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Abstract—This paper uses stochastic fluid models (SFMs) for those queueing theory can deal with, as well as the need to ex-
control and optimization (rather than performance analysis) of plicitly model buffer overflow phenomena which typically defy
communication network nodes processing two classes of traffic: 4 ctaple analytical derivations. The SFM paradigm allows the

one is uncontrolled and the other is subject to threshold-based i i ltiol t iated with th t
buffer control. We derive gradient estimators for packet loss and aggregation or muitipie events, associated wi € movemen

workload related performance metrics with respect to threshold Of individual packets over a time period of a constant flow rate,

parameters. These estimators are shown to be unbiased andinto a single event associated with a rate change. It foregoes
directly observable from a sample path without any knowledge the identity and dynamics of individual packets and focuses
of underlying stochastic characteristics of the traffic processes. instead on the aggregate flow rate. SFMs have recently been

This renders them computable in online environments and easily h to b iall ful f V7 . kinds of
implementable for network management and control. We further Shown 10 be especially useful for analyzing various kinds o

demonstrate their use in buffer control problems where our high-speed networks [1]-[8].
SFM-based estimators are evaluated based on data from an actual ~ For the purpose gberformance analysiwith quality of ser-

system. vice (QoS) requirements, the accuracy of SFMs depends on
Index Terms—nfinitesimal Perturbation Analysis, nonlinear traffic conditions, the structure of the underlying system, and
optimization, stochastic fluid models (SFMs). the nature of the performance metrics of interest. For the pur-

pose ofcontrol and optimizationon the other hand, as long
as a SFM captures the salient features of the underlying “real”
system it is possible to obtain solutions to performance opti-
N THIS paper, we use the framework of stochastic fluighization problems even if we cannot estimate the corresponding
models (SFMs) to capture key aspects of the behavior gérformance with accuracy. In short, a SFM may be too “crude”
complex stochastic discrete event systems and hence devét@gome performance analysis purposes, but able to capture sen-
means for on-line control and performance optimizatiowitivity information for control purposes. This point of view is
Our motivation and ultimate goal is to use this approach fegiken in [8], where a SFM is adopted for a single traffic class
controlling communication networks with multiple classeaetwork node in which threshold-based buffer control is exer-
of traffic. Although queueing models have long been used tised. For the problem of determining a threshold (measured in
capture the discrete event nature of packet-based operatipaskets or bytes) that minimizes a weighted sum of loss volume
in networks, huge traffic volumes have rendered such modelsd buffer content, it is shown that a solution based on a SFM
highly impractical. In addition, the bursty nature of realistigecovers or gives close approximations to the solution of the
traffic requires more sophisticated stochastic processes tk@sociated queueing model. Since solving such problems usu-
ally relies on gradient information, estimating the gradient of
a given cost function with respect to key parameters, such as
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A

ject to threshold-based buffer control (see Fig. 1). Thus, we
model a typical network node where the controlled stream repre on(t)
sents a source of new traffic into the network at that node and th
uncontrolled stream represents “interfering traffic,” i.e., traffic ¢ (¢) :
originating at other nodes on its way to various destinations

This is an essential step toward the study of a complete networl K 61 —x(6n —
which is the ultimate objective of this line of research. We as-

sume that incoming traffic is not dependent on the threshold @8- 1. SFM with two traffic classes.

rameter being controlled, so that we limit ourselves to network

settings operating with protocols such as user datagram protagol| ang service processes involved. In addition, the estimators
(UDP), but not transmission control protocol (TCP). Howeveg,, pe evaluatedlased on data observed on a sample path of
traffic streams _formed _by multiplexing multiple TCP sourcege actual (discrete-event) systefus, we may use the SFM
may be approximately independent of this threshold. to obtain a gradient estimator whose form only is used, while the
Interestingly, this model also captures the operation of thesqciated value at any operating point is obtained on line from
differentiated services (DS) protocol that has been proposed i) system data. Readers familiar with IPA will also notice that
supporting QoS requirements [13]-{15]. In a DS setting, pack§ form of the estimators derived for this type of system is quite
arriving at a DS supporting domain are marked and aggregaigiflarent from the “classical” ones (e.g., see [9] and [10]). These
into streams according to their classification. Subsequently,égtimators are also shown to be unbiased, a substantially more

all other nodes of the domain, all stream packets are treated @¢5jenging task than in the single traffic class model studied in
cording to that classification irrespective of the flow that the[,g]_ Finally, we use these estimators to illustrate how to solve

belong to. Thus, our model represents the handling of any ong@ktar control problems in a two-class network setting.
the “assured forwarding” classes, where our two traffic classesypo paper is organized as follows. First, in Section II, we

correspond to different drop priorities; the uncontrolled stréa}egent our model and define performance metrics and param-
corresponds to high priority (green) packets which are droppgghs of interest. In Section Ill, we derive an IPA estimator for

only ifthe total buffer capacity is exceeded, while the controliefle sensitivity of the expected loss rate with respect to the con-
stream corresponds to low priority (yellow) packets which agy e traffic stream’s threshold parameter. In Section IV, we
dropped when the buffer exceeds a given threshold VaI0E-  one4t this process for the workload as a performance metric. In

erwise, packets are treated alike. In this paper, we limit ourselvgs.tion v, we establish the unbiasedness of the estimators de-
to a single controlied stream and assume an infinite capagijyeq. |n Section VI, we show how the SFM-based derivative
buffer. The natural extensions to a finite buffer model and Qstimates can be used on line using data fronatteal system
multiple controlled streams are possible and are the S“bJeCt(RI)t the SFM) in order to solve buffer control problems. Finally,

ongoing yvork [16]. ) in Section VIl we outline future research directions motivated
We point out that a central theme in the network managgy this work.

ment approach we propose is the fact that it is based on data
directly available online, thus, requiring little or no information
regarding the characteristics of traffic and service processes
involved. Such measurement-based approaches have beéfhe SFM studied in this paper is based on the model de-
proposed for network control (e.g., [17] and [18]), but the ongcribed in [8] where a single node and single traffic stream
we propose is a control strategy exclusively based on sensas considered. In our case, as shown in Fig. 1, there are two
tivity analysis, capitalizing on the discovery that sample-paticlasses” of traffic: controlled (class 1) and uncontrolled (class
gradient information can be obtaineshline by extremely 2). A threshold is associated with class 1 traffic, which has a
simple, often nonparametric, and unbiased estimators. @me-varying arrival ratex; (¢). Uncontrolled traffic has a time-
the other hand, the variance of gradient estimators may \erying arrival ratexs(t). A control policy is exercised so that
high, leading to a tradeoff between fast and simple algorithmgen the total buffer content reaches a threshiptdass 1 traffic
potentially yielding high-variance estimators. Our experiendg rejected, while class 2 traffic is not affected. The two traffic
with sample path optimization reveals that fast convergensgeams share a common FIFO buffer assumed of infinite size.
toward the optimal region of the minimum is often obtained byhe service rate is also time-varying and denotegsty. In
high-variance estimators based on few samples; however, thiklition, lety(6;¢t) denote the loss rate when the buffer content
is an issue that requires further research. exceeds the designated threshold lévelnd letz(6;¢) denote

The contributions of this paper are as follows. First, we déhe buffer content at time The notational dependence 6in-
rive IPA gradient estimators for performance metrics related tticates that we will analyze performance metrics as functions
loss and workload levels (from the latter, fluid-based expectefithe givend.
delay metrics can also be obtained; see [19]) with respect toWe are interested in studying sample paths of the SFM over
the threshold parameter in a model with two traffic streama,time interval[0, T for a given fixed0 < T < oco. We as-
one controlled and one uncontrolled. Compared to the nonpasame that the processgs; (¢)}, {a2(t)}, and{5(¢)} are inde-
metric estimators derived for the single-stream SFM in [8], theendent of (thus, we consider network settings operating with
estimators in the two-class case generally depend on traffic ratetocols such as UDP, but not TCP) and they are right-contin-
information, but not on the stochastic characteristics of the areus piecewise continuously differentiable w.p. 1. Note that a

A0

Il. STOCHASTIC FLUID MODEL (SFM) SETTING
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typical sample path can be decomposed into two kinds of @f d.J;,(#)/dé anddJg(6)/df provided by the sample deriva-
ternating intervalsempty periodsindbuffering periodsEmpty tivesdLr(0)/df anddQr(9)/d6 for use with these techniques.
periods (EPs) are intervals during which the buffer is emptgccordingly, our objective is the estimation of the derivatives
while buffering periods (BPs) are intervals during which thef J.(8) and.Jg(#), which we will pursue through IPA tech-
buffer is nonempty. Observe that during an EP, the systemnigjues [9], [10]. Henceforth, we shall use the “prime” nota-
not necessarily idle since the server may be active, processiiog to denote derivatives with respectftoand will proceed to
traffic supplied to it at a rate that does not excgkd), i.e., estimate the derivatives; (/) and.J;,(¢). The corresponding
a1 (t) + as(t) < B(1). sample derivatives are denoted b§.(6) and Q/-(), respec-

Viewed as a discrete-event systemgeaentin a sample path tively.
of the above SFM may be eithekogenousr endogenousOf
particular interest, as we will see, is any event that causes thg. |PA FORL0OSSVOLUME WITH RESPECT TOTHRESHOLD
difference functiona (t) + a2(t) — B(t)] or [aa(t) — B(1)]
to change sign. For our purposes, we identify two exogenoys
events:(e; ) an event where the buffer ceases to be empty, a
(e2) an event where the buffer content leaves the valdet) =
6 after it has maintained it for some finite length of time. An en-
dogenous event is defined to occur whenegey) the buffer be-
comes emptye, ) the buffer content reaches the vali@; t) =
¢ and then maintains it for some finite length of time, dnagl)
the buffer content crosses the valu@;t) = 6 from either
below or above.

We will assume that the real-valued paramétés confined
to a closed and bounded (compact) intewako avoid unnec-
essary technical complications, we assume ¢hat 0 for all
6 € ©.LetL(f) : © — R be a random function defined over

the underlying probability spadg?, 7, P). Strictly speaking,
we write E{E) ?u)pto indica)t/e &a(tith/is sar21ple fun}étiopn depegndalternatlng EPs and BPs. Suppose that a sample path consists of
f ?(bufferlng periods denoted 3.,k = 1, ..., K, inincreasing

on the sample point € €2, but will suppressv unless it is nec-
essary to stress this fact. In what follows, we will consider tW%rder Thus, given a BB, its starting pomt is one where the

performance metrics, tHeoss Volume.(8) and theCumula- buffer ceases to be empty, i.e., there is a change in sign of the

. . 4 : difference functiono(t) + a2(t) — B(¢)] from nonpositive
Eglz,\fvggkigﬁgvssr_wﬁwom @r(0), both defined on the interval (hence, the buffer was empty) to positive; this corresponds to the

exogenous every defined earlier. Since this function is locally
T independent of, the starting point oBy, is locally independent
/7(9, t)dt 1) of 4. The ending point o3;, generally depends ah Denoting

Our objectlve here is to estimate the derivative
f? (9)] through the sample derivativé/.(6)

?nch is commonly referred to as the IPA estimator; compre-
hensive discussions of IPA and its applications can be found in
[9] and [10]. The IPA derivative-estimation technique computes
L!.(8) along an observed sample path An |PA-based esti-
mateL’T(e) of a performance metric derivativiE[Lr(0)]/df
is unbiasedf dE[Lr(6)]/d0 = E[L-(6)]. Unbiasedness is the
principal condition for making the application of IPA useful in
practice, since it enables the use of the sample (IPA) derivative
in control and optimization methods that employ stochastic
gradient-based techniques.

We will proceed by studying a sample path of the SFM over
[0,T]. For a fixedd € ©, the interval[0,T] is divided into

Lz (9) these points by, andn,(6), respectively, we expreds;, as
T B = [&k,m(9)), k = 1,..., K, for some random integek’
which is also locally independent éf Then, by (1), we may
= / z @) write
0
K M)
where, for simplicity, we assume thaff;0) = 0. Observe Lr(6) = Z ~ (6 t)dt 4)
that(1/T)E[Lr(9)] is theExpected Loss Ratever the interval =1

[0,T], a common performance metric of interest (from which
related metrics such dss Probabilitycan also be derived). and by differentiating with respect towe obtain
Similarly, (1/T)E[Qr(0)] is theExpected Buffer Contewer
[0, T]. We may then formulate optimization problems such as K n1.(8)
the determination of* that minimizes a cost function of the Ly (0) = Z - ~(6;t)dt (5)
form et df
&k
Jr(0) = =E[Qr(0)] + =E [Lr(0)] assuming that this sample derivative exists (we return to this
T T . S .
1 R issue later in this section). Let us now focus on a typ;abnd
= TJQ(G) + ?JL(9) (3) drop the index: in order to simplify notation. Thus, the BP in
question is denoted b§ = [£,7(6)). Define the function\(6)
whereR represents a rejection cost due to class 1 loss (other cast
functions are also possible, depending on network control objec-
tives, e.g., workload minimization subject to some predefined ()
loss rate constraint). In order to accomplish this task, we use MO) = [ ~(0;t)dt (6)
stochastic approximation techniques [20] and rely on estimates

n <
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Fig. 2. Typical BP.

and we shall concentrate on evaluatixigp). and we have
inf::oc\)/\r/ ?;[téa\;ional convenience, we define the instantaneous net da(t) B s
dtt
A(t) = i (t) + aa(t) — B(t) ©) V(0;) = aa(b). (16)
B(t) = ax(t) — B(1). (8) Examples of full loss periods agg, = [v1,vs) andpg =

gjg,w) in Fig. 2. Note that in the former the full loss period
starts upon crossing, whereas in the latter it follows a partial
loss period andy is locally independent of.

Letwv;, 7 = 0,...,5, be the event times of all exogenous an
endogenous events,( . .., e; as previously defined) in the BP.
Note thatv, = ¢ andvs = n(6). Fig. 2 shows a typical BP in
a sample path of our SFM. According to the different levels (E No Loss Period Sé¥’(4)

buffer content, we can divide the BP into periods (intervals) i ] )
During such periods the buffer contentaiét; §) < 6 (ex-

pi = [vi(0),vi41(0)),  i=0,...,9—1 (9) cluding the starting point;(#)) and no loss occurs:
so that each belongs to one of the following three setsw (6) := {po} U {p; : x (v;(9)) = O andx(t) < 0, t € p}
To simplify the notation, we also define the open intervals (17)
pf = (vi(0),vi41(0)), i =0,...,5 - 1. and we have
A. Partial Loss Period Sel/(6) da(t) _ A (18)
During such periods, the buffer contentzi§; #) = 6 and dt‘+ _
: ) ) . v(6; 1) =0. (19)
class 1 traffic experiences partial loss. In particular
da(t) Examples of such periods apg = [£,v1), p2 = [v2,v3), ps =
T =0 (20)  [v4,v5), andp; = [v7,7n) in Fig. 2.
A(t)>0 and B(t) <0 (12) Then, returning to (6), we can rewri¥é¢6) as
where (11) indicates that the total incoming traffic exceeds the s—1 Vi1 (®
processing capacity while the uncontrolled traffic rate is by itself  A(f) = Z v(0;1)1[p; € U(O)UV(0)]dt  (20)
below processing capacity. Therefore, the loss rate of class 1 is =0, (o)
v(0:1) = A(t). (12) wherel[] is the usual indicator function, and
Formally, we defind/(#) as follows: g1 . vi+r(0)
, d
U) == {p; : x(t) =0, t € p;} (13) N(0) = Z 20 / Y(0:t)1[p; € U(O) UV (0)]dt. (21)

v; (0

where the end point; ., of each period is locally independent @

of 6, since the time when the buffer content leadedepends Since we are concerned with the sample derivafiy€t) we

only on a change in sign of the net inflow functioht) = have to identify conditions under which it exists (and, therefore,
[a1(t) + as(t) — B(t)] or B(t) = [as(t) — B(t)], as seen in A'(f) also exists). Observe that any exogenous event time (cor-
(11); this corresponds to the exogenous evemtefined earlier. responding tae; ande, as defined in the previous section) is
InFig. 2,p3 = [vs,v4) andps = [vs, ve) are examples of partial locally independent of, whereas any endogenous event time

loss periods within a BP. (corresponding tes, eq, andes), is generally a function of.
The derivativev;(f) exists as long as; () is not a jump point
B. Full Loss Period Sev' () of the net inflow functionA(t) = [ai1(t) + aa(t) — B(t)] or

In a full loss period, the buffer content ig(; 8) > 6 (ex- B(t) = [a2(t) — B(t)]. Excluding the possibility of the simulta-
cluding the starting point; (8)) andall class 1 traffic is lost neous occurrence of two (exogenous or endogenous) events, the
only situation preventing the existences9ff), hence\’'(6) and

V(0) = {p;: z(vi(8)) =0 andz(t) > 6, t € pf} (14) thesample derivativE’.(f),involves somesuchthatd(t) = 0
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or B(t) = O whilez(¢) = #; in such cases, the one-sided deriva- 3) p;,_1(¢) € W (#): Here, we need to consider three cases.
tive of L1 () still exists and can be obtained through a finit€&irst, if i = 1, then the buffer content evolves franf¢) = 0 to
difference analysis (as in [8]). However, to keep the analysigv;(6)) = 6 and, using (18), we have

simple, we focus only on the differentiable case by proceeding

under the following technical conditions.
Assumption 1:

a) a1(t) < oo, as(t) < oo andf(t) < oo forall ¢ € [0, T7.

V1 (9)

A(t)dt = 6.

3

b) For everyd € ©, w.p. 1, no two events may occur at theéJpon taking derivatives, we get

same time.

c) W.p. 1, there exists no intervéb;(6),v;(0) + 7), 7 > 0,
such that:(t) = 6 for all ¢ € (v;(8),v;(0) + 7), and either
A(t) = 0or B(t) = 0.

All three parts of Assumption 1 are mild technical con-

A (v1(6)) vi(0) = 1. (26)

Second, ifl < i < S, we haver(v;—1(6)) = x(v;(6)) = 0,
therefore, by (18)

vi (6)

ditions. Regarding part c), as already pointed out, one-sided

derivatives may still be used if a sample path happens to contain

a partial loss period in whicA(t) = 0 or B(t) = 0.

In order to proceed with the detailed derivation)ét6) in
(21), we need to study the derivativg$t),i = 1,..., 5. Letus
consider an intervah;,_1(0) = [v;—1(6),v;(0)), i =1,...,S,
depending on whether it belongs to thelGét), V' (¢), orW/ (9).

1) pi—1(0) € U(#): As already mentioned; is independent
of 4, so recalling (12)

1)1'(9) v;
/ ~(0:)dt = / A(t)dt
vi—1(0) vi—1(0)

and, upon taking derivatives w.ff we have

Ui

/ A(t)dt

v;—1(0)

a
do

—A(ia(8) v, (). (22)

2) pi—1(0) € V(0): In this case, we have(f; t)dt = a1 (),
so that

Ui(e)
d

7 ai(t)dt = aq (vi(0)) vi(0) — ar (vi1(0)) vi_1(6).

'Ui—.l (6)
(23)

In addition, in a full loss period we have(v;_1(6))
z(v;(#)) = 6, and it follows from (15) that
v;(0)
B(t)dt

v;_1(8)

0

so that, taking derivatives, we obtain

B (0:(0)) v}(8) — B (via(0)) vi_y(9) = 0. (24)

By adding the left-hand side of (24) to the right-hand side
(23), we get
v; (8)
70 ay(t)dt = A (vi(9)) vi () — A (vi-1(0)) vi_1 ().

Vi—1 (0)
(25)

A(t)dt =0
vi,l(é')

and, upon differentiating
A(0i(8)) 0i(0) — A(via(0)) v]_y(8) = 0. (27)

Finally, if i = S, thenz(vs_1(6)) = 0 andz(vs(d)) = 0, SO
that

1)5_1(9)
and, taking derivatives
A(vs(0)) vs(0) — A(vs—1(0))vs 1(0) = —1.  (28)

Next, returning to (21), note that only terms if(#) and
V(#) contribute to\'(6), i.e., we need to evaluate the deriva-
tives in (22) and (25). Observe that these depend only on the
traffic rates at the end poinig_; andv; of the corresponding
intervals where one of the events . . ., e; takes place. More-
over, (24), (26), and (27) provide relationships between these
guantities. Therefore, we only need to focus on these particular
event points and ignore all system activity in between them. This
also explains why IPA in this case is not dependent on the sto-
chastic characteristics of the arrival and service processes. An-
other useful observation is thBt= (¢, 7(6)) always starts and
ends with a period in the no loss 3&t(#), while in between the
sequence of periods(4),i = 1,...,.5 — 2, can be arbitrary as
long as no adjacent periods are from the same set.

We may now proceed by seeking a solution to the set of equa-
tions (24), (26), and (27), allowing us to obtain €l , (¢) and
vi(#) in (22) and (25), leading to an evaluation)dfd) in (21).

As we shall see, if a BP contains at least one partial loss pe-
riod, the associated IPA estimator is simpl{ (independent of
all model parameters), which is the exact same result obtained
in [8] for the case of a single controlled traffic class. In contrast,
if a BP consists only of periods in the séf$d) andWW (6), then
®he IPA estimator does depend on some traffic rate values; we
shall show, however, that its value is always limited+d[ O].

Let us begin by simplifying notation even further through the
introduction of the following, defined far=1,...,S:

A = A(vi(9)) =ar (vi(0)) + a2 (vi(8)) — B (vi(0))(29)
Bi = B (v:(8)) =as (v:(8)) — B (vi(8)). (30)
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The following lemma shows that all event time derivatives ofin-  Proof: See the Appendix.

terestv(6) are expressed in terms df andB;; by convention, ~ Motivated by our analysis thus far, 1&f.(f), V.(#), and

we shall setdy = 1. Moreover, we establish the fact that after &V, (0) be the partial loss, full loss, and no loss period sets, re-

partial loss period occurs, all ensuing event time derivatives agectively, in thekth BP,k = 1,..., K. Similarly, letvy ;(6)

vi(f) = 0. denote theth event time in théth BP,i = 0, ..., Sk, andAy ;,
Lemma Ill.1: Suppose tha,,,(#),vm+1), 1 <m < S —1 By, bethe obvious extensions df, B; in (29) and (30). Then,

is the first partial loss period in a BP. Then, the following holddefine

1) Forv; < ! )= {ke{l,....K} : Up0) #0} (39)

A
vy (0) = 20 (31) to be the set of BPs containiraj least one partial loss perigd
Ay
" p " and set
w0 =[5 5= (32) G
=1 27 2¢—1 /\;C(e) =1+ H Bk,Z’Ll . Ak,214—1' (40)
wherel < n < (m/2) if m is even, an® < n < =1 k2 Sk2iol
((m —1)/2) if m is odd, andn > 1 Theorem I11.1: The sample derivativé’.(¢) is given by
Az 1 Baici Azis K K
v 0) = . . 33 ! = : ’
an41(0) PSS § G R P (33) 1.9 ;1 [k € ®(0)] + ;1 [k ¢ ©(0)] N, (0) (41)
wherel < n < ((m —2)/2)if miseven,and < n < whereK is the (random) number of buffering periods contained
((m —1)/2) if m is odd, andn > 2. in [0, T7], including a possibly incomplete last buffering period.
2) For allv; > vpyq1 Proof: The result follows from Lemma I11.3, using the
, definitions in (39) and (40). [ |
’UZ(H) = 0.

The expression in (41) provides the IPA estimator for the
loss metric defined in (1). We shall prove the unbiasedness of
Jhis estimator in Section V. Note that.(#), shown previously,
rﬂoes not depend on any distributional information regarding the

the “classical” form encountered in standard queueing syste ffic arriyal and servic_e processes ar_ld involves pnly flow rates
(e.g., see [9] and [10]). In particular, IPA derivatives for everﬁt event t'me.s'kvi(a) Whlc.h may be estl_mated on Ime. From an
times evaluated over a buffering period of a queueing systémplemema.t'on standpoint, (40) requires pbservmg events
are sumsof terms reflecting the effect of some paramete?“’ andes W'.th'n a BP and Fhe corresponding ratesogf o,
perturbation on the accumulated traffic processed during tr"ﬁgdﬁ at their occurrence times, so tha_t we can e_valum,e
buffering period. Here, however, we see in (32) and (3 dBkt If BPs mglude at I_east one partial loss perloql, then the
expressions with anultiplicative effect of perturbations over hly |mplementat|on_ requwemept IS t_hat sugh a period be de-
specific crucial events, i.e., events that cause a buffer overfloW’/.Ctecj and the contribution of this entire BP is simply.

The following lemma establishes a property of the ratios
Boyy1/A2n4+1 and Ay, / Ba, Which turn out to play a role in

Proof. See the Appendix.
Remark: Readers familiar with IPA applied to event time
will natice that the estimators (31)—(33) are quite different fro

IV. IPA FORWORK WITH RESPECT TOTHRESHOLD

the eventual evaluation of (4) in Lemma 111.3. In this section, we derive the IPA estimator for the Cumula-
Lemmalll.2: Suppose thata BP contains a partial loss periaiye Workload (or simply Work) defined in (2) by carrying out an
[V (0), Vmy1) With 1 <m < S — 1. Then, forv;, ..., vpm_1 analysis similar to that of the previous section undssump-
Bonst m—9 tion 1. First, note that we can write
0 <1 0<n< —= 34
< Agppr = =ns (34) K M)
Ao, —1 = ;
0< 22 <1, 0<n< 22, (35) Qr(f) =3 / w(0;)dt (42)
Bon 2 k=1 ¢,
Proof: See the Appendix. _ where, as before, we consider BBs = [¢,mx(0)), k =
Lemma l1.3: For any BR¢,7(6)), if at least one partial loss 1, . .| K. Differentiating with respect té, we obtain
period is present, then
N(#) =-1. (36) RO =Y 6;)dt. 43
If no partial loss period is present, then - &
(5—1) where the sample derivative exists undasumption 1 Then,
2 i i focusing on a particulas,, and dropping the indek, we define
N = —1+ J] 22 Dot 37) gonap i pping
iy Bai Az n(6)
and q(0) = / z(0;t)dt. (44)

—1<N(®) <o. (38) .
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Taking the derivative with respect toyields
n(6)
[ a'Gstyat 2 @) 6)

13
n(6)

/ 2/ (0;t)dt

3
since the BP ends aft(§), hencexz(0;n(f)) = 0. To evaluate

q(0)

(45)

2’(0;t), we consider all possible cases regarding the location of

t in the BP.
Case 1)t € [£,v1(0)). In this case

t
x(0;t) = /A(T)d’r
3
and we see that(¢, t) is independent of, therefore
2 (0;t) = (46)
Case 2)t € [vi—1(0),v:(0)) € U(H), i.e., t belongs to a
partial loss period. Therefore(f,¢) = 6 and
2/ (0;t) =

Case 3)t € [v;—1(8),vi(0)) € V(8). In this caset belongs
to a full loss period, therefore(6; v;_1(#)) = 6 and
z(0;t) > 0,t € (v;_1(8),¢). It follows that

t

(47)

'U,,1(0)
and, upon differentiating, we obtain
2'(0;t) =1 — B (vi—1(0)) v;_1(9)
=1— B;_1v;_,(0). (48)

Cased)t € [vi—1(0),v;(0)) € W(H), i > 2. In this

case,t belongs to a no loss period, therefore

z(0;v;-1(0)) = 8 andz(0;t) < 6,t € (vi—1(0),1),
so that
t

x(0;t) = 0+ / A(r)dr
1)1',1(9)
and
#(6:0) =1 = Avia(9)) vl (0)
=1- A;_1v]_(6) (49)
where we have used the definition (29).
We can now see that (45) can be written as
S Vi (9)
= Z / )dt

i= Ui_l(e)

(50)

where z/(6;t) is given by (46)—(49), dependingobservedifo,T], as well agvy, g,
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can further evaluate the termB;_;v; ,(#) and
A;_1v;_,(0) appearing in (48) and (49) by making
use of (31)—(33) in Lemma l11.1, to obtain

B
Broj(0) = —Ai (51)
AQL B2L 1
Ao, . 0 52
2n 20 (0 - Bai Agi oy’ "> (52)
an+1 Ag;  Boi_y
B ! .
21021 (6  Agp E By Ay >0 (53)

for all »; that precede the first partial loss period (if
one exists). Then, define

¢':{ i odd

1 even’
Note that, by (51)—(53) and Lemmal lll.2, we can see
that0 < ¢; < 1.
Lemma IV.1: Suppose thdw,,,(6), vm+1), 1 <m < S — 1,
is the first partial loss period in a BP. Then,

1- Bivg,

1- A,L' ’U; y (54)

m—1

Z (vig1 —

i=1

q(9) = vi)pi + (vs — Um)- (55)
Proof: See the Appendix.

Remark: It should be clear that if the BP does not contain a
partial loss period, thegqf () is given by the sum in (55) evalu-
ated over ali = 1,...,5 — 1. Moreover, looking at the proof
of the lemma, note that the loss derivativgd) in (37) is the
same as the value ofz’(6;t) atvs_1. This implies that an IPA
estimator implemented for the workload metric can simultane-
ously provide an estimate for the loss metric as well.

Let v ;(#) denote theith event time in thekth BP, i =

0,...,Sk, and set

— Bk,iv;c_iv 1 odd

1
i = {1 _ Ak,w;c;i’ i even (56)
and
my—1
q,(0) = Z (Vk,it1 = Vi,i)Pri + (VK5 — Vie,my,) (57)
i1

with the understanding that if tieéh BP contains no partial loss
period, thenm; = Sy.
Theorem IV.1: The sample derivativ@’.(6) is given by

K
(6) =D ai(6)
k=1

whereK is the (random) number of buffering periods contained
in [0, T], including a possibly incomplete last buffering period.
Proof: The result follows from Lemma V.1, using the def-
initions in (56) and (57). ]
The expression in (58) provides the IPA estimator for the
work metric defined in (2). Its implementation requires the same
information as that for the loss metric with the addition of timers
to measure the duration of periods ;, vk ;+1) within each BP
— U, m, ) ifONe or more par-

(58)

on the type of period encountered in this BP. Wéal loss periods are included, with the first one starting.at,, .
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V. IPA ESTIMATOR UNBIASEDNESS Proof: We start withL/.(#) and recall (4). By partitioning

We now prove the unbiasedness (as defined in Section III) @f T]intoall puffering and empty periods of the nominal sample
the IPA derivatived./,(#) andQ’.(#) obtained previously. Note path and setting\y(r) = v(6 + Af;t) — v(6;¢), we get

that we do not concern ourselves with the issue of estimator con- K () K1 Skt
sistency which involves letting — oo, since itis hard to justify AL7(0) = Z / Avy(T)dr + Z / Avy(7)dr
steady state in the setting we are considering; rather we concen- k=1 g =1, %)

k k

trate on obtaining reliable shorter-term sensitivity information

tracking the behavior of the network and seeking to continu-

ously improve its performance. =Y / Ay(r)dr (63)
In general, the unbiasedness of an IPA derivafi{{@) is en- k=1 ¢,

sured b)_/ the following two conditions (see_ [2;, Llemma A2nhere the second term is zero since fort adl [7(6), Ex 1) We
P 70]): 1) F(_)_r everyd € O, the sample .derlvat.we‘,.(a) ex- havez(6;t) = 0 and from Lemma V.2:(0 + Af;t) < Af <
ists w.p. 1. i) W.p. 1, the random functioi(6) is Lipschitz 4 . Ag \which implies that no loss is possible in the perturbed
continuous throughoud, and the (generally random) L|psch|tz_¢‘a|,m)|e path ovel, (0), €x41). Next, we can write
constant has a finite first moment. We have already discussed ' © ’ ®

Nk Mk

the mild technical conditions required to ensure the existence
of L.(9) andQ’.(6). Consequently, establishing the unbiased- (65 7x(0)) = 2(6; {) + / A(r)dr — / v(6; )dT

K Nk (9)

ness ofL’.(f) andQ’-(6) as estimators ofE[L1(6)]/df and ' &
dE[Qr(0)]/d0, respectively, reduces to verifying the Lipschitz e (6)
continuity of L (6) andQ~(¢) with appropriate Lipschitz con- ) Y
stants. LetN(T)( b)e the raEwo?om number of all events (exoge-a7 (0+A0;mk(0)) = 2(0: &)+ Ax(&)+ / A(r)dr
nous and endogenous)[ih 7']. Then, under the assumption that &k
E[N(T)] < oo, we shall establish next that,.(¢) andQ’.(6) m (0)
are indeed unbiased estimators. - / V(O +A0;T)dT

As stated in Section Ill, the buffer conten(f; ¢t) over any

" . 3
sample path can be classified as belonging to one of three sets, ’

i.e., partial loss/(9), full loss V(¢), and no lossv (¢). Let Where we have useflz(¢y) = w(0 + Af; &) — 2(6; & ). Sub-
us denote by:(f + Af; t) the buffer content in erturbed T2cting the first from the second equation, we get
sample path resulting whehis replaced by + A#. Then, this e (6)

classif_ication applied to both the nominal and perturbed sample Ax(ny) = Ax(&) — / Axy(T)dr.

paths is as follows:

U:xz(0;t) =0 z(0+ Ab;t

&
=0+ A (59) Using0 < Az(t) < Adin Lemma V.2, we get from the pre-

~— ~—

Vx(0;t) >0 x(0+ A0;t) >0+ Af (60) vious equation
W z(0;t) <6 z(60+ Af;t) <6+ A6. (61) % (6) 7k(6)
At this point it is worth recalling that:(¢; t) andz (8 + A#; ) Af 2 Aw(&k) — / An(r)dr > — / Ary(r)dr
are continuous functions afdue toAssumption 1 a) Next, €k &
we show in Lemma V.2 that < Az(t) < Af forallt € and
[0, 7], whereAx(t) = z(0 + Af;t) — xz(0;t) andAb > 0 (the (9 i (6)

caseAd < 0 is similarly handled). To do so, we first show the 0 <Az(&) — / Av(T)dT < Af — / Av(T)dT
following result.

. € €
Lemma V.1:Consider a BR3;, = [£k, mk(0)), and assume .
that0 < Az(¢) < Ad. Then and it follows that "
e (0
0 < Az(t) < A8 forallt e [&,ne(f)). (62) Avy(r)dr| < A6
Proof: See the Appendix. ér -

Lemma V.2:For allt € [0, 7]
0 < Ax(t) < Af.

Combining this inequality with (63), we get
K 7)k(9)
Proof: See Appendix. |ALp(0)] <) / Av(r)dr| < K|Af|.  (64)
We are now ready to show the unbiasednes&/pff) and k=1 ¢,
Q7 (). : | :
Theorem V.1: The IPA estimated.,.(§) (given in (41)) and WhereE[K] < >0 SInce, by assumptiofis [N (7')] < oc.
Q’»(9) (given in (58)) are unbiased estimates/&f L ()] /df Next, we conside€)7,(¢) for which we can write

anddE[Q1(6)]/d6, respectively. In other words .
L ! T Qr(0) = [ =(0;7)dr
E[L7(0)] = W and E[Q(0)] = W_ () 0/ (6;7)
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therefore, Recall that our analysis over an intery@l 7] was based on
T the convention that(f#;0) = 0. Thus, after a control update in
IAQr(0)] = / Axz(r)dr| < T|Ad) (65) (67) the state should be reset to 0. In the case of off-line control,

this simply amounts to simulating the system after resetting its

. o ] _ state to 0. In the more interesting case of online control, we can
where the last inequality is again due to Lemma V.2. Equatiofge advantage of the following simple observation. Looking at

(64) and (65) show that the performance measures of intergg@) and (57), note that both estimators depenly on the por-
are Lipschitz continuous and the proof is complete. B {ionof a BP that starts ai, i.e., the first time the buffer reaches
Remark: For the more commonly used performance mefne valued (if at all); all data since the BP starts and prior to
rics (1/T)E[Lz(0)] (the Expected Loss Rate ovigr, T]) and  thjs event are irrelevant to the gradient estimatqtf,,, wPFS).
(1/T)E[Qz(6)] (the expected buffer content ovigr, T1), the  The implication is thaany initial valuez(6,,; 0) < 6,, may be
Lipschitz constants becom®(7')/T" and 1, respectively. As ysed without affecting the IPA gradient estimates obtained over
T — oo, the former quantity typically converges to the exogesn interval[0, 7 at thenth iteration of (67). If thenth itera-
nous event rate. tion ends at timer,, and the state is:(6,,;7,,) < 6,41, then
the next iteration immediately starts. Otherwise, one may either
VI. OPTIMAL BUFFER CONTROL USING SFM-BASED IPA wait until a value below,,; is observed and initiate the next
ESTIMATORS iteration or simply proceed right away, thus, incurring an initial-

Let us return to the buffer control problem with cost functiof#ation (transient) error in the estimate (which is negligible for
(3), illustrating one of several possible means to quantify ndfrge va!ues of" as a!so seen in the numerical results obtained
work performance objectives by trading off the expected lo¥d1en this approach is taken).
rate (with a rejection penaltit) of class 1 for the expected queue Fig. 3 shows the results of the application of this scheme to
length. The optimal threshold parametir, may be determined a single-node SFM with two traffic classes (as in Fig. 1) where

0

through a standard stochastic approximation algorithm the service process is assumed deterministic With = 3
- remaining constant throughout the simulation and the service
Ont1 = On — vnHy (0w ™), n=0,1,... (66) rate is 20000 packets per second, which corresponds approxi-

mately to a 10 Mb/s link processing 512 b packets. The arrival
rate processy(t) is piecewise constant; each interval over

. . v whichaq(t) remains constant is exponentially distributed with
tion obtained from a sample path of the SFM denoted By rate parameter 25 (i.e., a mean of 0.04 s) and the corresponding

; ; SFM) ; i

Ir:;[lé: g?;?%; %gﬁgr:ne(si'{;]szgEgé‘;"eva)h::ggcl)'\jléreasgimtraﬁic rate value is uniformly distributed over [1000,14000]
r o ackets per second. Similarlyy(t) is piecewise constant and

lated sample path>™ of lengthT'. The estimation is followed b P imilarly, () is piecewi

ea‘ph interval over whicl,(¢) remains constant is exponen-

by a control update performed through (66) based on the value: g . .
H,,(6,wSFM). Details on stochastic approximation algorithmglg ly distributed with rate parameter 100 (i.e., a mean of 0.01 s)

: ) ” : . ~and the corresponding traffic rate value is uniformly distributed
including conditions required for convergence to an optimu

. Qler [2000,22000] packets per second. Both class 1 and class
(generally local, unless the form of the cost functions ensurgs

th ist f asinal " be found. for inst packet interarrival times are exponentially distributed. The
e existence of a single optimum) may be found, for ins ar'Cr%]'ection cost iskR = 1, and the simulation length in between

in [20]..H.owever, as already mentioned in.the previous sectio&mtrol updates in (67) i = 100 s. For simplicity, the step
recognizing f[he absc_ance of steady state in networks, ourmaifly is kept constant with,, = 500. This is consistent with
concern is with tracking network performance and seeking COlVr earlier point that our concern is with tracking network

tmuous- |mprov.ements as operatmg qondmons change. . erformance rather than seeking some optimal threshold value
The interesting observation here is that the same estlmag r

b dinth | svst foll Wi b Euming a stationary setting; in the latter case, we would
May DE Used In Ihe real system as Iofows. /e can obseve glvose a decreasing sequenjsg,} that satisfies standard
events involved in the evaluation &f.(6) and L7.(8) in (58),

(41), i.e., the starting and ending points of partial loss, full Ioscondmons (e.g., see [20]), whereas by maintaining a fixed

: lue we are able to respond to changes captured by varying
and no loss periads on a sample path of the aciual system §5t sensitivities. In Fig. 3, ‘J (DES)’ denotes cost curves

DES . . .
noted byw, *). Assuming that at these event times the alrrlV‘ri‘)lbtained by estimatindgr(#) over different discrete values of

rates of both class 1 and class 2 traffic, as well as the serv e 1,2,...," (SFM) denotes curves obtained by estimating

r;’:\te, a;]re I;nowhn l(gther\mse, th_ey hzve tg be fm”easu.red on Imﬁ’(&) over different values ofl, and ‘Opt.Algo.’ represents
then the threshold parameter is updated as follows: the optimization process (67), where we maintain real-valued
Bpsr = On — vy Hy (emwrll)ES) . n=01,... (67) thr_esholds throughout. All _cost curves are obtain_ed by aver-
aging 30 sample paths, while the ‘Opt.Algo’ curve is obtained
where the only difference from (66) is that data are obtaindy executing (67) only once. During a simulated sample path,
fromwPFS (a sample path of the “real” system) instead9f™  packets are generated according to the characteristics described
(as sample path of the SFM which one can only simulate). &bove so that arrival rates are known when their values are
other words, théorm of the IPA estimators is obtained by anafrequired in (41) and (58). In order to detect events that start or
lyzing the system as a SFM, but the associatddesare based end a partial loss, full loss, or no loss period, we simply observe
on real data. the state of the buffer. When the buffer content increases and

where{v,} is a step size sequence af,(f,,,w>™™) is an
estimate ofl.Jr /df evaluated af = 6,, and based on informa-
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Fig. 3. Optimal threshold determination in an actual system using SFM-based gradient estimators.

reaches the valug,, we look at the values afq, ay, andg at queueing-based single-node system) using the IPA gradient ob-
that time. Ifay + a2 — 6 > 0 anday — B < 0, we identify tained from its SFM counterpart. It is worth pointing out that
the start of a partial loss period;df, — 5 > 0, this implies the there is no IPA derivative for the discrete-event model, since its
start of a full loss period, and so on. Based on this informatioassociated control parameter is discrete.
we can calculate the IPA estimatéf, (6,,,wPFS) along the  As in our earlier work [8], where we considered a SFM for
sample path until we reach the end of a control update intenaasingle node and single traffic class, we have found that SFMs
[0, T]. At this point, the threshold is updated and the procepsovide means for determining optimal control parameter set-
repeats. As seen in Fig. 3, the threshold value obtained throuitys (rather than attempting to use them for performance anal-
(67) using the SFM-based gradient estimator based on (43is). The presence of multiple traffic classes complicates the
(58) either recovers the optimal threshatt or is very close analysis required, but still yields simple IPA estimators. The
to it. Similar results have been obtained for many examplesodel we have considered here assumes infinite buffer capacity;
involving different arrival processes and traffic intensities.  this assumption can be relaxed and our results can be extended
Finally, in order to investigate the effect of the parametao account for a finite buffer, which also directly leads to an ex-
T in the optimization process, we implemented (67) wittension of the analysis to more than two traffic classes. This is
H,,(0,,,wPES) estimated over shorter interval lengthis= 10s  the subject of ongoing work (see [16]).
andT = 1 s. The results are shown in the second plot of As already mentioned, our ongoing research is geared toward
Fig. 3, compared with the origindl = 100 s. As expected, the use of SFMs and IPA methods for network-wide control and
the variance of the cost at each step increases with shodptimization. This requires analyzing the effect of perturbation
estimation intervals and becomes very large for estimatigmopagation across network nodes, each node modeled as shown
intervals as short é6 = 1 s. However, the sensitivity estimatedn Fig. 1, with the ability to control incoming traffic while also
are still sufficient to drive threshold adjustments toward th&ccommodating interfering (uncontrolled) traffic that has orig-
optimal cost (which we did not actually attempt to achieve). Weated elsewhere in the network. Thus, we envision an on-line
should also point out that the class 1 loss probabilities on theridtwork congestion control capability that does not require node
(DES)’ cost curve for threshold values above 2000 (where tdecomposition and is general in the sense that it does not re-
algorithm operates after the first few steps) are of the order gdire knowledge of the traffic and service processes involved
1073, and only limited rate information. Toward the same goal, our on-
going work is also considering how to develop IPA methods that
VII. CONCLUSION AND FUTURE WORK include network feedback effects (i.e., allowing arriving traffic
processes to depend on the buffer content in different ways) and

Our ultimate goal in using IPA for SFMs is to develop al e i
) . . - ow to allow for the possibility of packet processing other than

approach for on-line network-wide control that is efficient an S NN

ré)ugh the usual first-in—first-out discipline.

does not require any node decomposition assumptions. Towar
this goal, we have considered in this paper an SFM of a com-
munication network node with two traffic classes, one uncon-
trolled and one subject to threshold-based buffer control. Our Proof of Lemma Ill.1: Let us first consider periods prior
objective is to control the threshold parameter so as to optd-[v,,,(6), v.,+1). We start with the observation that before the
mize performance captured by combining loss and worklodidst partial loss period at,,, (6), we must alternately observe no
metrics. We have developed IPA estimators for these metrioss periods id¥ (¢) and full loss periods iV (#). Moreover,
with respect to the threshold and shown them to be unbias#te first period must belong t&/ (). It follows that if m is
The simplicity of the estimators derived and the fact they aswen, period$vs,(0), v2,+1(0)), n = 0,1,...,(m/2), belong
not dependent on knowledge of the traffic arrival or service prte W (6), while [va,4+1(8), v2nt2(0)), n = 0,1,...,(m/2),
cesses makes them attractive for online control and optimizselong to V(#). If m is odd, then [vs,(0),van+1(6)),
tion. For a class of buffer control problems, we have shownhow = 0,1,...,((m — 1)/2), belong to W(#), and

to use an optimization scheme (and illustrated it through nlm,+1(0),ven42(0)), n = 0,1,...,((m — 1)/2) belong
merical examples) for a discrete-event model (viewed as a realV (9).

APPENDIX
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For the casei = 1, note that (31) immediately fol- Moreover, from (26), we know that A;v7(#) = —1, which
lows from (26) and the conventiod, = 1. For periods implies that the contribution ta’(6) up to this point is simply
[v2r,(6),v2n+1(0)), n > 0, that belong toW(6), by (27) —1. It remains to show that following the first partial loss
we havev, () = (Azn/A2n41)v5,(6), and for periods period [v,,(#),vn+1(f)) all further contributions to the loss
[V2(0),v2n+1(8)), » > 0, in V(0), by (24), we have derivative \'(#) are 0. By Lemma IIl.1v;(#) = 0 for all
vy, (0) = (Ban—1/Ban)vh, _1(0). Therefore, given (31), we i =m+1,...,5 — 1. Then, observing in (22) and (25) that all
can start with this equation setting= 1 to obtainv}(6) and, derivatives consist of terms with multiplicative factors in these
proceeding recursively, we obtain afl(f) in (33) and (32). v} (6), it follows that all contributions ta\’(#) are indeed 0 and

Finally, we considerv}(§) for all periods following we obtain (36).

[Um(0), vm+1). Recall the fact that,,,1; is locally independent  In the case wheren = 1, the only contribution to\’'(6)

of 4, thereforev;, , ; = 0. Moreover,v,, 1 is the starting point comes from the partial loss peri¢ad, (¢), v2), which, by (22),

of either a full loss period or a no loss period. In the formegontributes— A,v/(#). Since, from (26), we have A;v{(6) =
case, it follows from (24) that;, ,, = 0. In the latter case, it —1, (36) is immediately obtained.

follows from (27) thatv;, ., = 0. This process repeats until Next, consider the case where the BP(¢)) contains no

the next partial loss period (if any) is encountered, and alhrtial loss period. This means the whole BP is a sequence of
subsequent event time derivatives maintain a zero value ustifernating no loss periods and full loss periods. Proceeding ex-

the end of the BP. m actly as above when analyzing the periods preceding the first
Proof of Lemma I11.2: Let us first consider event times ofpartial loss period, we obtain a similar result as+i);v1(6) +
the general formy,, 11 with n > 0. Beginning withv,, when  Ag_jvs_ (). We already know-A;v1(f) = —1, so it re-

the no loss period, v1) which starts the BP switches to a fullmains to determineds_;v5 (). Because the first and last
loss period, note that alh, 1 correspond to starts of full loss periods ¢, v1(6)) and[vs—1(8),n(f)), respectively, are no loss
periods, therefor®(vs,+1) > 0 and by (30) we hav®,,, .1 > periods, in between the number of periods must be odd, hence,
0. Then, using (29), we havés, ;1 > Ba,+1 > 0, therefore, S — 1 is even. Using (32) in Lemma 1l.1, we obtain (37). Fi-

0 < Bont1/Aan+1 < 1. On the other hand, event times of thenally, by Lemma 111.2, (38) immediately follows. [ ]
general formws,, with n > 0 are instants when no loss periods Proof of Lemma IV.1:From Lemma IIl.1, we know that
start, implying thatd(v2,,) < 0. Thus, by (29),45, < 0, and, v.(8) = 0 for all v; > v,,,+1. Therefore, looking at (47)—(49)

7 jl

recalling (30), we geBa,, < As,, < 0,s0thal) < A,,,/Bs, < we seethat/(0;¢t) = 1forall ¢ € [v;(6),v;x+1), ¢ > m. Thus,

1 completing the proof. m from (50), we have
Proof of Lemma I111.3: We start with the case where
a BP contains at least one partial loss period and let s u(8) S
[Um (8), vmi1) € U(G), m > 1 be the first such period. > / #(O;t)dt =Y [vi(6) —vi ()]
Let us first consider the general case where- 1; the special i=mAl, ) i=m+1
case wheren = 1 will easily follow. Thus, if m > 1, then =g — Uy (68)

all periods precedindv,,(6),vm+1) belong to eitheriV(6)

or V(#) and appear alternately with the first one belonging Letus now consider periogs(6) preceding,, (6). We know

to W(6). From (21), it is clear that terms contributing tathat ps,,1, n = 0,1,... must be full loss periods angh,,
the loss derivative\’'(#) prior to v,,(6) are due only to full » =0,1,... mustbe no loss periods. Thus, for any,+1, (48)
loss periods belonging t&’(f) and given by (25); in partic- applies and we have (0;t) = 1—Ba,, 4105, ,1(f), and forp,,,,
ular, every full loss periodv;_1(0),v;(6)) will contribute (49) applies and we havé(6;t) = 1 — As,v},(6). Observe
—A;_qvi_1(0) + Avi(0), i = 2,4,.... In addition, we know that these expressions fof(6;¢) are independent of. Thus,
that the ensuing period;(6),v;+1()) is a no loss period and using (54), it follows from (50) that each period preceding
from (27) we haved;vj(0) = A;11v;,(0), 7 = 2,4,...,and contributes a ternw; 1 — v;)¢; (except for the first period for
following is another full loss perioduv;11(8),v;+2(8)) con- which (46) applies). Combining this with (68) yields (55).m
tributing, by (25),— A; 110}, () + Aif2v],5(0),0 = 2,4,.. .. Proof of Lemma V.1:Consider the increasing sequence
We can see that the combination of the aforementioned results< ¢; < --- < ¢y < tn41 such thaty = &, tn+1 = mi(6)

is —A; 1vj_1(0) + Aiyovi,,(0), i = 2,4,.... Proceeding in andateach;,j =1,..., N, either the state(f; ¢) of the nom-
this fashion for; = 1,...,m — 1, we get the contribution to inal sample path switches to a different set ambitg), V' (6),

N () as follows: i) If [v;,—1(0),vm(6)) is @ no loss period, andW (), or the state:(#+ Ad; t) of the perturbed sample path
then the contribution from all full loss periods upg,(#) is switches to a different set amobg(d + A#), V(6 + A6), and

— A1 (8) + Apm—1v,_1(0); and ii) if [v,—1(8),vm(0)) isa W(8 + AF). Therefore, for alt € [¢t;,¢;11), the state of each
full loss period, then the contribution from all full loss periodsample path is contained in one of the three #&tg, V(-),

up to v, (0) is —A;vi(0) + A,v),(6). Next, look at the first or W(-). Let I; = [t;,¢;+1). Depending on which set(d; t)
partial loss perio@,, (6), v.+1(0)), m > 1. According to (22) andz(6 + A#;t) belong to over the interval;, there are nine
its contribution to)\'(#) is — A, v, (6). Ifii) holds, then adding cases to consider. In the following, we use the notatiin §-),

the last two contributions we immediately see that the accumsi- € {U, V, W} to denote the state set in the nominal and per-
lated contribution ab,, 1 is —A; v (6). If i) holds, then recall turbed sample paths, respectively. The proof is by induction over
(27), implying thatA,,_qv),_;(6) = A,v,,(0). Thus, we allintervalsi;,j =0, ..., N.Forthefirstintervaly = [¢, 1),

m—1

again get the accumulated contributiorwat,; as—A;v1(f). the nominal and perturbed sample paths are in the no loss set
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W(6) andW (0 + A6) respectively, therefore the change in thés by induction over all buffering periods= 1, ..., K. Since
state of the two sample paths is identical, given by (18). Astiae nominal and perturbed sample paths start out at the same
resultAz(t) = Ax(&) < Ad forall ¢ € [¢,t1) where the initial state, for the first buffering period we havez({;) = 0,

last inequality is by assumption. Similarz(¢) > 0, since therefore, using Lemma V.1, we get< Axz(¢) < A# for all
Ax(&) > 0. Next, we assume th&t < Az(t) < Afforall ¢ € [£1,71(0)). Next we assume that < Az(t) < Af for all

t € Ij_1 = [tj_1,t;) and show that < Az(t) < Adforall ¢ € [&,m(6)) and show thad < Az(t) < Adforallt €

t € I; = [tj,tj+1) by considering all nine possible cases pre€i+1,mk+1(#)). The interval[n:(6), {x+1) corresponds to an
viously mentioned. empty period in the nominal sample path. Therefo(é;¢) = 0

< ' L
1) (U,U): Using (59), we immediately gekz(t) = A#. and A(#) < Oforallt € [m(6),&1), and, by continuity,

2) (V,V): The change in the state of the two sample patﬁjég; $k1) = 0. It follows that
is identical given by (15), thereford\z(t) = Az(t;) <

. ) A =xz(6 + A#; -0
Ad for t € I;, where the inequality is due to the con- (&) =2(0 + Ab: Eipa)

tinuity of z(¢) and the induction hypothesis. Similarly, Lits
Az(t) > 0, sinceAx(t;) > 0. = max ¢ 0,2 (6 + Af;ni(0)) + / A(T)dr
3) (W, W): By a similar argument as in 2), < Az(t) < 74 (6)

Af.

4) (U,V): Since z(6;t) 6 due to (59) and
z(9 + Af;t) > 6 + A6 due to (60), we get that since, in general, the perturbed state over the nominal sample
Az(t;) > A#. By the induction hypothesis and thepath empty periodiy.(6), £x.41) is such that:(6 + A6;t) > 0.
continuity of z(¢), Az(t;) < Af, therefore we must The right-hand side i< z(8 + Ab;n.(0)) = Az(n(6)),

(69)

have Az(t;) = Af. Sincex(f;t;) = 0, it follows since A(r) < 0 and z(6;n:(f)) = 0. Therefore,
thatz(6 + Af;1;) = ¢ + Af. In order to have a full Az(¢,,,) < Az(n(d)). From the induction hypothesis
loss period in the perturbed sample path, westhave and the continuity of:(t), we know thatAz(n,(6)) < A,
w(0+A0;1F) > 0+A0, ie., (do(0+A0;1;)/diT) >0, thereforeAwy1(Es1) < A. Moreover,Az(&.1) > 0 in
thereforea2(tj) - [3(tj) > 0 (see (15)). However, view of (69) and
since the nominal sample path is in a partial loss period,
as(t)—p(t) < 0forallt € (t;,t;41) [see (11)], yielding Ert1
a contradiction. As a result, this case cannot possiblly  max { 0, z (64 Af;n(0)) + / A(r)dr p > 0.
occur. .

5) (V,U): From (59), we haver(d + Af;t) = 6 + Af "
and from (60),z(6;t) > 6. Therefore, we immediately Using Lemma V.1, the proof is complete. m

get Az(t) < Af. To prove thatAz(t) > 0, note that

since the perturbed sample path is in a partial loss period,

as(t) — B(t) < 0 forallt € I;. Moreover, since the

nominal sample path is in a full loss period, we must have [1]

(dxz(0;t)/dt™) = as(t)—B(t) < 0[see (15)]. Therefore,
sincez(f + A6;t) = § + A6 andAz(t;) > 0 by the
induction hypothesis, it follows thakz(t) > Axz(t;) >
0 forallt e I;.

6) (W, V): Using an argument similar to 4), we can show

this is also an impossible case.

7) (V,W): Using an argument similar to 5), we can show [4]

0 < Az(t) < Adforallt € I;.

8) (W,U): Using an argument similar to 4), we can show [5]

this is also an impossible case.

9) (U, W): From (61)x(0+Af;t) < 6+ A6, and from (59),
z(0;t) = 0. It follows that Az (t) < Af. To prove that
Az(t) > 0, note that since the nominal sample path isin
partial loss period we must haweg (t)+as(t)—6(t) > 0.

Therefore, since the perturbed sample path is in a no loss

period, we havédz (0 + Ab;t)/dtT) = a1 (t) + aa(t) —
B(t) > 0 ([see (18)] for allt € I;. Sincez(§;t) = 6 and
Az(t;) > 0 by the induction hypothesis, it follows that
Az(t) > Az(t;) > 0forallt € I;. ]

Proof of Lemma V.2:Consider a BB, = [£, n.(#)) and
observe that:(8; &) = 0 andx(0; nx) = 0 since, andr,, are

the beginning and end points of this BP, respectively. The proof
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