UnbiasednessWe next prove the unbiasedness o . L . . . .
the IPA derivatives./, (6) and (2, (8) previously obtained. Al- {hat IT'QT(i) is Llp:cschnz continuous with constafit. This
though we have already shown in (28) thaB(#) is an unbiased comp etes.t € proot. "
. : Remark: For the more commonly used performance met-
estimate oflE[Lr(#)]/d8, we supply an alternative and greatlyriCS (1/T)E[Lz(6)] (the expected loss rate oviir, T]) and
simplified proof based on the direct derivation of the IPA esti- L P ’

mator in this section and on some of the results of the finite-d@/T)E[QT(e)] (the expected buffer content ovigr, 77), the

i . S . ipschitz constants in Theorem 7 beco®é7)/T and 1, re-
ference analysis in Section IV-A. By a similar technique, we . : g
. . ectively. AsI” — oo, the former quantity typically converges
also supply a proof of the unbiasedness of the IPA estimal orthe EX00ENOUS event rate
Q'-(6) in (40). These proofs, jointly with the sample-derivative 9 '
technique for obtaining the estimators, suggest the possibility
of extensive generalizations to the functional forms«0f) and v OSPIZIMAIE;ABUF'I:IEE EONTROL UsinG
A(t) (beyond piecewise constant), to be explored in a forth- "BASED STIMATORS
coming paper (also, see [19] and [10]). As suggested in Section Il and illustrated in Fig. 2, the
In general, the unbiasedness of an IPA derivati/§) has solution to an optimization problem defined for an actual
been shown to be ensured by the following two conditions (saeetwork node (i.e., a node that operates as a queuing system)
[20, Lemma A2, p. 70]). may be accurately approximated by the solution to the same
Condition 1: For everyd € ©, the sample derivativé’(#) problem based on a SFM of the node. However, this may not be

exists w.p. 1. always the case. On the other hand, the simple form of the IPA

Consequently, in view of (12)

< T|Ad)|
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estimators of the expected loss rate and expected buffer contlettime this occurs is recordedas the aforementioned algo-
obtained through (31) and (40) allows us to use data from thithm. At the end of the current busy period, the cougtemnd
actual (real-world) system in order to estimate sensitivitieBmer 7 are updated. Thus, the exact same expression as in the
that, in turn, may be used to solve an optimization problerght-hand side of (44) can be used to update the threshold

of interest. In other words, thiorm of the IPA estimators is

obtained by analyzing the system as a SFM, but the associated, ,; = C,, — 14, H,,(C,,, wPE?), n=0,1,.... (45)
valuesare based on real data. In particular, an algorithm for

implementing the estimators (31) and (40) is given as followsjote that, after a control update, the state must be reset to zero,
in accordance with our convention that all performance metrics
are defined over an intervil, 7"] with an initially empty buffer.

IPA Estimation Algorithm In the case of offline control, this simply amounts to simulating

* Initialize a counter C:=0and a cumula- 0 system after resetting its state to 0. In the more interesting
t|v.e. t!mer 7:=0. case of online control, we proceed as follows. Suppose that the

e Initialize 7:=0. ) ) nth iteration ends at time,, and the state is(C,,; 7,) [in gen-

e If an overflow event is observed at time eral, z(C,;7,) > 0]. At this point, the threshold is updated
tand 7 =0: and its new value i€, ;. Let 70 > 7, be the next time that
—Set 7=t _ the buffer is empty, i.ez(Cp41;72) = 0. At this point, the

o lf >a Ot?usy period ends at time t and (n + 1)th iteration starts and the next gradient estimate is ob-

tained over the intervdt?, 70 + 77, so thatr,, ., = 70 + T

and the process repeats. The implication is that over the interval
[7., 7] no estimation is carried out while the controller waits
for the system to be reset to its proper initial state; therefore,
sample path information available over,, 7] is effectively
wasted as far as gradient estimation is concerned.

The final values of and7 provide the IPA derivatives/,. () Fig. 6 depicts examples of the application of this scheme to
and Q,.(9) respectively. We remark that the “overflow” and® S|.ngle-node SF_M uqder SiX dn‘ferer_lt pa_lrameter settings (sce-
“end of BP” events are readily observable during actual né}&ros), summarized in Table I. As in Fig. 2, “DES” denotes
work operation. In addition, we point out once again that theSHrves obtained by estimating-(C') over different (discrete)
estimates are independent of all underlying stochastic featuréues ofC, “SFM” denotes curves obtained by estimatin@)

including traffic and processing rates. Finally, the algorithm faver different values of, and “Opt.Algo.” represents the opti-
easily modified to apply to any intervl’y, 72]. mization process (45), where we maintain real-valued thresh-

Let us now return to the buffer control problem presented p{ds throughout. The first three scenarios correspond to a high

Section II, where the objective was to determine a threstiolgtraffic intensityp compared to the remaining three. For each ex-
that minimizes a cost function of the form ample,C* is the optimal threshold obtained through exhaus-

tive simulation. In all simulations, aoN—OFF traffic source is
used with the number of arrivals in each period geometri-
cally distributed with parameterand arrival ratey; the oFrFpe-
) ) o riod is exponentially distributed with parameterand the ser-
trading off the expected loss rate with a rejection pen&ifor ice rate is fixed ap. Thus, the traffic intensity of the system
the expec}ed queue length. If a SFM is used instead, then H]% a(1/ap)/B((1)ap) + (1/1)), wherel/ap is the average
cost function of interest becomes length of anoN period andl /. is the average length of an
1 R OFF period. The rejection cost i® = 50. For simplicity, v,
J(6) = T E[Qr(6)] + T E[Lr(8)] in (45) is taken to be a constant = 5. Finally, in all cases
T = 100000. As seen in Fig. 6, the threshold value obtained
and the optimal threshold parametét, may be determined through (45) using the SFM-based gradient estimator in (44) ei-

through a standard stochastic approximation algorithm basedBfr "ecoverss™ or is close to it with a cost value extremely
(4). The gradient estimatd,, (6, wSFM) is the IPA estimator close toJ(C*); since in some cases the cost function is nearly
. ) n

—SetC:=C—-1and 7T : =T+ (t—7)
—Reset 7 := 0.

e lf ¢=T, and 7> 0
—SetC:=C—-1and 7 :=7 +(t—7).

Jr(C) = Qr(C)+ R - L (O)

of d.J/d¢ based on (31) and (40) constant in the neighborhood of the optimum, it is difficult to
determine the actual optimal threshold, but it is also practically
1 R unimportant since the cost is essentially the same. We have also
Hy(8, wy™) = T > () — w1 ()] — 7 B(9) (44) implemented (45) with,,(C,,, wPF*) estimated over shorter
kC®(0) interval lengthg” = 10000 and?” = 5000, with virtually iden-

tical results. Looking at Fig. 6, it is worth observing that deter-
evaluated over a simulated sample pagf™ of length7’, fol-  mining 6* as an approximation t6¢* through offline analysis
lowing which a control update is performed through (4) basexf the SFM would also yield good approximations, further sup-
on the value o, (4, w3 FM). porting the premise of this paper that SFMs provide an attractive
The interesting observation here is that the same estimatoodeling framewaork for control and optimization (not just per-
may be used in (5) as follows. If a packet arrives and is rejectddymance analysis) of complex networks.
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Fig. 6. Optimal threshold determination in an actual system using SFM-based gradient estimators—Scenarios 1-6.

TABLE |
PARAMETER SETTINGS FORSIX EXAMPLES

Scenario | p |a| p 7 8 Cc*

1 09911101 0.1 0.505 | 7

2 09971 ]0.056|0.05]|0.505]|7

3 0991200501 1.01 15

4 0711101 0.1 0.7 13

5 07111 ]0.05(005]|0.7 11

6 07112 )005(01 14 22

VI. CONCLUSION AND FUTURE WORK

parametric property suggest their application to online network
management. Indeed, for a class of buffer control problems,
we have shown how to use an optimization scheme (and illus-
trated it through numerical examples) for a discrete-event model
(viewed as a real, queuing-based single-node system) using the
IPA gradient obtained from its SFM counterpart. Interestingly,
there is no IPA derivative for the discrete event model, since its
associated control parameter is discrete.

For the loss volume performance function, the IPA derivative
has been developed by two separate techniques: finite difference
analysis, and a sample derivative analysis. The former method is
more elaborate, but sheds light on the structure of the derivative

SFMs can adequately describe the dynamics of high-spessiimator. The second method is more direct and elegant, but its
communication networks, where they may be used to approxibiasedness proof requires some results obtained by the anal-
mate discrete event models or constitute primary models in thegis of the former method. The sample-derivative method was
own right. When control and optimization are of primary imporalso applied to the IPA estimator of the buffer workload perfor-
tance (rather than performance analysis), a SFM may be useance function.
as a means for accurately determining an optimal parameteihe sample derivative analysis holds the promise of consider-
setting, even though the corresponding performance evaluadéde extensions to multiple SFMs as models of actual networks
through the SFM may not be particularly accurate. With thisnd to multiple flow classes that can be used for differentiating
premise in mind, we have considered single-node SFMs framaffic classes with different quality-of-service (QoS) require-
the standpoint of IPA derivative estimation. In particular, wenents. Ongoing research has already led to very encouraging
have developed IPA estimators for the loss volume and work @sults, reported in [18], involving IPA estimators and associated
functions of the buffer size, and shown them to be unbiased apytimization for flow control purposes in multinode models. Fi-
nonparametric. The simplicity of the estimators and their nonally, for the purpose of session-by-session admission control,
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preliminary work suggests that one can use sensitivity informa-
tion with respect to inflow rates (which can be obtained through
an approach similar to the one presented in this paper) and con-
tribute to the development of effective algorithms, yet to be ex-
plored.

APPENDIX

Proof of Lemma 1:Looking at any segment of the sample A A
. S i i+l
path over an intervdl4;, A4;.4), there are two possibilities: ei-
thera; — 3; < 0oro; —3; > 0. First, suppose that; — 3; < 0 Fig. 7. Case 1.1)y:4.(8) > 0.
and consider the event which occurs at tichg ;. There are
three cases to analyze.

Case 1.1)y;+1(#) > 0.Inthis case, as seenin Fig. 7, we have
Ay = Axiyy = Axy. (46)

Case 1.2)y;11(6) < 0 andy;1(f) + Ay;1 < 0. In this
case, as seen in Fig. 8(a), thin BP ends and it is fol-
lowed by an EP of lengtl;, which in turn ends at time

Aiq1. Clearly

in+1= 0

i+1

DY + Ay

A$7‘,+1 =0. (47)

Case 1.3)y;+1(6) < 0 andy,+1(#) + Ay;+1 > 0. This rep- Vsl

resents a situation where an EP of lengtts eliminated ()
in the perturbed path, i.el; < Axz;/(3; — «v;). As seen
in Fig. 8(b), the buffer content perturbation becomes

A-Ti-l—l = A.’L’Z — ([31 — CYZ)IZ (48)

Next, let us assume that — 3; > 0. We then have three cases Xi
as follows. i
Case 2.1)y;11(6) < fandy; 1(0)+Ay; 1 < 6. ltiseasyto

see [Fig. 9(a)] that this is identical to Case 1.1) yielding
(46).
Case2.2)y;+1(0) < 6 andy;+1(0) + Ay;+1 > 6. The

S Xinl + A

Xip1=0
A; o Am
perturbed buff_er content cannot excetd Af, since Visl
Ay = Ax; < Affrom (21); thereforey; 1 +Ay; < ()
# + A6 and the situation is identical to that of Fig. 9(a)Fig‘ 8. (a)Case 1211 (6) < 0 andy:1(6) + Ayssx < 0. (b) Case 1.3):

again yleldmg (46) yiy1(8) < 0 andy;;1(0) + Ay > 0.
Case 2.3)y;+1(f) > 6. As seen in Fig. 9(b)

Proof of Lemma 2:Proceeding as in the proof of Lemma 1,
we first consider the case — /3; < 0 and get the following.

as in Case Il where perturbation generation was con-Case 1.1)y;+1(6) > 0. Inthis case, as seenin Fig. 7, we have
sidered. Once again, however, it is possible tha&t >
(a; — B; ) F; + Az, so that we write, similarly to Case Il

Aziyy = NG

ALiti = 0. (50)

Arivs = 20— (30 80— (o= ORI, (49)  CASRLAin(f) < 0 ANy (6) + Ay < 0. Clearly
We may now establish (23) by combining (46)—(49) and by ob-
serving that i) in (48)]; < Az;/(8; — «;) with 8; — «; > 0,
therefored < Az, 41 < Ax;, andii)in (49),0 < Az; 1 < A6.
Next, by combining (46)—(48) we obtain the first part of (24),
observing thafl; = 0 in Case 1.1). To obtain the second part,
we combine (46) and (49), observing that whén= 0 in (49),
we getAx; 1 = Az, sinceAd — Az, > 0 from (23), which
reduces to (46) corresponding to Cases 2.1)-2.2). [ | AL, =0. (52)

AL;1 = 0. (51)

Case 1.3)y;+1(6) < 0 andy,+1(#) + Ay;+1 > 0. This rep-
resents a situation where an EP of lengtts eliminated
in the perturbed path, i.el; < Axz;/(3; — «;). As seen
in Fig. 8(b), no loss is involved in either path
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Suppose the first overflow interval in the BP endsiat Under
the assumptiom\d — Ax; — (o, — B;)F; < O forall ¢ =
4y ..., m, it follows from (17) and (18) thatAz, = Af and
AL, = —Af. Moreover, from Lemma 1, (24) givesz; = A6
foralli =+ 1, ..., m. Therefore, (53) givea\L;,; = 0
after every subsequent overflow interval, and we/ggtAf) =

Aﬁl
(@
[1]
AYirt + Ayin
2
o Yixl 2
1) Xinl + Aiel

(3]
(4]

(5]

Ais

(b) (6]

(7]

Fig. 9. (a) Cases 2.1)-2.2);+1(f) < 6. (b) Case 2.3)y;1(6) > 6.

Next, let us assume that, — 3; > 0 and we have the fol-

lowing.

Case 2.1)y;+1(f) < fandy;4+1(9)+Ay;+1 < 6. ltiseasyto
see [Fig. 9(a)] that this is identical to Case 1.1) yielding [9]
(50).

Case2.2)y;11(6) < 6 andy;4+1(6) + Ay;4+1 > 6. As argued
in the proof of Lemma 1, the situation is identical to that
of Fig. 9(a), again yielding (50).

Case2.3)y;41(0) > 6. 1f A8 > (o, — ;) F; + Az, then
ALi+1 =0- (yi+1 — 9) = —(Oéi — ﬁz)-Fz Otherwise,
Lit1(6 + A0) = y;r1 + Az; — 6 — Af, and we get
ALi-{—l = Agx; — Af. Thus

(8]

10

(11]
(12]

AList = (Az; — AB) +[A8 — Az; — (ar — B)F]T. 53)

[14]
We may now combine (50)—(53). Observe that in (53)
AL;,1 > —A#, since we have already established that[15]

Azx; > 0inLemma 1. MoreoverAL; 1 = —(o; — 3:)F; < 0 [16]
if A8 —Ax; — (o, — B)F; > 0, andAL; 1 = Ax; — AGf
Al — Az, — (o; — B)F; < 0, whereAz; — A8 < 0 from [17]
Lemma 1. This yields (26). [ |

Proof of Lemma 3:Proceeding as in the proof of Lemma 2, [18]
we getAL;+; = 0in (50)—(52), i.e., in all cases except Case
2.3) where (53) applies

[19]

ALt = (Az; — AB) + [A0 — Az; — (a; — B F]T.

AL, = —Ab.
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