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where, without loss of generality for the purpose of our analysis, we
may set3; = 1 for all 7.
In a stochasticsetting, the cost functiofi;(s) is usually an expec-

On the C f Ordinal Optimization f tation whose exact value is generally difficult to obtain and one resorts
n the Convergence Rate of Ordinal Optimization for a to estimates ofZ;(s) which may be obtained through simulation or

Class of Stochastic Discrete Resource Allocation Problems through direct on-line observation of a system. We denotB'tgy) an

estimate ofL, (s) based on observing a sample path for a time period

of lengtht. In [1], an on-line optimization algorithm for solvindqR )

in such a setting was developed and shown to converge in probability to
Abstract—In [1], stochastic discrete resource allocation problems were the global optimum under certain conditions. The contribution of this

considered which are hard due to the combinatorial explosion of the fea- paper is twofold: first, we show that under certain additional mild tech-

sible allocation search space, as well as the absence of closed-form expresnical conditions the algorithm converges almost surely as well; in ad-

sions for the cost function of interest. An ordinal optimization algorithm dition, for a class of problems with regenerative structure, convergence

for solving a class of such problems was then shown to converge in proba- . . . I
bility to the global optimum. In this paper, we show that this result can be is shown to be exponentially fast, in the sense that the probability of

strengthened to almost sure convergence, under some additional mild con- finding the optimal allocation converges exponentially to 1 if the simu-
ditions, and we determine the associated rate of convergence. In the case oflation length increases linearly. This is a highly desirable property from
regenerative systems, we further show that the algorithm converges expo- g practical point of view.
nentially fast. In Section Il we review the stochastic optimization algorithm of [1]
Index Terms—Convergence, ordinal optimization, resource allocation, and identify a number of properties based on which we establish almost
stochastic optimization. sure convergence and determine the associated rate of convergence. In
Section I, we concentrate on resource allocation applied to regener-
ative systems and further show that the algorithm converges exponen-
tially fast.
In a recent paper [1], we presented an algorithm for a class of sto-
chastic discrete resource allocation problems which are hard due to the || convERGENCE OFON-LINE STOCHASTIC OPTIMIZATION
combinatorial explosion of the feasible allocation search space, as well
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where (1)—(5) (i.e., the new allocation has at most the same cost). It was proven
7t = arg max NG (i)} @ in [1, Lemma 4.2] that the probability of this event is gsymptotlcally 1,
'k ey 1= b i.e., the process (1)—(5) corresponds to an asymptotic descent resource
5% Z arg min {Aif‘-”“)(ﬁi ) 3) allocation aIgorithm.ThefoIIowing inequality is (65) established in the
' e, con proof of Lemma 4.2 in [1]:
Skt ji) =AM () = AL (s +1) (@) Py
“k k I k
. Cr— i}y if (i, ji) <0 di(s, C)
Crt1 =9 Co if [Ckl =1 (5) < > PIALI™ (i) > ALT™ (i + 1))
Cr otherwise {6, Déx (i, )<0}

whereAL! ™ (n;) = LI™ (n;)~ LI (n; - 1). Itis clear that (1)~(5) Note that the sef(i. j)[sx(i, j) < 0} is finite.
define a Markov procesg 3, Cx)}, whose state transition probability ~ Next, given any statgs, Cx) reached by the process (1)—(5), define
matrix is determined by;. j;, andé, (i}, j;). For a detailed discus-

sion and interpretation of this process, the reader is referred to [1]. AP = UIAL(j0) =max{ALi(ni k) }H 8
Brle"fly, i, andy;, estimate the users “most sen5|t|ve"_and~“least sensi- Amin — GIAL; (1) = min{AL: (. 1)} ). ©)
tive” to the removal of a resource among those users in thg. s&hen, e i

(1) forces the exchange of a resource from the most to the least se
tive user at thé:th step of this process, provided the quantiff:;., ji) and j; defined in (2) and (3) if exact measurements were available

is strictly positive; otherwise, the allocation is unaffected, but the us P s o :
S oo ' e T . f'determlnlstlc case). Note that, j; need not be uniquat each ste
with indexj; is removed from the s&t. through (5). When this set is k. hence the need f)or these itékWe then define . P

reduced to a single user, it is resettoand the procedure repeats. The
quantityr?k(iz, J1) is the estimated “potential cost reduction” when an ar(s, C) =1 - p[zz € AP (54, @k,) =(s, O)], (10)
actual change in allocation takes place. SN ~x _ aminys A\ -

We will make the following three assumptions, as in [1]: bils, €) =1 = Plii € A3, C) =(3, O] (11)

e Al:Foralli =1, ---, N, L;(n;) issuch that\ L, (n; + 1) > Here,[1 — ax(s, C)] is the probability that our stochastic resource al-

AL;(n;), where location process at stépcorrectly identifies an index; as belonging

to the setd}'™* (similarly for [1 — b4 (s, C)]). We can then obtain the
following inequality:

Bilserve thad™** and AT are, respectively, the sets of indicds

AL;(n;) = Li(n;) — Li(n; — 1), n,=1,---, 7 (6)
with AL;(0) = —ooc andAL;(N + 1) = oc.

; = . . P2
» A2: For everyi, and everyn;, the estimatd ! (n;) is ergodic as ) .y e s i
the sample path length increases in the sense that ar(s, C) = Plig & A |(8k. Cr) = (s, C)]
- <P ALT® G ) >
tlinolC Li(n;) = Li(ny), a.s. - []égakxx{ ;o (i)t 2
ATTR) - AN
« A3: Let6(i, j) = ALi(fiik) — AL (71,5 + 1). For every S AALT (R0 )G, Co) = (3, O]

§x(i%, J5) = 0, there is a constant such that . k)~ s
k(i i) o < min P[ max {ALf(k)(7lj,k)} >
icAmax " g aniax J -

Pk (it J5) < 018k(i%. &) = 0, (3%, C&)] > po > 0 St R
ALIM (i )|, Ci) = (5. 0)]

for anyk and any pair&:, C).
. Fora de_talled d|§9u53|on of thes_,e assumpnong, see [1]. Nota3hat < min Z P[Afj(k) (A1) >
is a technical condition guaranteeing that an estimate does not always igAmax J

give one-sided-biased, incorrect information. Also note that the results e

in this paper do not require the technical condition that the optimal - k) < s )

allocation be uniqueA3in [1]). If several allocations exhibit optimal AL (i 1)k, Cr) = (5, C))]

performance, the proposed scheme will convergeseetaf allocations

and will oscillate among the members of the set. Note thatA L; (i, ») < AL:(fi: ) forall j ¢ AT andi € AT™.
UnderAl1-A3 it was proven in [1] thak, converges in probability Similarly, we ge{’ o ’

to the optimal solutios™ as long asf (k) — > ask — oc. Our main

result in this section is tha, also convergealmost surelyinder some P 3)

additional mild assumptions. In order to derive this result (Theorem 1),

we need to first revisit some properties of the process (1)—(5) which bi(s, C) < min Z P[Aif(’“)(ﬁj, p) <

were derived in [1]. e g Amin

A. Properties of Stochastic Resource Allocation Process Sk o
o - , , AL (i 1) (38, Cr) = (s, C)]

We present five inequalities as properties P1)—P5) that were either

derived in [1] or are direct consequences of results in [1] which are

explicitly rgferenced inwhat follows. Let(s) = 32 | L;(n;). First, andAL;(#i; 1) > ALi(#i,; ) forall j ¢ AF™ andi € Ap™.
define as in [1]: Next, we define

di(s. C) =1 — P[L(3x4+1) < L(31)|(3%, Cr) = (5. O)]  (7)

ap = sup maxa;(s, C), by = sup max b;(s, C),
that[1 — dx(s, C)] is the probability that eith t red =k 5O S
so that[l — d(s, C)] is the probability that either some cost reduc- dy = sup max di(s, C) (12)

tion or no change in cost results from thih transition in our process ik (8.0)
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and we choose a sequence of inteders} satisfying whereg is a finite constant determined by the parameters of the re-
. . source allocation problem (RA) ang is defined as
khm ap = oo, khm ap(ag +bg) =0,
o ap 1 = s x ei(s, C). 18
Jimn (L= duyzy)™ =1 (13) R g i ©) (18)

where, for anyr, | x| is the greatest integer smaller thanWith this
sequence of i, }, we define as in [1] B. Main Convergence Result
o N C e A , As already stated, under assumptidks-A3 it was proven in [1]
er(s; €) = 1 = PIL(3r+ar) < L(5x)|(Be, Co) = (5, )] (14) thats, converges in probability to the optimal solutieh as long as
and observe thdll — ¢4 (s, C)] is the probability that strict improve- f(k) — oo ask — oc. By proper selection of the sample path length
ment (i.e., strictly lower cost) results when transitioning from a staté(k), i.e., thekth estimation period, and under some additional mild
such that the allocation is not optimal to a future statesteps later.  assumptions we can now show that the process (1)—(5) converges al-
For anya,, consider the evenf.(3;41) < L(s,),i =k, ---, k+ mostsurely; we can also determine the associated rate of convergence.
ay — 1] and observe that For this purpose, we first recall a result of [2].
Lemma 2.1: Suppose thafz:, t > 0} is a stochastic process sat-

PIL(3i41) <L), i=kooes kA ap — 1] isfying a)lim— . 7+ = =, a.8.; bllims— o E[#] = 2; ) Vari] =

(31, Cx) = (5, O)] O(1/t). If = > 0, thenP[z, < 0] = O(1/t).
=P[Ah k<h<k+a,St.L(3n1) < L(3,), The assumption in Lemma 2.1 is very mild and almost always sat-
L e - o isfied in the simulation or direct sample path observation of discrete-
andLEsl+{) S LG, i=k oo ktaw =107 b event dynamic systems. Lemma 2.1 establishes the rate of convergence
(8k, Ci) = (s, C)] for comparing#,; against 0. Using this result, we can prove the fol-
+ P[L($i41) = L(85), i =k, -+, k+ ar — 1| lowing lemma which will be needed for our main result.
(31, Cu) = (s, O)] Lemma 2.2: Assume that, for every, the estimatd.!(n;) satisfies
. ’ . s the assumptions of Lemma 2.1. Then, for any, i # j,
< P[L(3tse,) < L(30)| (5. Co) = (5. O) P i
+ P[L(3i41) = L(3:), i =k, -+, k+op — 1 P[ALL(n;) > ALY (n;)] =0 G)
(8, Cr) = (s, O)]. 15 nd
Moreover, it was shown in [1, eq. (81) of Lemma 4.5] that PIAL (n)) < ALL(n))] =1- O <%>
PIL(it1) < L), i =k, -+, k4 ax — 1 _ /
Gy Co) = (3, O)] > (1= di)°*. (16) provided thatA L; (n;) < ALj;(n;).

Proof: Leti, = ALY(n;) — ALi(n;) andz = AL;j(n;) —

In addition, it follows from [1, egs. (67), (72), (74), and (77) ofAL;(n;). Then{%;} satisfies the assumptions of Lemma 2.1 and
Lemma 4.4] that 0. Thus, the conclusion holds.
Theorem 1: Suppose A1-A3 and the assumptions of Lemma 2.2

P[L(gh“l =LGu). b=k, o ko — 1 hold. If f(k) > k't for some constant > 0, then the process de-
(3%, Ce) = (5, C)] scribed by (1)—(5) converges almost surely to the global optimal allo-
< po (1= o) UM 4 (o — 1) (ak + br) cation.
J Proof: If f(k) > k't for somec > 0 and if the assumptions of
+ Z Ploa(ihy, Jir) <0, Lemma 2.2 are satisfied, we know from Lemma 2.2, the definition in
M=k (12) and property (P1) in Section Il
821 (Iars Jar) > 0| (3ks Ci) = (s, 0)] 1 1
—1 ap=(|C[+N) de=0(+=]=0-—).
<py (1—po) + (ax — 1)(ax + bx) F(k) Lite
i Hiil Z Furthermore, since the space(sf C) is finite, Lemma 2.2, the defini-
B tion in (12), and properties P2)—P3) imply that
M=k {(i,j)€Cps, 604 (3,5)>0}
PlSu (i, 7) < 0|(3x. Cx) = (s. C)]. 17 - 1y _ 1
“w=9\fm) =\ )
We can now combine (15)—(17) to establish the following inequality 1 1
for any (s. C): e <Wk>) B (A—+> '
P4) ) Next, choose
er(s, C) <[L = (1= d)™*] +pg (1 = po)™ 1) 1+c
et NS g M EEL B
+ (g — D)(ar +bi) + Z Z ’

stz ?f/dk?f’%er¥ﬁ et atbogi)s"’.‘“sﬁes (13) and thét — po)** =
b3 .. . 5 ; . en, proper Ives
Pl (i) < 0|(x. Ci) = (5, C)]. PIOpEy P @

The last property we will use was established in [1, eq. (63) of The- er =01 = (1= de)™) + O((1 = po) ;)

orem 1] —I—O((n/k - 1)(ﬂk+bk))+(—) <m)

P5) In(k) ar ~(1In(k)
Plae = 81> (1= epo)'[(1 = djgyz)) "] =0 <k1+c ) Ol —po)™) =0 <kl+u ) '
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Finally, from property P5) we get d) The function/(.) is bounded an¢/(.)| < B, 0 < B < oc.

If L(81) > L(82), then there exists a constant> 0 such that

Plax PIL'(#1) > L'(#2)] =1 = O(e™*")

$T)1=1—=0(1 = (1 —epry2)) (1 = drs2))*"F)

In(%)
=1=0(eprsz) + ardiryz)) =1 -0 <k1+c ) '

and

P[L'(8,) < L'(82)] = O(e "), (21)
Sinces,, can take only a finite set of values, the previous equation can )
be rewritten as in other words, the rate of convergence for comparing the two sample

estimatorsL'(6,) andL(#,) is exponential.

We can now prove the following theorem regarding the almost sure
convergence of the process (1)—(5) and the associated rate of conver-
gence.

Theorem 2: Suppose that assumptions A1-A3 hold and for every
know from the Borel-Cantelli Lemma [5, pp. 255—256] tl{]é}t} con- pairl'7 ]” i # j’ Az/i (ni‘) — Ai;(nj) isa regenerative process with
verges almost surely to the optimum allocatidn regenerative cycle times satisfying b) and c) of Lemma 3.1. Then, there

The inequality P5) establishes the convergence in probability of thgists a- > ¢ large enough such thatff(k) > ¢ In(k) for sufficiently

process (1)—(5), while Theorem 1 proves the almost sure convergenggyek, the process described by (1)—(5) converges almost surely to the
For any sample path lengtf( %), the proof of Theorem 1 shows thatglobal optimal allocation. Furthermore,

the rate of convergence in probability is

P, =5]=1-0 <1}‘((Z‘;>

Tite (19)

Pl =12 4= 0 (2

for any sufficiently smalk > 0. Since}", (In (k)/k'*°) < oo, we

Pls, = 5] =1— O(ln(k)e /™)

for somea > 0.
Proof: Assumption A2 guarantees that.! (n;) — AL} (n;) sat-
isfies a) of Lemma 3.1. Since there are only a finite number of feasible
allocations, d) of Lemma 3.1 automatically holds. Under the assump-

tions of the theorem, Lemma 3.1 applies. Thus, there exists an)
such that

In many cases, knowledge of the structure of a specific discrete-event Ofe— ot _ —af(k)

: . o ar =0(e ), br=0(e ),

dynamic system allows us to gain further insight on the convergence
of the process (1)-(5). To be precise, {ef;(¢) € R, + > 0} be a We know from the proof of Theorem 1 that
parameterized stochastic process that describes the discrete-event dy- Plén =571 =1 — O(are™" ™) 4 O((1 = po)™*).
namic system that we are interested in. We fuse indicate different
“designs” (e.g., parameter settings). In many discrete-event dynarfi@oosec such thata: > 1 and set
systems, estimates of performance measures based on the simulation ca (k).
or observation over a time period¢an often be constructed in the form

(22)

provided thatvy, = O(In(f(k))).

I1l. CONVERGENCE OFALGORITHM FOR REGENERATIVE SYSTEMS

di, = O(e TRy,

k=1,

[

S Y )
Thene® ) > g1+’ = ca — 1 > 0. Consequently, we know
from the proof of Theorem 1 thd, } converges almost surely to the
optimum, and (22) holds.

where((.): R — R. Although other forms of estimators are possible, Finally, note that if we sef (k) = k, then (22) become®’[s. =
the form of (20) iss typical and we shall limit ourselves to it (other forms*] = 1 — O(In(k)e~**), which converges exponentially.

are considered in [2]). We consider next the convergence of (1)—(5) for

b1
o) =

/t ((X.(0))du (20)

the important class akgenerativesystems.
Definition 3.1 [4, p. 19]: A stochastic proces§X, ()} is said to
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t >0

) {Xr0)4¢(0), (8) — 7 (0), t > 0,k > i} are identically

distributed.

i) {Xr,)1(8), (8) — (), t > 0, k > i} does not depend

on{X(6), 7(6),t < 7,0 <j < i}

{r:(#),i > 1} is a sequence of regeneration points dith) =
7:(0) —1—1(0), ¢ > 1, is the cycle time of théth regenerative cycle.
Then{T;(§), ¢ > 1} is a sequence of i.i.d. random variables. We also
defineTy(F) = 70(6).

Let {X:(6)} be a regenerative process with cycle tir{gds(6)}.
Then for estimators of performance measures of the form (20), Dai in
[2] shows the following result on the convergence rate of comparing
two performance measurégf;) andL(6-).

Lemma 3.1: For# = 4, orf, and for: = 0, 1, assume that

a) lim¢_~ L'(8) = L(6), a.s.

b) The cycle timel;(#) has finite, continuous moment generating

function E[e*"+(")] in a neighborhood of = 0.
c) The cycle timeZ:(#) is not degenerate in the sense that




