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Centralized and Decentralized Asynchronous
Optimization of Stochastic
Discrete-Event Systems

Felisa J. \Azquez-Abad, Christos G. Cassandieslow, IEEE and Vibhor Julka

Abstract—We propose and analyze centralized and decentral- network, the processors in a distributed computer system, or
ized asynchronous control structures for the parametric optimiza-  workstations in a manufacturing system. While this decompo-

tion of stochastic discrete-event systems (DES) consisting & g0 conceptually provides opportunities for efficient control
distributed components. We use a stochastic approximation type

of optimization scheme driven by gradient estimates of a global @1d optimization of the system, coordination and the transfer
performance measure with respect to local control parameters. Of information among components are costly and sometimes
The.estimates are obtained in distributed and asynchronqus infeasible processes. It is, therefore, desirable to develop
fashion at the i components based on local state information gecentralized schemes which permit individual components to
only. We identify two verifiable conditions for the estimators and take control actions that contribute toward the optimization of

show that if they, and some additional technical conditions, are Sy P

satisfied, our centralized optimization schemes, as well as the @ global performance criterion for the system. When a central
fully decentralized asynchronous one we propose, all converge controller structure is feasible, we also analyze some relevant
to a global optimum in a weak sense. All schemes have the gptimization schemes and their convergence properties. The

additional property of using the entire state history, not just paqie problem we consider is described next. Letlenote
the part included in the interval since the last control update;

thus, no system data are wasted. We include an application of & réal-valued controllable parameter vector akfd) a given
our approach to a well-known stochastic scheduling problem and performance measure (or cost) to be optimized. The DES under

show explicit numerical results using some recently developed consideration consists df components. Thus, the parameter

gradient estimators. vector is of the formu = [uq,- - -, ux], wherew; corresponds
Index Terms—Decentralized control, discrete-event system, op- to theith component; = 1, - - -, K, and may itself be a vector.
timization. Our objective is to determine a vectarr that maximizes

the performance criteriod (x). When the DES operates in a
stochastic environment, this criterion is usually of the form
|. INTRODUCTION J(u) = E[L(u)], where L(u) is the cost obtained over a
ecific sample path. This problem is particularly hard due
the fact that closed-form expressions fbfu) are seldom
ilable. As a result, one must resort to various techniques
ar estimatingJ/(u) over all (or as many as possible) values of

objective is to develop aecentralizedcontrol structure and * in order to seelu”. qu c:mtrol PUrposes, thg most common
establish its convergence properties, our motivation being tﬂgproach for determining* is based on iterative schemes of
following. It is often the case that a DES consists of a numbEte general form
of distributed components, with each component operating
autonomously and contributing to the overall function of the u(n +1) = u(n) + €(n)Y (u(n)), n=01--- (1)
system. Examples include the switches of a communication
where Y(u(n)) = [Yi(u(n)), -+, Yr(u(n))] is usually an
estimate of the negative of the gradientX{f) with respect to
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these computations are performed, a second issue arises, i.e., algorithms, whereby at least part of the necessary com-
whether the ensuing control actions are centralized or not.
In the former case, a central controller collects the results
of these computations and updates the control vectas).
Alternatively, each component may be able to take a control
action, i.e., update(n) or part of it, using only the result of
its local computation.

We examine next a number of issues that arise related tdb)
the general scheme (1) based on which we will be able to
summarize the main contributions of this paper.

1)

2)

3)

4)

Gradient EstimationWe will limit ourselves to the case
where Y (u(n)) is an estimate of the negative of the
gradient of J(u(n)) with respect tou(n). Thus, the
first issue to consider is that of determining appropriate
gradient estimates based on observable system data.
Recent developments in the area of gradient estimation
for DES’s include perturbation analysis (PA) (e.g., [13]
and [10]) and the likelihood ratio (LR) methodology
(e.g., [20] and [11]). Our analysis of the optimization
schemes proposed in this paper depends on certain
properties that the gradient estimates used must satisfy.
As we will see, these properties are indeed satisfied by
several types of PA estimators, including some recently
developed in [5] and [2].

Convergence:Under a number of conditions on the
set of admissible control parameter vecta®), the
step-size sequendcg(n)}, and the estimate¥ (u(n)),
convergence w.p. 1 of the sequerfe€n)} to a global
optimumw* can be established for the basic SA scheme
(2). For the case of gradient estimators using infinitesi-
mal perturbation analysis (IPA), this has been shown in
[6]1-[8], applying the basic method in [15]. A weaker
form of convergence can also be established, as in [17]
and [19], using the framework of [16]. However, when
using (1) for decentralized optimization, the issue of
convergence becomes significantly more complicated.?)
We shall deal with it in the context of the convergence
approach of [16] and [17].

Adaptivity: Convergence to a global optimuns* is
normally established for (1) by allowing the step-size
sequence{e(n)} to go to zero over time. If, however,

(1) is used online as an adaptive control mechanism (as
in [28]), then the scheme can obviously not respond to
changes in the operating environment after the step size
has reached zero. We are, therefore, often interested in
the limiting behavior of SA schemes with some constant
(normally small) step size (see [18]) which would permit

6)

putation is carried out locally at each component. In the
SA scheme (1), the main computational burden involves
the gradient estimation process. One of our objectives,
therefore, is to have each component locally evaluate an
estimate of the derivative af (u) with respect to the
local control parameter;.

Decentralized ControlOnce the gradient estimates are
evaluated, the simplest approach for executing an update
in (1) is to have a central controller who collects all
estimates and performs control updates. This approach,
however, requires significant coordination among com-
ponents, as well as the transfer of state information; this
involves substantial communication overhead and delays
which often render state information useless. More im-
portantly, failure of a central controller implies failure
of the entire system, which cannot sustain its proper
operation without it. Therefore, a desirable alternative
is to allow each individual component to separately
update the global control vecter(n) and transfer this
information to all other components. Our analysis will
cover both the centralized and decentralized control
cases, but our primary goal is to study the latter.
Synchronizationin a fully synchronized scheme, there
is ana priori mechanism based on which the updates
of u(n) take place. For instance, a central controller
periodically requests estimates from all components in
order to perform a control update. If the procedure is
decentralized, however, a natural question is whether
any component can be allowed to take a control action
at any random point in time without any synchronizing
mechanism. Such a feature is obviously highly desirable
since it requires virtually no coordination among com-
ponents and it minimizes the amount of information that
is transferred from one component to another.

Full Utilization of System State History problem that
frequently arises in SA schemes is that the estimator
Y (u(n)) may not use all data collected over the history
of the process. This typically arises in an asynchronous
control update scheme, when a component being in-
formed of a control update from another component
may have to discard a partial local computation that
it is in the process of performing. It is, therefore,
desirable to develop a scheme using as much of the
complete system history as possible and avoid having
to reinitialize estimators, which essentially discards past
history information.

the control vector to track various changes online, usu- We should point out that optimization algorithms for DES’s

ally at the expense of some oscillatory behavior arounvdhich use distributed computation have attracted a great
the value of a steady state performance measure. Tdeal of attention, especially in the context of communication
framework we will use allows us to study this limitingnetworks and computer systems. A number of such algorithms
behavior and apply the schemes we develop with leave been proposed and shown to converge to an optimal
constant step size. point under certain conditions (e.g., the distributed routing
Distributed Estimation:ln many DES'’s, such as largealgorithm developed by Gallager [9] for minimizing the mean
communication networks, it is infeasible to transfepacket delay in data networks, and asynchronous versions
instantaneous state information from thigh system of it [23]). These algorithms, however, are based on the
component to other components or to a central coassumption that the gradient dfu) is analytically available
troller. Thus, it is highly desirable to develajstributed so that no estimation is involved. The issue of convergence that
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arises when gradiergstimatesmust replace their analytical optimization problem we face is as follows:
counterparts in such distributed algorithms (e.g., see, [4] and

[22]) is a much more challenging one. K

In view of the issues identified above, the main contri- ma)gZﬁiJi(uz) s.t.
butions of this paper can be summarized as follows. First, o
we present and analyze centralized and fully decentralized g1(us, -, ux) =c1, 0, ge(UL, UK ) = G
optimization schemes based on distributed gradient estimation.
For both types of schemes, we then establish convergendseres;, i = 1,---, K are weights associated with the system
in the framework of [17], which involves fully developingcomponents andy;(uy,- -, ux) = ¢, j = 1,---,r arer

a time scale argument for the decentralized control cadi@ear constraints. Note that there may also be additional
We also identify two verifiable conditions that the gradientmiequality constraints associated with the problem above; these
estimators must satisfy in order for our convergence resultsdan be taken into account by appropriately defining the admis-
hold: asymptotic unbiasednessd additivity. The decentral- sible setl/. Finally, let us assume that each system component
ized scheme presented has the added properties of hding has knowledge of all weight®; and all linear constraints
asynchronousind making use oéll past state information. It present. An unconstrained version of this optimization problem
is interesting, if not somewhat surprising, that such a scheman be obtained as follows. By solving thdinear equations,
indeed converges, despite this very loose coordination amahgs generally possible to eliminate some of tfé control
system components. parameters and solve for < K of them. LetC, denote

The paper is organized as follows. Section Il provides a fothe reduced set of system components. For any component
mulation of the stochastic optimization problem we considér ¢ C,, we then have
and introduces some basic notation. In Section Il we present
the mathema_mcal framework for o_ur_anaIyS|s (S_ectlon !II-A)_, up, = ag -+ Z Dyejti; )
based on which we describe the distributed gradient estimation
process we shall use (Section 111-B) and three separate control
O o enaes b i e iy o corant coofcni adty S

, Remark: This formulation is typical of resource allocation

controller performs control updates; the first does so OVerydohlems often encountered in DES's. For instance, consider a
numbe_r of prespecified system events, wr_]ile the secqnd isrf’rﬂblem of allocating a single server (resource) aiéequeues
extension to random update times. The third scheme is a fully,a el over a discretized time line. Let be the probability

decentralized and asynchronous one. Section IV is devotedfd; ihe server is assigned to quaet any time step. In this
the detailed convergence analysis of these schemes. Throyghs, 4 single linear constraint of the form + - - - + ug =

out the paper, we use a well-known stochastic schedulifgis \;sed. The reduced set of components may be set to

problem to illustrate our approach; in Section V we preseg{lﬁ -o, K —1} with w given byug = 1— (up+- -, uge—1).

some representative numerical results from application of OURps the above discussion in mind. we rewrite the problem

estimation and optimization approach to this problem. in the following form, where the equality constraints have been
eliminated:

ielq

Il. BASIC MODEL AND OPTIMIZATION
PROBLEM FORMULATION

max Z Bidi(u;) + Z Brdr | ax + Z brju;

We consider a DES consisting &f components (e.g., nodes =€U iec, vl jec.
in a network or processors in a distributed computer system). (3)
Let u = [uy, - -, uk] be a real-valued controllable parameteppserving that the derivative of the objective functidfu)
vector, whereu; represents théth vector component. The with respect tou; is given by
optimization problem we are interested in is the determina-

tion of a vectoru* that maximizes a performance criterion aJ dJ; dJy
J(u) = E[L(u)], where L(u) is the sample performance N :ﬁid_ui + Z ﬁkbkid—uk
function. As already mentioned, we focus on problems where A
no analytical expression fof(u) is available, and we resort _ .
to an optimization scheme of the general form (1) and setting, for alii € C,
wn+1) = u(n) + (MY (u(n)), n=0,1,- P k=1
o ’ o i = { Prbi, k& C, (4)
0, otherwise
whereY (u(n)) is an estimate of the negative of the gradient
of J(w) with respect tou(n). We assume that each systen},e have
component only has access to local state information and can
estimate a local performance criteridg(u;) and its gradient. oJ K dJ,
For ease of notation, let us limit ourselves here to the case au, = Z’mm (5)

where u; is a scalar. Given the structure of the system, the
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Then, the optimization schemes we shall consider and analyzen the control process should, in some sense, approach the
are of the general form optimal value. As we will show, this approach is not limited
K to PA gradient estimators. Instead, it requires that gradient
wiln +1) = wi(n) + e(n) Z’Ykka(”) forallie C, (6) estlma_tors satisfy certain properties (which we shall |dent|_fy
ot later) in order for the control process to converge. We will
) ) ) .~ adopt this approach and will present an application based on
where Dy,(n) is an estimate of the negative of the derivativg .|5ss of estimators that satisfy these properties.

dJy/duy. available at the end of theth iteration. When new |, applying the weak convergence approach to (1), we begin
valuesu;(n +1) are evaluated for all € C, then new values it the basic recursive scheme

ur(n+1) are also evaluated through (2) for &liZ C,. Note

that when constraints are present, it is possible that (6) results u*(n + 1) = u*(n) + €Y (u(n)), n=01---  (7)

in someu;(n) ¢ U. We will handle this issue by introducing o ] ) ) )

an appropriate projection scheme as discussed in Section l1\v¢ghere c is initially fixed. Thus, this scheme gives rise to a
Remark: Our analysis is not limited to the optimizationSeduenceu(n)}, parameterized by. Rather than attempting

problem setup above. For instance, the local performari€eProve that the sequenée(n)} converges to a fixed point

criteria J;(-) can be allowed to depend on the entire vectdf” aSn — oo, we concentrate on showing that the family of

u rather than just;, in which case we can easily modify thefunctionsgenerated by the(n) recursion (7) approaches the

definition of v;; and include derivative estimatds,;(n) of tail of another function((t), as¢ — 0 [16]. The property of

all 9Jy,(w)/0u;. It is also possible to consider a nonadditivé () is that it solves an ordinary differential equation (ODE)

performance measure structure. We choose to limit ourselves d¢(t) dJ

to the class of problems above, first to maintain manageable e —d—C(C(t)) (8)

notation without affecting the key ideas of the analysis, and,

second, because many of the applications we are familiar witthere J(-) is the objective function of our original optimiza-

fall into the class of problems above. tion problem. Intuitively, this ODE simply characterizes the
In the next section, we present two centralized and ofigteepest descent” trajectory for a contiglt). When (and

decentralized stochastic optimization schemes based on {§)the right-hand side (RHS) above is zero, the solution of

We develop an appropriate mathematical framework, descrite ODE has in fact reached an asymptotic value, which also

the distributed derivative estimation process based on whigtovides the optimal poini* (under appropriate smoothness

all Dy(n) above are evaluated, and finally describe the contrahd convexity conditions; [26]). This approach permits us to

structures we use in detail. study the convergence properties of a recursive scheme such
as (7) by examining the asymptotic behavior of the solution to
I1l. STOCHASTIC OPTIMIZATION a “companion” ODE as in (8). Clearly, the case of a stochastic
SCHEMES AND CONTROL STRUCTURES recursion based on estimates of the derivailyédw requires

number of additional technical conditions and is highly

The basic SA scheme in (1) applied to DES's with gradler$I pendent on the nature of these derivative estimates. These

estimates based on IPA has been studied in [6] and [7]. ill be explicitly specified and discussed in the analysis that

this case, convergence w.p. 1 has been shown under a nurq%ﬁéws szev{zr pthe same basic idea is still a Iicayble i.e

of technical conditions. An alternative approach establishin s ' . - app P
termining a companion ODE to the recursive scheme used

a weaker form of convergence was recently presented in [1/]. . . N
i solving the original optimization problem.

This method can be applied to time-varying step Si . ! .

bp arying step izes), In this paper, our goal is to focus on decentralized asyn-
n = 1,2,.-, under the usual conditions oan) — 0; ronous control update schemes and to establish weak con-
however, it also allows us to study (1) under a consta(ﬁ{1 P

step sizee > 0. While the mathematical analysis is similar’ ergee;r(;z iﬂf[zsr]cgndS([T?]mliséebcl:il(I)dr:nlg\]/ ?Qistge fggghe E);Sustggt

in both cases, the two approaches have different propert P : ) ' PP

. - . . Q prove convergence ofdecentralized asynchronossheme

in applications, as explained next. If we are interested sed on (6). First, however, in the remainder of this section

simulation-based optimization, which is the case in ma ) (6). T i .
e introduce the basic modeling framework for our analysis

optimal design problems, then the use of time-varying gai gection I1I-A), followed by the distributed estimation process

under certain conditions yields w.p. 1 convergence of t . ) . )
sequence{u(n)} to the optimal point. This may be highlyairf'_fd rlts;nproafrrtllestr(sfc:lonfII:-B) tia:r?ig a’ti pr:essentfiltlﬁr:lﬁ Ethree
desirable as a numerical approximation scheme that ensu gsrent control structures for op ation (Sectio ):

asymptotic optimality. On the other hand, in many online )

control problems the goal is to construct an iterative scherfle Modeling Framework

capable of adjusting to the underlying (and generally un- We will assume that the DES we consider is modeled as a
known) dynamics of the system. In such problems, there msipchastic timed automaton [3] or, equivalently, the process
be no clear end to the optimization, process as would be tkea generalized semi-Markov process (GSMP), a common
case in a simulation. Instead, constant learning rates allow fremework encountered in the DES literature; for details, see
schemes ta@ontinuously revise the sensitivities estimated [3], [10], and [13]. Since our DES consists &f distributed
hence adjust toward the improvement of the objective functimemponents, the event sétis partitioned intoX + 1 subsets

as external conditions change. If the latter remains constafit, €1, .., €% so that€® contains all events (if any) directly
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Node 1 where Ji.(+) is the average nodé packet waiting time and
_}:1 W w = [u1,---,ux] IS assumed to be in the set of probability
=1 vectors such that, > A /6, which ensures stability of each
Node 2 Server queue. This defines the sEtover which the control vector
_ ) iﬂ} is defined. In the absence of aaypriori information on the
- Stime arrival processes, closed-form expressions for this performance
units measure are unavailable. Thus, the gradual online adjustment

of « is one attractive approach.

A _Nodek Let a, denote a packet arrival event at node and

ZD} T, a packet transmission event when nokeis assigned

Fig. 1. K-node polling system a time slot. The event set of this DES is theh =
T : {ai,---,ax,m, -+, 7K }. Note that eventsy, 7;, are observed

only by nodek. The only way that a nodg # k can
observable by all system components, dfdcontains events pecome aware of these events iskfexplicitly transmits
which are directly observable by thith component alone. suych information toj; this, however, not only entails
Under a control parameter vecter let X,,,(u) denote the communication overhead, but the information reachjnip
state entered after theth event occurrence; thus, we obtairyiso delayed. A natural partiton of consists of K sets,
a Markov chain (see also [12]) with transition probability! ... K with £+ = {ag, 7}
P,(z,-) defined onB, the g-algebra of subsets of the state A simple way to implement a random polling policy char-
space acterized by the parameter vectoiis to provide in advance
Pu(2,B) = P Xmi1(u) € B | Xm(w) = z}, VB e B. ea<_:h node with a common _random number generator pased on
which all nodes can determine the node to which each time slot
We shall denote by, the expectation with respect to theis assigned. This defines a transmission schedule common to
measureP, of the Markov chain{.X,,,(v)}. We assume that all nodes. The state of the DES may be described by a vector
for each value ofu, wherew is defined over a set/, the [r;,-.. zf,y], wherez; € {0,1,---} is the queue length at
invariant measure:,(-) of the corresponding process exist®iodek andy € {0, 1,---, K} is the state of the channej:= k
and is unique. In this setting, we focus on the problem ¢ffnode k is transmitting a packet ang= 0 if the channel is
finding a control valuex* € U that maximizesJ(u) = idle. Note that if a time slot is assigned Apthen only node:
J £(z, u)p,(dz). Within the framework of gradient-basedcan determine the state of the channel, based on whethisr
methods, we shall assume thitu) is differentiable and that zero or positive; all other nodes have no direct access to this
all %kﬂ, k=1,---,K are bounded and continuous. information. It should be clear why in this model centralized
Assumption 1:The transition probability’,(x, -) is weakly control is not only undesirable (because failure of a central
continuous in(z, ) and the set of measurds:,(-);uw € A} control node results in failure of the network), but actually
is tight for every compact sett C U. infeasible because state information cannot be instantaneously
Tightness is a concept analogous to compactness. In the cagailable to all nodes.
of a tight stochastic sequence, it implies that any subsequenc®Ve now consider a more convenient state representation for
has a further weakly convergent subsequence (see [17] ¢orr purposes, based on defining(p) to be the waiting time
detailed definitions and discussion). of thepth packet at nodé. Each node behaves likecal /D /1
Example: To illustrate our modeling framework, considerqueueing system with vacations (the time slots which are not
an optimal scheduling problem wherE nodes compete assigned td for transmission). Lettings(p) denote the time
for a single server/resource. This is motivated by the welle serve thepth packet, then{s;(p)} is an i.i.d sequence of
known “transmission scheduling problem” arising in packe&teometric random variables with parametgr. Also letting
radio networks, where the resource is the communicati§ry(p)} be the packet interarrival time sequence (which is
channel, fixed length packets arrive at nddeccording to independent of the vectar) and settings = 1 for simplicity,
an arbitrary interarrival time distribution with ratg, and a xz(p) satisfies a standard Lindley recursion
slotted time model is considered (with slot size equal to the
packet transmission timé). At each scheduling epoch, i.e., zi(p+1) = max{0, zx(p) + s(p) — en(p+ 1)} (9)
at the start of each time slot, the channel is assigned tayheres,.(p) is associated with the occurrence of a transmission
particular node (see Fig. 1). The assignment is based omr\&ntr;, andag(p+1) is associated with an arrival evemn.
random pollingpolicy: the current time slot is allocated to the et us now consider Assumption 1 for this model. The local
kth class with probabilityuy. processes behave as stable queues for eaghl/, ensuring
The objective is to determine the optimal slot assignmegkistence of the invariant measure. For dnyt is clear from
probabilities so as to minimize the weighted average packel that the procesgz.(j)} has the Markovian property,
waiting time. The constrained optimization problem is theand the transition probabilities are polynomial functions of
stated as uy, verifying the weak continuity in(z,«). The remainder
1 K K of Assumption 1 follows readily. Indeed, for any compact
mgnTZAka(Uk) s.t. Zw =1 (PL) set A c U, the process is stochastically dominated by a
=1

=1 N ket process{z(p)} describing a queue where the services have
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geometric distribution with parametay, = min{uy, : v € A}. We shall now present the construction of the local estimators
The dominating process is constructed using common randfonthe fixed control procesgX,,,(u)}. In Section IV, we shalll
variables for the generation of service times and the samplain how these estimators are used in the time-varying
sequence of interarrival times as the original process for aogntrol parameter case. Lgt= 1,2,.-- index the sequence

u € A. Since the proces$z(p)} is stable, it regeneratesof local events at componerd, i.e., all events in the set*.
with a.s. finite regeneration cycle lengths, and it dominatéet m;(j) be the correspondinglobal event index [when no

all processeqzx(p), v € A}, yielding P, {zx(p+ 1) > C' | ambiguity arises, we will also use(;)]. We definep;(u) to
z,(0) = 2} < Py {zi(p+ 1) > C | 21(0) = «} for any be the invariant average rate of events:aBy the ergodicity
real numberC < oo; this implies tightness of the invariantassumption

measures for all: € A at each local queue, using dominated

convergence. Finally, the global proce§X,,} is a vector pr(u) = lim # (10)
containing the values of the waiting times at each local node i=eo my(J)

when themth global event occurs. Therefor€u, (dz)}uea Assumption 2:For all k = 1,---, K, p(u) is continuous,
exist and are tight. andsup,cp pr(u) < 1, infucy pp(uw) > 0.

In what follows, we shall use the notatiatj, to denote the  The last part of this assumption ensures that the control
vector-valued control parameter in effect at the epoch of evargdriables do not change the topology of the system by “shut-
m ande is the value of the step-size parameter in (7). Muding off” a particular component. It is not essential, but it
of our subsequent analysis is based on carefully distinguishisignplifies the notation, since if a particular component can be
between various natural time scales involved in the controllstiut off (for example in a network wheterepresents a routing
process. Let us introduce the two main time scales we shall ygebability vector) for a valuey, € U, then the appropriate
and associated notation. We have a “fast” global time scafjustments in the update equations to estimate sensitivities at
defined by all events that drive the DES, and a “slow” timg, have to be incorporated.
scale, defined by instants in time when control updates areExample (Continued):For the problem illustrated in Fig. 1,
performed according to (7). We will use the following notatiofit is easy to verify that Assumption 2 is satisfied. Indeed,

to distinguish these two time scales: under stability, for any: € U the rate of transmission events
71 at each nodé: equals the arrival ratd;, in steady state.
m = global event index Therefore, the invariant event rate(w) is independent of;
n = iteration index over global control updates. for this example.

A derivative estimator of the objective functiof(x) with
respect to the control parametey at component is calcu-

Thus, ug, is updated at selected events (at which time tf]e . .
. L . ated from local observations of the state values over a period
index n is incremented) depending on the control structur

selected, as described in Section IlI-C. Note that when t}ctzi\rlng\./el_nitsj ‘It')EeSnOTvee Iggg:{;\é?ni;r}(le)foaﬁ aglvjargt?ri;?;r
control iscentralized the controller gathers information from ' ' s

the various system components over wdate intervaland Oigl‘qjt’;{{{uk O?Firfd_ff]f t?ﬁglﬁjﬁgﬁifceassssﬁr\r/]ertif)hne&ctly?q(i::ns
performs the global control update at the end of this interv:iﬁ. Jowad ' 9 P

In this case, we also have an “intermediate” time scale definid’ key properties we require for our derivative estimators,
X . gased on which our convergence results will hold.

at each system componént= 1, ---, K. In particular, thekth Assumption 3:All dy(-,-), k = 1,---, K, satisfy the fol-

component collects local information over sorastimation lowi ' RS B L B y

interval, at the end of which a derivative estimate is obtained"V'"?9" ) ] )

and sent to the controller, subsequently to be used for globall) Asymptotic unbiasednessor any random integed;

control updates. By indexing over these estimation intervals ~ SUch thatA; — oc as¢ — oo w.p. 1, and any

we define such an intermediate time scale. On the other hand, di(0, A;) dJy(ug)

in the fully decentralizedscheme, the global control updates ih_{{}o “{T | X i) = 37} T dup w.p. 1.

are performed asynchronously by individual components and ’ (11)

they coincide with the instants when any component completes?) Additivity: For any sequence of positive integdid; },

a local estimation interval. Thus, the intermediate and slow  gnd a sequencll.;} defined byLo = 0, L; = Eé:l A,

time scales shall coincide. we have

-1
B. Distributed Estimation (0, L) =Y di(Li, Aiga). (12)
1) Local Derivative Estimators and Their Propertietn =0

both the centralized and decentralized cases which we analyzeRemark: The local estimation process is carried out over
the derivative estimators required are obtainedlistributed successive subinterval®, L,),[L1, L2), -+, [Li-1,L;) and
fashion, i.e., each system component separately performs&jl= L; — L;_; is the number of events sampled to obtain
estimation computation required, using only locally availablie ith estimate. Additivity ensures that the estimator obtained
state information. We emphasize that the issue of distributeder the intervall0,L;) = {0,---,L; — 1} is equivalent to
estimation is distinct from that of control implementationadding the partial computations obtained over these subin-
which can be centralized or decentralized. tervals. This is a particularly attractive property, since the



VAZQUEZ-ABAD et al.: CENTRALIZED AND DECENTRALIZED ASYNCHRONOUS OPTIMIZATION 637

estimators accumulate all past data and never waste any d (1) 4. d.(3)
previously collected information. Finally, note that the two - > !
conditions in Assumption 3 are generally easy to verify. atich componemt |1 ) %(1) 1 ]

| k I |

! | | |

Example (Continued):For the problem illustrated in Fig. 1, '
recall that each node is viewed a&/d/D /1 queueing system Global Event H‘er 1 ' l tem
with vacations. One can then obtain estimatord §{u;)/du,; Index
through perturbation analysis (PA) as shown in [5]. Under
certain conditions, such estimators are consistent a.s. (e.g.,fd@e2. Correspondence between local and global event indexes.

[10]); our analysis, however, will require condition (11). For

such estimators to satisfy (12), we require that they are ngft(z, ) independent of and L (1); in addition, P{Ax(l) =
reset to zero from one estimation interval to the next, bo} = 0. We shall also choose the increments so that for
rather we keep on evaluating all cumulative effects. Marghy compact4 ¢ U and for anyz, there is aK(A) < o
estimators based on PA (e.g., see [13] and [5]) satisfy teach thatsup,,c 4 E.{Ax(l + 1) | Xg, (1) = 2} < K(A).
additivity property. For this particular exampléi(j, A)/A  This condition will be implied by a stronger uniform tightness
is an estimator of the form of a sample average over loa@quirement made in Assumption 6 later on. In particular, this

events (see [5] for details) implies that P, {Ax(l + 1) < oo | Xg,@)(u) = «} = 1 for
JEA everyzx,l. From our continuity assumptions, it follows that

di(4,A) = (X 13 _ , . ‘
¢ 2) ; Tl X ) (13) Mi(w) = B*[Gi(1)] = lim G’}(l) (15)

where X,,,(;y is the state after then(i)th global event and whereE* denotes the expectation under the invariant measure
the functionf;, depends on this state through all of its entrieef the fixed« process, is continuous im, and uniformly
associated to theth component. In particular, is a function bounded:sup,, M;(u) < oo, inf, My(u) > 0.
of the packet waiting times at nodewhich satisfy (9); we  Example (Continued)Returning to the system of Fig. 1, let
shall provide a more detailed form of this estimator in the nexs consider two possible ways of defining estimation intervals
section. Note that (11) and (12) follow from construction (seat any nodet: 1) a fixed numbetV of local events, in which
also [5], [25] for details). case My (u) = N/pi(u) and 2) a fixed numbeN of local

2) Derivative Estimation SequenceB1 this section, we busy periods, in which case 1€V, (b) denote the number
present the most general framework for the distributeaf events contained in théth busy period atc and we get
estimation we shall use, incorporating both asynchronodé(u) = NE"[Ny(1)]/pw(u).
and parallel computation features. From Assumption 3, theFor case 2) above, let us s¥t= 1 for notational simplicity
local processors can evaluate their estimators by dividiagd consider an estimatdy, (/) as defined in (14). Based on
the computation intoestimation intervals We shall now the PA estimator in (13)/(I) has the following general form:

construct these intervals by choosing an appropriate increasing . 1
sequenceli(l), I = 1,2, -, of random stopping times with di(l) = u > A Koy ) (16)
independently distributed increments JjeA

_ where A; is a particular set of local event indexes and
Ai(l+1) = Li(l+1) = Li(l) f1(X ), wr) is a function of the state when thh local
for each component. Thus, thelth estimation interval at event occurs (equivalently: the(j)th global event occurs)

component contains all local eventg € {Lx(), -, Li(I+ and of the control parametes,. We will not discuss here the

1) — 1}. The resulting/th estimator at componerit is precise nature ofi; or of f; (which may be found in [5] and
. [25]) but only point out thatf;, depends on the state through
di(l) = di(Lr (1), Ar(l + 1)), (14)  those entries associated with theh component, as already

In other words, we view the time line associated with coninentioned in Section 1lI-B1. As in most pathwise derivative
ponentk as being partitioned into intervals defined by th&Stimators, the termf,(X,,,(;), ux) represent individual “per-
sequencd Ly,(1)}, thelth interval containingA.(I + 1) local turbations” which are easily evaluated functions of the system
events. Hence, a sequence of estimdtggl)} is defined.  State. o _
DefineGy (1) to be the'Global event index corresponding Before proceeding, it is important to note that even if the
to the “L’ocal event Ly(l), that is, Gr() = m(Ly(1)). cor)trol values change within an estimation interval, the local
Fig. 2 illustrates the relationship between the local and glopggFimators use the same functional form and continue the
indexes. We shall now present conditions for establishing wiEgmputation of the current estimate. We shall return to this
we will refer to as therenewal structureof the sequence POINt In Section IV.
{GLD}.
It is customary to assume that the estimation intervals grdw Control Structures
with /. However, in this work we shall show that this is an We shall deal with three control update structures: a central
unnecessary condition. Instead, since the estimators satigfytroller that performs updates evevy global event epochs;
Assumption 3, we shall focus on the simpler case wheeecentral controller that updates according to a random se-
P AAL(I+1) =m | Xg,)(w) = x} is a continuous function quence of update epochs; and a fully decentralized control
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scheme where each component imposegla@bal control from the discussion in Section Il that all componehtsbtain
update on the entire system at the end of its individual locical derivative estimates, but only componehts C, need
estimation intervals. Before proceeding, let us summarize tteeperform control updates dependent on these estimates; for
event indexing notation which is going to be used throughoall £ ¢ C,, control updates are simply obtained through (2).
this section: The updates;(n+ 1), for all & € C,, are made at the epochs

) o of eventsim = M,2M,--. according to
L; (1) = local event index ak indicating

the end of thdth estimation interval wS(n 4+ 1) = ul(n) + ¥ (us (), keC, (18)
G(l) = global event index corresponding to
Ly (1), i.e., Gp(l) = m(Lx(1)) with
G(n) = global event index indicating
the nth global control update. Ye(ut(n)) = — f’:%ij(n’ M) (19)
1) Central Controller with Fixed Update Eventdn  this i=1

centralized control setting, we assume that there exists a
single controller (e.g., a preselected system component amayitere the coefficientsy,; were defined in (4). The actual
k = 1,---,K acting as the global controller) who update§ontrol is set tou;,, = u°(n) for all m = nM,---,(n +
all control parametersy,, k = 1,---, K at update epochs 1)M — 1 (the case where the control is subject to constraints
corresponding to global events = nM,n = 0,1,--- Here, is discussed below).
M is a deterministic integer. It represents the number of globalBased on the above, we can summarize the centralized
events defining the control update interval. The value of tig@ntrol scheme as follows—Centralized control structure with
control parameter vectaxt, is kept constant over thepdate distributed asynchronous estimation:
interval defined by events: € {nd,---,(n+1)M —1}; ug, « Each componentk: Evaluates an estimatafy(l) and
changes only at event epochd/,n = 1,2, -, according to reports it to theCentral Controller at the epochs of its
an SA scheme that we now proceed to construct. local eventsLy (1), 1 = 1,2,---.

The control parameters are updated by making use of the Central controller: At epochs ofglobal eventsni,
local estimatesy.({) reported to the controller at time instants 7 = 1,2, -

corresponding to the global events = Gi(l) — 1, 1 = 1) evaluates the derivative estimaioy (n, M) through
1,2,--., kK =1,---, K. Since, however, the control updates 17);
are carne'd out atn = M,2M, - (WherenM # G (l) for ) 2) updates the control parameters by evaluating
somen, ! in general), the actual estimates used at these time wi(n—+1) for all k € €, through (18) and (19);
instants are denoted by (n, M). Thus, our first task is to a’r;d for allk ¢ C, throuéh ) '

0 .

consider an update event/ and specify howDy(n, M) is
to be constructed from the local estimatajg!) received by
the controller prior to global eventM . For any componernk
which computes local derivative estimates, let

The distributed asynchronous nature of the derivative estima-
tion process is evident from this description. The convergence
properties of this scheme will be presented in Section IV-E.

Recall that our actual optimization problem presented in

Ir(n) = max{l : Gx(I) < nM} Section Il allows the control vecto#, to be constrained in
some setl/, which we shall assume to be compact. Clearly,
i.e., [x(n) is the total number of estimates reported bY¥o in the control scheme above it is possible that sonjg
the controller prior to the:th control update (performed whenlies outsideU, in which case we proceed as follows. Let
global eventa M occurs). Thus, the estimates available to the,;(u¢,) be the usual Cartesian projection af, . Then:
controller fromk over thenth update interval are given by 1) Use Il;;(u¢,) as theactual control value applied to the
di(1), I = li(n),- -+, lx(n + 1) — 1. The derivative estimator system based on which all dynamics are updated but 2)
Dy (n, M) used by the central controller is now defined as Maintain u¢,, and use it (notll;;(ug,)) to evaluate the next
I (n+1)—1 control value through (;8). Since, for amy.HU(u) is unique,
1 5 we may subsequently interpret the notatiBp, P,, 1, as the
— > A (7 : . .
pk(u;M)M =) corresponding quantities for the fixedprocess atlly (u)
without any confusion.

We can now specify the centralized control scheme based orRemark: Under the additivity assumption (12), it is also
the distributed estimation process described above. First, nptessible to implement another centralized scheme in which
that the estimate information is collected by the controller ithe central controller “requests” information from all com-
asynchronougashion, i.e., each component reports an estimgtenents at its update epochs = A, 2M,---. They would
based on its own local event time scale. Thus, in (17), thieen send all the derivative estimate information up to that
estimates evaluated may contain partial computations usiimge and would keep a register to continue computing their
data prior to the current update interval. This provides sonacal estimators for the next update interval. This, however,
flexibility to the scheme and will turn out to be crucial in theequires additional communication overhead in the form of
decentralized control case to be discussed later. Next, re¢h# controller issuing requests to all components.
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2) Central Controller with Random Update Eventl our 3) Decentralized Asynchronous Control’he decentralized
distributed estimation scheme, we assumed that the systetnucture we will use is described as follows. Each system
components estimate local derivatives using only local icomponent: of the DES becomes global controller and can
formation. We used random stopping event indexes basdgthnge the value of the local variahlg, as well as the values
on the local event numbers to cover the general case whefeall u; ¢ # &k (as long as the constraints in (2) hold at all
global event numbers may be unknown locally at the differetimes.) In particular, at the end of thith estimation interval,
components. This may also be true for the central controllevhen the global event index i§(l) = m + 1, k becomes a
We shall deal here with the extension of the previous schemectintroller and changes the value of the component of the
random update event indexes at the controller. Three importapttor u¢, by adding to it an amount dependent @) as
applications of this arise when the component acting as thescribed below. In mathematical termsyuif, ; denotes the
central controller updates: 1) at regular intervals containirith component of the control vector at event epachthen
a fixed number of its own local events; 2) in the case of

gueueing systems, at the end of busy periods; and 3) at regular Woi = Wi+ €V (W5 1€ ¢ (23)
intervals defined by time (say, evefly s) instead of events, where now
in which case we can introduce an event to occur at all time K oo
instantsnZ’, n = 1,2, --. All of these schemes yield random y-¢ ey _ Vhi (D1

L7 > . . . mai\m) — T k Gr(H=m . (24)
update intervals determined by a sequence of stopping times, ( ) kz_:_l pk(uzl) =1 Oleuw=m+

measurable with respect to the local history of the process.

The local estimatesiy(l) are once again broadcast td°U€ [0 our assumptions o@(l), namely thatl < Ax(l)
the central controller at the global event epockis(l),! = a.s, it follows that, for any fixed componeht for everym

1,2,---. Following a similar notation as in the previous subf:’lt mooit one value of is such thatGi(l) = m + 1, that
section, callG(n) the increasing sequence of stopping times: > Ve m=mt1y = 0 or 1 as. Thus, whenever the
that define thevth update intervaht the central controller from (7 + 1th global event coincides with the end of an update
eventindexn = G(n) tom = G(n+1), and letM (n) denote interval _(say,l) at some compon.en_t (sa¥), the expression
the number of events included in this update interval. W&POVe Yieldsyidi(1)/px(uy,). This is the amount by which

choose this sequence so that it satisfies the renewal structt}g ith control parameter is changed at that time. Notice that
and0 < M(n) < oo a.s.,M(u) = E*{M(1)} is continuous in this scheme two or more controllers may simultaneously
0 < inf, M(u) andsup J,\Zf(u) < 00 ' update the same components of the control vector.

" .

As before, uS, is kept constant over all events: € This asynchronous decentralized control scheme can be

{G(n),---,G(n + 1) — 1}. Let summarized as follows—Decentralized asynchronous control
structure:
li(n) = max{l : Gx(l) < G(n)} « Each componentk:
1) evaluates docal estimatordy(I) over an interval
which has the exact same meaning as in the last subsection. of local eventsj € {Ly(l),---,Ly(I + 1) — 1},
The estimatoD; (n) used at the central controller is defined as =01,
2) at epochs ofocal eventsLy (1) [equivalently, global
1 be(ntl)=1 eventsm = Gy(1)], 1 = 1,2, - -, updates all control
Dy(n) = PACTN] > d(D). (20) parameters by evaluatings, ., ; for all i € C,
PG i Zi(n) through (23) and (24), and for all ¢ C, through
)
The control update equations faf(n) = ug,,,, are given by 3) sends the complete updated control veaify, , to

all other system components.

To illustrate the operation of this structure, consider an
example with two system components as shown in Fig. 3.
First, component 2 completes an estimation interval at global

K event Gy(1). It updates bothu; and uy, based only on its
Yi(ut(n)) = —nyjij(n). (22) local derivative estimatel,(1), and sends the information
j=1 to component 1. Component 1 immediately adopts the new
control valuew; but continues its own estimation process

Clearly, whenM (n) = M(u) = M are deterministic and without any other action. The next component that happens
fixed, the two schemes (17) and (20) differ because in th® complete an estimation interval afté¥;(1) happens to
latter, we are not dividing by (w), and this affects the valuesbe component 1. This corresponds to global evehtl).
of Y (u¢(n)). Consequently, the actual derivative estimator §omponent 1 evaluate (1), updatesy; andu,, and sends
obtained by scaling)x(n) above byM (u). the new control values to component 2. It so happens that the

Note that in the case of control constraints, we can proceeext component completing an estimation interval is compo-
exactly as in the previous section, i.e., by introducing theent 1 again [at global evelif; (2)], so this process repeats.
projectionIIy (ug,) and treating it as the actual control, whileNote, however, that component 2, while changing its control
usingu,, to evaluate the next control value through (21). value u, twice, goes on with its local estimation process

up(n+1) = up(n) + X (u'(n)),  keCp  (21)

with
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s T

|
COMPONENT 1

I update u, ‘L update uzl [updale ug Ql‘ update uzl

COMPONENT2 ———

|

—

Global Event

ndex

G,(1) G, (1)

Fig. 3. lllustrating the decentralized asynchronous control structure.

accumulating state information without any estimator resettisgtisfied. In particular, suppose that for the central controller

action.

we chooseG () = G(I). This means that all components

In order to keep the notation and subsequent analysis cloaeg synchronized and send the information when the central
to the one introduced in previous sections, we will make usentroller requests it. Then the intermediate and the slower

of some auxiliary (artificial) variables, denoted hy,(n),
with the following interpretationwj,(n) is the cumulative
control change imposed by componénbn component by
the instant wherk becomes a global controller for theth
time. In other words, at the epoch of eve®i(n), the current

time scale blend into one. On the other extreme, we may
have A (1) = 1, which for the decentralized structure (which
actually becomes equivalent to a central one) imposes updates
at every single event epoch. This case is covered by our model,
and the intermediate and slower time scales coincide with the

value ofu, has experienced a total change from the action &dster one. Notice that we do not consider the case where the
controllerk given byw,;(n). The dynamics of these auxiliary estimation intervals tend to infinity, an approach commonly
variables are specified as follows. Lef,(0) be such that used in simulation optimization practice. We will show in

> v5i(0) = u$(0) = u;. Then define

v (0 + 1) = v3(n) + ¥ (n) (25)

where
Vii

— M d(n).
Pk (qu (n+1)—1)

Yii(n) = — (26)

Section IV-E that this is not necessary under the conditions
in Assumption 3.

IV. WEAK CONVERGENCE ANALYSIS

In this section, we address the issue of convergence of the
three SA control schemes presented in Section IlI-C, (18),
(21), and (23). To do so, we have to carefully consider how

It should be clear that;(n) is the amount by which compo- varying the control parameter vectarafter selected events
nentk imposes a change on the control parameter value aaffects the underlying system state and hence the derivative

at the(n + 1)th time thatk becomes a global controller [i.e.

at global event indexGy(n + 1) = m(Lx(n + 1))].

,estimates which drive these SA schemes. The first step in this

process is to enlarge the original state vectgy by defining

As in the previous sections, in the case of control constrairga appropriate “augmented” state, denoted:f)y The choice
of the form v € U, we proceed by using the projectionof £, must be such that the resulting procéss,, u,) is a

]._IU(llE

m

) as the actual control, while using¢, to evaluate

Markov Decision Process (MDP). While this may not always

the next control value through (23). In order to make use bk possible for arbitrary systems and derivative estimators,
(25) and (26), we will update the auxiliary variables, whiclthe structure of our particular DES derivative estimators, as

uniquely defineu&, and hence the projectiad; (us,).

specified by Assumption 3 and illustrated in the example

Remark: At the beginning of Section Ill we motivated presented in Section 1I-B1, allows us to accomplish this goal
the schemes through different time scales. However, thavéh relatively little effort.

are no assumptions on the values M, (u) or M(u) that

Example (Continued)We return to the system of Fig. 1

“force” the time scales to have any relationship at all. Fromliscussed in the last section. We shall illustrate the enlargement
a practical point of view, it is more reasonable to associaté the state for the (harder) case of decentralized operation,
the time scales with a faster, an intermediate, and a slowenere we choose estimation intervals at each nodefined

one. The limiting behavior of the procedure, however,

isy a fixed numbetV of busy periods ak. Thus, recall from

not affected by the relationships between the different tingection IlI-C3 that in this case the entire control vector is
scalesM;(u) and M (u), as long as the renewal structure isipdated by any node which completes an estimation interval

1/)k(m + 1) = {g}7k(m) + [EJEAZ ¢i(Xm+lvuk)]7

if bi(m+ 1) =bi(m)
otherwise
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of its own. For notational simplicity, let us s&f = 1 and use Recall that in the case of control constraintse U, we still

the derivative estimatoily, (/) presented in (16). Lebi(m) use this update scheme but employ the projecHerfu’,) as
denote the index of the busy period at nddehich includes the actual contro] as discussed in Sections 11I-C1-III-C3.
themth global event. Theartial computatiorof the estimator ~ Based on the analysis in Section Ill, it should be clear that
above after thenth global event is denoted by, (m) and is this general form allows fok;, to be zero whenever +1 is
defined recursively as in the equation shown at the bottommdt an update epoch. In turn, this information is adapted to the
the previous page, whekg, (X,,,+1,%;) is a function of the evolution of the process; in our example, updates take place
state at thémn+1)th global event and of the control parameteeither after a fixed number of events or after a fixed nhumber
uy, and note that it depends on the local event infi@detailed of busy periods at a particular node (for the central controller
expressions for this function may be found in [5] and [25]). Itase) or at each node (in the decentralized operation).

can then be verified that if thigh busy period ak contains)M,; Before proceeding, we will present three more technical
local events, thewh, (M) = dy (1), i.e., the partial computation conditions used in our analysis. First, the derivative estimators
after the completion of a busy period recovers the derivatia@ component:, introduced in Section IlI-B1, are assumed to
estimator (16) needed at that point to perform a control updasatisfy the following regularity conditions.

It should now be clear that the enlarged state for this Assumption 4:For the proces$é,,(«)} and any integerg
example is a vectog,, consisting of the original systemandA, E,{dx(j,A) | &m()(w) = &} is a continuous function
state vector.X,, and the K partial computationsy(m), in (&,u). Furthermore, for every compact sdt C U there
k=1,---,K (in some cases, it is possible that an additionalxists someK(A) such that
auxiliary state variable has to be introduced; see, for example )

[25]). In general, the partial computations are a natural way to S‘ég Eu{lldi (G, DI | &my(u) = &} < K(A)A.

carry past information required in the derivative estimators of

the particular form encountered in perturbation analysis andThe latter condition is satisfied by all standard gradient
similar gradient estimation methods. The procdgs.(m)} estimators under mild technical conditions on the distributions
can be interpreted as the pathwise derivative process, whihall event lifetimes affected by.

is adapted to the history of the underlying process itself. In Example (Continued)Let us return to the derivative es-
this example, where the updates are performed as soon dir@tor (13) which was introduced in [5]. For simplicity,
busy period is completed, the enlarged st@tecontains all we limit ourselves to the regenerative form of this estimator
the required information for the epoch and the amount of thie (16) (however, our analysis can be easily extended to
updating. the finite horizon implementation; see [25] for details in a

Note that if we wish to keep the control vector fixed, thegimilar example). We shall use the fact (established in [5])
the corresponding enlarged process (system and derivatiat fi (X, ur) < (1/up)M; (with § = 1), where M, is
estimation process)¢(u)} possesses the Markov propihe total number of local events in thih busy period at node
erty. Furthermore, using the domination argument invoked i which we also used earlier. In addition, we shall assume
Section IlI-A, for any compact sett C U, it follows that that for anyu € U, E*[M}] < oc.

{&,(u)} is tight, the invariant measure exists, and its marginal In our example, if the estimator is calculated starting at event
coincides with the invariant measure of the original processn(j) for A local events, then from the additivity property (12),

In the next few sections, we proceed with the basic préssumption 4 follows from the a.s. bound @f(j, A) in (13).
liminary results used in the weak convergence method similér particular, lettingl(:) denote the index of the busy period
to [17]. In some texts, weak convergence (or convergencevifiere the local event belongs
distribution) is denoted by the symbo+€—>, or =. We shall itA itA
gse the Iat_ter. Our goal is to use the modeling framework (G, A = Z P Xy )| < 1 Z Myg||.

eveloped in the last section and show how the framework of Uk
[17] can be applied to the schemes (18), (21), and (23). Note
that the corresponding fixed-process{{,..(u)} has weakly The expectation in Assumption 4 can then be uniformly
continuous transitions probabiliti€’, (¢, B) = P{{.+1(u) € bounded for any compact set € U using the valueiz;, =
B | &, (u) = £} and a unique, ergodic invariant measyrge min{u, : v € A} instead. Recalling the dominating process
satisfying the weak continuity and boundedness conditions arfgument for any nodg, which we first used in the example
Assumption 1. Based on the discussion above, we assume tifaBection llI-A, let Af; denote the number of events in one

i=j

the procesg¢s,, us,) is an MDP, satisfying busy period of this dominating process. Under the assumption
. . . . that E[M?] < oo, the above bound has an expectation which
P{Srn-l—l € Blvurn-i—l € B2 | Srn = gvurn = U’} is linear in A.

=P{u, ., € By | &, =&u;, =u}Py(¢,By). (27)  Assumption 5:The set of random variable&<,, us,} is
tight. The sequence of random variabl€gS;e > 0;n =
A. The Basic SA Framework 0,1,---} is uniformly integrable.
Under any of our three schemes in the last section, theExampIe (Continued):Recall that in introducing our exam-

updates of the control variable are of the general form  PI€ in Section lll-A, we used a common truncation argument
to ensure that the resulting control variables are within a

u, . =ul, +e¥r. (28) compact setd contained in the stable regidn. Therefore, the
m—+1 m m
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varying control values:, all lie in a compact set completelythe filtration {¢,} of an MDP procesg¢s,, us, ). Then, set
contained in the stable regidi. Tightness of{w,} follows

directly from this fact. Also, for each node, the queueing Af(n) =5(n+1) = 5(n).

process with varyingu;, is stochastically dominated by a .

stable GI/G/1 queue with geometric service times at parame't'%radd_'t'on' let(x“(n), w*(n)) = (£5¢ () Wse(,,)) € @random
@x = min{uy, : u € A}. As before, leth]; be the number of S8mpling of the state of the process. _
events in busy period of the dominating process at node _We now define thdadder interpolation procesassociated
k, and consider the decentralized operation where each ndgth w(n) = uES‘(n)

performs a control update evelyy = 1 busy periods. From our . .

previous bounds)s (m) < (1/a)M}? a.s., withl denoting the ) =win) fort e ne (n+1)e) (29)
current busy period. Similarly, the waiting time of a packe

t . .
z5,(p), belonging to busy periotlis always bounded by, and thenatural interpolation process

that is, z;,(p) < M; as., foré = 1. Since for anya we C(t) =g, fort € [me, (m+ 1)e). (30)
can find a sufficiently largek, with P{}M? > K,} < «,
it follows that {X,,,v(m),k = 1,---,K} are tight and The first interpolation scales time with respect ¢ontrol

so is the sequencfty,, uy, }. Uniform integrability of {Y,}  updateintervals and the second with respectgiobal event
follows from the assumption thd {A}'} < oo, implying that epochs. Fig. 4 illustrates the construction of these processes.
the variance of the estimators is uniformly bounded for anyle begin with the piecewise constant process describing
compact set contained i@ control updates as a function of the global event index
Recall thatAx() is the number of events contained inthin solid line drawn on ame scale with jumps shown
the /th estimation interval at componeht and M (n) is the at update events). This defines the natural interpolation
number of events contained in thgh update interval in the process&f(t)_ This process is then Samp|ed at a subset of
case of a centralized control structure. We shall assume #ent indexes{S(0),5(1),---} with corresponding values
following properties of the stopping times associated with thg<(0), «w<(1),---, (thick solid line drawn on ame scale
estimation and control update processes. with jumps shown atsamplingevents) as shown in Fig. 4.
Assumption 6:For all & = 1,---,K, the sequences The ladder interpolation procegs(t) is simply obtained by
{AL(D} and {M*(n)} are uniformly integrable. redrawing this piecewise constant function as a function of
Example (Continued)in our example, under regenerativehe control update index on ane scale.
estimation A; (1) is the number of packets transmitted in busy we shall now be interested in establishing some general
period [ of nodek, which, by assumption, has a uniformlyproperties of these processes whgif(n)} is related to the
bounded variance. This is shown using again the argume®htrol update sequences corresponding to the three schemes
with the dominating stable queues. For the central controllefefined in the last sectiofnA/} for the centralized structure
a similar argument applies &l “(n) for either a fixed number with update epochs every/ global events{G(n)} for the
of service completions or a fixed number of local busy periodgentralized structure with random update epochs; {ag(1)}
for the fully decentralized structure driven by individual com-
ponents at epoch&},(I) = m(Lg(D)).
, The following result is needed to guarantee that, under
B. The Interpolation Processes Assumption 5, the interpolation processes we will work with
When dealing with the notion of convergence, we implicithgatisfy a tightness condition. Recall that tightness of a sequence
assume a concept of a norm. The approaches that study afstochastic processes (indexeddpys analogous to compact-
convergence of the sequen¢a,} generally use the norm ness and implies that any subsequence has a further weakly
in IR. As motivated in the introduction of Section Ill, theconvergent subsequence (see [17] for detailed definitions and
approach taken in this work is the study of the behavior dfiscussion). Therefore, this result allows us to work with
the updates by taking a global view of the processes amegakly convergent subsequences of an interpolation process
establishing that it gets closer to the trajectory of the solution order to characterize its limit as the solution of an ODE. In
of an ODE, as — 0. The limiting process shall therefore bethe analysis that follows, we will repeatedly exploit this fact.
a continuous timeprocess. The first step in analyzing weak Proposition 1: Let {Y<(n)} € IR be a sequence of uni-
convergence of SA schemes is to define “continuous tim&rmly integrable random variables a#fl(n + 1) = 6(n) +
processes from the event-driven sequence of control values<(n), with #°(0) = #(0) independent ok. Call ¥°(¢) =
The time scale used in this definition is, of course, related #6(n) for ¢ € [ne, (n + 1)¢) the corresponding interpolation
the gain parameter or learning ratén our general framework, process. Then the sequence of interpolati¢fis(-);e > 0}
we have talked about a faster time scale that drives the procisstight in the space of piecewise constant, right continuous
according to the events that trigger all state transitions aptbcesse®|[0, oo). Furthermore, all weak limits are Lipschitz
a slower time scale according to which the control valueontinuous w.p. 1.
change. We shall therefore begin by defining two important Proof: See the Appendix. |
continuous-time processes, as follows. Ouir first application of Proposition 1 gives us the following
Let us start by considerinfS<(n),n > 0} to be a sequence general result regarding the two interpolation processes in (29)
of random stopping event indexes, measurable with respecttad (30):
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L
R = ng

€ 2¢e 3¢ 4e 5¢

Fig. 4. lllustrating the interpolation processés(t) and Ce(t).

Corollary: Under Assumption 5, if the sequencedn the assumption of time homogeneity of the MDP,, us,)
{A¢(n); e > 0} is uniformly integrable, then the interpolationand can be appropriately extended to the nonhomogeneous
processes((¢(-), (¢(-);¢ > 0} defined by (29) and (30) arecase, if desired. Notice that, according to the definition of the
tight and all joint weak limits are Lipschitz continuous w.p. 1ladder interpolation process, it follows théfi(ne) = w(n).

Proof: Sinceu$, in (30) satisfies the recursion (28), it The main result in Proposition 2 below is to show that two
follows directly from Assumption 5 and Proposition 1 (appliedverages are equivalent in the limit as— 0, under a set
to each component of the vector valued control process) tlwttechnical conditions. In particular, for any continuous and
{C(-);e > 0} are tight and all weak limits are Lipschitzbounded functionf(z,), define:
continuous w.p. 1. In order to show that the same is true for

le+n.—1
the ladder interpolation process (29), define tinee scaling (a0, u0) = _( +1)
process 00 . L
7¢(t) = eS(n) fort € [ne,(n+ 1)e) x E{f(x*(n),u*(n)) | x*Ucne) = zo, w(Uene) = upl.

and observe that“(n) satisfies the recursio§¢(n + 1) = (31)

5¢(n)+ A%(n). We can, therefore, apply Proposition 1 to thighjs is the average over. samples taken in an interval defined
process and conclude tht<(-);e > 0} are tight and all py 5, ¢ {i.n.,--- (I + 1)n. — 1}. Note that at every sample
weak limits are Lipschitz continuous w.p. 1. Next, from thene control valuezf( ) generally varies. Next, define

definition of 7<(¢) and (29)—(30), it follows that for every,

ne—1

if ¢ € [ne,(n + 1)e), thent¢(t) = ¢S°(n) and Clre)] = & iy
(“(eS°(n)) = u.(,. Therefore F*(@o, o) e E:OE“O{f m),uo) | x(0) = wo} (32)
CEre(t)] = w(n) = () for t € [ne, (n + 1)e) which is another average oveg samples, this time taken in an
interval defined by{0, - - — 1}, and note that in this case

which implies tightness of{¢°(-);e > 0}. Therefore, for
any jointly weakly convergent subsequence of the proces
{C<(-),7¢(-)} (indexed also bye) with limit (C(-),7(-)), the
sequence of processe¥(-) converges weakly to((t) =
C[()], which is Lipschitz continuous w.p. 1. O

all control values:“(n) are flxed atug. The significance of the
$E&2ult that the two averages are equivalent as 0 is revealed
when we think back to the distributed estimation process
discussed in Section IlI-B. This process was described under
a fixed uy, throughout an estimation interval at compongént
Yet, clearly, several control changes could be dictated by either
a central controller or other components (in the decentralized
In this section we apply the method first introduced in [18fase) within such an interval. If we think ¢f-) above as a
and generalize the result of [17] for the random sampling tdcal estimator, Proposition 2 permits us to work with a fixed
the proces$yx©(n), w(n)). Our model is more restrictive only control process, as we did in Section IlI-B, because we are

C. The Averaging Result
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ultimately concerned only with the behavior of our syster®. The Integral Representation
in the limit ase¢ — 0. In fact, Proposition 2 contains an | ¢ (&, uS,) be an MDP satisfying Assumptions 1 and

m) m

even stronger statement involving the invariant measure ©f S¢(n) be a sequence of random stopping event indexes

the fixedw process. We will also see that the key conditiof,aasurable w.r.t t§FS,}, andAS(n+1) = S<(n+1)—S(n)

?n Proposition 2, _i.e., _(33) be_low, is verifiable for all cases afg pefore. Assume tﬁ?ﬂ tHe\“(n)} are uniformly integrable

interest we con.5|der n SeSUon IV-E. . and let, as before(x¢(n),w(n)) be the random sampling
Proposition 2: Let ( mveum) be an MDP satisfying As- ,qcess. The ladder interpolation procesé) is defined as

sumptions 1 and 5. LefA (n)}_ be uniformly integrable and ;. (29) with respect to{S¢(n)}. Let Y¢(n) be a real-valued

S(n +1) = 5°(n) + A%(n), with 57(0) = 0 @ sequence of ,,¢tion of (¢¢,, us,) over the intervalm € {S¢(n), S¢(n +

stopping times, measurable with respect to the MDP proceﬁ._l}, and assume thd“(n)} are uniformly integrable. Let
Let (x“(n),w(n)) be the random sampling process. Pick a

weakly convergent subsequengéc(-)} also indexed by, (n+1)=6m)+eY(n) (36)
with limit {(-). Assume that along this subsequence of values _ )
of ¢ — 0, for any bounded, continuous functidi(y) and any and call¥<(¢) the real-valued ladder interpolation process

(u,z) 9(t) = 05(n) for £ € [ne, (n + 1)e) (37)
/P{Xf(n +1) edy | w(n)=u,x(n) =x}F(y) and finally, call7<(-) the time scale process
_ /Pu{XE(n 1) € dy [ x“(n) = 2} F(y) + 1n(e) (33) T7(t) = eS(n) fort € [ne,(n+1)¢). (38)
Using Proposition 1, each subsequence{of(-),((-)}

where|r,(¢)| < Ke for some constank’, and P, denotes the has a further weakly convergent subsequence with Lipschitz

measure with respect to the fixedprocess. Let > 0 be any continuous limit proces#(-), {(-). Our next result will char-

fixed number,6, = en. be such thah., — oo, §. — 0 as acterize the limit procesg/(-) of such weakly convergent

e — 0, and calll, the index such thaté. < s < (I. +1)é.. subsequences in terms of the solution of an ODE depending

Then, using the definitions (31) and (32), for any continuow the limit control process(-) along a chosen weakly

and bounded functiorf (x, u) convergent subsequence. In the following section, we shall

_ R identify 9¢(-) with each component of the control processes

lim E||f(x“(lene), w(Iene)) = [ (x“(lene), w(lene))| = 0 ¢<(-) or functions of it. The time scale interpolations will

‘ (34) therefore be defined with respect to different stopping time
sequences, depending on the scheme itself.

where the expectation is w.r.t. to the distribution of the random We shall now develop the basis for the integral represen-

variablesx¢(I.n.), w(lsn.). Moreover tation of the proces#(.), a key ingredient in the proof that
lends itself to the title of this section. Using a telescopic sum,

lim B[ (x“(lene), ¢“(s)) - / e (dn)f(z,¢()] =0 from (36) and (37) we can write
L(t+s) /€]

35
(35) P(t+s)—9(t) =€ Z Y<(n).
where p,,(-) denotes the invariant measure of the fixed- n=|[t/e]
process. _ Following the method in [18], [17], and [24], let. = en.,
Proof: See the Appendix. L where§. — 0 andn. — oo ase — 0. This corresponds to a

We shall now introduce a time-continuous process related-gne scale change” device which we will repeatedly use in our
any continuous and bounded func.:t.|g$(1r,q%) related tof<(-) analysis. Briefly, consider a time intervial ¢ 4 s] partitioned
and rephrase the result of Proposition 2 in a way that we shall, s subintervals, each of length With this “time scale’,
frequently use later on. . N the total length of the interval is theNe. Now seté, = en.
Corollary 2: Under the assumptions of Proposition 2, fogqp thatn, — oo andé, — 0 ase — 0. In this new “time
any bounded and continuous functig, ), if we define  gcaie”s. the total length of the interval is simply partitioned
. Ter e . into (N/n.) subintervals, each of lengtf. Then, the sum in
= < ) .
G(r) = SO (Ine), wiling)) forlbe < 7 < (L+1)2 the expression above can be replaced by two sums: an inner
one over alln. subintervals contained in an interval of length

and 6. and an outer one over all the latter intervals. Thus, we have
Flo =t e = [ i) o) L#4)/e) -
Pt+s) =0 =c Y > Y(n)+0(5)
thenlim, o E||G(s) — f(¢(s))]| = 0. i=t/5.] n=n.
Proof: Under the ergodicity assumptions, the linfitof L(t+5)/6c) Inc4n.—1
f¢ is independent of the initial valug of the state and is = ) & . YY)+ 0
the invariant average of the functiof{x,«). Then, by the I=[t/6.] ¢ n=in,

definition of G¢(-) and (34), we obtain the result. O (39)
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where the tern®(é.) accounts for the end effects of the larger Let 75 denote the history-algebra of the proces¥(-) up
intervals of sizeé.. to timet. Then, using a conditioning argument on (39) we have
Let E, denote the conditional expectation given all values
up to time S¢(n). From the MDP structure, this means that _ c _ge
for any function '(z, u) Obe) = B 0°(t+5) = 0°(¢)

B [F (&, 05,)] = B{F(&,,u5,) | x“(n), v (n)}, tt)/8c)  Inetnc—1
for all m > S¢(n) - Z b n Z Yen) | 7
I=[t/6.] ¢ n=in.
whose distribution depends on the distribution of the initial
conditions at timeS¢(n). = EL 0°(t +s) — 9°(¢)
We now define an operatad on the space of piecewise
constant functions of the form (37) as follows: L(t+5)/6. ] Inetn.—1
1 Ietne—l - Z be - Z Epp (Y(n)) | ff}
Alo¢ =— B, Y€ I=|t/5.] ¢ n=in.
I6) =5 D B )] -
for 16, < s < (I +1)6. (40) :E{z? (t+s)—z9(t)—/t A9 ](7’)d7‘|.7:t}

so that if we seg$ = A[¢¢], thengs(-) is also a real valued, where we have used (40) and the integral representation for

piecewise constant stochastic process. It is defined throﬁ{')' Using (40), the Iimiting. process/(t) along the weakly
the average expected changes in the progé&s over time convergent subsequence, given by

intervals of sizeb.. Since it is piecewise constant on intervals t
of length é., we have M(t) =9(t) — 9(0) - /0 fl¢(s)lds
B t L(t+s)/6c] is a Lipschitz continuous martingale (from the Lipschitz con-
Gy(t) =/ A[|(s)ds = Z 8 A[9°](16¢) tinuity of the limit functions shown in Proposition 1), which
0 1=|t/5. implies thatM (¢) has zero quadratic variation. Sind&(0) =
B 0, it then follows that M (¢) = 0 with probability one,
which yields the integral representation @§. therefore, using (43) the limit process satisfies
Proposition 3: Under Assumptions 1 and 5 fdgr,, uf,), t+s
if there exists a continuous and bounded functjtn) such It + s) — 0(¢) =/ flK(r)]dr
that for every weakly convergent subsequetiGe(-),v<(-)} t
we have and sincef(-) is a bounded continuous function, the solution
_ . A to this ODE is a deterministic and continuous functiort.df]
lim, B[ A[(s) = fIS(s)]Il =0 41 Remark: If f(z,w) is given by
uniformly in s, then the a.s. Lipschitz continuous limi(.) f(z,u) = E{Y(n) [ x*(n) = z,w"(n) = u} (44)
along this subsequence satisfies then, following the notation in our previous subsection:
av(t 5 A
20 _ fem “2) fo = [ (o)), (45)
Proof: Define the process With this definition of f(z, ) it follows that the expression

for G¢(-) introduced in Corollary 2 is equivalent t4[¢¢](-) in

ME(t) = 95(t) — 9°(0) — /t A[O°](r) dr (43) (40). Indeed E,,[Y,] = f(x“(n),w(n)) and using conditional
0 expectations, for alh > In.

We will now apply Propositon 1 to the processes g [ye(n)] = /P{Xf(n) € dr,w(n) € du | x°(In.),
{¢°(),9°(),65(-)}. We can do so for“(-),¢°(-) directly

from Corollary 1. Proposition 1 applies t@<(-)} in view of — w*(In.)}f(z,u) = Epn [f(x (n)w(n))]

(36) and (37). We can also apply it @(-)} by looking at
its definition and observing that we can obtain a recursion
identifying in Proposition 1e with é. andY,s with G§(né.), A[0](s) = F(x (Ino), w(In)) forls. < s < (I+1)8,

and noting that, — 0 ase — 0. Therefore, we conclude that (46)

for any subsequence, there exists a jointly weakly convergent

subsequence with a.s. Lipschitz continuous lingits),?(-), where we have used the definition (31) of the previous
gﬁ,(-). Choose any such subsequence (indexed als@)by subsection. Therefore, if Proposition 2 is applicable to (44),
Then, along this subsequendd;(-) converges to a Lipschitz then (41) of Proposition 3 is satisfied and this, in turn, can be
continuous proces3/(-). used to characterize the limiting ODE of the general form (42).

S{,‘d thus
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E. Convergence of the Algorithms Corollary 4: Under Assumptions 1-4D;(n), defined in
We shall now consider the update schemes in Section If£0), satisfies the following:
C. The DES is assumed to satisfy Assumptions 1 and 2. The 1 md _d ()
estimators are assumed to satisfy Assumptions 3 and 4. Finallylim_— E,, > Eu{Di(n) | {amy(w)} = M(w)
; ) . i—o0 m, dug,
the augmented MDP is assumed to satisfy Assumption 5, and n=0 (49)

the random stopping times satisfy Assumption 6. In particular, e now consider the decentralized asynchronous control

since the partial computations and the residual times relatec}N
to the stopping times are part of the enlarged state spa%gdate scheme (23) and for eaththe update scheme (25)

3 € 1 € F— e
for the fixedw process the transition probabilitied,(x, B) o the vectorvi(n) (with components,(n), i = 1,---, K.)
) . ! . ; / _According to the discussion of Section IlI-C3, the values of
are weakly continuous in. and there is a unique invariant

measureyi,(-). vi,(n) are updated only at the local update epochs at processor

In the following, we present our main convergence resulltcscorresponding to global event index@%(n). We deal with
9 P g y fixedk and let S°(n) = Gi(n) satisfy Assumption 6.

. . .~ an
for the three update schemes in Section I1Il-C. We shall lin{it . .
P e vi,(t) and 75 (¢) be the ladder and natural interpolation
ourselves to the most complex of the three, the decentralize )
) . rocesses related tg,(n), as follows:
asynchronous control case, since the remaining two can 'be

similarly treated as special cases (detailed proofs can be found v (t) = vi.(n) for ¢ € [ne, (n+ 1)e)
in [27]). _ , P(t) = vi(n) for t € [Gr(n)e, Gr(n + 1)e)
Before proceeding, we present next a lemma regarding a _ _ o
basic property of the derivative estimators we have definedWherev(-) is a vector with components;,;(-) and similarly
Section 111-B which are used in the three control schemes & 7;(-). Recall that theith component changes the value of

Section IlI-C. the auxiliary control variables,(n) only at local event indexes
Lemma 1: Under Assumptions 1—4Zk(n), defined in (14), Gk(n), so thatvj(t) is in fact the natural interpolation process
satisfies the following: corresponding tas;,(n), following the general definition (30).

Let ¢;.(-) denote the vector-valued ladder interpolation of

m—1

. 1 5 the control process with respect to the indeggg»). Recall
L ;Eu{dk(n) [ €aiem ()} that each processok will now have its own local time
"= () scale so that the sampling of the control process is done
= My (w)pr () C’l‘ 2y (47) locally at different epochs for different processors. The natural
Uk

interpolation procesé(-) is independent of the time scale.
Proof: Using the additivity property (12) in The processes;(-) can be identified with components of

Assumption 3 we have the control process itself, in the sense that the control is
| me uniquely defined by the relationship
— > Eu{di(n) | &6 (W)} ¢ = %
n=01 keCy
= gEu{dk(Ova(m)) | o} for all ¢,e. Indeed, from (25) and (24), sincg;(-) are

_ Eu{ <Gk(m)> <Lk(m)> dr(0, Lr(m))

piecewise constant and only change at the epochs corre-
2)(Ed) Mo of

sponding to local updates, then the actual control value at
the epoch of eventn is the initial valueug plus the total
Since the global event inde&(m) is strictly increasing changes effected at the control updates. On the other hand,
in m, then from (10) we havéim,, .., Lx(m)/Gr(m) = () — 4(0) contains the cumulative changes performed at
pr(u) a.s. for the fixeds process. Moreover, from (15), controller k. Sincei(0) = v{(0) with 3°, v5(0) = uo, then
lim, oo Gi(m)/m = My(u), and using Assumption 3 wethe control used at any time € [en, e(n + 1)) is given by

get C(t) = 3, mx(t). In the case of control constraints, recall
dy.(0, Li.(m)) Ay (uz) that the_ prOJectlorﬂU(u';l) is |ntr~oduced as the actual control.
BN —F—7—~ | — . Accordingly, we shall introducé“(t) = IIy (¢¢(¢)).
Define also the local time scaling process
which, in view of Assumption 4, by the dominated conver- iy
gence theorem yields the desired result. O 7i(t) = ¢Gi(n) fort € [ne, (n +1)e).

The next two results are stated as corollaries of the aboStce 75(-) is constant over local update intervals,(t) =
lemma, since they can be proved in the same straightforwquTi(t)] and ¢ (t) = ff[f,i(t)].
way. Theorem 1: Under Assumptions 1-6, the proces$es(t)}

Corollary 3: Under Assumptions 1-4Dy.(n, M), defined converge weakly as — 0 to a solution of the ODE
in (17), satisfies the following:

dC(t .
Wt L _ v e, (50)
lim —E, > E{Di(n, M) | &urr(u)} = . . _ . .
m—com L= duy If the ODE (50) has a unique solution for each initial condition,

(48) then the sequencé<(-) = ((-). Furthermore, if (50) has
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a unique stable point* in the interior of /' such that denote the truncation of the function. Corollary 2 yields for
V. J(u*) = 0, thenlim, .., {(t) = u*. The corresponding any B < oo
true control value limit process$(t) = Iy({(t)) satisfies ) .
the corresponding projected ODE, so that if there is a unique lE}%EHAB Vil () = fki:B(Ck(s))H =
maximum at the boundary* € 6U, thenlim;_, ., 2(t) = u*
Proof: We work with any one system compone’n'and where now

show that the associated ladder interpolation proaggs) ] tnene—1
satisfies an ODE. Since the analysis is the same for every Ag[vf;](s) = — Z Epn. frip (X (n),w(n))]
. . . . /"L
k, it will follow that for all k, the limit ladder processes € p=ln,
will satisfy each a similar ODE. Le§“(n) = G§(n) satisfy for l6. < s < (I4+1)é
Assumption 6. Applying Corollary 1 of Proposition 1, given
any subsequence af<(-), we can choose a further subseand fy. 5( = [ pu(dz) fri,B(x,u). Use now the dominated

quence so that the corresponding processggs), 7;(-) and convergence theorem to make — oo, and obtain
¢r.(-) converge weakly. Let the random sampling process be 4J
k

(x“(n), w(n)) = (€5c()> Wse(ny)- Set Bh_lgofki,B(C(s) I’VkiMk(HU[Ck(S)])d Ly [C(s)])-
frilw,u) = B{Y{5(n) | x“(n) = v, w"(n) = u} We assumed thatM;(u), V,J(u) were continuous and

bounded functions. Since the projection is continuous and

for eachi = 1,---, K, WhereYM( ) are given by (26) a bounded the RHS will be so too, as required. Since
represent the changes in the artificial control compom@nt Ap[v](s) — AlE](s), asB — oo, then (51) holds
ki ki ’ y .

at its jump epochs. We can now a o
. . . pply Proposition 3 to each of the components
We shall apply Proposition 3, identifying the process.) of the artificial control processes to obtain

with each of the components ¢ C, of the artificial control

processvy,(-). Proposition 3 can be applied if we can applyiv(t) dJy, L
Proposition 2 to these processes. We show in the Appendix asj ’“(HU[C’“(t)])Wd y[G@) i=1,.- K.
Lemma 2 that (33) is satisfied. It follows from (26) and (47) (52)
in Lemma 1 that _ In order to characterize the dynamics of the limit process
. ¢(-) we shall study the time scale procesg:) generated by
- 1'& _ the choserk. Let A% (n) = Gi(n+1) — Gi(n) be the lengths
Fii(u) = W}Ego m Z Eu {Y’” x} of the local update intervals and write the telescopic sum for
_ 4T, (1)
= v M (L 11
Vri M ( b(u))du (Ly (u)) (o))
for all ». Recall that we now interprel, as the expectation Ti(t+ ) — Tilt Z Akl
for the fixed control process that operates at true valyé€u). =L/l
In order to apply Proposition 3, we shall show that (41) L(t+s)/5c] et
is satisfied. To shorten notation, call,, the expectation = Z 6671_6 Z Ajn) +0(5)
conditioned on(x¢(n),w(n)); from (40) and (25) we have I=1t/5c] n=ine
! so that
Al (s) = — Ep, [Yii(n)] ths
e n;; E{Tﬁ(t +s)—Ti(t) — / Alre](s)ds | .7-";} = O(e)
for 16. < s < (I + 1)6.. !
where, by (46)
If U is a bounded compact set, then by Assumption 4
fri(x,w) is continuous and uniformly bounded. Then Corol— (“’1)"‘ .
lary 2 applies using;, = A[v5;], which yields Z Ein [Af(n)] for s € [Ine, (I4+1)n.)
Te n=ln,

dJ

21_1)% EHA[V;J (8) — i Mr(Ily [Gr(8)]) 5— dun

(HD [Cr(s )])H 0. represents the expected average change in the time scale
process over a time interval of size. From the renewal
(51) structure, it follows that we can also apply Corollary 2 to

. S . Obtain
If U is not bounded (or no projection is used), a truncation

argument can be used as in [17]. Specifically, for every liIr(lJEIIA[TZ](S)—Mk[ﬂu[C(S)]]H =0
constantB > 0, let -
_B if f(x,u) < —B and therefore, the limit functiom(-) satisfies
fB(xvu): f(xvu)v if _B<f($7u) B dr(t —
B i fes0) > H0 ()
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which is a deterministic, continuous, and monotone functiolearning rate. The compound effect df, ’ykigTJ’;(u) for u
Therefore, it has an inverse functiofy 1(¢) that satisfies close to the optimal value induces small changes at the update
epochs of the central controller. However, the decentralized

1= dry, [Tk l(t)] _ @[ L )] dry, () control schemes act separately, thus we can expect the control
dit dt t¥ Lo dt " process((-) to present more noticeable oscillations in the
Y -1 dry ~(t) - p: dry ~(t decentralized operation even close to the optimal value. This
= My [l [¢ (7 )] dt My [C()] dt is indeed the case in the results shown in Section V.
so that We also state below two corollaries of the theorem that
. correspond to the centralized scheme with fixed and random
dry (1) _ 1 (53) update events of Sections Ill-C1 and lll-C2 (for details see
VA0 [27)).
. Corollary 5: For the central scheme (18), under Assump-
where we have used the fact that[r.(¢)] = Ci(t), and tions 1-6, the processég<(¢)} converge weakly as — 0 to

¢°(t) = ((t) = Gl ()] along the convergent subsequence solution of the ODE
which follows from Corollary 1. de(#)

Since for everye, we haver;(ri(t)) = vi(t), using the ——2 = -V, JIy[L®)]). (55)
chain rule for the derivatives, the limit procesg(-) along dt
this convergent subsequence satisfies for each component Corollary 6: For the central scheme (21), under Assump-
tions 1-6, the processég*(t)} converge weakly as — 0 to

dogi(t) _ dip (=) dry (1) a solution of the ODE
dt dt 'k dt 250 )
= M;, [Hb’[f(t)]hkif%:(ﬂb’ [5(t)])m o =V J(Uy[C@))). (56)
= fyki;%’:(ﬂy[f(t)]). (54) V. AN APPLICATION

In this section, we provide an application of the optimization
The argument above is the same for &l there- schemes developed and obtain experimental results for the
fore along any jointly weakly convergent subsequence 8fheduling problem introduced in Section IlI-A as shown in
O, (), ¢°(-),k = 1,---, K}, the limit processes satisfy Fig. 1. We shall illustrate the use of distributed derivative
(54) and (53). For every, ¢ the natural interpolation processestimation and compare the convergence behavior of the three

satisfies (°(t) = 3, (), therefore in the limit, along control structures. Recall that in our mod&l,nodes compete
the convergent subsequence, we obtain for each componggta single server/resource (e.g., the channel in a packet radio
Gi(t) € IR recalling (5) network). Fixed length packets arrive at nadeccording to an
- K K arbitrary interarrival time distribution with ratg. We consider
dG _ N~ dvwi _ 3 ,%(H @) = 9J (Il [C(#)]) @ slotted time model with slot size = 1, where at the start
dt dt TR g, Y ou; Y i is assi i
b1 =1 k Ui of each time slot, the server is assigned to a particular node

, L (see Fig. 1). The current time slot is allocated to itheclass
and therefore (50) is satisfied for the chosen subsequence,gfy hrobability ;. The objective is to minimize the weighted

the original weakly convergent subsequence. If this ODE ha 9erage packet waiting time

unique solution for each initial condition, sin¢&(0) = u(0), | the example presented here, we have simulated a model

then this limit is independent of the chosen subsequer\g,ﬁh K = 3 so that the constrained optimization problem is
and therefore all subsequences have further convergent sulg%éd as

guences with the same limit, thgs(-) = {(-). The remaining . .

statements follow using continuity of the projection operator ) 1

and stability of the ODE. 0 mi S+ D Aidi(w) sty w=1 (PY
Remark: For each system compone#t the local time g=L =L =t

scale7;, is related to its “slower” update epochs. Workingvhere J;(-) is the average nodeé packet waiting time and

component by component allows us to apply the weak com-= [u;,us2,us].

vergence method as in [16] locally. However, the only time As described in Section I, we first convefP1) to an

scale which is common to all components is the natural timmconstrained problem witl’, = {1,2}, corresponding to

scale. Therefore, we have first obtained the limiting ODEe independent control variables. Due to the nature of the

satisfied by the natural interpolation of the artificial processesoblem, each queue= 1,2,3 can be modeled as a single

that are local to each component in order to finally characterigerver with deterministic service time. From the point of view

the limit of the true control procesgt). of the ¢th queue, the server is on vacation (i.e., serving some
Although in the limit the equation satisfied by the naturather queue) at any one time slot with probabilfty — ;).

interpolation processes in the central controller with randoNotice then that the average packet waiting time at queas

update times and in the fully decentralized operation are the estimated locally without the need for information from the

same, the choice of > 0 and the sequencei,(l) are of other queues, and the sensitivity with respecttcan also be

practical importance in applications where we keep a fixezstimated locally. In our experiments, these sensitivities were
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Fig. 5. Comparison of centralized control versus limiting numerical solution to ODE.

estimated via thé®hantom Slot (PShnethod of [5], based on ¢ Central controller with Fixed Update Event& = 500
the admission control derivative estimation of [2]. For brevity, time slots;
we omit here details on thReSestimator. As described earlier, « Central controller with Random Update Events= 100
the estimation is done in distributed fashion. All estimators busy periods;
are constructed depending on the state values that can be Decentralized controllerA = 500 local service comple-
measured locally at the epochs of service completions at the tions.
given queues. Therefore, our global event epochs are simply) Centralized Control with Fixed Update Eventi the
counting time slots. Under uniform stability, the stationargentralized control scheme used here, a control update is
throughput of each node equals its arrival rate, and the facidrformed by a central controller (any node canabpriori
pr(u) in (10) is given byp, = A6 independent ofu. It selected to be the controller) at update epoetid,n =
is worth noting that if the rate&k are unknown, it is still ()7]_7...7 where M is a deterministic number of slots. For
possible to estimatg, online. simplicity, we assume that the estimation interval for each
In what follows, we implement the three control structuregode  is identical to the controller update epochs. In our
defined in Section 11I-C to perform a single run optimizatioRarlier notation (see Section 11I-C1) this simply means that
using the basic scheme (7) with fixed learning rater the ,(n) = n, and there is only one local sensitivity estimate
three-node polling system and compare their respective pgf-each nodek reported over theith update interval. Thus,
formance. For this example, our method ensures convergeggedescribed in Section 1II-C1, at the epoch of global event
of the control processes of our three schemes to the ODE ;, A7, each node: transmits its estimatéy(n) to the central
controller. The central controller then calculat@s(n, M) as
dur(t) _ dI(m(t) _ dJs(us(t)) (57) defined in (17) with just one term in the sum (and 3oes an

dt dul dU,3

dus (1) _an () ddsus(t) . update based on
dt dus dus ui(n+1) =u(n) — e[D1(n, M) — Ds(n, M)]
us(t) = 1 —ui(f) — ua(t) (59) uz(n + 1) = us(n) — e[Da(n, M) — Ds(n, M)]

which, in the limit ast — oo, has an asymptotic valueand us(n 4+ 1) = 1 — u;(n + 1) — ua(n + 1). Note that
u(t) — u* that satisfies the Kuhn—Tucker conditions fopecause of the slotted nature of the model, each node can
optimality. independently recognize a global update epoch without explicit
In the simulations performed, we considered a netwoHglicitation from the central controller. Following Theorem 1,
with Poisson arrivals andymmetrictraffic. As long as the our method of convergence predicts that the limit of the ladder
model parameters are selected to ensure that the optimal pgiférpolation procesg(t) satisfies (57)—(59). Recall that for
is an interior one, this allows us to know that the optimahis case, the limit of the natural interpolation process satisfies
control vector isu* = [1/3,1/3,1/3]. The system parameters¢(M/t) = ¢(t), so they are related by a time scale change.

considered aré¢ = 1,¢ = 107¢ and Fig. 5 shows a plot of the solution of the companion
e Symmetric traffic:h; = Ao = A3 = 0.1; ODE (57)—(59), obtained numerically via a Newton—Raphson
* Initial slot assignmentz; (0) = 0.5,42(0) = u3(0) = method, and the corresponding interpolation procéss for

0.25; the centralized control structure with fixed update events. In
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Fig. 6. Comparison of centralized versus decentralized control structure.

Fig. 5 we verify that for the given system parameters, thirdex and let nodé be the node that initiates itth update at
sequence of controlag, not only approaches the tail of theeventm+1 = G (I). Then, nodé: updates théth component
solution to the companion ODE but is able to accurately tradi the control vector according to (23) as follows (recall that
the trajectory of the limiting solution. As predicted by oup, = A, for § = 1 is independent of the value of the control
theoretical results, the limit processes approach this solutiand is known to each queue):

ase — 0. In the plot,c was kept fixed and it shows fluctuations

around the limit ODE, as expected. W11 = W1 + GM
2) Centralized Control with Random Update Eveni&his Pk

control scheme is similar to the previous case, where now Yz dr (1)

instead of performing a global update at the end of a deter- Upi1,2 = Um,2 + 67pk

ministic number of time slots, the central controller countsnd u —1—_u u where _ =
the number of busy periods at all nodes (assuming, just fore “m+i3 = mAl,l = Uml,2, AMETETL = & =
, 712 = Y21 = 0,731 = 32 = —1 anddy(l) is the estimate

this case, that the controller can actually detect busy perio?{@nodek over the local interva[Ly (1), Li(l + 1)). Finally

at all nodes). LetB; be the number of busy periods a ;
node £ within an update interval and3 a given integer. he complete updated control vectay, 1, is sent to all other
stem components# k. The procedure therefore updates as

Then, the controller performs an update when it observ ) . L
that By + B> + B3 = B. At the end of each such estimationcg I(l)ws_.tevde(;y ttlme node 1 (t?]r node 2) hasdgn etstmd@(é)_(cr)]rt d
interval, the central controller solicits from each nokléts 2(1)), it adds tou, (or uz) the corresponding term weighte

estimatedy,(n), with [;(n) = n as before. It then constructstzy the factorp;, and adjusts:s. When node 3 has an estimate

Dy, (n) as defined in 20 and then proceeds to perform an updgﬁél)’ it subtracts it from bothi, andw; and adjusts.s. The
compound effects, as shown in Theorem 3, yield convergence

based on of the natural interpolatio*(¢) to the solution of (57) and
ur(n +1) = uy(n) — e{Dy(n) — Ds(n)] 58). |
uz(n + 1) = ug(n) — [Da(n) — Da(n)] In the simulation results that follow, in order to compare the

convergence behavior of all three schemes on a common basis
andus(n+1) = 1 —ui(n+ 1) — u2(n + 1). In this case, provided by the common underlying ODE associated with all
as stated in Theorem 2, the limit of the natural interpolati’schemes, time is appropriately scaled in order to f)‘lozt) in
processf (t) satisfies (57)—(59). all cases. Thus, in the central control scheme with fixed update

3) Decentralized Control:In the decentralized asynchro-times, we adjust the time scale by a facfdr.

nous control structure, each nofleasynchronously performs Fig. 6 shows a plot of the slot assignment probabilities
a control update at the end of its local estimation intervaks a function of the global event index (or equivalently
[Lr(D),Lx(l+ 1)) I = 0,1,---, where the interval length is the simulation length in time units) for each of the update
given by a deterministic numbek of service completions at schemes, where the control parameter values are plotted at
nodek. Since each queue is an M/D/1 server with vacationsdiscrete sample points defined by the global event indexes
fixed number of local service completions yields nonethelesia/, n = 1,2,---. In other words, this plot shows a sample
random number of slots depending @n Letm be the global of the natural interpolation processés(t). In Fig. 6, as
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Fig. 7. Comparison of centralized versus decentralized control structure.

expected, we observe that the control processes of the threlated to the value of arises because an adjustment induced
schemes approximate the behavior of the predicted OD, any one of our schemes may result in an infeasible value
which has the optimal value* as an asymptote. Recall thatof the probability vector (typically, a value greater than one).
our results establish convergence in the distribution of the the example of this section, the valuecifvas chosen such
interpolated control processes to the degenerate distributiorthut feasibility and stability constraints were never violated.
the deterministic solution of the ODE. If we were to perform &learly, there is a number of different methods to handle this
series of simulations, each with fixed but decreasing learnipgoblem, including various projection techniques; this is the
ratee, we would see a closer and closer fit in the correspondifigbject of ongoing research.
plots to the smooth curve shown in Fig. 5.

Moreover, the performance of the decentralized scheme VI. CONCLUSION

seems almost identical to that under a centralized schemewe have presented and analyzed centralized and decen-
Th_|s is attributed to the discrete sampling (i.e., evefy time traljzed asynchronous control structures for the parametric
units) of the control processes: as expected, the decentral% dmization of stochastic DES's consisting &F distributed
version of the scheme compensates the individual updajes,,onents. We have used a stochastic approximation type
in time, yielding a compound effect similar to the central¢ ,qtimization scheme driven by gradient estimates of a
schemes. Rather than sampling at long time intervals, |f. Wfobal performance measure with respect to local control
plot the control at the actual update epoch under the givVRQrameters. The estimates are obtained in distributed and
control structure, we expect to see a smoother behav'ordgynchronous fashion at th& components based on local
a centralized scheme than in the decentralized scheme.ifie information only. If the conditions specified in Assump-
particular, Fig. 7 shows a magnified comparison between tgn 3 (Section I1I-B) for the estimators are satisfied, i.e.,
decentralized and centralized with fixed update events scherg§§mpt0tic unbiasedness and additivity, and some additional
over the time horizon indicated. As noted in the Remark at thgchnical conditions hold, we have shown that two centralized
end of the previous section, we observe a visibly oscillatopptimization schemes (one with a fixed and one with a random
behavior under the decentralized scheme. Similar resultsSd@mber of events contained in the update intervals), as well
those seen in Figs. 5-7 were obtained for different paramegy the fully decentralized asynchronous scheme, all converge
settings in this model (including asymmetric traffic cases) n@§ a global optimum in a weak sense. Our schemes have the
included here. additional property of using the entire state history, not just
Finally, a few comments on the choice efare worth the part included in the interval since the last control update;
making. First, as discussed in the Introduction, we havygus, no system data are wasted. Regarding Assumption 3,
chosen a fixed value of to illustrate the behavior of the the nature of the performance measure given in Section I
three optimization schemes motivated by the need to equiptermines the ease or difficulty associated with the derivation
them with “adaptivity” properties. In the context of simulatiorand verification of asymptotic unbiasedness for our estimators.
optimization, we can easily allow for a gradual reduction dt is, therefore, of great interest to study derivative estimators
e to zero so as to eliminate the small oscillations observéor classes of problems with different characteristics, such as
around the “optimal” reference line in Figs. 5-7. A problenobjective functions which do not have the additive structure
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considered in this paper (which imposes limited coupling over L7/s] L(G+1)6/€] y
the system components) or cases where a performance measure < Z Pqe Z Vil Lgvesnpy = 3
J;(-) depends on control parameters other than jyst j=0 n=|j6/¢)
Finally, as already pointed out, the choice of learning rate L7/5] LGi+1)5/¢€]
e and of the length of the estimation and control update < 3 Z E{Sup € Z |Y§|1{|Y<>B|}}
1% "

intervals remains a challenging issue and can be critical in =0
some applications. In particular, in the presence of control " o
constraints, it is essential to incorporate mechanisms to hanfifaeére we have used Markov's inequality in the last step. From

the possibility of an infeasible control value resulting from af€ uniform integrability ofY;?, for all # > 0 there is a
iteration. constantB such that|Y; |1y |>5y < n'. ChooseB so that

E|Y:|1{ve>By < n(v/3T). Then choose < v/B. Since
the number of terms in the inner sum is boundedjy, then

Io1=8 o /e)

APPENDIX . .
N ) o we finally obtain that

Proposition 1—Proof:Since the sequence of initial val-
ues{0<(0); e > 0} is tight, using [1, Th. 15.5] it suffices to Ly
show that for ally > 0 andn > 0, there ared > 0 andeg P <SUP € Z |Yn| 2V
such that FETIIE ey

< 3T 6 v

P{ sup |9 (t+5) — 9 ()| Z,,} <n, foralle< e. So\s )\ s =

t<T,|s|<6

. . . . , . which proves the assertion. O
Uniform integrability of Y7 is defined assup,, . limp—.o

E[|Y; gy, >pp] = 0, wherel,y is the indicator function of Proposition 2—Proof: From the definition of the indexes
the eventd. Let» > 0,7 > 0 be any given positive constants.lE and e, if lene < n < (Il + 1)ne we have|en — s| < é..

Then for any numbe£ < oc (to be determined later) we havegy, yhe definition of the ladder interpolation process we have

L(t+5) /€] for all suchn that
P su € Yl > v . .
r<Tsl <o n=|_zt:/ej ] [[w(n + 1) — w(n)]

= [I¢°(en + €) = C“(en)|

L(t+s)/€]
<P sup € Z |Yn€|1{|y7§§|3} <€ (en+€) = (len + o)
T +[[¢(en + €) = C(en)|| + [[¢(en) — C*(en)]].
Lt a)/e] . v Using [16, Th. 2.3], we can use Skorohod imbedding to
+ t<;1g)|<56 Z i 1gvesnp = 3 ( change the underlying probability space and assume w.l.o0.g.
= n=|t/e] and invoking Corollary 1 that the chosen subsequefice —

For all e < ¢y < 8, the number of terms in the sum is bounded(-) w.p. 1. For the first and third terms, we use a.s. conver-
by s/e and |s| < é. Since the first term in the previousgence of((-) and for the term in the middle, the Lipschitz
expression involves the sum of random variables that agentinuity of the limit function, to conclude that the values of
uniformly bounded byB, then for all§ < /B the first term w*(n) lie in a compact set w.p. 1, for all € [lene, (Ic+1)n.).
in the bracket is smaller thamw.p. 1., so that fob < /B That is, along this subsequence there is egnsuch that
L(t+5) /¢ P{llws(n + 1) — w(n)|| > Ble)|lw(n)} = O(e) where
P Z ve| > v 0 < B(e) = O(e), for all ¢ < ¢.

t<375<56 nl= Let f(z,u) be an arbitrary bounded and continuous func-

o n=li/el tion. By time homogeneity of the MDP, fon > I.n., if

L(ti)/ﬂ e m = n — l.n., we have
<P sup € Yolgyesnpy 2V ¢
T (O (), w"(m)) | x“(Lin) = o, w(len.) = o}

Therefore, we must choos®, § < /B ande¢, < § in order = E{(x“(m), w'(m) | x*(0) = 20, w"(0) = uo}. (60)

for the r.h.s. to be bounded by for all ¢ < . Using the Let
corollary of [1, Th. 8.3], we can partitiof0, 7] into a finite
numberr ~ O(T/§) of subintervals whose widths are smallef m (4%, du; 2o, wo)

than § so that = P{x*(m) € dx,w*(m) € du | x°(0) = 2o, w(0) = ug}
Lt Ea)/el . denote them-step joint transition measure of the random
Pq sup e Z Yillgvesny 2 v sample proceséx‘(n), w(n)). Similarly, let
t<T,|s|<6 n=|t/e

<P Peswe 3 [Viligveny 2 g

denote then-step transition measure of the procdss,} =
I1<8 =i /e)

1 { L(i6+35) /¢ } Pnz(d$§$07uo) = P{X(m) €dx | X(O) = -770}
{€s(n)(uo)} when the control is fixed at the valug).
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For this functionf and0 < m < n., define Since [R,,| = O(me), the remainder term in the average
above is of the orde®(en.) = O(6.) — 0 ase — 0 along
Am(o,u0) the chosen subsequence. It follows that
= [ P dus o, o) .0 lim Bl (" (lene), w'(leno)) = F*(wo, uo)]| = 0

= E{f(x“(m),w*(m) | x°(0) = zo,w*(0) =uo}. (61) which establishes (34).
Next, by Assumption 5 the sequenég(i.n.),w(l.n.)}

Then, we have is tight and therefore every sequence (and in particular the

. chosen one) has a further subsequence such that its joint

Am (20, u0) I/ -~ Pi(dy, dv; o, uo) distribution P<(dx, du) converges as — 0 to P(dz,du).

() Sincew(I.n.) = (¢(s) — ((s), the distribution ofw*(l.n.)

X / P, (de, dusy,v) fz,u) converges to that of the limiting random varialgles) along

(zu) all such subsequences.
:/< | PE (s s 20, o) A 3 0). Glven any value ot(s) = w. set

Y

= lim — E “0)=z}. (62

Since f is bounded and continuous, it follows from the f(x u) = ngréon Z AFOm)) [X(0) =2} (62)

m=0
weak continuity ofP,(-) in Assumption 1 thatd,,_,(y,v) is

a continuous and bounded function«fand for|jv — uo|| <  Therefore:f<(z,u) — f(z,u) ase — 0, where(z,u) have
B(e), [|[Am_1(y,v) = Apm_1(y,u0)|| = O(e), thus the limiting distribution P(dz, du).
Under the ergodicity in Assumption 1, since the invariant

A (o, u0) = / PE(dy, dv; o, u0) Am—1 (y, 1) + O(e) measure of the fixed-process exists, then the Cesaro sum in
(yv) f(z,u) satisfies

where the integrandi,,,_; (v, uo) is independent of;; there- flz,u) = /uu(da:)f(a:,u)
fore, integrating over and using assumption (33), we have
where,(s) a.s. for everyr and is independent of. By the
A (0, u0) = /Pl(dy%%’uomm—l(y,u()) ¥ Rn(e) fact that the limit is independent of the chosen subsequence
Yy of P¢(dz, du), (35) is satisfied. O
Lemma 2: For the decentralized control structure, under
Assumptions 1-6, for any weakly convergent subsequence of
the procesg“(-) = ¢°(-), (33) is satisfied for any continuous

where the remainder term satisfig$,,(¢)| = > ; Ri(e) =
O(e). Proceeding by induction, we obtain

and bounded functiod(x).
Anl($07u0) .
Proof: Call A; the subset of the state space such that if
= /Pl(dy; 20, %0) Am—1(y, u0) + Ry (e) ¢, € Ay, thenm is a local update epoch for procesgofsee
Section 11I-B2), that isP{}";2; 1iscqy=m} | & € A}y =1
:/Pl(dy7 xOv“O)/ Pl(dw7y7 U’O)Arn—Q(w7U'0) and P{Ezl 1{Sc(l)="l} | 576" ¢ Ak} = 0. Let F(.’L’) be any
Y w bounded and continuous function defined .ore A;. Then,
+ Bn(e) + Ry—1(€) using time homogeneity of the MDP and (27), we have for
an € Ay
= /PQ(dy7 Lo, U'O)Arn—Q(yv U’O) + an(e) + an—l(e) ye b
m B{F(x"(n+1)) | X(n) = w0, " (n) = uo}
= ZRk(G) + /Pm(da:;a:o,uo)f(a:,uo). = Z PSE(1) =m | x(0) = =, w(0) = u}
k=1 m>1
Therefore x E{F(&,) | £(0) = z,u(0) = u}
ne—1 1 ne—1 = / F(xl)P{Sf € dxy | 58 = 370,118 = U,o}
—_ Z Arn xOv“O Z Rnl(e) #1CAk
¢ m=0 o= +/ / F($2)/ P{& € dwy | & = 1,
ne—1 ro€AL Juy 1€ AL
+ —E > Eu {f(x“(m),uo) | x(0) = zo}. X uf = ul}
m=0 X P{Sl € dxy,uf € duy | £€(0) = zo,u = uo}
Combining (60) and (61) and recalling the definitions in (31)
and (32), this equation becomes / / / Fem)
UL,y Um B €AY J T 1, T 1 Z AR
Fe(x f(z ne),w(lene)) X P{&, € dey | &1 = Tm—1, W5y = Un—1}
ne—1 m—1
= n— > Ran(e) + Fx (lene)s w(Iene)).- x [I PL& € dojouf € duy | €4 = 251,05,

m=0 J=1
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:Uj—1}+"'
ST
m>1 etV T €A S Bt w1 €AY

X Pum l(xrn—lv dxrn)

m—1

X H P{& € drj,u € duj | & = x5,
j=1

xu§_; =uj_1}

Xl Flem)
>1 Y UL U S B €A Y T 1, T 1 E A

Pum_l (xnl—lv dxrn)

m—1

H i (@1, de ) P{u € dug [ 6y =21,

Xu§_; =uj_1}.

We use now the fact that along the convergent subsequences,

under Skorohod representation(-) — ¢(-) a.s., and’{|ju§ —
uj—1]| < B(e) | uj_; = wuj—1} = Oe) ase — 0
along this subsequence. The transition probabiltyz, B)

is weakly continuous in(z, ). Therefore, for any bounded

), for v such that|v — u|| < B(e)

and continuous functioffi(
(z,dy) = (@, dy) + p(e) Pu(w, B)

/ fly
_ /B F(y) + p(€) Pu(x, dy)

where |p(e)] < Ke and K depends on the bound of.
Therefore, for the termn = 2 above, we can replace;
by uy to get

/ / F(ajg)/ Pul(azl,dazg)PuO(azo,dazl)
r2CAL Jur 1€ AL

x P{uf € duy | § = wo,u§ =uo}

- /xzeAk / /w o [EGe2) o plelPuo e, diez)

X Py, (xo,dxl)P{ui € duy | £ = zo,uf = uo}

= / / [F(x2) + p(€)] Py (1, dxa) Pyy (o, dzy)
22 €A Jx1 €A,

where we have integrated ovey in the last step. Proceeding

in the same manner, for, = 3 we replace firstu; by u; and
thenu; by wug to obtain

/ / F(.’Eg) / Pu2 (xg,d.’lig)Pul (.Il,daig)
z3CAg Jui,uz 2,21 €Ak

X Puo(xo,dxl)P{ug € dus | & = z1,u] = ul}
x P{uf € duy | £§ = zo,u5 =up}

B /JCSEAk /ul /wz,azle’Ak [F(23) + p(e)|Pu, (w2, d3)

x Pu1($17d$2) uo(xo,dxl)
X P{ul S dU,1 |£0 :3707110 :U,()}

-/ . / 1 / ) )

Pul {S?i € d$3|£f = xl}Puo (.Io,dxl)
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x P{u§ € duy | £ = xo,uf = uo}

-/ . / ) +2000)

X Pu0{£§ € dus | 5{ = .’171}
X Pug {51 € dxy | 56 = .’170}

= / / F($3)Pu0{5§ € drs | £ = o}
z3€AL J 2,71 € AR

b2 P (g e e |G = aol
ngAk wz,wlgAk

Proceeding by induction, we have

E{F(x*(n+1)) ) = zo,w(n) =up}

/ / F(:L.’rn)
m>1 Y EmCAR ST, B A

PUO {Srn € dw"l | 50 = .’IZ'()}

+ (m — Do(e)

m>1Y Em—1y 1 Z Ak

Puo {Srn € dw"l | 58 = .’IZ’O}

= ZPUO{SE(]‘ m|£0:$0}Euo{F |£0_$0}
m>1
+ Y (m (€)Pu, {S(1) =m | £ = @0}
m>1
= Eu {F(x“(n+1)) | x(0) = zo} + [M(uo) — 1]p(e)
which shows (33). O
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