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Stochastic Fluid Models for Communication

Networks
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Abstract—This paper uses stochastic fluid models (SFMs) for
control and optimization (rather than performance analysis) of
communication network nodes processing two classes of traffic:
one is uncontrolled and the other is subject to threshold-based
buffer control. We derive gradient estimators for packet loss and
workload related performance metrics with respect to threshold
parameters. These estimators are shown to be unbiased and
directly observable from a sample path without any knowledge
of underlying stochastic characteristics of the traffic processes.
This renders them computable in online environments and easily
implementable for network management and control. We further
demonstrate their use in buffer control problems where our
SFM-based estimators are evaluated based on data from an actual
system.

Index Terms—Infinitesimal Perturbation Analysis, nonlinear
optimization, stochastic fluid models (SFMs).

I. INTRODUCTION

I N THIS paper, we use the framework of stochastic fluid
models (SFMs) to capture key aspects of the behavior of

complex stochastic discrete event systems and hence develop
means for on-line control and performance optimization.
Our motivation and ultimate goal is to use this approach for
controlling communication networks with multiple classes
of traffic. Although queueing models have long been used to
capture the discrete event nature of packet-based operations
in networks, huge traffic volumes have rendered such models
highly impractical. In addition, the bursty nature of realistic
traffic requires more sophisticated stochastic processes than
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those queueing theory can deal with, as well as the need to ex-
plicitly model buffer overflow phenomena which typically defy
tractable analytical derivations. The SFM paradigm allows the
aggregation of multiple events, associated with the movement
of individual packets over a time period of a constant flow rate,
into a single event associated with a rate change. It foregoes
the identity and dynamics of individual packets and focuses
instead on the aggregate flow rate. SFMs have recently been
shown to be especially useful for analyzing various kinds of
high-speed networks [1]–[8].

For the purpose ofperformance analysiswith quality of ser-
vice (QoS) requirements, the accuracy of SFMs depends on
traffic conditions, the structure of the underlying system, and
the nature of the performance metrics of interest. For the pur-
pose ofcontrol and optimization, on the other hand, as long
as a SFM captures the salient features of the underlying “real”
system it is possible to obtain solutions to performance opti-
mization problems even if we cannot estimate the corresponding
performance with accuracy. In short, a SFM may be too “crude”
for some performance analysis purposes, but able to capture sen-
sitivity information for control purposes. This point of view is
taken in [8], where a SFM is adopted for a single traffic class
network node in which threshold-based buffer control is exer-
cised. For the problem of determining a threshold (measured in
packets or bytes) that minimizes a weighted sum of loss volume
and buffer content, it is shown that a solution based on a SFM
recovers or gives close approximations to the solution of the
associated queueing model. Since solving such problems usu-
ally relies on gradient information, estimating the gradient of
a given cost function with respect to key parameters, such as
the aforementioned threshold, becomes an essential task. Per-
turbation analysis (PA) methods [9], [10] are therefore suitable,
if appropriately adapted to a SFM viewed as a discrete-event
system [11]. This approach has been used in [12], where in-
coming traffic rates were the parameters of interest, and in [8],
where threshold parameters are optimized to solve buffer con-
trol problems. In [8], in particular, it was shown that infinites-
imal perturbation analysis (IPA) yields remarkably simplenon-
parametricsensitivity estimators for packet loss and workload
metrics with respect to threshold or buffer size parameters in a
single-node SFM with asingle incoming traffic stream. In ad-
dition, the estimators obtained are unbiased under very weak
structural assumptions on the defining traffic processes.

In this paper, we consider a single node SFM withtwo traffic
streams: one traffic stream is uncontrolled and the other is sub-
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ject to threshold-based buffer control (see Fig. 1). Thus, we
model a typical network node where the controlled stream repre-
sents a source of new traffic into the network at that node and the
uncontrolled stream represents “interfering traffic,” i.e., traffic
originating at other nodes on its way to various destinations.
This is an essential step toward the study of a complete network,
which is the ultimate objective of this line of research. We as-
sume that incoming traffic is not dependent on the threshold pa-
rameter being controlled, so that we limit ourselves to network
settings operating with protocols such as user datagram protocol
(UDP), but not transmission control protocol (TCP). However,
traffic streams formed by multiplexing multiple TCP sources
may be approximately independent of this threshold.

Interestingly, this model also captures the operation of the
differentiated services (DS) protocol that has been proposed for
supporting QoS requirements [13]–[15]. In a DS setting, packets
arriving at a DS supporting domain are marked and aggregated
into streams according to their classification. Subsequently, in
all other nodes of the domain, all stream packets are treated ac-
cording to that classification irrespective of the flow that they
belong to. Thus, our model represents the handling of any one of
the “assured forwarding” classes, where our two traffic classes
correspond to different drop priorities; the uncontrolled stream
corresponds to high priority (green) packets which are dropped
only if the total buffer capacity is exceeded, while the controlled
stream corresponds to low priority (yellow) packets which are
dropped when the buffer exceeds a given threshold value. Oth-
erwise, packets are treated alike. In this paper, we limit ourselves
to a single controlled stream and assume an infinite capacity
buffer. The natural extensions to a finite buffer model and to
multiple controlled streams are possible and are the subject of
ongoing work [16].

We point out that a central theme in the network manage-
ment approach we propose is the fact that it is based on data
directly available online, thus, requiring little or no information
regarding the characteristics of traffic and service processes
involved. Such measurement-based approaches have been
proposed for network control (e.g., [17] and [18]), but the one
we propose is a control strategy exclusively based on sensi-
tivity analysis, capitalizing on the discovery that sample-path
gradient information can be obtainedonline by extremely
simple, often nonparametric, and unbiased estimators. On
the other hand, the variance of gradient estimators may be
high, leading to a tradeoff between fast and simple algorithms
potentially yielding high-variance estimators. Our experience
with sample path optimization reveals that fast convergence
toward the optimal region of the minimum is often obtained by
high-variance estimators based on few samples; however, this
is an issue that requires further research.

The contributions of this paper are as follows. First, we de-
rive IPA gradient estimators for performance metrics related to
loss and workload levels (from the latter, fluid-based expected
delay metrics can also be obtained; see [19]) with respect to
the threshold parameter in a model with two traffic streams,
one controlled and one uncontrolled. Compared to the nonpara-
metric estimators derived for the single-stream SFM in [8], the
estimators in the two-class case generally depend on traffic rate
information, but not on the stochastic characteristics of the ar-

Fig. 1. SFM with two traffic classes.

rival and service processes involved. In addition, the estimators
can be evaluatedbased on data observed on a sample path of
the actual (discrete-event) system. Thus, we may use the SFM
to obtain a gradient estimator whose form only is used, while the
associated value at any operating point is obtained on line from
real system data. Readers familiar with IPA will also notice that
the form of the estimators derived for this type of system is quite
different from the “classical” ones (e.g., see [9] and [10]). These
estimators are also shown to be unbiased, a substantially more
challenging task than in the single traffic class model studied in
[8]. Finally, we use these estimators to illustrate how to solve
buffer control problems in a two-class network setting.

The paper is organized as follows. First, in Section II, we
present our model and define performance metrics and param-
eters of interest. In Section III, we derive an IPA estimator for
the sensitivity of the expected loss rate with respect to the con-
trolled traffic stream’s threshold parameter. In Section IV, we
repeat this process for the workload as a performance metric. In
Section V, we establish the unbiasedness of the estimators de-
rived. In Section VI, we show how the SFM-based derivative
estimates can be used on line using data from theactualsystem
(not the SFM) in order to solve buffer control problems. Finally,
in Section VII we outline future research directions motivated
by this work.

II. STOCHASTIC FLUID MODEL (SFM) SETTING

The SFM studied in this paper is based on the model de-
scribed in [8] where a single node and single traffic stream
was considered. In our case, as shown in Fig. 1, there are two
“classes” of traffic: controlled (class 1) and uncontrolled (class
2). A threshold is associated with class 1 traffic, which has a
time-varying arrival rate . Uncontrolled traffic has a time-
varying arrival rate . A control policy is exercised so that
when the total buffer content reaches a threshold, class 1 traffic
is rejected, while class 2 traffic is not affected. The two traffic
streams share a common FIFO buffer assumed of infinite size.
The service rate is also time-varying and denoted by. In
addition, let denote the loss rate when the buffer content
exceeds the designated threshold level, and let denote
the buffer content at time. The notational dependence onin-
dicates that we will analyze performance metrics as functions
of the given .

We are interested in studying sample paths of the SFM over
a time interval for a given fixed . We as-
sume that the processes , , and are inde-
pendent of (thus, we consider network settings operating with
protocols such as UDP, but not TCP) and they are right-contin-
uous piecewise continuously differentiable w.p. 1. Note that a
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typical sample path can be decomposed into two kinds of al-
ternating intervals:empty periodsandbuffering periods. Empty
periods (EPs) are intervals during which the buffer is empty,
while buffering periods (BPs) are intervals during which the
buffer is nonempty. Observe that during an EP, the system is
not necessarily idle since the server may be active, processing
traffic supplied to it at a rate that does not exceed , i.e.,

.
Viewed as a discrete-event system, aneventin a sample path

of the above SFM may be eitherexogenousor endogenous. Of
particular interest, as we will see, is any event that causes the
difference function or
to change sign. For our purposes, we identify two exogenous
events: an event where the buffer ceases to be empty, and

an event where the buffer content leaves the value
after it has maintained it for some finite length of time. An en-

dogenous event is defined to occur whenever: the buffer be-
comes empty, the buffer content reaches the value

and then maintains it for some finite length of time, and
the buffer content crosses the value from either
below or above.

We will assume that the real-valued parameteris confined
to a closed and bounded (compact) interval; to avoid unnec-
essary technical complications, we assume that for all

. Let be a random function defined over
the underlying probability space . Strictly speaking,
we write to indicate that this sample function depends
on the sample point , but will suppress unless it is nec-
essary to stress this fact. In what follows, we will consider two
performance metrics, theLoss Volume and theCumula-
tive Workload(or justWork) , both defined on the interval

as follows:

(1)

(2)

where, for simplicity, we assume that . Observe
that is theExpected Loss Rateover the interval

, a common performance metric of interest (from which
related metrics such asLoss Probabilitycan also be derived).
Similarly, is theExpected Buffer Contentover

. We may then formulate optimization problems such as
the determination of that minimizes a cost function of the
form

(3)

where represents a rejection cost due to class 1 loss (other cost
functions are also possible, depending on network control objec-
tives, e.g., workload minimization subject to some predefined
loss rate constraint). In order to accomplish this task, we use
stochastic approximation techniques [20] and rely on estimates

of and provided by the sample deriva-
tives and for use with these techniques.
Accordingly, our objective is the estimation of the derivatives
of and , which we will pursue through IPA tech-
niques [9], [10]. Henceforth, we shall use the “prime” nota-
tion to denote derivatives with respect to, and will proceed to
estimate the derivatives and . The corresponding
sample derivatives are denoted by and , respec-
tively.

III. IPA FORLOSSVOLUME WITH RESPECT TOTHRESHOLD

Our objective here is to estimate the derivative
through the sample derivative

which is commonly referred to as the IPA estimator; compre-
hensive discussions of IPA and its applications can be found in
[9] and [10]. The IPA derivative-estimation technique computes

along an observed sample path. An IPA-based esti-
mate of a performance metric derivative
is unbiasedif . Unbiasedness is the
principal condition for making the application of IPA useful in
practice, since it enables the use of the sample (IPA) derivative
in control and optimization methods that employ stochastic
gradient-based techniques.

We will proceed by studying a sample path of the SFM over
. For a fixed , the interval is divided into

alternating EPs and BPs. Suppose that a sample path consists of
buffering periods denoted by , , in increasing

order. Thus, given a BP , its starting point is one where the
buffer ceases to be empty, i.e., there is a change in sign of the
difference function from nonpositive
(hence, the buffer was empty) to positive; this corresponds to the
exogenous event defined earlier. Since this function is locally
independent of , the starting point of is locally independent
of . The ending point of generally depends on. Denoting
these points by and , respectively, we express as

, , for some random integer
which is also locally independent of. Then, by (1), we may
write

(4)

and by differentiating with respect towe obtain

(5)

assuming that this sample derivative exists (we return to this
issue later in this section). Let us now focus on a typicaland
drop the index in order to simplify notation. Thus, the BP in
question is denoted by . Define the function
as

(6)
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Fig. 2. Typical BP.

and we shall concentrate on evaluating .
For notational convenience, we define the instantaneous net

inflow rates

(7)

(8)

Let , , be the event times of all exogenous and
endogenous events ( as previously defined) in the BP.
Note that and . Fig. 2 shows a typical BP in
a sample path of our SFM. According to the different levels of
buffer content, we can divide the BP into periods (intervals)

(9)

so that each belongs to one of the following three sets.
To simplify the notation, we also define the open intervals

, .

A. Partial Loss Period Set

During such periods, the buffer content is and
class 1 traffic experiences partial loss. In particular

(10)

and (11)

where (11) indicates that the total incoming traffic exceeds the
processing capacity while the uncontrolled traffic rate is by itself
below processing capacity. Therefore, the loss rate of class 1 is

(12)

Formally, we define as follows:

(13)

where the end point of each period is locally independent
of , since the time when the buffer content leavesdepends
only on a change in sign of the net inflow function

or , as seen in
(11); this corresponds to the exogenous eventdefined earlier.
In Fig. 2, and are examples of partial
loss periods within a BP.

B. Full Loss Period Set

In a full loss period, the buffer content is (ex-
cluding the starting point ) andall class 1 traffic is lost

and (14)

and we have

(15)

(16)

Examples of full loss periods are and
in Fig. 2. Note that in the former the full loss period

starts upon crossing, whereas in the latter it follows a partial
loss period and is locally independent of.

C. No Loss Period Set

During such periods the buffer content is (ex-
cluding the starting point ) and no loss occurs:

and
(17)

and we have

(18)

(19)

Examples of such periods are , ,
, and in Fig. 2.

Then, returning to (6), we can rewrite as

(20)

where is the usual indicator function, and

(21)

Since we are concerned with the sample derivative we
have to identify conditions under which it exists (and, therefore,

also exists). Observe that any exogenous event time (cor-
responding to and as defined in the previous section) is
locally independent of , whereas any endogenous event time
(corresponding to , , and ), is generally a function of .
The derivative exists as long as is not a jump point
of the net inflow function or

. Excluding the possibility of the simulta-
neous occurrence of two (exogenous or endogenous) events, the
only situation preventing the existence of , hence and
the sample derivative , involves somesuch that
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or while ; in such cases, the one-sided deriva-
tive of still exists and can be obtained through a finite
difference analysis (as in [8]). However, to keep the analysis
simple, we focus only on the differentiable case by proceeding
under the following technical conditions.

Assumption 1:

a) , and for all .
b) For every , w.p. 1, no two events may occur at the

same time.
c) W.p. 1, there exists no interval , ,

such that for all , and either
or .

All three parts ofAssumption 1 are mild technical con-
ditions. Regarding part c), as already pointed out, one-sided
derivatives may still be used if a sample path happens to contain
a partial loss period in which or .

In order to proceed with the detailed derivation of in
(21), we need to study the derivatives , . Let us
consider an interval , ,
depending on whether it belongs to the set , , or .

1) : As already mentioned, is independent
of , so recalling (12)

and, upon taking derivatives w.r.t, we have

(22)

2) : In this case, we have ,
so that

(23)
In addition, in a full loss period we have

, and it follows from (15) that

so that, taking derivatives, we obtain

(24)

By adding the left-hand side of (24) to the right-hand side of
(23), we get

(25)

3) : Here, we need to consider three cases.
First, if , then the buffer content evolves from to

and, using (18), we have

Upon taking derivatives, we get

(26)

Second, if , we have ,
therefore, by (18)

and, upon differentiating

(27)

Finally, if , then and , so
that

and, taking derivatives

(28)

Next, returning to (21), note that only terms in and
contribute to , i.e., we need to evaluate the deriva-

tives in (22) and (25). Observe that these depend only on the
traffic rates at the end points and of the corresponding
intervals where one of the events takes place. More-
over, (24), (26), and (27) provide relationships between these
quantities. Therefore, we only need to focus on these particular
event points and ignore all system activity in between them. This
also explains why IPA in this case is not dependent on the sto-
chastic characteristics of the arrival and service processes. An-
other useful observation is that always starts and
ends with a period in the no loss set , while in between the
sequence of periods , , can be arbitrary as
long as no adjacent periods are from the same set.

We may now proceed by seeking a solution to the set of equa-
tions (24), (26), and (27), allowing us to obtain all and

in (22) and (25), leading to an evaluation of in (21).
As we shall see, if a BP contains at least one partial loss pe-

riod, the associated IPA estimator is simply1 (independent of
all model parameters), which is the exact same result obtained
in [8] for the case of a single controlled traffic class. In contrast,
if a BP consists only of periods in the sets and , then
the IPA estimator does depend on some traffic rate values; we
shall show, however, that its value is always limited to [1, 0].

Let us begin by simplifying notation even further through the
introduction of the following, defined for :

(29)

(30)
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The following lemma shows that all event time derivatives of in-
terest are expressed in terms of and ; by convention,
we shall set . Moreover, we establish the fact that after a
partial loss period occurs, all ensuing event time derivatives are

.
Lemma III.1: Suppose that ,

is the first partial loss period in a BP. Then, the following hold.

1) For :

(31)

(32)

where if is even, and
if is odd, and

(33)

where if is even, and
if is odd, and .

2) For all

Proof: See the Appendix.
Remark: Readers familiar with IPA applied to event times

will notice that the estimators (31)–(33) are quite different from
the “classical” form encountered in standard queueing systems
(e.g., see [9] and [10]). In particular, IPA derivatives for event
times evaluated over a buffering period of a queueing system
are sumsof terms reflecting the effect of some parameter
perturbation on the accumulated traffic processed during this
buffering period. Here, however, we see in (32) and (33)
expressions with amultiplicative effect of perturbations over
specific crucial events, i.e., events that cause a buffer overflow.

The following lemma establishes a property of the ratios
and which turn out to play a role in

the eventual evaluation of in Lemma III.3.
Lemma III.2: Suppose that a BP contains a partial loss period

with . Then, for

(34)

(35)

Proof: See the Appendix.
Lemma III.3: For any BP , if at least one partial loss

period is present, then

(36)

If no partial loss period is present, then

(37)

and

(38)

Proof: See the Appendix.
Motivated by our analysis thus far, let , , and

be the partial loss, full loss, and no loss period sets, re-
spectively, in the th BP, . Similarly, let
denote theth event time in the th BP, , and ,

be the obvious extensions of , in (29) and (30). Then,
define

(39)

to be the set of BPs containingat least one partial loss period,
and set

(40)

Theorem III.1: The sample derivative is given by

(41)

where is the (random) number of buffering periods contained
in , including a possibly incomplete last buffering period.

Proof: The result follows from Lemma III.3, using the
definitions in (39) and (40).

The expression in (41) provides the IPA estimator for the
loss metric defined in (1). We shall prove the unbiasedness of
this estimator in Section V. Note that , shown previously,
does not depend on any distributional information regarding the
traffic arrival and service processes and involves only flow rates
at event times which may be estimated on line. From an
implementation standpoint, (40) requires observing events,

, and within a BP and the corresponding rates of, ,
and at their occurrence times, so that we can evaluate
and . If BPs include at least one partial loss period, then the
only implementation requirement is that such a period be de-
tected and the contribution of this entire BP is simply1.

IV. IPA FORWORK WITH RESPECT TOTHRESHOLD

In this section, we derive the IPA estimator for the Cumula-
tive Workload (or simply Work) defined in (2) by carrying out an
analysis similar to that of the previous section underAssump-
tion 1. First, note that we can write

(42)

where, as before, we consider BPs ,
. Differentiating with respect to, we obtain

(43)

where the sample derivative exists underAssumption 1. Then,
focusing on a particular and dropping the index, we define

(44)
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Taking the derivative with respect toyields

(45)

since the BP ends at , hence . To evaluate
, we consider all possible cases regarding the location of

in the BP.

Case 1) . In this case

and we see that is independent of, therefore

(46)

Case 2) , i.e., belongs to a
partial loss period. Therefore, and

(47)

Case 3) . In this case, belongs
to a full loss period, therefore and

, . It follows that

and, upon differentiating, we obtain

(48)

Case 4) , . In this
case, belongs to a no loss period, therefore

and , ,
so that

and

(49)

where we have used the definition (29).
We can now see that (45) can be written as

(50)

where is given by (46)–(49), depending
on the type of period encountered in this BP. We

can further evaluate the terms and
appearing in (48) and (49) by making

use of (31)–(33) in Lemma III.1, to obtain

(51)

(52)

(53)

for all that precede the first partial loss period (if
one exists). Then, define

odd
even

(54)

Note that, by (51)–(53) and Lemma III.2, we can see
that .

Lemma IV.1: Suppose that , ,
is the first partial loss period in a BP. Then,

(55)

Proof: See the Appendix.
Remark: It should be clear that if the BP does not contain a

partial loss period, then is given by the sum in (55) evalu-
ated over all . Moreover, looking at the proof
of the lemma, note that the loss derivative in (37) is the
same as the value of at . This implies that an IPA
estimator implemented for the workload metric can simultane-
ously provide an estimate for the loss metric as well.

Let denote the th event time in the th BP,
, and set

odd
even (56)

and

(57)

with the understanding that if theth BP contains no partial loss
period, then .

Theorem IV.1:The sample derivative is given by

(58)

where is the (random) number of buffering periods contained
in , including a possibly incomplete last buffering period.

Proof: The result follows from Lemma IV.1, using the def-
initions in (56) and (57).

The expression in (58) provides the IPA estimator for the
work metric defined in (2). Its implementation requires the same
information as that for the loss metric with the addition of timers
to measure the duration of periods within each BP
observed in , as well as if one or more par-
tial loss periods are included, with the first one starting at .
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V. IPA ESTIMATOR UNBIASEDNESS

We now prove the unbiasedness (as defined in Section III) of
the IPA derivatives and obtained previously. Note
that we do not concern ourselves with the issue of estimator con-
sistency which involves letting , since it is hard to justify
steady state in the setting we are considering; rather we concen-
trate on obtaining reliable shorter-term sensitivity information
tracking the behavior of the network and seeking to continu-
ously improve its performance.

In general, the unbiasedness of an IPA derivative is en-
sured by the following two conditions (see [21, Lemma A2,
p. 70]): i) For every , the sample derivative ex-
ists w.p. 1. ii) W.p. 1, the random function is Lipschitz
continuous throughout , and the (generally random) Lipschitz
constant has a finite first moment. We have already discussed
the mild technical conditions required to ensure the existence
of and . Consequently, establishing the unbiased-
ness of and as estimators of and

, respectively, reduces to verifying the Lipschitz
continuity of and with appropriate Lipschitz con-
stants. Let be the random number of all events (exoge-
nous and endogenous) in . Then, under the assumption that

, we shall establish next that and
are indeed unbiased estimators.

As stated in Section III, the buffer content over any
sample path can be classified as belonging to one of three sets,
i.e., partial loss , full loss , and no loss . Let
us denote by the buffer content in aperturbed
sample path resulting whenis replaced by . Then, this
classification applied to both the nominal and perturbed sample
paths is as follows:

(59)

(60)

(61)

At this point it is worth recalling that and
are continuous functions ofdue toAssumption 1 a). Next,
we show in Lemma V.2 that for all

, where and (the
case is similarly handled). To do so, we first show the
following result.

Lemma V.1:Consider a BP , and assume
that . Then

for all (62)

Proof: See the Appendix.
Lemma V.2:For all

Proof: See Appendix.
We are now ready to show the unbiasedness of and

.
Theorem V.1:The IPA estimates (given in (41)) and

(given in (58)) are unbiased estimates of
and , respectively. In other words

and

Proof: We start with and recall (4). By partitioning
into all buffering and empty periods of the nominal sample

path and setting , we get

(63)

where the second term is zero since for all we
have and from Lemma V.2

, which implies that no loss is possible in the perturbed
sample path over . Next, we can write

where we have used . Sub-
tracting the first from the second equation, we get

Using in Lemma V.2, we get from the pre-
vious equation

and

and it follows that

Combining this inequality with (63), we get

(64)

where since, by assumption, .
Next, we consider for which we can write
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therefore,

(65)

where the last inequality is again due to Lemma V.2. Equations
(64) and (65) show that the performance measures of interest
are Lipschitz continuous and the proof is complete.

Remark: For the more commonly used performance met-
rics (the Expected Loss Rate over ) and

(the expected buffer content over ), the
Lipschitz constants become and 1, respectively. As

, the former quantity typically converges to the exoge-
nous event rate.

VI. OPTIMAL BUFFERCONTROL USING SFM-BASED IPA
ESTIMATORS

Let us return to the buffer control problem with cost function
(3), illustrating one of several possible means to quantify net-
work performance objectives by trading off the expected loss
rate (with a rejection penalty) of class 1 for the expected queue
length. The optimal threshold parameter,, may be determined
through a standard stochastic approximation algorithm

(66)

where is a step size sequence and is an
estimate of evaluated at and based on informa-
tion obtained from a sample path of the SFM denoted by .
In our case, the gradient estimator is the IPA esti-
mator of based on (41) and (58), evaluated over a simu-
lated sample path of length . The estimation is followed
by a control update performed through (66) based on the value of

. Details on stochastic approximation algorithms,
including conditions required for convergence to an optimum
(generally local, unless the form of the cost functions ensures
the existence of a single optimum) may be found, for instance,
in [20]. However, as already mentioned in the previous section,
recognizing the absence of steady state in networks, our main
concern is with tracking network performance and seeking con-
tinuous improvements as operating conditions change.

The interesting observation here is that the same estimator
may be used in the real system as follows. We can observe all
events involved in the evaluation of and in (58),
(41), i.e., the starting and ending points of partial loss, full loss,
and no loss periods on a sample path of the actual system (de-
noted by ). Assuming that at these event times the arrival
rates of both class 1 and class 2 traffic, as well as the service
rate, are known (otherwise, they have to be measured on line),
then the threshold parameter is updated as follows:

(67)

where the only difference from (66) is that data are obtained
from (a sample path of the “real” system) instead of
(as sample path of the SFM which one can only simulate). In
other words, theform of the IPA estimators is obtained by ana-
lyzing the system as a SFM, but the associatedvaluesare based
on real data.

Recall that our analysis over an interval was based on
the convention that . Thus, after a control update in
(67) the state should be reset to 0. In the case of off-line control,
this simply amounts to simulating the system after resetting its
state to 0. In the more interesting case of online control, we can
take advantage of the following simple observation. Looking at
(40) and (57), note that both estimators dependonlyon the por-
tion of a BP that starts at , i.e., the first time the buffer reaches
the value (if at all); all data since the BP starts and prior to
this event are irrelevant to the gradient estimator .
The implication is thatany initial value may be
used without affecting the IPA gradient estimates obtained over
an interval at the th iteration of (67). If the th itera-
tion ends at time and the state is , then
the next iteration immediately starts. Otherwise, one may either
wait until a value below is observed and initiate the next
iteration or simply proceed right away, thus, incurring an initial-
ization (transient) error in the estimate (which is negligible for
large values of as also seen in the numerical results obtained
when this approach is taken).

Fig. 3 shows the results of the application of this scheme to
a single-node SFM with two traffic classes (as in Fig. 1) where
the service process is assumed deterministic with
remaining constant throughout the simulation and the service
rate is 20 000 packets per second, which corresponds approxi-
mately to a 10 Mb/s link processing 512 b packets. The arrival
rate process is piecewise constant; each interval over
which remains constant is exponentially distributed with
rate parameter 25 (i.e., a mean of 0.04 s) and the corresponding
traffic rate value is uniformly distributed over [1000,14000]
packets per second. Similarly, is piecewise constant and
each interval over which remains constant is exponen-
tially distributed with rate parameter 100 (i.e., a mean of 0.01 s)
and the corresponding traffic rate value is uniformly distributed
over [2000,22000] packets per second. Both class 1 and class
2 packet interarrival times are exponentially distributed. The
rejection cost is , and the simulation length in between
control updates in (67) is s. For simplicity, the step
size is kept constant with . This is consistent with
our earlier point that our concern is with tracking network
performance rather than seeking some optimal threshold value
assuming a stationary setting; in the latter case, we would
choose a decreasing sequence that satisfies standard
conditions (e.g., see [20]), whereas by maintaining a fixed
value we are able to respond to changes captured by varying
cost sensitivities. In Fig. 3, ‘J (DES)’ denotes cost curves
obtained by estimating over different discrete values of

, ‘J (SFM)’ denotes curves obtained by estimating
over different values of , and ‘Opt.Algo.’ represents

the optimization process (67), where we maintain real-valued
thresholds throughout. All cost curves are obtained by aver-
aging 30 sample paths, while the ‘Opt.Algo’ curve is obtained
by executing (67) only once. During a simulated sample path,
packets are generated according to the characteristics described
above so that arrival rates are known when their values are
required in (41) and (58). In order to detect events that start or
end a partial loss, full loss, or no loss period, we simply observe
the state of the buffer. When the buffer content increases and
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Fig. 3. Optimal threshold determination in an actual system using SFM-based gradient estimators.

reaches the value , we look at the values of , , and at
that time. If and , we identify
the start of a partial loss period; if , this implies the
start of a full loss period, and so on. Based on this information,
we can calculate the IPA estimator along the
sample path until we reach the end of a control update interval

. At this point, the threshold is updated and the process
repeats. As seen in Fig. 3, the threshold value obtained through
(67) using the SFM-based gradient estimator based on (41),
(58) either recovers the optimal threshold or is very close
to it. Similar results have been obtained for many examples
involving different arrival processes and traffic intensities.

Finally, in order to investigate the effect of the parameter
in the optimization process, we implemented (67) with

estimated over shorter interval lengths s
and s. The results are shown in the second plot of
Fig. 3, compared with the original s. As expected,
the variance of the cost at each step increases with shorter
estimation intervals and becomes very large for estimation
intervals as short as s. However, the sensitivity estimates
are still sufficient to drive threshold adjustments toward the
optimal cost (which we did not actually attempt to achieve). We
should also point out that the class 1 loss probabilities on the ‘J
(DES)’ cost curve for threshold values above 2000 (where the
algorithm operates after the first few steps) are of the order of

.

VII. CONCLUSION AND FUTURE WORK

Our ultimate goal in using IPA for SFMs is to develop an
approach for on-line network-wide control that is efficient and
does not require any node decomposition assumptions. Toward
this goal, we have considered in this paper an SFM of a com-
munication network node with two traffic classes, one uncon-
trolled and one subject to threshold-based buffer control. Our
objective is to control the threshold parameter so as to opti-
mize performance captured by combining loss and workload
metrics. We have developed IPA estimators for these metrics
with respect to the threshold and shown them to be unbiased.
The simplicity of the estimators derived and the fact they are
not dependent on knowledge of the traffic arrival or service pro-
cesses makes them attractive for online control and optimiza-
tion. For a class of buffer control problems, we have shown how
to use an optimization scheme (and illustrated it through nu-
merical examples) for a discrete-event model (viewed as a real,

queueing-based single-node system) using the IPA gradient ob-
tained from its SFM counterpart. It is worth pointing out that
there is no IPA derivative for the discrete-event model, since its
associated control parameter is discrete.

As in our earlier work [8], where we considered a SFM for
a single node and single traffic class, we have found that SFMs
provide means for determining optimal control parameter set-
tings (rather than attempting to use them for performance anal-
ysis). The presence of multiple traffic classes complicates the
analysis required, but still yields simple IPA estimators. The
model we have considered here assumes infinite buffer capacity;
this assumption can be relaxed and our results can be extended
to account for a finite buffer, which also directly leads to an ex-
tension of the analysis to more than two traffic classes. This is
the subject of ongoing work (see [16]).

As already mentioned, our ongoing research is geared toward
the use of SFMs and IPA methods for network-wide control and
optimization. This requires analyzing the effect of perturbation
propagation across network nodes, each node modeled as shown
in Fig. 1, with the ability to control incoming traffic while also
accommodating interfering (uncontrolled) traffic that has orig-
inated elsewhere in the network. Thus, we envision an on-line
network congestion control capability that does not require node
decomposition and is general in the sense that it does not re-
quire knowledge of the traffic and service processes involved
and only limited rate information. Toward the same goal, our on-
going work is also considering how to develop IPA methods that
include network feedback effects (i.e., allowing arriving traffic
processes to depend on the buffer content in different ways) and
how to allow for the possibility of packet processing other than
through the usual first-in–first-out discipline.

APPENDIX

Proof of Lemma III.1: Let us first consider periods prior
to . We start with the observation that before the
first partial loss period at , we must alternately observe no
loss periods in and full loss periods in . Moreover,
the first period must belong to . It follows that if is
even, periods , , belong
to , while , ,
belong to . If is odd, then ,

, belong to , and
, belong

to .
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For the case , note that (31) immediately fol-
lows from (26) and the convention . For periods

, , that belong to , by (27)
we have , and for periods

, , in , by (24), we have
. Therefore, given (31), we

can start with this equation setting to obtain and,
proceeding recursively, we obtain all in (33) and (32).

Finally, we consider for all periods following
. Recall the fact that is locally independent

of , therefore . Moreover, is the starting point
of either a full loss period or a no loss period. In the former
case, it follows from (24) that . In the latter case, it
follows from (27) that . This process repeats until
the next partial loss period (if any) is encountered, and all
subsequent event time derivatives maintain a zero value until
the end of the BP.

Proof of Lemma III.2: Let us first consider event times of
the general form with . Beginning with , when
the no loss period which starts the BP switches to a full
loss period, note that all correspond to starts of full loss
periods, therefore and by (30) we have
. Then, using (29), we have , therefore,

. On the other hand, event times of the
general form with are instants when no loss periods
start, implying that . Thus, by (29), , and,
recalling (30), we get , so that

completing the proof.
Proof of Lemma III.3: We start with the case where

a BP contains at least one partial loss period and let
, be the first such period.

Let us first consider the general case where ; the special
case where will easily follow. Thus, if , then
all periods preceding belong to either
or and appear alternately with the first one belonging
to . From (21), it is clear that terms contributing to
the loss derivative prior to are due only to full
loss periods belonging to and given by (25); in partic-
ular, every full loss period will contribute

, . In addition, we know
that the ensuing period is a no loss period and
from (27) we have , , and
following is another full loss period con-
tributing, by (25), , .
We can see that the combination of the aforementioned results
is , . Proceeding in
this fashion for , we get the contribution to

as follows: i) If is a no loss period,
then the contribution from all full loss periods up to is

; and ii) if is a
full loss period, then the contribution from all full loss periods
up to is . Next, look at the first
partial loss period , . According to (22)
its contribution to is . If ii) holds, then adding
the last two contributions we immediately see that the accumu-
lated contribution at is . If i) holds, then recall
(27), implying that . Thus, we
again get the accumulated contribution at as .

Moreover, from (26), we know that , which
implies that the contribution to up to this point is simply

1. It remains to show that following the first partial loss
period all further contributions to the loss
derivative are 0. By Lemma III.1, for all

. Then, observing in (22) and (25) that all
derivatives consist of terms with multiplicative factors in these

, it follows that all contributions to are indeed 0 and
we obtain (36).

In the case where , the only contribution to
comes from the partial loss period , which, by (22),
contributes . Since, from (26), we have

, (36) is immediately obtained.
Next, consider the case where the BP contains no

partial loss period. This means the whole BP is a sequence of
alternating no loss periods and full loss periods. Proceeding ex-
actly as above when analyzing the periods preceding the first
partial loss period, we obtain a similar result as ii):

. We already know , so it re-
mains to determine . Because the first and last
periods, and , respectively, are no loss
periods, in between the number of periods must be odd, hence,

is even. Using (32) in Lemma III.1, we obtain (37). Fi-
nally, by Lemma III.2, (38) immediately follows.

Proof of Lemma IV.1:From Lemma III.1, we know that
for all . Therefore, looking at (47)–(49)

we see that for all , . Thus,
from (50), we have

(68)

Let us now consider periods preceding . We know
that , must be full loss periods and ,

must be no loss periods. Thus, for any , (48)
applies and we have , and for ,
(49) applies and we have . Observe
that these expressions for are independent of. Thus,
using (54), it follows from (50) that each period preceding
contributes a term (except for the first period for
which (46) applies). Combining this with (68) yields (55).

Proof of Lemma V.1:Consider the increasing sequence
such that ,

and at each , , either the state of the nom-
inal sample path switches to a different set among , ,
and , or the state of the perturbed sample path
switches to a different set among , , and

. Therefore, for all , the state of each
sample path is contained in one of the three sets, ,
or . Let . Depending on which set
and belong to over the interval , there are nine
cases to consider. In the following, we use the notation (, ),

to denote the state set in the nominal and per-
turbed sample paths, respectively. The proof is by induction over
all intervals , . For the first interval ,
the nominal and perturbed sample paths are in the no loss set
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and respectively, therefore the change in the
state of the two sample paths is identical, given by (18). As a
result for all where the
last inequality is by assumption. Similarly, , since

. Next, we assume that for all
and show that for all

by considering all nine possible cases pre-
viously mentioned.

1) : Using (59), we immediately get .
2) : The change in the state of the two sample paths

is identical given by (15), therefore,
for , where the inequality is due to the con-

tinuity of and the induction hypothesis. Similarly,
, since .

3) : By a similar argument as in 2),
.

4) : Since due to (59) and
due to (60), we get that

. By the induction hypothesis and the
continuity of , , therefore we must
have . Since , it follows
that . In order to have a full
loss period in the perturbed sample path, wemusthave

i.e., ,
therefore (see (15)). However,
since the nominal sample path is in a partial loss period,

for all [see (11)], yielding
a contradiction. As a result, this case cannot possiblly
occur.

5) : From (59), we have
and from (60), . Therefore, we immediately
get . To prove that , note that
since the perturbed sample path is in a partial loss period,

for all . Moreover, since the
nominal sample path is in a full loss period, we must have

[see (15)]. Therefore,
since and by the
induction hypothesis, it follows that

for all .
6) : Using an argument similar to 4), we can show

this is also an impossible case.
7) : Using an argument similar to 5), we can show

for all .
8) : Using an argument similar to 4), we can show

this is also an impossible case.
9) : From (61) , and from (59),

. It follows that . To prove that
, note that since the nominal sample path is in a

partial loss period we must have .
Therefore, since the perturbed sample path is in a no loss
period, we have

([see (18)] for all . Since and
by the induction hypothesis, it follows that

for all .

Proof of Lemma V.2:Consider a BP and
observe that and since and are
the beginning and end points of this BP, respectively. The proof

is by induction over all buffering periods . Since
the nominal and perturbed sample paths start out at the same
initial state, for the first buffering period we have ,
therefore, using Lemma V.1, we get for all

. Next we assume that for all
and show that for all

. The interval corresponds to an
empty period in the nominal sample path. Therefore,
and for all , and, by continuity,

. It follows that

(69)

since, in general, the perturbed state over the nominal sample
path empty period is such that .
The right-hand side is ,
since and . Therefore,

. From the induction hypothesis
and the continuity of , we know that ,
therefore . Moreover, in
view of (69) and

Using Lemma V.1, the proof is complete.

REFERENCES

[1] Y. Wardi and B. Melamed, “IPA gradient estimation for the loss volume
in continuous flow models,” inProc. Hong Kong Int. Workshop New
Directions Control Manufacturing, Hong Kong, Nov. 1994, pp. 30–33.

[2] G. Kesidis, A. Singh, D. Cheung, and W. Kwok, “Feasibility of fluid-
driven simulation for ATM network,” inProc. IEEE Globecom, vol. 3,
1996, pp. 2013–2017.

[3] K. Kumaran and D. Mitra, “Performance and fluid simulations of a novel
shared buffer management system,” inProc. IEEE INFOCOM, Mar,
1998, pp. 1449–1461.

[4] N. Miyoshi, “Sensitivity estimation of the cell-delay in the leaky bucket
traffic filter with stationary gradual input,” inProc. Int. Workshop Dis-
crete Event Systems, Cagliari, Italy, Aug. 1998, pp. 190–195.

[5] B. Liu, Y. Guo, J. Kurose, D. Towsley, and W. Gong, “Fluid simula-
tion of large scale networks: issues and tradeoffs,” presented at the Proc.
Int. Conf. Parallel Distributed Processing Techniques Applications, Las
Vegas, Nevada, June 1999.

[6] A. Yan and W. Gong, “Fluid simulation for high-speed networks
with flow-based routing,”IEEE Trans. Inform. Theory, vol. 45, pp.
1588–1599, 1999.

[7] Y. Wardi and B. Melamed, “Loss volume in continuous flow models:
fast simulation and sensitivity analysis via IPA,” presented at the Proc.
8th IEEE Mediterranean Conf. Control Automation, Patras, Greece, July
17–19, 2000.

[8] C. G. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C. G. Panayiotou,
“Perturbation analysis for on-line control and optimization of stochastic
fluid models,” IEEE Trans. Automat. Contr., vol. 47, pp. 1234–1248,
Aug. 2002.

[9] Y. Ho and X. Cao,Perturbation Analysis of Discrete Event Dynamic
Systems. Boston, MA: Kluwer, 1991.

[10] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event Sys-
tems. Boston, MA: Kluwer, 1999.



782 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 5, MAY 2003

[11] Y. Wardi, B. Melamed, C. Cassandras, and C. Panayiotou, “IPA gradient
estimators in single-node stochastic fluid models,”J. Optim. Theory Ap-
plicat., vol. 115, no. 2, pp. 369–406, 2002.

[12] Y. Liu and W. Gong, “Perturbation analysis for stochastic fluid
queueing systems,” inProc. 38th IEEE Conf. Decision Control, 1999,
pp. 4440–4445.

[13] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
(1998, Dec) An architecture for differentiated services. RFC 2475. [On-
line]http://www.ietf.org/rfc/rfc2475.txt

[14] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, Assured forwarding
PHB group, RFC 2597, Jun 1999.

[15] C. Panayiotou and C. Cassandras, “On-line predictive techniques for
“differentiated services” networks,” inProc. IEEE Conf. Decision Con-
trol, Dec. 2001, pp. 4529–4534.

[16] G. Sun, C. G. Cassandras, and C. G. Panayiotou, “Perturbation anal-
ysis of a multiclass stochastic fluid model with finite buffer capacity,”
in Proc. 41st IEEE Conf. Decision Control, 2002, pp. 2171–2176.

[17] C. Courcoubetis, G. Kesidis, A. Ridder, J. Walrand, and R. Weber,
“Admission control and routing in ATM networks using inferences
from measured buffer occupancy,”IEEE Trans. Commun., vol. 43, pp.
1778–1784, Feb. 1995.

[18] M. Grossglauser and D. N. C. Tse, “A framework for robust measure-
ment-based admission control,”IEEE/ACM Trans. Networking, vol. 7,
pp. 293–309, June 1999.

[19] Y. Wardi and B. Melamed, “Variational bounds and sensitivity analysis
of traffic processes in continuous flow models,”Discrete Event Dyna.
Syst.: Theory Applicat., vol. 11, pp. 249–282, 2001.

[20] H. J. Kushner and D. S. Clark,Stochastic Approximation for Constrained
and Unconstrained Systems. Berlin, Germany: Springer-Verlag, 1978.

[21] R. Y. Rubinstein and A. Shapiro,Discrete Event Systems: Sensi-
tivity Analysis and Stochastic Optimization by the Score Function
Method. New York: Wiley, 1993.

Christos G. Cassandras(S’82–M’82–SM’91–
F’96) received the B.S. degree from Yale University,
New Haven, CT, the M.S.E.E. degree from Stanford
University, Stanford, CA, and the S.M. and Ph.D. de-
grees from Harvard University, Cambridge, MA, in
1977, 1978, 1979, and 1982, respectively.

From 1982 to 1984, he was with ITP Boston,
Inc., Boston, MA, where he worked on the design
of automated manufacturing systems. From 1984 to
1996, he was a Faculty Member in the Department
of Electrical and Computer Engineering, University

of Massachusetts, Amherst. Currently, he is Professor of Manufacturing
Engineering and Professor of Electrical and Computer Engineering at Boston
University, Boston, MA. He specializes in the areas of discrete-event and hybrid
systems, stochastic optimization, and computer simulation, with applications
to computer networks, manufacturing systems, transportation systems, and
command-control systems. He has published over 200 papers in these areas,
and two textbooks, one of which was awarded the 1999 Harold Chestnut Prize
by the International Federation of Automatic Control (IFAC).

Dr. Cassandras is currently Editor-in-Chief of the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, and has served on several editorial boards and as Guest
Editor for various journals. He is a Member of the IEEE Control Systems So-
ciety (CSS) Board of Governors and an IEEE Distinguished Lecturer. He was
awarded a 1991 Lilly Fellowship and is also a Member of Phi Beta Kappa and
Tau Beta Pi.

Gang Sunreceived the B.E. degree in electrical engineering from Xi’an Jiao-
tong University, Xi’an, China, and the M.E. degree in system and control from
the Institute of Automation, Chinese Academy of Science, Beijing, China, in
1994 and 1999, respectively. He is currently working toward the Ph.D. degree
in the Department of Manufacturing Engineering, Boston University, Boston,
MA.

From 1994 to 1996, he worked as a System Engineer at Xi’an Instruments
(Group), Xi’an, China. His current research interests lie in the analysis, opti-
mization, and simulation of discrete-event systems, with applications to com-
munication networks and manufacturing systems.

Christos G. Panayiotou(S’94–M’99) received the
B.S. and Ph.D. degrees in electrical and computer
engineering from the University of Massachusetts,
Amherst, and the M.B.A. degree from the Isen-
berg School of Management, the University of
Massachusetts, Amherst, in 1994, 1999, and 1999,
respectively.

From 1999 to 2002, he was a Research Associate
at the Center for Information and System Engineering
(CISE) and the Department of Manufacturing Engi-
neering, Boston University, Boston, MA. Currently,

he is a Visiting Lecturer at the Electrical and Computer Engineering Department
at the University of Cyprus, Nicosia, Cyprus. His research interests include op-
timization and control of discrete-event systems with applications to computer
communication networks, manufacturing systems, and transportation networks.

Dr. Panayiotou is an Associate Editor for the Conference Editorial Board of
the IEEE Control Systems Society (CSS).

Yorai Wardi (S’80–M’81) received the Ph.D. degree in electrical engineering
and computer sciences from the University of California, Berkeley, in 1982.

From 1982 to 1984, he was a Member of the Technical Staff at Bell Telephone
Laboratories and Bell Communications Research, Holmdel, NJ. Since 1984, he
has been with the School of Electrical and Computer Engineering, the Georgia
Institute of Technology, Atlanta, where he is currently an Associate Professor.
He spent the 1987–1988 academic year with the Department of Industrial En-
gineering and Management, Ben Gurion University of the Negev, Israel. His
research interests are in discrete event dynamic systems, perturbation analysis,
and network control.

Dr. Wardi was was a Member of the Conference Editorial Board of the IEEE
Control Systems Society from 1999 to 2001, and is currently an Associate Editor
of the IEEE TRANSACTIONS ONAUTOMATIC CONTROL.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


