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Centralized and Decentralized Asynchronous
Optimization of Stochastic

Discrete-Event Systems
Felisa J. V́azquez-Abad, Christos G. Cassandras,Fellow, IEEE, and Vibhor Julka

Abstract—We propose and analyze centralized and decentral-
ized asynchronous control structures for the parametric optimiza-
tion of stochastic discrete-event systems (DES) consisting ofK
distributed components. We use a stochastic approximation type
of optimization scheme driven by gradient estimates of a global
performance measure with respect to local control parameters.
The estimates are obtained in distributed and asynchronous
fashion at the K components based on local state information
only. We identify two verifiable conditions for the estimators and
show that if they, and some additional technical conditions, are
satisfied, our centralized optimization schemes, as well as the
fully decentralized asynchronous one we propose, all converge
to a global optimum in a weak sense. All schemes have the
additional property of using the entire state history, not just
the part included in the interval since the last control update;
thus, no system data are wasted. We include an application of
our approach to a well-known stochastic scheduling problem and
show explicit numerical results using some recently developed
gradient estimators.

Index Terms—Decentralized control, discrete-event system, op-
timization.

I. INTRODUCTION

I N THIS paper, we propose and analyze a class of central-
ized and decentralized asynchronous control and optimiza-

tion schemes for stochastic discrete-event systems (DES’s) and
include applications to a specific problem of interest. Our main
objective is to develop adecentralizedcontrol structure and
establish its convergence properties, our motivation being the
following. It is often the case that a DES consists of a number
of distributed components, with each component operating
autonomously and contributing to the overall function of the
system. Examples include the switches of a communication
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network, the processors in a distributed computer system, or
workstations in a manufacturing system. While this decompo-
sition conceptually provides opportunities for efficient control
and optimization of the system, coordination and the transfer
of information among components are costly and sometimes
infeasible processes. It is, therefore, desirable to develop
decentralized schemes which permit individual components to
take control actions that contribute toward the optimization of
a global performance criterion for the system. When a central
controller structure is feasible, we also analyze some relevant
optimization schemes and their convergence properties. The
basic problem we consider is described next. Letdenote
a real-valued controllable parameter vector and a given
performance measure (or cost) to be optimized. The DES under
consideration consists of components. Thus, the parameter
vector is of the form , where corresponds
to the th component, and may itself be a vector.
Our objective is to determine a vector that maximizes
the performance criterion . When the DES operates in a
stochastic environment, this criterion is usually of the form

, where is the cost obtained over a
specific sample path. This problem is particularly hard due
to the fact that closed-form expressions for are seldom
available. As a result, one must resort to various techniques
for estimating over all (or as many as possible) values of

in order to seek . For control purposes, the most common
approach for determining is based on iterative schemes of
the general form

(1)

where is usually an
estimate of the negative of the gradient of with respect to

. The factor is referred to as thestep sizeor gain or
learning rateparameter. Such schemes are commonly referred
to as stochastic approximation (SA) algorithms and they have
been thoroughly studied in the literature (see [14]–[16] and
[21]). However, less attention has been paid to the use of
SA algorithms for systems consisting of many components
[19], [24], [23] in the context of several issues which are
discussed below. In particular, there are two key issues that
arise. First, there is the possibility of implementing an SA
algorithm in a distributed fashion, i.e., by having components
carry out separate computations using only local data. After
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these computations are performed, a second issue arises, i.e.,
whether the ensuing control actions are centralized or not.
In the former case, a central controller collects the results
of these computations and updates the control vector .
Alternatively, each component may be able to take a control
action, i.e., update or part of it, using only the result of
its local computation.

We examine next a number of issues that arise related to
the general scheme (1) based on which we will be able to
summarize the main contributions of this paper.

1) Gradient Estimation:We will limit ourselves to the case
where is an estimate of the negative of the
gradient of with respect to . Thus, the
first issue to consider is that of determining appropriate
gradient estimates based on observable system data.
Recent developments in the area of gradient estimation
for DES’s include perturbation analysis (PA) (e.g., [13]
and [10]) and the likelihood ratio (LR) methodology
(e.g., [20] and [11]). Our analysis of the optimization
schemes proposed in this paper depends on certain
properties that the gradient estimates used must satisfy.
As we will see, these properties are indeed satisfied by
several types of PA estimators, including some recently
developed in [5] and [2].

2) Convergence:Under a number of conditions on the
set of admissible control parameter vectors , the
step-size sequence , and the estimates ,
convergence w.p. 1 of the sequence to a global
optimum can be established for the basic SA scheme
(1). For the case of gradient estimators using infinitesi-
mal perturbation analysis (IPA), this has been shown in
[6]–[8], applying the basic method in [15]. A weaker
form of convergence can also be established, as in [17]
and [19], using the framework of [16]. However, when
using (1) for decentralized optimization, the issue of
convergence becomes significantly more complicated.
We shall deal with it in the context of the convergence
approach of [16] and [17].

3) Adaptivity: Convergence to a global optimum is
normally established for (1) by allowing the step-size
sequence to go to zero over time. If, however,
(1) is used online as an adaptive control mechanism (as
in [28]), then the scheme can obviously not respond to
changes in the operating environment after the step size
has reached zero. We are, therefore, often interested in
the limiting behavior of SA schemes with some constant
(normally small) step size (see [18]) which would permit
the control vector to track various changes online, usu-
ally at the expense of some oscillatory behavior around
the value of a steady state performance measure. The
framework we will use allows us to study this limiting
behavior and apply the schemes we develop with a
constant step size.

4) Distributed Estimation:In many DES’s, such as large
communication networks, it is infeasible to transfer
instantaneous state information from theth system
component to other components or to a central con-
troller. Thus, it is highly desirable to developdistributed

algorithms, whereby at least part of the necessary com-
putation is carried out locally at each component. In the
SA scheme (1), the main computational burden involves
the gradient estimation process. One of our objectives,
therefore, is to have each component locally evaluate an
estimate of the derivative of with respect to the
local control parameter .

5) Decentralized Control:Once the gradient estimates are
evaluated, the simplest approach for executing an update
in (1) is to have a central controller who collects all
estimates and performs control updates. This approach,
however, requires significant coordination among com-
ponents, as well as the transfer of state information; this
involves substantial communication overhead and delays
which often render state information useless. More im-
portantly, failure of a central controller implies failure
of the entire system, which cannot sustain its proper
operation without it. Therefore, a desirable alternative
is to allow each individual component to separately
update the global control vector and transfer this
information to all other components. Our analysis will
cover both the centralized and decentralized control
cases, but our primary goal is to study the latter.

6) Synchronization:In a fully synchronized scheme, there
is an a priori mechanism based on which the updates
of take place. For instance, a central controller
periodically requests estimates from all components in
order to perform a control update. If the procedure is
decentralized, however, a natural question is whether
any component can be allowed to take a control action
at any random point in time without any synchronizing
mechanism. Such a feature is obviously highly desirable
since it requires virtually no coordination among com-
ponents and it minimizes the amount of information that
is transferred from one component to another.

7) Full Utilization of System State History:A problem that
frequently arises in SA schemes is that the estimator

may not use all data collected over the history
of the process. This typically arises in an asynchronous
control update scheme, when a component being in-
formed of a control update from another component
may have to discard a partial local computation that
it is in the process of performing. It is, therefore,
desirable to develop a scheme using as much of the
complete system history as possible and avoid having
to reinitialize estimators, which essentially discards past
history information.

We should point out that optimization algorithms for DES’s
which use distributed computation have attracted a great
deal of attention, especially in the context of communication
networks and computer systems. A number of such algorithms
have been proposed and shown to converge to an optimal
point under certain conditions (e.g., the distributed routing
algorithm developed by Gallager [9] for minimizing the mean
packet delay in data networks, and asynchronous versions
of it [23]). These algorithms, however, are based on the
assumption that the gradient of is analytically available
so that no estimation is involved. The issue of convergence that
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arises when gradientestimatesmust replace their analytical
counterparts in such distributed algorithms (e.g., see, [4] and
[22]) is a much more challenging one.

In view of the issues identified above, the main contri-
butions of this paper can be summarized as follows. First,
we present and analyze centralized and fully decentralized
optimization schemes based on distributed gradient estimation.
For both types of schemes, we then establish convergence
in the framework of [17], which involves fully developing
a time scale argument for the decentralized control case.
We also identify two verifiable conditions that the gradients
estimators must satisfy in order for our convergence results to
hold: asymptotic unbiasednessand additivity. The decentral-
ized scheme presented has the added properties of beingfully
asynchronousand making use ofall past state information. It
is interesting, if not somewhat surprising, that such a scheme
indeed converges, despite this very loose coordination among
system components.

The paper is organized as follows. Section II provides a for-
mulation of the stochastic optimization problem we consider
and introduces some basic notation. In Section III we present
the mathematical framework for our analysis (Section III-A),
based on which we describe the distributed gradient estimation
process we shall use (Section III-B) and three separate control
structures for solving the optimization problem (Section III-
C). The first two are centralized but differ in the way the
controller performs control updates; the first does so over a
number of prespecified system events, while the second is an
extension to random update times. The third scheme is a fully
decentralized and asynchronous one. Section IV is devoted to
the detailed convergence analysis of these schemes. Through-
out the paper, we use a well-known stochastic scheduling
problem to illustrate our approach; in Section V we present
some representative numerical results from application of our
estimation and optimization approach to this problem.

II. BASIC MODEL AND OPTIMIZATION

PROBLEM FORMULATION

We consider a DES consisting of components (e.g., nodes
in a network or processors in a distributed computer system).
Let be a real-valued controllable parameter
vector, where represents theth vector component. The
optimization problem we are interested in is the determina-
tion of a vector that maximizes a performance criterion

, where is the sample performance
function. As already mentioned, we focus on problems where
no analytical expression for is available, and we resort
to an optimization scheme of the general form (1)

where is an estimate of the negative of the gradient
of with respect to . We assume that each system
component only has access to local state information and can
estimate a local performance criterion and its gradient.
For ease of notation, let us limit ourselves here to the case
where is a scalar. Given the structure of the system, the

optimization problem we face is as follows:

s.t.

where are weights associated with the system
components and are
linear constraints. Note that there may also be additional
inequality constraints associated with the problem above; these
can be taken into account by appropriately defining the admis-
sible set . Finally, let us assume that each system component
has knowledge of all weights and all linear constraints
present. An unconstrained version of this optimization problem
can be obtained as follows. By solving thelinear equations,
it is generally possible to eliminate some of the control
parameters and solve for of them. Let denote
the reduced set of system components. For any component

, we then have

(2)

for some constant coefficients and .
Remark: This formulation is typical of resource allocation

problems often encountered in DES’s. For instance, consider a
problem of allocating a single server (resource) overqueues
in parallel over a discretized time line. Let be the probability
that the server is assigned to queueat any time step. In this
case, a single linear constraint of the form

is used. The reduced set of components may be set to
with given by .

With the above discussion in mind, we rewrite the problem
in the following form, where the equality constraints have been
eliminated:

(3)
Observing that the derivative of the objective function
with respect to is given by

and setting, for all

otherwise
(4)

we have

(5)
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Then, the optimization schemes we shall consider and analyze
are of the general form

for all (6)

where is an estimate of the negative of the derivative
available at the end of theth iteration. When new

values are evaluated for all , then new values
are also evaluated through (2) for all . Note

that when constraints are present, it is possible that (6) results
in some . We will handle this issue by introducing
an appropriate projection scheme as discussed in Section III-C.

Remark: Our analysis is not limited to the optimization
problem setup above. For instance, the local performance
criteria can be allowed to depend on the entire vector

rather than just , in which case we can easily modify the
definition of and include derivative estimates of
all . It is also possible to consider a nonadditive
performance measure structure. We choose to limit ourselves
to the class of problems above, first to maintain manageable
notation without affecting the key ideas of the analysis, and,
second, because many of the applications we are familiar with
fall into the class of problems above.

In the next section, we present two centralized and one
decentralized stochastic optimization schemes based on (6).
We develop an appropriate mathematical framework, describe
the distributed derivative estimation process based on which
all above are evaluated, and finally describe the control
structures we use in detail.

III. STOCHASTIC OPTIMIZATION

SCHEMES AND CONTROL STRUCTURES

The basic SA scheme in (1) applied to DES’s with gradient
estimates based on IPA has been studied in [6] and [7]. In
this case, convergence w.p. 1 has been shown under a number
of technical conditions. An alternative approach establishing
a weaker form of convergence was recently presented in [17].
This method can be applied to time-varying step sizes

under the usual conditions on ;
however, it also allows us to study (1) under a constant
step size . While the mathematical analysis is similar
in both cases, the two approaches have different properties
in applications, as explained next. If we are interested in
simulation-based optimization, which is the case in many
optimal design problems, then the use of time-varying gains
under certain conditions yields w.p. 1 convergence of the
sequence to the optimal point. This may be highly
desirable as a numerical approximation scheme that ensures
asymptotic optimality. On the other hand, in many online
control problems the goal is to construct an iterative scheme
capable of adjusting to the underlying (and generally un-
known) dynamics of the system. In such problems, there may
be no clear end to the optimization, process as would be the
case in a simulation. Instead, constant learning rates allow the
schemes tocontinuously revise the sensitivities estimatedand
hence adjust toward the improvement of the objective function
as external conditions change. If the latter remains constant,

then the control process should, in some sense, approach the
optimal value. As we will show, this approach is not limited
to PA gradient estimators. Instead, it requires that gradient
estimators satisfy certain properties (which we shall identify
later) in order for the control process to converge. We will
adopt this approach and will present an application based on
a class of estimators that satisfy these properties.

In applying the weak convergence approach to (1), we begin
with the basic recursive scheme

(7)

where is initially fixed. Thus, this scheme gives rise to a
sequence , parameterized by. Rather than attempting
to prove that the sequence converges to a fixed point

as , we concentrate on showing that the family of
functionsgenerated by the recursion (7) approaches the
tail of another function, , as [16]. The property of

is that it solves an ordinary differential equation (ODE)

(8)

where is the objective function of our original optimiza-
tion problem. Intuitively, this ODE simply characterizes the
“steepest descent” trajectory for a control . When (and
if) the right-hand side (RHS) above is zero, the solution of
the ODE has in fact reached an asymptotic value, which also
provides the optimal point (under appropriate smoothness
and convexity conditions; [26]). This approach permits us to
study the convergence properties of a recursive scheme such
as (7) by examining the asymptotic behavior of the solution to
a “companion” ODE as in (8). Clearly, the case of a stochastic
recursion based on estimates of the derivative requires
a number of additional technical conditions and is highly
dependent on the nature of these derivative estimates. These
will be explicitly specified and discussed in the analysis that
follows. However, the same basic idea is still applicable, i.e.,
determining a companion ODE to the recursive scheme used
for solving the original optimization problem.

In this paper, our goal is to focus on decentralized asyn-
chronous control update schemes and to establish weak con-
vergence of such schemes, building on the concepts that
appeared in [24] and [17]. In Section IV, this approach is used
to prove convergence of adecentralized asynchronousscheme
based on (6). First, however, in the remainder of this section
we introduce the basic modeling framework for our analysis
(Section III-A), followed by the distributed estimation process
and its properties (Section III-B) and a presentation of three
different control structures for optimization (Section III-C).

A. Modeling Framework

We will assume that the DES we consider is modeled as a
stochastic timed automaton [3] or, equivalently, the process
is a generalized semi-Markov process (GSMP), a common
framework encountered in the DES literature; for details, see
[3], [10], and [13]. Since our DES consists of distributed
components, the event setis partitioned into subsets

so that contains all events (if any) directly
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Fig. 1. K-node polling system.

observable by all system components, andcontains events
which are directly observable by theth component alone.
Under a control parameter vector, let denote the
state entered after the th event occurrence; thus, we obtain
a Markov chain (see also [12]) with transition probability

defined on , the -algebra of subsets of the state
space

We shall denote by the expectation with respect to the
measure of the Markov chain . We assume that
for each value of , where is defined over a set , the
invariant measure of the corresponding process exists
and is unique. In this setting, we focus on the problem of
finding a control value that maximizes

. Within the framework of gradient-based
methods, we shall assume that is differentiable and that
all are bounded and continuous.

Assumption 1:The transition probability is weakly
continuous in and the set of measures
is tight for every compact set .

Tightness is a concept analogous to compactness. In the case
of a tight stochastic sequence, it implies that any subsequence
has a further weakly convergent subsequence (see [17] for
detailed definitions and discussion).

Example: To illustrate our modeling framework, consider
an optimal scheduling problem where nodes compete
for a single server/resource. This is motivated by the well-
known “transmission scheduling problem” arising in packet
radio networks, where the resource is the communication
channel, fixed length packets arrive at nodeaccording to
an arbitrary interarrival time distribution with rate , and a
slotted time model is considered (with slot size equal to the
packet transmission time). At each scheduling epoch, i.e.,
at the start of each time slot, the channel is assigned to a
particular node (see Fig. 1). The assignment is based on a
random pollingpolicy: the current time slot is allocated to the
th class with probability .
The objective is to determine the optimal slot assignment

probabilities so as to minimize the weighted average packet
waiting time. The constrained optimization problem is then
stated as

s.t. (P1)

where is the average node packet waiting time and
is assumed to be in the set of probability

vectors such that , which ensures stability of each
queue. This defines the setover which the control vector
is defined. In the absence of anya priori information on the
arrival processes, closed-form expressions for this performance
measure are unavailable. Thus, the gradual online adjustment
of is one attractive approach.

Let denote a packet arrival event at node and
a packet transmission event when nodeis assigned

a time slot. The event set of this DES is then
. Note that events are observed

only by node . The only way that a node can
become aware of these events is if explicitly transmits
such information to ; this, however, not only entails
communication overhead, but the information reachingis
also delayed. A natural partition of consists of sets,

with .
A simple way to implement a random polling policy char-

acterized by the parameter vectoris to provide in advance
each node with a common random number generator based on
which all nodes can determine the node to which each time slot
is assigned. This defines a transmission schedule common to
all nodes. The state of the DES may be described by a vector

, where is the queue length at
node and is the state of the channel:
if node is transmitting a packet and if the channel is
idle. Note that if a time slot is assigned to, then only node
can determine the state of the channel, based on whetheris
zero or positive; all other nodes have no direct access to this
information. It should be clear why in this model centralized
control is not only undesirable (because failure of a central
control node results in failure of the network), but actually
infeasible because state information cannot be instantaneously
available to all nodes.

We now consider a more convenient state representation for
our purposes, based on defining to be the waiting time
of the th packet at node. Each node behaves like a
queueing system with vacations (the time slots which are not
assigned to for transmission). Letting denote the time
to serve the th packet, then is an i.i.d sequence of
geometric random variables with parameter. Also letting

be the packet interarrival time sequence (which is
independent of the vector) and setting for simplicity,

satisfies a standard Lindley recursion

(9)

where is associated with the occurrence of a transmission
event and is associated with an arrival event.

Let us now consider Assumption 1 for this model. The local
processes behave as stable queues for each , ensuring
existence of the invariant measure. For any, it is clear from
(9) that the process has the Markovian property,
and the transition probabilities are polynomial functions of

, verifying the weak continuity in . The remainder
of Assumption 1 follows readily. Indeed, for any compact
set , the process is stochastically dominated by a
process describing a queue where the services have
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geometric distribution with parameter .
The dominating process is constructed using common random
variables for the generation of service times and the same
sequence of interarrival times as the original process for any

. Since the process is stable, it regenerates
with a.s. finite regeneration cycle lengths, and it dominates
all processes , yielding

for any
real number ; this implies tightness of the invariant
measures for all at each local queue, using dominated
convergence. Finally, the global process is a vector
containing the values of the waiting times at each local node
when the th global event occurs. Therefore,
exist and are tight.

In what follows, we shall use the notation to denote the
vector-valued control parameter in effect at the epoch of event

and is the value of the step-size parameter in (7). Much
of our subsequent analysis is based on carefully distinguishing
between various natural time scales involved in the controlled
process. Let us introduce the two main time scales we shall use
and associated notation. We have a “fast” global time scale,
defined by all events that drive the DES, and a “slow” time
scale, defined by instants in time when control updates are
performed according to (7). We will use the following notation
to distinguish these two time scales:

global event index

iteration index over global control updates.

Thus, is updated at selected events (at which time the
index is incremented) depending on the control structure
selected, as described in Section III-C. Note that when the
control iscentralized, the controller gathers information from
the various system components over anupdate intervaland
performs the global control update at the end of this interval.
In this case, we also have an “intermediate” time scale defined
at each system component . In particular, the th
component collects local information over someestimation
interval, at the end of which a derivative estimate is obtained
and sent to the controller, subsequently to be used for global
control updates. By indexing over these estimation intervals
we define such an intermediate time scale. On the other hand,
in the fully decentralizedscheme, the global control updates
are performed asynchronously by individual components and
they coincide with the instants when any component completes
a local estimation interval. Thus, the intermediate and slow
time scales shall coincide.

B. Distributed Estimation

1) Local Derivative Estimators and Their Properties:In
both the centralized and decentralized cases which we analyze,
the derivative estimators required are obtained indistributed
fashion, i.e., each system component separately performs all
estimation computation required, using only locally available
state information. We emphasize that the issue of distributed
estimation is distinct from that of control implementation,
which can be centralized or decentralized.

We shall now present the construction of the local estimators
for the fixed control process . In Section IV, we shall
explain how these estimators are used in the time-varying
control parameter case. Let index the sequence
of local events at component, i.e., all events in the set .
Let be the correspondingglobal event index [when no
ambiguity arises, we will also use ]. We define to
be the invariant average rate of events at. By the ergodicity
assumption

(10)

Assumption 2:For all is continuous,
and .

The last part of this assumption ensures that the control
variables do not change the topology of the system by “shut-
ting off” a particular component. It is not essential, but it
simplifies the notation, since if a particular component can be
shut off (for example in a network whererepresents a routing
probability vector) for a value , then the appropriate
adjustments in the update equations to estimate sensitivities at

have to be incorporated.
Example (Continued):For the problem illustrated in Fig. 1,

it is easy to verify that Assumption 2 is satisfied. Indeed,
under stability, for any the rate of transmission events

at each node equals the arrival rate in steady state.
Therefore, the invariant event rate is independent of
for this example.

A derivative estimator of the objective function with
respect to the control parameter at component is calcu-
lated from local observations of the state values over a period
of time. Let be some local event index and a number of
local events. Then, we define to be the estimator
of obtained for the fixed- process over the local
events . The following assumption contains
two key properties we require for our derivative estimators,
based on which our convergence results will hold.

Assumption 3:All , satisfy the fol-
lowing.

1) Asymptotic unbiasedness: For any random integer
such that as w.p. 1, and any

w.p. 1.

(11)
2) Additivity: For any sequence of positive integers ,

and a sequence defined by ,
we have

(12)

Remark: The local estimation process is carried out over
successive subintervals and

is the number of events sampled to obtain
the th estimate. Additivity ensures that the estimator obtained
over the interval is equivalent to
adding the partial computations obtained over these subin-
tervals. This is a particularly attractive property, since the
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estimators accumulate all past data and never waste any
previously collected information. Finally, note that the two
conditions in Assumption 3 are generally easy to verify.

Example (Continued):For the problem illustrated in Fig. 1,
recall that each node is viewed as a queueing system
with vacations. One can then obtain estimators of
through perturbation analysis (PA) as shown in [5]. Under
certain conditions, such estimators are consistent a.s. (e.g., see
[10]); our analysis, however, will require condition (11). For
such estimators to satisfy (12), we require that they are not
reset to zero from one estimation interval to the next, but
rather we keep on evaluating all cumulative effects. Many
estimators based on PA (e.g., see [13] and [5]) satisfy the
additivity property. For this particular example,
is an estimator of the form of a sample average over local
events (see [5] for details)

(13)

where is the state after the th global event and
the function depends on this state through all of its entries
associated to theth component. In particular, is a function
of the packet waiting times at nodewhich satisfy (9); we
shall provide a more detailed form of this estimator in the next
section. Note that (11) and (12) follow from construction (see
also [5], [25] for details).

2) Derivative Estimation Sequences:In this section, we
present the most general framework for the distributed
estimation we shall use, incorporating both asynchronous
and parallel computation features. From Assumption 3, the
local processors can evaluate their estimators by dividing
the computation intoestimation intervals. We shall now
construct these intervals by choosing an appropriate increasing
sequence , of random stopping times with
independently distributed increments

for each component . Thus, the th estimation interval at
component contains all local events

. The resulting th estimator at component is

(14)

In other words, we view the time line associated with com-
ponent as being partitioned into intervals defined by the
sequence , the th interval containing local
events. Hence, a sequence of estimates is defined.

Define to be the“G”lobal event index corresponding
to the “L”ocal event , that is, .
Fig. 2 illustrates the relationship between the local and global
indexes. We shall now present conditions for establishing what
we will refer to as therenewal structureof the sequence

.
It is customary to assume that the estimation intervals grow

with . However, in this work we shall show that this is an
unnecessary condition. Instead, since the estimators satisfy
Assumption 3, we shall focus on the simpler case where

is a continuous function

Fig. 2. Correspondence between local and global event indexes.

of independent of and ; in addition,
. We shall also choose the increments so that for

any compact and for any , there is a
such that .
This condition will be implied by a stronger uniform tightness
requirement made in Assumption 6 later on. In particular, this
implies that for
every . From our continuity assumptions, it follows that

(15)

where denotes the expectation under the invariant measure
of the fixed- process, is continuous in, and uniformly
bounded: .

Example (Continued):Returning to the system of Fig. 1, let
us consider two possible ways of defining estimation intervals
at any node : 1) a fixed number of local events, in which
case and 2) a fixed number of local
busy periods, in which case let denote the number
of events contained in theth busy period at and we get

.
For case 2) above, let us set for notational simplicity

and consider an estimator as defined in (14). Based on
the PA estimator in (13), has the following general form:

(16)

where is a particular set of local event indexes and
is a function of the state when theth local

event occurs (equivalently: the th global event occurs)
and of the control parameter . We will not discuss here the
precise nature of or of (which may be found in [5] and
[25]) but only point out that depends on the state through
those entries associated with theth component, as already
mentioned in Section III-B1. As in most pathwise derivative
estimators, the terms represent individual “per-
turbations” which are easily evaluated functions of the system
state.

Before proceeding, it is important to note that even if the
control values change within an estimation interval, the local
estimators use the same functional form and continue the
computation of the current estimate. We shall return to this
point in Section IV.

C. Control Structures

We shall deal with three control update structures: a central
controller that performs updates every global event epochs;
a central controller that updates according to a random se-
quence of update epochs; and a fully decentralized control
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scheme where each component imposes aglobal control
update on the entire system at the end of its individual local
estimation intervals. Before proceeding, let us summarize the
event indexing notation which is going to be used throughout
this section:

local event index at indicating

the end of theth estimation interval

global event index corresponding to

, i.e.,

global event index indicating

the th global control update.

1) Central Controller with Fixed Update Events:In this
centralized control setting, we assume that there exists a
single controller (e.g., a preselected system component among

acting as the global controller) who updates
all control parameters at update epochs
corresponding to global events Here,

is a deterministic integer. It represents the number of global
events defining the control update interval. The value of the
control parameter vector is kept constant over theupdate
interval defined by events
changes only at event epochs according to
an SA scheme that we now proceed to construct.

The control parameters are updated by making use of the
local estimates reported to the controller at time instants
corresponding to the global events

. Since, however, the control updates
are carried out at (where for
some in general), the actual estimates used at these time
instants are denoted by . Thus, our first task is to
consider an update event and specify how is
to be constructed from the local estimators received by
the controller prior to global event . For any component
which computes local derivative estimates, let

i.e., is the total number of estimates reported byto
the controller prior to the th control update (performed when
global event occurs). Thus, the estimates available to the
controller from over the th update interval are given by

. The derivative estimator
used by the central controller is now defined as

(17)

We can now specify the centralized control scheme based on
the distributed estimation process described above. First, note
that the estimate information is collected by the controller in
asynchronousfashion, i.e., each component reports an estimate
based on its own local event time scale. Thus, in (17), the
estimates evaluated may contain partial computations using
data prior to the current update interval. This provides some
flexibility to the scheme and will turn out to be crucial in the
decentralized control case to be discussed later. Next, recall

from the discussion in Section II that all componentsobtain
local derivative estimates, but only components need
to perform control updates dependent on these estimates; for
all , control updates are simply obtained through (2).
The updates , for all , are made at the epochs
of events according to

(18)

with

(19)

where the coefficients were defined in (4). The actual
control is set to for all

(the case where the control is subject to constraints
is discussed below).

Based on the above, we can summarize the centralized
control scheme as follows—Centralized control structure with
distributed asynchronous estimation:

• Each component : Evaluates an estimator and
reports it to theCentral Controller at the epochs of its
local events .

• Central controller : At epochs of global events
:

1) evaluates the derivative estimator through
(17);

2) updates the control parameters by evaluating
for all through (18) and (19);

and for all through (2).

The distributed asynchronous nature of the derivative estima-
tion process is evident from this description. The convergence
properties of this scheme will be presented in Section IV-E.

Recall that our actual optimization problem presented in
Section II allows the control vector to be constrained in
some set , which we shall assume to be compact. Clearly,
in the control scheme above it is possible that some
lies outside , in which case we proceed as follows. Let

be the usual Cartesian projection of . Then:
1) Use as theactual control value applied to the
system based on which all dynamics are updated but 2)
Maintain and use it (not ) to evaluate the next
control value through (18). Since, for any is unique,
we may subsequently interpret the notation as the
corresponding quantities for the fixed-process at
without any confusion.

Remark: Under the additivity assumption (12), it is also
possible to implement another centralized scheme in which
the central controller “requests” information from all com-
ponents at its update epochs . They would
then send all the derivative estimate information up to that
time and would keep a register to continue computing their
local estimators for the next update interval. This, however,
requires additional communication overhead in the form of
the controller issuing requests to all components.
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2) Central Controller with Random Update Events:In our
distributed estimation scheme, we assumed that the system
components estimate local derivatives using only local in-
formation. We used random stopping event indexes based
on the local event numbers to cover the general case where
global event numbers may be unknown locally at the different
components. This may also be true for the central controller.
We shall deal here with the extension of the previous scheme to
random update event indexes at the controller. Three important
applications of this arise when the component acting as the
central controller updates: 1) at regular intervals containing
a fixed number of its own local events; 2) in the case of
queueing systems, at the end of busy periods; and 3) at regular
intervals defined by time (say, every s) instead of events,
in which case we can introduce an event to occur at all time
instants All of these schemes yield random
update intervals determined by a sequence of stopping times,
measurable with respect to the local history of the process.

The local estimates are once again broadcast to
the central controller at the global event epochs

. Following a similar notation as in the previous sub-
section, call the increasing sequence of stopping times
that define the th update intervalat the central controller from
event index to , and let denote
the number of events included in this update interval. We
choose this sequence so that it satisfies the renewal structure,
and a.s., is continuous,

and .
As before, is kept constant over all events

. Let

which has the exact same meaning as in the last subsection.
The estimator used at the central controller is defined as

(20)

The control update equations for are given by

(21)

with

(22)

Clearly, when are deterministic and
fixed, the two schemes (17) and (20) differ because in the
latter, we are not dividing by , and this affects the values
of . Consequently, the actual derivative estimator is
obtained by scaling above by .

Note that in the case of control constraints, we can proceed
exactly as in the previous section, i.e., by introducing the
projection and treating it as the actual control, while
using to evaluate the next control value through (21).

3) Decentralized Asynchronous Control:The decentralized
structure we will use is described as follows. Each system
component of the DES becomes aglobal controller and can
change the value of the local variable, as well as the values
of all (as long as the constraints in (2) hold at all
times.) In particular, at the end of theth estimation interval,
when the global event index is becomes a
controller and changes the value of theth component of the
vector by adding to it an amount dependent on as
described below. In mathematical terms, if denotes the
th component of the control vector at event epoch, then

(23)

where now

(24)

Due to our assumptions on , namely that
a.s, it follows that, for any fixed component, for every
at most one value of is such that , that
is, or 1 a.s. Thus, whenever the

th global event coincides with the end of an update
interval (say, ) at some component (say,), the expression
above yields . This is the amount by which
the th control parameter is changed at that time. Notice that
in this scheme two or more controllers may simultaneously
update the same components of the control vector.

This asynchronous decentralized control scheme can be
summarized as follows—Decentralized asynchronous control
structure:

• Each component :

1) evaluates alocal estimator over an interval
of local events

;
2) at epochs oflocal events [equivalently, global

events ], updates all control
parameters by evaluating for all
through (23) and (24), and for all through
(2);

3) sends the complete updated control vector to
all other system components.

To illustrate the operation of this structure, consider an
example with two system components as shown in Fig. 3.
First, component 2 completes an estimation interval at global
event . It updates both and , based only on its
local derivative estimate , and sends the information
to component 1. Component 1 immediately adopts the new
control value but continues its own estimation process
without any other action. The next component that happens
to complete an estimation interval after happens to
be component 1. This corresponds to global event .
Component 1 evaluates , updates and , and sends
the new control values to component 2. It so happens that the
next component completing an estimation interval is compo-
nent 1 again [at global event ], so this process repeats.
Note, however, that component 2, while changing its control
value twice, goes on with its local estimation process



640 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 5, MAY 1998

Fig. 3. Illustrating the decentralized asynchronous control structure.

accumulating state information without any estimator resetting
action.

In order to keep the notation and subsequent analysis closer
to the one introduced in previous sections, we will make use
of some auxiliary (artificial) variables, denoted by ,
with the following interpretation: is the cumulative
control change imposed by componenton component by
the instant when becomes a global controller for theth
time. In other words, at the epoch of event , the current
value of has experienced a total change from the action of
controller given by . The dynamics of these auxiliary
variables are specified as follows. Let be such that

. Then define

(25)

where

(26)

It should be clear that is the amount by which compo-
nent imposes a change on the control parameter value at
at the th time that becomes a global controller [i.e.,
at global event index ].

As in the previous sections, in the case of control constraints
of the form , we proceed by using the projection

as the actual control, while using to evaluate
the next control value through (23). In order to make use of
(25) and (26), we will update the auxiliary variables, which
uniquely define and hence the projection .

Remark: At the beginning of Section III we motivated
the schemes through different time scales. However, there
are no assumptions on the values of or that
“force” the time scales to have any relationship at all. From
a practical point of view, it is more reasonable to associate
the time scales with a faster, an intermediate, and a slower
one. The limiting behavior of the procedure, however, is
not affected by the relationships between the different time
scales and , as long as the renewal structure is

satisfied. In particular, suppose that for the central controller
we choose . This means that all components
are synchronized and send the information when the central
controller requests it. Then the intermediate and the slower
time scale blend into one. On the other extreme, we may
have , which for the decentralized structure (which
actually becomes equivalent to a central one) imposes updates
at every single event epoch. This case is covered by our model,
and the intermediate and slower time scales coincide with the
faster one. Notice that we do not consider the case where the
estimation intervals tend to infinity, an approach commonly
used in simulation optimization practice. We will show in
Section IV-E that this is not necessary under the conditions
in Assumption 3.

IV. WEAK CONVERGENCE ANALYSIS

In this section, we address the issue of convergence of the
three SA control schemes presented in Section III-C, (18),
(21), and (23). To do so, we have to carefully consider how
varying the control parameter vectorafter selected events
affects the underlying system state and hence the derivative
estimates which drive these SA schemes. The first step in this
process is to enlarge the original state vector by defining
an appropriate “augmented” state, denoted by. The choice
of must be such that the resulting process is a
Markov Decision Process (MDP). While this may not always
be possible for arbitrary systems and derivative estimators,
the structure of our particular DES derivative estimators, as
specified by Assumption 3 and illustrated in the example
presented in Section II-B1, allows us to accomplish this goal
with relatively little effort.

Example (Continued):We return to the system of Fig. 1
discussed in the last section. We shall illustrate the enlargement
of the state for the (harder) case of decentralized operation,
where we choose estimation intervals at each nodedefined
by a fixed number of busy periods at . Thus, recall from
Section III-C3 that in this case the entire control vector is
updated by any nodewhich completes an estimation interval

if
otherwise
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of its own. For notational simplicity, let us set and use
the derivative estimator presented in (16). Let
denote the index of the busy period at nodewhich includes
the th global event. Thepartial computationof the estimator
above after the th global event is denoted by and is
defined recursively as in the equation shown at the bottom of
the previous page, where is a function of the
state at the th global event and of the control parameter

, and note that it depends on the local event index(detailed
expressions for this function may be found in [5] and [25]). It
can then be verified that if theth busy period at contains
local events, then , i.e., the partial computation
after the completion of a busy period recovers the derivative
estimator (16) needed at that point to perform a control update.

It should now be clear that the enlarged state for this
example is a vector consisting of the original system
state vector and the partial computations

(in some cases, it is possible that an additional
auxiliary state variable has to be introduced; see, for example
[25]). In general, the partial computations are a natural way to
carry past information required in the derivative estimators of
the particular form encountered in perturbation analysis and
similar gradient estimation methods. The process
can be interpreted as the pathwise derivative process, which
is adapted to the history of the underlying process itself. In
this example, where the updates are performed as soon as a
busy period is completed, the enlarged statecontains all
the required information for the epoch and the amount of the
updating.

Note that if we wish to keep the control vector fixed, then
the corresponding enlarged process (system and derivative
estimation process) possesses the Markov prop-
erty. Furthermore, using the domination argument invoked in
Section III-A, for any compact set , it follows that

is tight, the invariant measure exists, and its marginal
coincides with the invariant measure of the original process.

In the next few sections, we proceed with the basic pre-
liminary results used in the weak convergence method similar
to [17]. In some texts, weak convergence (or convergence in

distribution) is denoted by the symbols , or . We shall
use the latter. Our goal is to use the modeling framework
developed in the last section and show how the framework of
[17] can be applied to the schemes (18), (21), and (23). Note
that the corresponding fixed-process has weakly
continuous transitions probabilities

and a unique, ergodic invariant measure
satisfying the weak continuity and boundedness conditions of
Assumption 1. Based on the discussion above, we assume that
the process is an MDP, satisfying

(27)

A. The Basic SA Framework

Under any of our three schemes in the last section, the
updates of the control variable are of the general form

(28)

Recall that in the case of control constraints , we still
use this update scheme but employ the projection as
the actual control, as discussed in Sections III-C1–III-C3.

Based on the analysis in Section III, it should be clear that
this general form allows for to be zero whenever is
not an update epoch. In turn, this information is adapted to the
evolution of the process; in our example, updates take place
either after a fixed number of events or after a fixed number
of busy periods at a particular node (for the central controller
case) or at each node (in the decentralized operation).

Before proceeding, we will present three more technical
conditions used in our analysis. First, the derivative estimators
at component , introduced in Section III-B1, are assumed to
satisfy the following regularity conditions.

Assumption 4:For the process and any integers
and is a continuous function
in . Furthermore, for every compact set there
exists some such that

The latter condition is satisfied by all standard gradient
estimators under mild technical conditions on the distributions
of all event lifetimes affected by .

Example (Continued):Let us return to the derivative es-
timator (13) which was introduced in [5]. For simplicity,
we limit ourselves to the regenerative form of this estimator
in (16) (however, our analysis can be easily extended to
the finite horizon implementation; see [25] for details in a
similar example). We shall use the fact (established in [5])
that (with ), where is
the total number of local events in theth busy period at node
, which we also used earlier. In addition, we shall assume

that for any .
In our example, if the estimator is calculated starting at event

for local events, then from the additivity property (12),
Assumption 4 follows from the a.s. bound of in (13).
In particular, letting denote the index of the busy period
where the local event belongs

The expectation in Assumption 4 can then be uniformly
bounded for any compact set using the value

instead. Recalling the dominating process
argument for any node, which we first used in the example
of Section III-A, let denote the number of events in one
busy period of this dominating process. Under the assumption
that , the above bound has an expectation which
is linear in .

Assumption 5:The set of random variables is
tight. The sequence of random variables

is uniformly integrable.
Example (Continued):Recall that in introducing our exam-

ple in Section III-A, we used a common truncation argument
to ensure that the resulting control variables are within a
compact set contained in the stable region. Therefore, the
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varying control values all lie in a compact set completely
contained in the stable region. Tightness of follows
directly from this fact. Also, for each node, the queueing
process with varying is stochastically dominated by a
stable GI/G/1 queue with geometric service times at parameter

. As before, let be the number of
events in busy period of the dominating process at node
, and consider the decentralized operation where each node

performs a control update every busy periods. From our
previous bounds, a.s., with denoting the
current busy period. Similarly, the waiting time of a packet,

, belonging to busy periodis always bounded by ,
that is, a.s., for . Since for any we
can find a sufficiently large with ,
it follows that are tight and
so is the sequence . Uniform integrability of
follows from the assumption that , implying that
the variance of the estimators is uniformly bounded for any
compact set contained in .

Recall that is the number of events contained in
the th estimation interval at component, and is the
number of events contained in theth update interval in the
case of a centralized control structure. We shall assume the
following properties of the stopping times associated with the
estimation and control update processes.

Assumption 6:For all , the sequences
and are uniformly integrable.

Example (Continued):In our example, under regenerative
estimation, is the number of packets transmitted in busy
period of node , which, by assumption, has a uniformly
bounded variance. This is shown using again the argument
with the dominating stable queues. For the central controller,
a similar argument applies to for either a fixed number
of service completions or a fixed number of local busy periods.

B. The Interpolation Processes

When dealing with the notion of convergence, we implicitly
assume a concept of a norm. The approaches that study a.s.
convergence of the sequence generally use the norm
in . As motivated in the introduction of Section III, the
approach taken in this work is the study of the behavior of
the updates by taking a global view of the processes and
establishing that it gets closer to the trajectory of the solution
of an ODE, as . The limiting process shall therefore be
a continuous timeprocess. The first step in analyzing weak
convergence of SA schemes is to define “continuous time”
processes from the event-driven sequence of control values.
The time scale used in this definition is, of course, related to
the gain parameter or learning rate. In our general framework,
we have talked about a faster time scale that drives the process
according to the events that trigger all state transitions and
a slower time scale according to which the control values
change. We shall therefore begin by defining two important
continuous-time processes, as follows.

Let us start by considering to be a sequence
of random stopping event indexes, measurable with respect to

the filtration of an MDP process . Then, set

In addition, let be a random
sampling of the state of the process.

We now define theladder interpolation processassociated
with

for (29)

and thenatural interpolation process

for (30)

The first interpolation scales time with respect tocontrol
updateintervals and the second with respect toglobal event
epochs. Fig. 4 illustrates the construction of these processes.
We begin with the piecewise constant process describing
control updates as a function of the global event index
(thin solid line drawn on a scale with jumps shown
at update events). This defines the natural interpolation
process . This process is then sampled at a subset of
event indexes with corresponding values

(thick solid line drawn on a scale
with jumps shown atsamplingevents) as shown in Fig. 4.
The ladder interpolation process is simply obtained by
redrawing this piecewise constant function as a function of
the control update index on a scale.

We shall now be interested in establishing some general
properties of these processes when is related to the
control update sequences corresponding to the three schemes
defined in the last section: for the centralized structure
with update epochs every global events; for the
centralized structure with random update epochs; and
for the fully decentralized structure driven by individual com-
ponents at epochs .

The following result is needed to guarantee that, under
Assumption 5, the interpolation processes we will work with
satisfy a tightness condition. Recall that tightness of a sequence
of stochastic processes (indexed by) is analogous to compact-
ness and implies that any subsequence has a further weakly
convergent subsequence (see [17] for detailed definitions and
discussion). Therefore, this result allows us to work with
weakly convergent subsequences of an interpolation process
in order to characterize its limit as the solution of an ODE. In
the analysis that follows, we will repeatedly exploit this fact.

Proposition 1: Let be a sequence of uni-
formly integrable random variables and

, with independent of . Call
for the corresponding interpolation

process. Then the sequence of interpolations
is tight in the space of piecewise constant, right continuous
processes . Furthermore, all weak limits are Lipschitz
continuous w.p. 1.

Proof: See the Appendix.
Our first application of Proposition 1 gives us the following

general result regarding the two interpolation processes in (29)
and (30):
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Fig. 4. Illustrating the interpolation processes~��(t) and ��(t).

Corollary: Under Assumption 5, if the sequence
is uniformly integrable, then the interpolation

processes defined by (29) and (30) are
tight and all joint weak limits are Lipschitz continuous w.p. 1.

Proof: Since in (30) satisfies the recursion (28), it
follows directly from Assumption 5 and Proposition 1 (applied
to each component of the vector valued control process) that

are tight and all weak limits are Lipschitz
continuous w.p. 1. In order to show that the same is true for
the ladder interpolation process (29), define thetime scaling
process

for

and observe that satisfies the recursion
. We can, therefore, apply Proposition 1 to this

process and conclude that are tight and all
weak limits are Lipschitz continuous w.p. 1. Next, from the
definition of and (29)–(30), it follows that for every,
if , then and

. Therefore

for

which implies tightness of . Therefore, for
any jointly weakly convergent subsequence of the processes

(indexed also by ) with limit ), the
sequence of processes converges weakly to

, which is Lipschitz continuous w.p. 1.

C. The Averaging Result

In this section we apply the method first introduced in [18]
and generalize the result of [17] for the random sampling of
the process . Our model is more restrictive only

in the assumption of time homogeneity of the MDP
and can be appropriately extended to the nonhomogeneous
case, if desired. Notice that, according to the definition of the
ladder interpolation process, it follows that .

The main result in Proposition 2 below is to show that two
averages are equivalent in the limit as , under a set
of technical conditions. In particular, for any continuous and
bounded function , define:

(31)

This is the average over samples taken in an interval defined
by . Note that at every sample
the control value generally varies. Next, define

(32)

which is another average over samples, this time taken in an
interval defined by , and note that in this case
all control values are fixed at . The significance of the
result that the two averages are equivalent as is revealed
when we think back to the distributed estimation process
discussed in Section III-B. This process was described under
a fixed throughout an estimation interval at component.
Yet, clearly, several control changes could be dictated by either
a central controller or other components (in the decentralized
case) within such an interval. If we think of above as a
local estimator, Proposition 2 permits us to work with a fixed
control process, as we did in Section III-B, because we are
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ultimately concerned only with the behavior of our system
in the limit as . In fact, Proposition 2 contains an
even stronger statement involving the invariant measure of
the fixed- process. We will also see that the key condition
in Proposition 2, i.e., (33) below, is verifiable for all cases of
interest we consider in Section IV-E.

Proposition 2: Let be an MDP satisfying As-
sumptions 1 and 5. Let be uniformly integrable and

, with a sequence of
stopping times, measurable with respect to the MDP process.
Let be the random sampling process. Pick a
weakly convergent subsequence also indexed by ,
with limit . Assume that along this subsequence of values
of , for any bounded, continuous function and any

(33)

where for some constant , and denotes the
measure with respect to the fixed-process. Let be any
fixed number, be such that as

, and call the index such that .
Then, using the definitions (31) and (32), for any continuous
and bounded function

(34)

where the expectation is w.r.t. to the distribution of the random
variables . Moreover

(35)

where denotes the invariant measure of the fixed-
process.

Proof: See the Appendix.
We shall now introduce a time-continuous process related to

any continuous and bounded function related to
and rephrase the result of Proposition 2 in a way that we shall
frequently use later on.

Corollary 2: Under the assumptions of Proposition 2, for
any bounded and continuous function , if we define

for

and

then .
Proof: Under the ergodicity assumptions, the limitof

is independent of the initial value of the state and is
the invariant average of the function . Then, by the
definition of and (34), we obtain the result.

D. The Integral Representation

Let be an MDP satisfying Assumptions 1 and
5. Let be a sequence of random stopping event indexes
measurable w.r.t to , and
as before. Assume that the are uniformly integrable
and let, as before, be the random sampling
process. The ladder interpolation process is defined as
in (29) with respect to . Let be a real-valued
function of over the interval

, and assume that are uniformly integrable. Let

(36)

and call the real-valued ladder interpolation process

for (37)

and finally, call the time scale process

for (38)

Using Proposition 1, each subsequence of
has a further weakly convergent subsequence with Lipschitz
continuous limit process . Our next result will char-
acterize the limit process of such weakly convergent
subsequences in terms of the solution of an ODE depending
on the limit control process along a chosen weakly
convergent subsequence. In the following section, we shall
identify with each component of the control processes

or functions of it. The time scale interpolations will
therefore be defined with respect to different stopping time
sequences, depending on the scheme itself.

We shall now develop the basis for the integral represen-
tation of the process , a key ingredient in the proof that
lends itself to the title of this section. Using a telescopic sum,
from (36) and (37) we can write

Following the method in [18], [17], and [24], let ,
where and as . This corresponds to a
“time scale change” device which we will repeatedly use in our
analysis. Briefly, consider a time interval partitioned
into subintervals, each of length. With this “time scale” ,
the total length of the interval is then . Now set
such that and as . In this new “time
scale” , the total length of the interval is simply partitioned
into subintervals, each of length. Then, the sum in
the expression above can be replaced by two sums: an inner
one over all subintervals contained in an interval of length

and an outer one over all the latter intervals. Thus, we have

(39)
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where the term accounts for the end effects of the larger
intervals of size .

Let denote the conditional expectation given all values
up to time . From the MDP structure, this means that
for any function

for all

whose distribution depends on the distribution of the initial
conditions at time .

We now define an operator on the space of piecewise
constant functions of the form (37) as follows:

for (40)

so that if we set , then is also a real valued,
piecewise constant stochastic process. It is defined through
the average expected changes in the process over time
intervals of size . Since it is piecewise constant on intervals
of length , we have

which yields the integral representation of.
Proposition 3: Under Assumptions 1 and 5 for ,

if there exists a continuous and bounded function such
that for every weakly convergent subsequence
we have

(41)

uniformly in , then the a.s. Lipschitz continuous limit
along this subsequence satisfies

(42)

Proof: Define the process

(43)

We will now apply Proposition 1 to the processes
. We can do so for directly

from Corollary 1. Proposition 1 applies to in view of
(36) and (37). We can also apply it to by looking at
its definition and observing that we can obtain a recursion by
identifying in Proposition 1 with and with ,
and noting that as . Therefore, we conclude that
for any subsequence, there exists a jointly weakly convergent
subsequence with a.s. Lipschitz continuous limits ,

. Choose any such subsequence (indexed also by).
Then, along this subsequence, converges to a Lipschitz
continuous process .

Let denote the history -algebra of the process up
to time . Then, using a conditioning argument on (39) we have

where we have used (40) and the integral representation for
. Using (40), the limiting process along the weakly

convergent subsequence, given by

is a Lipschitz continuous martingale (from the Lipschitz con-
tinuity of the limit functions shown in Proposition 1), which
implies that has zero quadratic variation. Since
, it then follows that with probability one,

therefore, using (43) the limit process satisfies

and since is a bounded continuous function, the solution
to this ODE is a deterministic and continuous function of.

Remark: If is given by

(44)

then, following the notation in our previous subsection:

(45)

With this definition of it follows that the expression
for introduced in Corollary 2 is equivalent to in
(40). Indeed, and using conditional
expectations, for all

and thus

for

(46)

where we have used the definition (31) of the previous
subsection. Therefore, if Proposition 2 is applicable to (44),
then (41) of Proposition 3 is satisfied and this, in turn, can be
used to characterize the limiting ODE of the general form (42).
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E. Convergence of the Algorithms

We shall now consider the update schemes in Section III-
C. The DES is assumed to satisfy Assumptions 1 and 2. The
estimators are assumed to satisfy Assumptions 3 and 4. Finally,
the augmented MDP is assumed to satisfy Assumption 5, and
the random stopping times satisfy Assumption 6. In particular,
since the partial computations and the residual times related
to the stopping times are part of the enlarged state space,
for the fixed- process the transition probabilities
are weakly continuous in and there is a unique invariant
measure .

In the following, we present our main convergence results
for the three update schemes in Section III-C. We shall limit
ourselves to the most complex of the three, the decentralized
asynchronous control case, since the remaining two can be
similarly treated as special cases (detailed proofs can be found
in [27]).

Before proceeding, we present next a lemma regarding a
basic property of the derivative estimators we have defined in
Section III-B which are used in the three control schemes of
Section III-C.

Lemma 1: Under Assumptions 1–4, , defined in (14),
satisfies the following:

(47)

Proof: Using the additivity property (12) in
Assumption 3 we have

Since the global event index is strictly increasing
in , then from (10) we have

a.s. for the fixed- process. Moreover, from (15),
, and using Assumption 3 we

get

a.s.

which, in view of Assumption 4, by the dominated conver-
gence theorem yields the desired result.

The next two results are stated as corollaries of the above
lemma, since they can be proved in the same straightforward
way.

Corollary 3: Under Assumptions 1–4, , defined
in (17), satisfies the following:

(48)

Corollary 4: Under Assumptions 1–4, , defined in
(20), satisfies the following:

(49)
We now consider the decentralized asynchronous control

update scheme (23) and for each, the update scheme (25)
for the vector (with components .)
According to the discussion of Section III-C3, the values of

are updated only at the local update epochs at processor
corresponding to global event indexes . We deal with

any fixed and let satisfy Assumption 6.
Let and be the ladder and natural interpolation
processes related to , as follows:

for

for

where is a vector with components and similarly
for . Recall that the th component changes the value of
the auxiliary control variable only at local event indexes

, so that is in fact the natural interpolation process
corresponding to , following the general definition (30).

Let denote the vector-valued ladder interpolation of
the control process with respect to the indexes . Recall
that each processor will now have its own local time
scale so that the sampling of the control process is done
locally at different epochs for different processors. The natural
interpolation process is independent of the time scale.

The processes can be identified with components of
the control process itself, in the sense that the control is
uniquely defined by the relationship

for all . Indeed, from (25) and (24), since are
piecewise constant and only change at the epochs corre-
sponding to local updates, then the actual control value at
the epoch of event is the initial value plus the total
changes effected at the control updates. On the other hand,

contains the cumulative changes performed at
controller . Since with , then
the control used at any time is given by

. In the case of control constraints, recall
that the projection is introduced as the actual control.
Accordingly, we shall introduce .

Define also the local time scaling process

for

Since is constant over local update intervals,
and .

Theorem 1: Under Assumptions 1–6, the processes
converge weakly as to a solution of the ODE

(50)

If the ODE (50) has a unique solution for each initial condition,
then the sequence . Furthermore, if (50) has
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a unique stable point in the interior of such that
, then . The corresponding

true control value limit process satisfies
the corresponding projected ODE, so that if there is a unique
maximum at the boundary , then .

Proof: We work with any one system componentand
show that the associated ladder interpolation process
satisfies an ODE. Since the analysis is the same for every
, it will follow that for all , the limit ladder processes

will satisfy each a similar ODE. Let satisfy
Assumption 6. Applying Corollary 1 of Proposition 1, given
any subsequence of , we can choose a further subse-
quence so that the corresponding processes and

converge weakly. Let the random sampling process be
. Set

for each , where are given by (26) and
represent the changes in the artificial control component
at its jump epochs.

We shall apply Proposition 3, identifying the process
with each of the components of the artificial control
process . Proposition 3 can be applied if we can apply
Proposition 2 to these processes. We show in the Appendix as
Lemma 2 that (33) is satisfied. It follows from (26) and (47)
in Lemma 1 that

for all . Recall that we now interpret as the expectation
for the fixed control process that operates at true value .
In order to apply Proposition 3, we shall show that (41)
is satisfied. To shorten notation, call the expectation
conditioned on ; from (40) and (25) we have

for

If is a bounded compact set, then by Assumption 4
is continuous and uniformly bounded. Then Corol-

lary 2 applies using , which yields

(51)

If is not bounded (or no projection is used), a truncation
argument can be used as in [17]. Specifically, for every
constant , let

if
if
if

denote the truncation of the function. Corollary 2 yields for
any

where now

for

and . Use now the dominated
convergence theorem to make , and obtain

We assumed that were continuous and
bounded functions. Since the projection is continuous and
bounded, the RHS will be so too, as required. Since

, as , then (51) holds.
We can now apply Proposition 3 to each of the components

of the artificial control processes to obtain

(52)
In order to characterize the dynamics of the limit process

we shall study the time scale process generated by
the chosen . Let be the lengths
of the local update intervals and write the telescopic sum for

so that

where, by (46)

for

represents the expected average change in the time scale
process over a time interval of size. From the renewal
structure, it follows that we can also apply Corollary 2 to
obtain

and therefore, the limit function satisfies
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which is a deterministic, continuous, and monotone function.
Therefore, it has an inverse function that satisfies

so that

(53)

where we have used the fact that , and
along the convergent subsequence,

which follows from Corollary 1.
Since for every , we have , using the

chain rule for the derivatives, the limit process along
this convergent subsequence satisfies for each component

(54)

The argument above is the same for all, there-
fore along any jointly weakly convergent subsequence of

, the limit processes satisfy
(54) and (53). For every the natural interpolation process
satisfies , therefore in the limit, along
the convergent subsequence, we obtain for each component

recalling (5)

and therefore (50) is satisfied for the chosen subsequence of
the original weakly convergent subsequence. If this ODE has a
unique solution for each initial condition, since ,
then this limit is independent of the chosen subsequence
and therefore all subsequences have further convergent subse-
quences with the same limit, thus . The remaining
statements follow using continuity of the projection operator
and stability of the ODE.

Remark: For each system component, the local time
scale is related to its “slower” update epochs. Working
component by component allows us to apply the weak con-
vergence method as in [16] locally. However, the only time
scale which is common to all components is the natural time
scale. Therefore, we have first obtained the limiting ODE’s
satisfied by the natural interpolation of the artificial processes
that are local to each component in order to finally characterize
the limit of the true control process .

Although in the limit the equation satisfied by the natural
interpolation processes in the central controller with random
update times and in the fully decentralized operation are the
same, the choice of and the sequences are of
practical importance in applications where we keep a fixed

learning rate. The compound effect of for
close to the optimal value induces small changes at the update
epochs of the central controller. However, the decentralized
control schemes act separately, thus we can expect the control
process to present more noticeable oscillations in the
decentralized operation even close to the optimal value. This
is indeed the case in the results shown in Section V.

We also state below two corollaries of the theorem that
correspond to the centralized scheme with fixed and random
update events of Sections III-C1 and III-C2 (for details see
[27]).

Corollary 5: For the central scheme (18), under Assump-
tions 1–6, the processes converge weakly as to
a solution of the ODE

(55)

Corollary 6: For the central scheme (21), under Assump-
tions 1–6, the processes converge weakly as to
a solution of the ODE

(56)

V. AN APPLICATION

In this section, we provide an application of the optimization
schemes developed and obtain experimental results for the
scheduling problem introduced in Section III-A as shown in
Fig. 1. We shall illustrate the use of distributed derivative
estimation and compare the convergence behavior of the three
control structures. Recall that in our model,nodes compete
for a single server/resource (e.g., the channel in a packet radio
network). Fixed length packets arrive at nodeaccording to an
arbitrary interarrival time distribution with rate . We consider
a slotted time model with slot size , where at the start
of each time slot, the server is assigned to a particular node
(see Fig. 1). The current time slot is allocated to theth class
with probability . The objective is to minimize the weighted
average packet waiting time.

In the example presented here, we have simulated a model
with so that the constrained optimization problem is
stated as

s.t. (P1)

where is the average node packet waiting time and
.

As described in Section II, we first convert to an
unconstrained problem with , corresponding to
the independent control variables. Due to the nature of the
problem, each queue can be modeled as a single
server with deterministic service time. From the point of view
of the th queue, the server is on vacation (i.e., serving some
other queue) at any one time slot with probability .
Notice then that the average packet waiting time at queuecan
be estimated locally without the need for information from the
other queues, and the sensitivity with respect tocan also be
estimated locally. In our experiments, these sensitivities were
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Fig. 5. Comparison of centralized control versus limiting numerical solution to ODE.

estimated via thePhantom Slot (PS)method of [5], based on
the admission control derivative estimation of [2]. For brevity,
we omit here details on thePSestimator. As described earlier,
the estimation is done in distributed fashion. All estimators
are constructed depending on the state values that can be
measured locally at the epochs of service completions at the
given queues. Therefore, our global event epochs are simply
counting time slots. Under uniform stability, the stationary
throughput of each node equals its arrival rate, and the factor

in (10) is given by independent of . It
is worth noting that if the rates are unknown, it is still
possible to estimate online.

In what follows, we implement the three control structures
defined in Section III-C to perform a single run optimization
using the basic scheme (7) with fixed learning ratefor the
three-node polling system and compare their respective per-
formance. For this example, our method ensures convergence
of the control processes of our three schemes to the ODE

(57)

(58)

(59)

which, in the limit as , has an asymptotic value
that satisfies the Kuhn–Tucker conditions for

optimality.
In the simulations performed, we considered a network

with Poisson arrivals andsymmetrictraffic. As long as the
model parameters are selected to ensure that the optimal point
is an interior one, this allows us to know that the optimal
control vector is . The system parameters
considered are and

• Symmetric traffic:
• Initial slot assignment:

• Central controller with Fixed Update Events:
time slots;

• Central controller with Random Update Events:
busy periods;

• Decentralized controller: local service comple-
tions.

1) Centralized Control with Fixed Update Events:In the
centralized control scheme used here, a control update is
performed by a central controller (any node can bea priori
selected to be the controller) at update epochs

where is a deterministic number of slots. For
simplicity, we assume that the estimation interval for each
node is identical to the controller update epochs. In our
earlier notation (see Section III-C1) this simply means that

, and there is only one local sensitivity estimate
of each node reported over the th update interval. Thus,
as described in Section III-C1, at the epoch of global event

, each node transmits its estimate to the central
controller. The central controller then calculates as
defined in (17) with just one term in the sum and does an
update based on

and . Note that
because of the slotted nature of the model, each node can
independently recognize a global update epoch without explicit
solicitation from the central controller. Following Theorem 1,
our method of convergence predicts that the limit of the ladder
interpolation process satisfies (57)–(59). Recall that for
this case, the limit of the natural interpolation process satisfies

, so they are related by a time scale change.
Fig. 5 shows a plot of the solution of the companion

ODE (57)–(59), obtained numerically via a Newton–Raphson
method, and the corresponding interpolation process for
the centralized control structure with fixed update events. In
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Fig. 6. Comparison of centralized versus decentralized control structure.

Fig. 5 we verify that for the given system parameters, the
sequence of controls not only approaches the tail of the
solution to the companion ODE but is able to accurately track
the trajectory of the limiting solution. As predicted by our
theoretical results, the limit processes approach this solution
as . In the plot, was kept fixed and it shows fluctuations
around the limit ODE, as expected.

2) Centralized Control with Random Update Events:This
control scheme is similar to the previous case, where now
instead of performing a global update at the end of a deter-
ministic number of time slots, the central controller counts
the number of busy periods at all nodes (assuming, just for
this case, that the controller can actually detect busy periods
at all nodes). Let be the number of busy periods at
node within an update interval and a given integer.
Then, the controller performs an update when it observes
that . At the end of each such estimation
interval, the central controller solicits from each nodeits
estimate , with as before. It then constructs

as defined in 20 and then proceeds to perform an update
based on

and . In this case,
as stated in Theorem 2, the limit of the natural interpolation
process satisfies (57)–(59).

3) Decentralized Control:In the decentralized asynchro-
nous control structure, each nodeasynchronously performs
a control update at the end of its local estimation interval

where the interval length is
given by a deterministic number of service completions at
node . Since each queue is an M/D/1 server with vacations, a
fixed number of local service completions yields nonetheless a
random number of slots depending on. Let be the global

index and let node be the node that initiates itsth update at
event . Then, node updates theth component
of the control vector according to (23) as follows (recall that

for is independent of the value of the control
and is known to each queue):

and , where
and is the estimate

at node over the local interval . Finally,
the complete updated control vector is sent to all other
system components . The procedure therefore updates as
follows: every time node 1 (or node 2) has an estimate (or

), it adds to (or ) the corresponding term weighted
by the factor and adjusts . When node 3 has an estimate

, it subtracts it from both and and adjusts . The
compound effects, as shown in Theorem 3, yield convergence
of the natural interpolation to the solution of (57) and
(58).

In the simulation results that follow, in order to compare the
convergence behavior of all three schemes on a common basis
provided by the common underlying ODE associated with all
schemes, time is appropriately scaled in order to plot in
all cases. Thus, in the central control scheme with fixed update
times, we adjust the time scale by a factor.

Fig. 6 shows a plot of the slot assignment probabilities
as a function of the global event index (or equivalently
the simulation length in time units) for each of the update
schemes, where the control parameter values are plotted at
discrete sample points defined by the global event indexes

. In other words, this plot shows a sample
of the natural interpolation processes . In Fig. 6, as
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Fig. 7. Comparison of centralized versus decentralized control structure.

expected, we observe that the control processes of the three
schemes approximate the behavior of the predicted ODE,
which has the optimal value as an asymptote. Recall that
our results establish convergence in the distribution of the
interpolated control processes to the degenerate distribution of
the deterministic solution of the ODE. If we were to perform a
series of simulations, each with fixed but decreasing learning
rate , we would see a closer and closer fit in the corresponding
plots to the smooth curve shown in Fig. 5.

Moreover, the performance of the decentralized scheme
seems almost identical to that under a centralized scheme.
This is attributed to the discrete sampling (i.e., every time
units) of the control processes: as expected, the decentralized
version of the scheme compensates the individual updates
in time, yielding a compound effect similar to the central
schemes. Rather than sampling at long time intervals, if we
plot the control at the actual update epoch under the given
control structure, we expect to see a smoother behavior in
a centralized scheme than in the decentralized scheme. In
particular, Fig. 7 shows a magnified comparison between the
decentralized and centralized with fixed update events schemes
over the time horizon indicated. As noted in the Remark at the
end of the previous section, we observe a visibly oscillatory
behavior under the decentralized scheme. Similar results to
those seen in Figs. 5–7 were obtained for different parameter
settings in this model (including asymmetric traffic cases) not
included here.

Finally, a few comments on the choice of are worth
making. First, as discussed in the Introduction, we have
chosen a fixed value of to illustrate the behavior of the
three optimization schemes motivated by the need to equip
them with “adaptivity” properties. In the context of simulation
optimization, we can easily allow for a gradual reduction of

to zero so as to eliminate the small oscillations observed
around the “optimal” reference line in Figs. 5–7. A problem

related to the value of arises because an adjustment induced
by any one of our schemes may result in an infeasible value
of the probability vector (typically, a value greater than one).
In the example of this section, the value ofwas chosen such
that feasibility and stability constraints were never violated.
Clearly, there is a number of different methods to handle this
problem, including various projection techniques; this is the
subject of ongoing research.

VI. CONCLUSION

We have presented and analyzed centralized and decen-
tralized asynchronous control structures for the parametric
optimization of stochastic DES’s consisting of distributed
components. We have used a stochastic approximation type
of optimization scheme driven by gradient estimates of a
global performance measure with respect to local control
parameters. The estimates are obtained in distributed and
asynchronous fashion at the components based on local
state information only. If the conditions specified in Assump-
tion 3 (Section III-B) for the estimators are satisfied, i.e.,
asymptotic unbiasedness and additivity, and some additional
technical conditions hold, we have shown that two centralized
optimization schemes (one with a fixed and one with a random
number of events contained in the update intervals), as well
as the fully decentralized asynchronous scheme, all converge
to a global optimum in a weak sense. Our schemes have the
additional property of using the entire state history, not just
the part included in the interval since the last control update;
thus, no system data are wasted. Regarding Assumption 3,
the nature of the performance measure given in Section II
determines the ease or difficulty associated with the derivation
and verification of asymptotic unbiasedness for our estimators.
It is, therefore, of great interest to study derivative estimators
for classes of problems with different characteristics, such as
objective functions which do not have the additive structure
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considered in this paper (which imposes limited coupling over
the system components) or cases where a performance measure

depends on control parameters other than just.
Finally, as already pointed out, the choice of learning rate
and of the length of the estimation and control update

intervals remains a challenging issue and can be critical in
some applications. In particular, in the presence of control
constraints, it is essential to incorporate mechanisms to handle
the possibility of an infeasible control value resulting from an
iteration.

APPENDIX

Proposition 1—Proof:Since the sequence of initial val-
ues is tight, using [1, Th. 15.5] it suffices to
show that for all and , there are and
such that

for all

Uniform integrability of is defined as
, where is the indicator function of

the event . Let be any given positive constants.
Then for any number (to be determined later) we have

For all , the number of terms in the sum is bounded
by and . Since the first term in the previous
expression involves the sum of random variables that are
uniformly bounded by , then for all the first term
in the bracket is smaller than w.p. 1., so that for

Therefore, we must choose, and in order
for the r.h.s. to be bounded by for all . Using the
corollary of [1, Th. 8.3], we can partition into a finite
number of subintervals whose widths are smaller
than so that

where we have used Markov’s inequality in the last step. From
the uniform integrability of , for all there is a
constant such that . Choose so that

. Then choose . Since
the number of terms in the inner sum is bounded by, then
we finally obtain that

which proves the assertion.

Proposition 2—Proof:From the definition of the indexes
and , if we have .

By the definition of the ladder interpolation process we have
for all such that

Using [16, Th. 2.3], we can use Skorohod imbedding to
change the underlying probability space and assume w.l.o.g.
and invoking Corollary 1 that the chosen subsequence

w.p. 1. For the first and third terms, we use a.s. conver-
gence of and for the term in the middle, the Lipschitz
continuity of the limit function, to conclude that the values of

lie in a compact set w.p. 1, for all .
That is, along this subsequence there is ansuch that

where
, for all .

Let be an arbitrary bounded and continuous func-
tion. By time homogeneity of the MDP, for , if

, we have

(60)

Let

denote the -step joint transition measure of the random
sample process . Similarly, let

denote the -step transition measure of the process
when the control is fixed at the value .
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For this function and , define

(61)

Then, we have

Since is bounded and continuous, it follows from the
weak continuity of in Assumption 1 that is
a continuous and bounded function of, and for

, thus

where the integrand is independent of ; there-
fore, integrating over and using assumption (33), we have

where the remainder term satisfies
. Proceeding by induction, we obtain

Therefore

Combining (60) and (61) and recalling the definitions in (31)
and (32), this equation becomes

Since , the remainder term in the average
above is of the order as along
the chosen subsequence. It follows that

which establishes (34).
Next, by Assumption 5 the sequence

is tight and therefore every sequence (and in particular the
chosen one) has a further subsequence such that its joint
distribution converges as to .
Since , the distribution of
converges to that of the limiting random variable along
all such subsequences.

Given any value of , set

(62)

Therefore: as , where have
the limiting distribution .

Under the ergodicity in Assumption 1, since the invariant
measure of the fixed-process exists, then the Cesaro sum in

satisfies

where a.s. for every and is independent of. By the
fact that the limit is independent of the chosen subsequence
of , (35) is satisfied.

Lemma 2: For the decentralized control structure, under
Assumptions 1–6, for any weakly convergent subsequence of
the process , (33) is satisfied for any continuous
and bounded function .

Proof: Call the subset of the state space such that if
, then is a local update epoch for processor(see

Section III-B2), that is
and . Let be any
bounded and continuous function defined on . Then,
using time homogeneity of the MDP and (27), we have for
any
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We use now the fact that along the convergent subsequences,
under Skorohod representation a.s., and

as
along this subsequence. The transition probability
is weakly continuous in . Therefore, for any bounded
and continuous function , for such that

where and depends on the bound of.
Therefore, for the term above, we can replace
by to get

where we have integrated over in the last step. Proceeding
in the same manner, for we replace first by and
then by to obtain

Proceeding by induction, we have

which shows (33).
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