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in Circuit-Switched Networks
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Abstract—We consider threshold-based admission control poli-
cies for traffic in fixed-route circuit-switched networks, and de-
velop a scheme for adjusting the threshold parametersonline so
that, as operating conditions in the network change, the thresholds
“adapt” with the objective of minimizing a weighted sum of call
blocking probabilities. Instrumental in this scheme is an algorithm
for estimating online the sensitivity of the call blocking metric with
respect to thresholds. The formal optimization problem over the
set of discrete threshold parameters is solved by means of a conver-
sion to an optimization problem over a set of auxiliary real-valued
parameters. Such threshold-based policies, though conservative at
low traffic rates, have the advantage of being simple to implement,
distributed in nature, adaptive, and not requiring explicit distri-
butional modeling assumptions. Numerical results included in the
paper indicate that at higher traffic rates these simple policies yield
the same performance as more complex and less flexible call admis-
sion schemes.

Index Terms—Call admission control, perturbation analysis
(PA), sensitivity estimation, stochastic optimization.

I. INTRODUCTION

QUALITY-OF-SERVICE (QoS) requirements for traffic
(especially voice and video) such as low variance and
short delay motivate establishing and maintaining, for

the duration of the call, a circuit-switched path between the
communicating nodes. Circuit-switching entails the reservation
of limited resources (i.e., bandwidth) at each node along the
circuit-switched path or circuit. If, upon arrival of a call, the de-
sired resources are unavailable at any of the intermediate nodes,
the call is said to beblocked. Blocked calls are assumed to be
lost from the system, a mode of operation known as “blocked
calls cleared” (in some models, calls that are denied immediate
access can be queued until network resources are available).
Common performance measures for this mode of operation
include blocking probability and throughput. Circuit-switching
is ubiquitous in telephony and there exists a vast body of
literature on the performance analysis of circuit-switched
voice in communication networks (see [21], [28], [29], and the
references therein). Typically, blocking models are developed
for the network in anuncontrolledmode of operation, i.e., a call
is always accepted provided network resources are available. A
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fundamental issue arising in networks supporting QoS require-
ments is that ofcall admission: the decision to accept or reject
a new call. The need for admission control, even when network
resources are available, is due to the fact that the acceptance of
certain calls can have a detrimental effect on the performance
of the entire network, as well as the individual performance of
currently active calls. The call admission problem has attracted
considerable interest in recent years and is most often placed
in the context of high-speed integrated services networks (see,
e.g., [13] and [25]).

The problem of determining an optimal call admission policy
is further complicated by its interdependence with the call
routing problem. Marbachet al. [25], for example, consider
the problem of call admission control (CAC) and routing in an
integrated services network that handles several classes of calls
of different value and with different resource requirements.
Even when the call arrivals are assumed to be independent
Poisson processes with known rates, the problem is too complex
to be solved exactly, therefore an approximation is necessary.
In [25], neurodynamic programming (NDP) methods are used
along with a decomposition approach to tackle this problem.

In this paper, we consider the call admission problem in gen-
eral-topology circuit-switched networks with fixed routing and
homogeneous traffic. Fixed routing implies that all routes be-
tween source and destination (S/D) nodes have been predeter-
mined, so that each S/D pair can be viewed as a circuit with the
th such circuit denoted by . A call routed on circuit will

be termed as atype call. Circuit switching is generally im-
plemented using frequency division multiple access (FDMA)
or time division multiple access (TDMA) over the shared trans-
mission channel (see, e.g., [4]). In the case of fixed networks,
the multiplexing can be achieved using frequency division mul-
tiplexing (FDM), time division multiplexing (TDM), or wave-
length division multiplexing (WDM) techniques. Conceptually,
multiplexing can be viewed as partitioning the shared channel
with capacity bits/s, into logical channels each with ca-
pacity bits/s. Associated with each logical channel is a
transceiver (transmitter/receiver pair). Equivalently, the network
resources can be thought of as consisting oftransceivers at
each node. A type voice call in this model must reserve, for
the duration of the call, the desired bandwidth (number of trans-
ceivers), at each node along circuit. For simplicity, we assume
that the bandwidth requirements are the same for all call types
and a call needs only one transceiver at each node in the circuit.
We point out, however, that if multiple traffic classes are to be
explicitly modeled, this assumption is readily relaxed anddif-
ferentbandwidth requirements may be associated with different
call types.
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The call admission problem in circuit-switched networks
with fixed routes was considered in [2] and [31] (in the
context of multihop radio networks) using a multiple-ser-
vice–multiple-resource (MSMR) framework in conjunction
with a coordinate convex policy [20]. Although coordinate
convex policies are not necessarily optimal, Jordan and Varaiya
[20] have considered several examples where such a policy
performs as well as dynamic programming solutions. However,
determination of the optimal coordinate convex policy (under
exponentially distributed call interarrival times and call dura-
tions) requires anoffline computationally intensive evaluation
thereby limiting its applicability as the network size increases
(see [31]). In [2] and [31], it has been shown that optimizing
only the circuit thresholds results in control policies that are
almost as good as theoptimalcoordinate convex policy which
is found by optimizing both the circuit thresholds and the
linear-combination constraints. Therefore, in this paper we
consider a state-dependent but simplerthreshold-basedcall
admission policy where a typecall is accepted if and only if
there are less than calls currently active over circuit. These
thresholds can then be “tuned”online so as to optimize net-
work performance (usually, minimization of the call blocking
probability or maximization of call throughput).

Threshold-based call admission control policies have three at-
tractive features. First and foremost, they are distributed in na-
ture. That is, call admission is done at the source node using
local information; this is in contrast to the uncontrolled case
(i.e., no admission control) which employs call setup packets,
or the coordinate convex policy in [2] and [31] which entails
centralized admission control. Second, the proposed approach
for determining the threshold values requiresno distributional
informationon the arrival process and minimal assumptions on
the nature of the call service processes. Third, it is anadaptive
policy in the sense that the optimal threshold values are auto-
matically adjusted as operating conditions (e.g., traffic loads or
bandwidth) in the network change. The price to pay for these
features is that threshold-based policies belong to the class of
complete partitioningpolicies, which may make inefficient use
of resources at lower network utilizations.

The main contributions of this paper are the following.
First, we formulate the optimal threshold-based admission
control problem as a stochastic resource allocation problem
and develop a specific methodology for theonline optimization
of the thresholds so as to minimize the weighted network call
blocking probability. Central to our approach is the use of sen-
sitivity information, i.e., knowledge of the effect of changing
a threshold value by or on the type call blocking
probability. Thus, a second contribution is an algorithm for
estimating this quantity for networks with isochronous traffic.
Even with this information available, determining the optimal
threshold parameters remains a hard discrete stochastic opti-
mization problem. We present a specific algorithm toward this
goal, based on transforming the original discrete optimization
problem into a continuous optimization problem. Finally, we
present a performance comparison of our threshold-based ap-
proach with the coordinate convex policy considered in [2] and
[31], as well as the uncontrolled network. Extensive simulation
results indicate that when the network is not lightly loaded, the

performance of this simple distributed threshold-based policy
is in fact comparable to that of the coordinate convex policy.

Note that, with minor modifications, the applicability of our
algorithm can be extended to other networking environments
where the bandwidth is allocated to different traffic classes over
permanent or semi-permanent virtual paths (e.g., as in the asyn-
chronous transfer mode (ATM) setting [3]).

The paper is organized as follows. In Section II, we pose
the optimal threshold assignment problem . In Section III,
we consider the case where the performance measure is the
blocking probability over a fixed number of call arrivals and
address the issue of estimating the sensitivity of this measure
with respect to the threshold parameters. We show that a sample-
path-based algorithm can be used to estimate such sensitivities
online. Next, in Section IV, we return to problem . Rather
than solving it directly, we use the approach recently proposed in
[15], whereby we transform into acontinuous“surrogate”
optimization problem . The latter is then solved through a
stochastic approximation type algorithm which is driven by gra-
dient estimates of the cost function with respect to the “surro-
gate” variables. Gradient estimation makes use of the algorithms
developed in Section III. Finally, in Section V we illustrate the
proposed methodology by considering several circuit-switched
networks and compare the performance of the threshold-based
policy with that of the coordinate convex policy considered in
[2] and [31] to the uncontrolled network case.

II. CALL ADMISSION CONTROL PROBLEM FORMULATION

We consider an -node network with fixed routing specified
by circuits. Let the th circuit be denoted by the vector

where if circuit traverses node,
and otherwise. For simplicity, we assume bandwidth
homogeneity, i.e., the bandwidth is such that we can multiplex

voice calls on any node. Circuit-switching requires that for
a call to be accepted adequate resources (i.e., a transceiver) at
each node along the circuit should be available. The thresholds
in our admission control policy should be chosen so as to ensure
that circuit-switching is emulated. Finally, the policy is work-
conserving, i.e., a typecall is always admitted if the threshold
is not exceeded.

Thresholds are viewed aspartitioning the total resources (
transceivers) at each network node. Therefore, determining the
optimal thresholds is equivalent to finding the optimal parti-
tioning of the transceivers at each node. With this in mind, let

be the number of transceivers assigned to circuitat node
with thecapacity constraints for all

. When establishing a circuit, a call needs to reserve a
transceiver at each node along the circuit which imposes acir-
cuit constraintsuch that for all nodes
which belong to circuit. We can then define athreshold vector

, which inherits the circuit constraints.
Consider the probability space where

is the sample space, is the -field and is a proba-
bility measure (depending on the properties of the system) on

. Note that is a sequence of numbers from used
to create the interarrival times, the service times, and the call
types and characterizes a sample path. Let be the cost
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of circuit observed along a sample path associated with the
threshold vector . The resource partitioning problem is now
formulated as a discrete optimization problem where the objec-
tive is to determine the vector minimizing a weighted sum
of expected costs over all circuits. In our problem,

is the fraction of blocked type calls over some given
time interval (or at steady state, if appropriate) and depends only
on , so that the performance objective becomes the minimiza-
tion of a weighted blocking probability over all call types

subject to theresource capacityconstraints

for all nodes

for all circuits

In this formulation, is the weight associated with typecalls,
and

is the set of all circuits that traverse node.
Example: To illustrate this problem formulation, consider

the 6-node tandem network with five circuits shown in Fig. 1.
For this network, letting , the partitioning
problem is given by

subject to

where the first inequality above applies to nodes 1 and 2, both
of which share the call 1 and call 4 traffic. Similarly, the second
inequality applies to node 3 which shares call 2 and call 4 traffic;
the third inequality applies to node 4 which shares call 2 and call
5 traffic, and the last inequality applies to nodes 5 and 6 which
share call 3 and call 5 traffic. In Fig. 1, the acceptance of a type
4 call will subsequently block resources from type 1 and
type 2 calls. Thus, there exists an inherent performance trade-off
between rejecting a type 4 call and freeing up resources for type
1 and type 2 calls. This tradeoff is captured by the selection of
the threshold .

Assuming that is a priori known for all feasible
is a special case of a deterministic nonlinear integer

programming problem (see [19], [26], and the references
therein), and is in general NP-hard [19]. Aside from this
computational difficulty, it is generally the case that no
closed-form expression for is available, so that this
cost is estimated through Monte Carlo simulation or by direct
measurements made on the actual system. Thus, involves

Fig. 1. Tandem network with six nodes.

bothoptimizationover a discrete set andestimationof the cost
under all feasible threshold vectors. It therefore becomes a
stochasticdiscrete optimization problem.

For solving we will use the approach proposed in [15].
We consider transceivers at each node as discrete resources to
be allocated to circuits. By relaxing the integrality constraints
on the thresholds, we transform into a “surrogate” contin-
uous optimization problem , which is then solvedonline
through a stochastic approximation type algorithm updating the
actual system as the surrogate system is updated. The solution
of this “surrogate” problem can be used to recover the solution
of the original problem as shown in [15]. The problem is
separable, therefore the sensitivity estimation required in the al-
gorithm is simplified in that we will use perturbation analysis
(PA) (see [9] and [17]) for the sensitivity estimation of the cost
criterion with respect to the thresholds . This
estimation is based on the observed data, hence, no specific as-
sumptions on the distributions of call arrival and holding pro-
cesses will be needed.

III. SENSITIVITY ESTIMATION

In this section, we focus on processing packetized traffic in
a circuit-switched network. We begin by specifying the model
we will adopt and then present an online sensitivity estimation
algorithm for the effect of threshold parameters on the cost cri-
terion, taken to be a weighted sum of call blocking probabilities
over all call types (circuits).

A. Frame-Based Modeling for Isochronous Traffic

Circuit-switching is most commonly implemented using
TDMA, where multiplexing is achieved by defining, foreach
network node, an -slot framesuch that each slot in the frame
is uniquely assigned to a call, and such that the slot size is
determined by the bandwidth requirements of each call type
(for simplicity, we assume uniform bandwidth requirements).
A call which is assigned a slot in a given frame retains, for the
duration of the call, that same slot in subsequent frames. In this
TDMA model, anindividual slotwithin a frame corresponds to
a logical channel or, equivalently, atransceiver.

The threshold-based policy described in Section II implies
that we need to specify a frame for each network node; more-
over, the respective frames must be designed so that circuit
switching is emulated. For example, for the tandem network
shown in Fig. 1, if a type 4 call is assigned theth slot in the
frame at the source node (node 1), then the correspondingth
slot in the frame design at node 2, and node 3 must also be re-
served for that call. This slot assignment results in allocating
slots to type calls in each frame for each node which belongs
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to circuit . For example, in Fig. 1, the frames associated with
node 1, node 2, and node 3 are designed such thatslots are
allocated to type 4 calls. In short, the threshold parameterin
our admission policy isequivalent to the number of slots in a
frame allocated to typecalls.

The QoS associated with the traffic is such that a call is
blocked if it cannot be assigned a slot in the frame. We will
not be concerned here with any specific model for the traffic
carried by the network; rather, we simply assume that sampling
and encoding are such that at most one packet is submitted
for transmission per frame. For this reason, it is referred to
as isochronousor continuoustraffic, in the sense that, for the
duration of the call, fixed-length packets are generated at a
uniform rate of 1 packet/frame.

With this frame-based model in mind, we now proceed as fol-
lows. First, at eachsourcenode there is a process of call arrivals
for each call type that happens to originate at that node, which
we assume to be characterized by an arbitrary interarrival distri-
bution, possibly including correlations between individual call
arrivals of a given call type, as well as between arrivals of dif-
ferent call types. Theth type call is characterized by the pair

, where is the call arrival epoch and is the call du-
ration, expressed as an integer number of frames. The discrete
random variable has an arbitrary distribution.

Next, we describe the operation of the system from the point
of view of some call type at node (the operation is the same
from the point of view of any other call type and node). Recall
that each slot in a frame is allocated to some call type; thus, the
node frame consists of (a) slots allocated to type
calls, and (b) slots allocated to other call type(s). Using the ter-
minology introduced in [7], a slot allocated to typecalls is re-
ferred to as atransmission slot, whereas all remaining slots are
termedvacation slotsas far as type calls are concerned. Sup-
pose the node frame is designed so that slots are allocated
to type calls. At any time instant, not all of these slots need to
be currently utilized by such a call; in particular, let “free” slots

, be the number of transmission slots that are
not presently used by any ongoing typecall (thus, there are
slotsallocatedto type calls, but currently of them are un-
used, i.e.,free). Then, when a call is submitted to the
system, it is admitted if , in which case is decremented
by 1; otherwise, if the call is blocked and considered
lost. Note that the call admission decision is made using only
local information, i.e., the number of free transmission slots al-
located to in the current node frame. Once a slot is assigned
to this particular call it remains assigned for the duration of the
call, i.e., if the th type call is accepted and begins using the

th slot of the th frame on the time line, then it maintains pos-
session of the sameth slot for the
frames. These slots are now consideredunavailableto future
type calls. Note that the call duration need not be known in
advance; the effect of a call terminating is simply to increment
the variable by 1, when this event takes place.

The model is complete once we specify how long an arriving
call can wait for an accept/reject decision. We assume that the
decision to accept calls is made at the beginning of each frame;
all calls that arrive during a frame are therefore queued up to the
beginning of the next frame. At that time, those calls that cannot

be assigned an available transmission slot are blocked. A sim-
ilar model was considered in [7] and [24]. Note that this model
allows for an arbitrary selection of which calls at the beginning
of any frame will be blocked.

Let us now concentrate on the specific performance measure
of interest to our problem, i.e., the blocking probability for each
type call. Suppose a sample path of this system is observed and
let be the total number of typecalls that are blocked over
this sample path. If type call arrivals were observed, then an
estimate of the blocking probability is given by . As-
suming that a stationary blocking probability exists under stan-
dard ergodicity conditions, we denote it by and observe that

(1)

As already pointed out, in this model the threshold parameter
represents the maximum number of slots in a frame that can

be assigned to type calls. Clearly, a change in generally
affects the number of blocked callsobserved in a sample path.
We now pose the following question, typical of the PA approach
used in similar problems (e.g., see [8], [14], and [17]). Given
that a slot is allocated to typecalls in a frame, can we predict
the effect of removing that slot from the allocation to type
calls? Similarly: Given that a slot is not allocated to typecalls
in a frame, can we predict the effect of adding that slot to the
allocation to type calls? Our goal is to answer these questions
basedonly on data directly available from an observed sample
path under the current threshold parameter.

B. The “Marked/Phantom” Sensitivity Estimation Algorithm

In the observed sample path, where the system operates under
a threshold for type calls, a frame at some nodecontains
a total number of slots (same as the number of transceivers
available) of which are allocated to type calls .
Let us assume that arrivals of type call are observed over

frames. We then ask the question “What would happen to
the number of blocked calls if one less (or more) slot were
allocated to these calls?” Equivalently, using the terminology
introduced in the previous section, “What would happen toif
a transmission (or vacation) slot was converted into a vacation
(or transmission) slot for typecalls?”

Our first approach in answering these questions is to view a
slot allocated to the typecall as amarkedslot and attempt to
evaluate the number of blocked calls that would have resulted
had this been a vacation slot instead. We emphasize that we are
interested in accomplishing this based on data directly obtained
from the sample path we are observing (or perhaps, simulating).
Our second approach, which is the dual of the first approach,
is to consider a vacation slot for typecalls and view it as
a phantomslot, in which case our objective is to evaluate the
number of blocked calls that would have resulted had this been
a transmission slot instead.

We will refer to the observed system as thenominalone and
the system that would have resulted from marking (or phan-
tomizing) a slot as themarked(orphantomized) system. We also
point out that, given the model presented in the previous section,
the marking (or phantomizing) a slot within the frame at node
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is equivalent to the marking (or phantomizing) of a transceiver
at that node.

Let us define the following sample path quantities.
Total number of type blocked calls in the nominal
system.
Total number of type blocked calls in the marked
system.
Total number of type blocked calls in the phan-
tomized system.
Number of type call arrivals during the th frame
of the nominal system.
Number of type call completions during theth
frame of the nominal system.
Number of type call completions during theth
frame of the marked system.
Number of type call completions during theth
frame of the phantomized system.
Number of transmission slots available to typecalls
in the th frame of the nominal system (i.e., slots
allocated to type calls which are currently free).
Clearly, .
Number of transmission slots available to typecalls
in the th frame of the marked system. Clearly,

.
Number of transmission slots available to typecalls
in the th frame of the phantomized system. Clearly,

.
Then, our objective is to evaluate (or using only quan-

tities observed along a sample path of the nominal system. The
value will be used in evaluating the sensitivity of the blocking
probability for type calls (with respect to the threshold param-
eter ) defined as

(2)

or

(3)

Note that the dependence on the threshold parameteris not
shown for notational convenience.

Before proceeding with the construction of the sample paths
for marked and phantomized systems let us analyze the nom-
inal system sample path. Our analysis begins with the following
simple recursive equation which satisfies

(4)

where . Thus, the number of free slots in a
frame is initially given by the threshold parameterfor type
calls. Subsequently, is incremented by the number of the
call completions and decremented by the number of new
calls , with the obvious constraint that must remain
nonnegative for all .

1) Construction of the Marked System Sample Path:The re-
cursive equation for the free slots of the marked system can
be written as follows:

(5)

In the marked system is directly observable from the
nominal system, whereas will be obtained as explained
below.

Let us now introduce the concept of ataggedcall. This is a call
that is accepted in the nominal but not in the marked system at
the end of some frame. We define an additional binary variable

(indicator of a tagged call at the beginning ofth frame)
initialized as .

Now let

Note that if such does not exist, for all
, which means removing a slot does not affect the cost, i.e., the

sensitivity is zero on the observed sample path.
Assuming existence of, we have

for all

for all

A call arriving in the th frame will be tagged. In the nom-
inal system , new calls are accepted, while in the
marked system only new
calls are accepted. Equivalently, calls are
blocked in the nominal, while calls
are blocked in the marked system. This additional call that is
blocked only in the marked system is precisely what we have
defined above as ‘tagged’. We then set . It also
follows from (4) and (5) that

(6)

Let the termination of this tagged call occur at some frame
. For all , note that (4) and (5) apply to

the nominal and marked system respectively with the new initial
condition (6). Note that

for all

therefore

for all

That is, for the duration of this tagged call, both the nominal
and the marked system see the same number of blocked calls.
The fact that the marked system has one less transmission slot
for type calls is compensated by the fact that the extra slot of
the nominal system is used by the tagged call. Note that
and differ by one at the completion of a tagged call, when

, and are equal at other times.
Finally in the th frame, the nominal system and the marked

system will have and
available slots, respectively. Two cases need to be

considered.
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• In this case the slot freed up by the
completion of the tagged call will be used by a new tagged
call, therefore

The process above repeats with the initial condition

• In this case, the slot freed up by the
completion of the tagged call is not used by a new one,
therefore

The process above repeats with the initial condition

and

The tagging process therefore con-
sists of cycles as described above. In order to formally define
the dynamics of , let us introduce one more binary vari-
able as the indicator of completion of a tagged call of type

within the th frame. We then have

if
if and
otherwise

with the initial condition . Note that is com-
pletely determined from observable quantities along the nom-
inal sample path, , and the observable events
corresponding to tagged call completions. It should be clear that
there can be at most one tagged call in the nominal system at
any instant, since only one transmission slot is removed in the
marked system.

The final step is the evaluation of the sensitivity of the
blocking probability for type calls, , defined in (2).
By definition, this is the ratio of the total number of tagged calls
over the observed sample path to the total number of observed
arrivals. Let be the usual indicator function. We then get

or (7)

In practice, is simply incremented by 1 with every transi-
tion of from 0 to 1, including the case where it becomes 0
in some frame and then immediately reset to 1 ,
i.e., a tagged call is terminated in that frame and another tagged
call is accepted.

2) Construction of the Phantomized System Sample
Path: The recursive equation for the free slots of the phan-
tomized system can be written as follows:

(8)

Let

If does not exist, then the nominal system does not block any
calls of type . Adding another slot will not improve the perfor-
mance, i.e., the sensitivity is zero on the observed sample path.

Assuming existence of, the phantomized and the nominal
system will accept every call until theth frame. From (8) and
(4)

for all

for all

In the th frame, a call, referred to as thephantom call, is
blocked in the nominal system but will be accepted in the per-
turbed one. The service time(number of frames a call will use
a slot) needed for this call will be unavailable from the nominal
system. We will address the issue of assigning a service time to
the phantom call in Section III-B3.

In the th frame, the nominal system accepted
new calls, while calls
are accepted by the phantomized system. Equivalently,

calls are blocked in the nominal system, while
calls are blocked in the phantomized

system. The additional call that is accepted is what we defined
above as “phantom.” We then set where is
defined as the indicator of presence of a phantom call of type
at the beginning of theth frame and initialized as . It
also follows from (4) and (8) that:

(9)

Let the termination of the phantom call occur at . For
all , (4) and (8) apply to the nominal and the
marked system respectively with the new initial condition (9).
Note that

for all

therefore

for all

That is, for the duration of the phantom call, both the nominal
and the phantomized systems see the same number of blocked
calls. The fact that the phantom system has an additional trans-
mission slot for type calls is compensated by the fact that the
extra slot is being used by the phantom call. Note that the
and differ by one at the completion of a phantom call,
when , and are equal at other times.

Finally in the th frame, the nominal system and the phan-
tomized system will have and

available slots, respectively. Two cases need to
be considered.
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• In this case, the slot freed up by the
termination of the phantom call is filled by a new phantom
call, therefore

The process above starts with the initial condition

• In this case, the slot freed up by the
termination of the phantom call is not used by a new call,
therefore

The aforementioned process starts with the initial
condition

The sequence therefore consists of cy-
cles as described above. In order to formally define the dynamics
of , let us introduce one more binary variable as the
indicator of termination of a phantom call of typewithin the

th frame. We then have

if
if and
otherwise

with the initial condition . Note that is com-
pletely determined from observable quantities along the nom-
inal sample path, , and the observable events
corresponding to phantom call completions with the added dif-
ficulty of injecting a service time. It should be clear that there
can be at most one phantom call of typein the phantomized
system at any instant, since only one transmission slot is added
in the phantomized system.

The final step is evaluation of the sensitivity of the blocking
probability for type calls, , defined in (3). By defini-
tion, this is the ratio of the total number of tagged calls over the
observed sample path to the total number of observed arrivals.
Let be the usual indicator function. We then get:

or (10)

In practice, is simply incremented by 1 with every transi-
tion of from 0 to 1, including the case where it becomes
0 in some frame and then immediately reset to 1

, i.e., a phantom call is terminated in that frame and another
phantom call is accepted.

3) Service Time Assignment to the Phantom Calls:In the
phantomized system, is directly observable from the nom-
inal system (because the arrivals are never disabled). However,
if a call that arrived in the th frame is blocked by the nominal
system and is accepted in the phantomized system, the service
duration for that call, which is essential in constructing the phan-

tomized system, will be unobservable. Assuming that the ser-
vice times are independent and identically distributed, we will
consider two cases.

Case 1) The service time distribution foris available
If the service time distribution is available (e.g.,

from previous data), one can assign a service time to
this phantom call by sampling from the distribution.

Case 2) The service time distribution foris not available
If the service time distribution is not available, we

can apply thetime warping algorithm(TWA) pro-
posed in [10].

While constructing the marked sample path we assume that
the calls come with their service times. However, in order to con-
struct the phantomized sample path, we assume that the trans-
ceiver assigns the service times. These two assumptions are sta-
tistically equivalent because of the i.i.d. property.

The TWA keeps track of the service times that are observed
in the nominal system. When the service time for a call is not
available, the construction of the phantomized system is paused.
As soon as the service time becomes available, the construction
of the phantomized system starts and proceeds in atime warping
fashion. Let us define as the service time of theth accepted
call of type to the nominal system. Note that where

is the number of blocked calls of typein the nominal system
up to th accepted call. The phantomized system sample path
will be constructed using value of the nominal system as
the service time for theth accepted call in the phantomized
system. Note that since the phantomized system may have more
accepted arrivals than the nominal system, one may need to ob-
serve more arrivals than to the nominal system in order to get
enough service time data for the phantomized system.

After the phantomized system is constructed forarrivals
(possibly corresponding to more arrivals in the nominal system),
the sensitivity is calculated as in (3) whereis the number of the
blockedtype calls in the“first” arrivals to thenominalsystem.

IV. OPTIMAL CALL ADMISSION THRESHOLDDETERMINATION

Let us now return to problem , where a threshold vector
which satisfies the capacity constraints at the nodes is sought

to minimize a weighted sum of blocking probabilities.
While the area of stochastic optimization overcontinuousde-

cision spaces is rich and usually involves gradient-based tech-
niques as in several well-known stochastic approximation algo-
rithms [22], [27], the literature in the area ofdiscretestochastic
optimization is relatively limited. Most known approaches are
based on some form of random search, with the added difficulty
of having to estimate the cost function at every step. Such al-
gorithms have been recently proposed by Yan and Mukai [32],
Gong et al. [16], and Shi and Olafsson [30]. Although such
random search techniques have general applicability, they do
not fully exploit any inherent structure of the problem. They
also tend to be exceedingly slow in reaching a good solution,
since these algorithms typically have to visit several poor allo-
cations. This is a particularly undesirable feature for online al-
gorithms we are interested in here, where speed is essential and
operating at an arbitrarily selected point can lead to extremely
poor performance.
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Another recent contribution to this area involves theordinal
optimization approach presented in [18]. The basic premise of
ordinal optimization is that it requires fewer resources to iden-
tify the best solution among several candidates than identifying
how much better one is from the others. One can obtain sen-
sitivity estimates (or ) in order to identify
the “least” and the “most” sensitive call types and transfer a slot
(i.e., a transceiver) from the former to the latter. Among other
features, this approach is intended to exploit the fact that or-
dinal estimates are particularly robust with respect to estima-
tion noise compared to cardinal estimates (see also [11]). The
implication is that convergence of such algorithms is substan-
tially faster. One such algorithm is applied to resource allocation
problems with total capacity constraints in [5]. This algorithm
was shown to converge in probability (and a.s. under certain
added conditions [12]). Even though the approach in [5] yields
a fast resource allocation algorithm, it is still constrained to it-
erate so that every step involves the transfer of no more than
a single resource from one user to some other user. One can
expect, however, that much faster improvements can be real-
ized in a scheme allowed to reallocate multiple resources from
users whose cost-sensitivities are small to users whose sensitiv-
ities are much larger. This is precisely the rationale of most gra-
dient-based continuous optimization schemes, where the gra-
dient is a measure of this sensitivity.

With this motivation in mind, we apply here the algorithm
that was introduced in [15]. In particular, we transform the
original discrete feasible set into a continuous feasible set
over which a “surrogate” optimization problem is defined and
subsequently solved. As in earlier work in [5] and [6], and
unlike algorithms presented in [19], an important feature of
our approach is that every statein the optimization process
remains feasible, so that our scheme can be usedonline to ad-
just the decision vector as operating conditions (e.g., system
parameters) change over time. Thus, at every step of the con-
tinuous optimization process, the obtained continuous state
is mapped back into a feasible discrete state using a specific
transformation; based on a realization under this feasible state,
new sensitivity estimates are obtained that drive the contin-
uous optimization process to yield the next continuous state.
Therefore, the proposed scheme involves an interplay of sen-
sitivity-driven iterations and continuous-to-discrete state trans-
formations. It is shown in [15] that when an optimal threshold
vector is obtained in the continuous state space, it is trans-
formed to the optimal threshold vector . In other words,
if a solution to the surrogate optimization problem is found,
then a solution to the original discrete stochastic optimization
problem is also obtained through the transformation used to
map continuous into discrete states. Convergence of the algo-
rithm is also established in [15] under standard assumptions
common to the stochastic approximation framework.

Let us now apply this approach to solving problem .
We will start with relaxing the constraint that is integer for

. The relaxed problem can be formulated as

subject to theresource capacityconstraints

for all nodes

for all circuits

In this formulation, is the “surrogate” variable (real-valued
threshold) for type calls, is the weight associated with type

calls, and

is the set of all circuits that traverse node.
The algorithm to solve this minimization problem is as fol-

lows (see also [15]).

• Start with some (initial) threshold vector , and set
.

• For any iteration

1) Perturb (if necessary) so that all components are
noninteger.

2) Select where is the
discrete-feasible set.

3) Operate at to evaluate sensitivity estimate
using the PA techniques in Section III.

4) Update the continuous threshold vector:
where is the

convex hull of .
5) If some stopping condition is not satisfied, repeat

steps for . Else, set .
• Obtain as one of the neighboring feasible states in the

set.
Note that is the standard Euclidean norm. Since the cost

function is defined as the summation of weighted blocking prob-
abilities, the derivative estimates are calculated as follows:
Depending on the value of theth component of

, the marked or the phantom slot approach is used, corre-
sponding to the left or right derivative, respectively. Then

(11)

where and are given by (7) and (10) re-
spectively. For details on the derivation of the gradient of the
“surrogate” cost function in terms of the aforementioned finite
differences, see [15].

This algorithm is a standard stochastic approximation
scheme driven by the derivative estimates with
an appropriately selected step size sequence (e.g., see [15],
[22], [23], and [27]). It is worth pointing out that the
conditions required for convergence [15] are not dependent
on the stochastic characteristics of the call arrival process,
except for standard ergodicity assumptions mentioned in
Section III-A. In particular, there are six technical conditions
required to establish convergence to a global optimum (for
details, see [15]). Two of them involve the choice of the step
size sequence . Two more pertain to the noise process
and are satisfied by unbiased and consistent sensitivity
estimators in (11). These estimators are not dependent on
the distribution of the arrival process; in fact, because of
the simple finite-difference nature of the estimators, these
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Fig. 2. 10-node circuit-switched network with five circuits.

properties are tantamount to the ergodicity assumptions made
in Section 3.1 (for similar types of estimators, see [8], [9],
and [17]). The fifth technical condition is imposed on the cost
function in order to guarantee a unique global optimum and
is independent of the arrival process. The final condition is
the requirement . Looking at (11), it
is easy to see that blocking probability finite differences are
bounded by 0 and 1, thus satisfying this condition (recalling
that in (7) and (10) is a fixed number of observed arrivals
over frames).

V. NUMERICAL EXAMPLES

In this section, we illustrate our call admission control ap-
proach and its features by considering several circuit-switched
networks and making comparisons with alternative approaches.

Example 1: Consider the 10-node circuit-switched network
with five circuits (S/D pairs) shown in Fig. 2. For the purpose
of analytically determining blocking probabilities, we assume
Poisson call arrivals for circuit with rate and exponential
call durations with mean . Note that call duration in this
example is not an integer which does not satisfy our frame-based
model given in Section III-A.

Our objective is to determine the optimal thresholds(in
the call admission policy) so as to minimize the weighted net-
work call blocking probability

where is the expected circuitcall blocking probability
with assigned threshold . Under the previously mentioned
Markovian modeling assumptions

(12)

where .
In the simulation experiment, we assume transceivers

per node and circuit loads

and

The corresponding separable optimization problem is

TABLE I
SINGLE RUN OPTIMIZATION OF 10 NODE-5

CIRCUIT NETWORK

subject to

where and all call types are of equal impor-
tance. With the aforementioned system parameters, through an
exhaustive search the optimal thresholds are determined to be

and the corresponding blocking probability is .
To illustrate our approach, we perform a single-run optimiza-

tion of the thresholds in the call admission policy. We employ a
gradient projection method, (gradients in this case are directly
calculated using (11) and (12) so that there is no estimation
noise) with a constant step size .

In Table I, we observe that starting from an initial threshold
assignment of , we
converge to the optimal threshold vector in only six steps.

Example 2: In this set of experiments we again consider the
10-node network shown in Fig. 2, but now the objective is to
compare the performance of the optimal threshold based policy
with the optimal coordinate-convex policy proposed in [2] and
[31] (subsequently referred to as ) as well as the uncon-
trolled system. As before, we assume Poisson call arrivals and
exponential call durations for each circuit. The network has

transceivers per node and each circuit has uniform load
. This example was used in [1] and chosen here so

as to make comparisons with the results for the uncontrolled
network and under the coordinate convex policy reported in
[1]. Table II shows a comparison of the weighted network call
blocking under the optimal thresholds , the uncontrolled
network, and the optimal coordinate-convex policy (The
blocking probabilities for the latter two cases have been repro-
duced from [1]).

There are a number of interesting observations pertaining
to Table II. One observation is that under low network loads,
the threshold-based policy is overly conservative, and the
resulting network blocking is worse than even the uncontrolled
system. However, as the network load increases, the relative
performance of the threshold-based policy improves, and at
high loads it results in the same performance as the coordi-
nate-convex policy (as already mentioned, the threshold-based
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TABLE II
COMPARISON OFBLOCKING PROBABILITIES UNDER DIFFERENT

CALL ADMISSION POLICIES

TABLE III
COMPARISON OFTHRESHOLD-BASED POLICY AND SELF-REGULATION

(FOR UNCONTROLLEDSYSTEM) UNDER PRIORITIZED TRAFFIC

policy has the advantage of requiring a simple online distributed
implementation). In particular, at high loads, the optimal policy
is never to accept a type 1 call (which blocks all calls on the
remaining circuits) or a type 5 call (which blocks calls on
circuits 1, 3, and 4). Another observation is that there is a
marginal improvement (at most 5% reduction) in the blocking
probability resulting from exercising admission control in
this example. This observation is attributed toself-regulation
properties of such circuit-switched networks pointed out in [1],
wherein the network tends to accept more calls on circuits that
compete for resources with the fewest other circuits, and block
calls that tend to interfere with many other circuits. Thus, when
all call types are of thesame weight, the effect of network
self-regulation in an uncontrolled network achieves nearly the
same performance as that of optimal call admission policy.
Therefore, in Fig. 2, self-regulation forces the network, in a
majority of the cases in Table II, to reject type 1 and type 5
calls and in doing so achieves near-optimal control.

However, when call types are assigned different weights, ex-
ercising a call admission policy can result in a significant per-
formance improvement. For example, if we associate a weight

with type calls, then the performance measure of interest is
now of the form

In Table III optimal values (from threshold-based policy)
are compared to the uncontrolled system blocking probabili-
ties for the network shown in Fig. 2. As before, we assume

transceivers per node, uniform load for all
and calls have assigned weightsas shown ( de-

notes the equal weight assigned to call typefor ).
In Table III, we observe that as the weight for call type 1 is in-
creased, the optimal decision becomes to always accept type 1
calls, whereas in the uncontrolled network, because of self-reg-
ulation, the decision is to restrict type 1 calls.

Example 3: The ability of our approach to adjust the thresh-
olds in response to changing operating conditions, is seen in

TABLE IV
COMPARISON OF BLOCKING PROBABILITIES WITH

VARYING CIRCUIT LOAD PROFILE

Table IV, where now the circuit load profile is varied. In this ex-
ample we assume transceivers and a load profile
where . We can see that as the pa-
rameter changes, the algorithm adjusts the threshold values
accordingly.

Example 4: In Examples 1–3, on account of the Markovian
modeling assumptions, we had analytical expressions for the
gradients needed to drive theonlineoptimization algorithm. If
such expressions are not available, the gradients in question
must be estimated through simulation or direct measurements
made on the actual system. In this example, we performonline
optimization with gradients estimated via the Marked/Phantom
Slot estimator. Consider the 6-node tandem network with five
circuits shown in Fig. 1. We assumeisochronoustraffic (see
Section III-A) where the th type call is characterized by the
pair . Recall that is the call arrival epoch and is
the call duration, specified as the number of packets. The opti-
mization problem is formulated as follows:

subject to

where is the expected blocking probability associated
with the threshold vector .

We perform a single-run optimization experiment, where we
assume transceivers per node. The initial threshold
vector is selected to be . Call arrivals are
assumed to be Poisson with rate arrivals per second for
all . Call duration is uniformly distributed over

for all . Each packet is transmitted in
1 s (a frame is 24 s long). We employ a gradient-based algo-
rithm with projection where we keep the step size
for all update steps. The observation intervals over which the
estimation is carried out before an update occurs are chosen
to gradually increase in length. In particular, theth interval
length is defined through with call
arrivals and call arrivals. Each call is given the same
weight , for . The algorithm (explained in
Section IV) performs as shown in Table V.
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TABLE V
OPTIMIZATION OF 6-NODE TANDEM NETWORK WITH SYMMETRIC TRAFFIC

TABLE VI
OPTIMIZATION OF 6-NODE TANDEM NETWORK WITH SYMMETRIC TRAFFIC

(SHORT OBSERVATION INTERVALS)

Note that the algorithm converged to the optimal in just one
step. Since the circuits have identical loads andweights,

is the optimal threshold vector for this example
because the transceivers reserved for call type 4 can be used to
accommodate both call types 1 and 2. Similarly, the transceivers
reserved for call type 5 can be used to accommodate both call
types 2 and 3.

One can observe the effect of noise in Table V, where
threshold vector yields different
values. In order to see the effect of having shorter observation
intervals, which would increase the effect of noise, let us
perform the same experiment where theth interval length is
defined through with call arrivals
and call arrivals. We will use a smaller step size

because the derivative estimation is not as reliable
as in the previous case. The results of this experiment are given
in Table VI.

Note that even though the network is still in the transient state
(initially the network is assumed to be empty), the threshold
vector reached the optimal value at the second update.

VI. CONCLUSION

We have considered threshold-based call admission policies
for circuit-switched networks and developed a scheme for
adjusting the threshold parametersonline, the objective being
to minimize a weighted sum of call blocking probabilities.
Such threshold-based policies are conservative at low traffic
rates (i.e., they may reject more calls than necessary), but,
as the numerical results of Section V also indicate, at higher
traffic rates they yield the same performance as more complex
call admission policies. In addition to this, the main advantages
of this threshold-based admission control scheme lie in its
implementational simplicity, and the facts that: it is completely
distributed in nature; it is adaptive in the sense that it can
automatically adjust the thresholds as the operating conditions
change; and it does not require any explicit distributional
modeling assumptions.

Central to this admission control scheme is the
Marked/Phantom Slot algorithm developed in Section III
for online estimation of the sensitivity of the call blocking

metric defined above with respect to the thresholds. It is
because this algorithm is based on directly observable network
data (e.g., call termination events, number of call arrivals per
frame) that no special distributional modeling assumptions are
required. Our approach for optimizing over the set of feasible
thresholds is based on the recently proposed “surrogate”
problem method [15], as described in Section IV. This requires
estimating gradients with respect to the surrogate control
parameters, which is accomplished by making use of the
Marked/Phantom Slot algorithm.

Lastly, note that the approach we have presented need not be
limited to the call blocking probability metric. Similar admis-
sion control problems can be formulated with more general cost
functions or with multiple objectives if several traffic classes are
to be explicitly modeled.
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