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On the Convergence Rate of Ordinal Optimization for a
Class of Stochastic Discrete Resource Allocation Problems

Liyi Dai, Christos G. Cassandras, and Christos G. Panayiotou

Abstract—In [1], stochastic discrete resource allocation problems were
considered which are hard due to the combinatorial explosion of the fea-
sible allocation search space, as well as the absence of closed-form expres-
sions for the cost function of interest. An ordinal optimization algorithm
for solving a class of such problems was then shown to converge in proba-
bility to the global optimum. In this paper, we show that this result can be
strengthened to almost sure convergence, under some additional mild con-
ditions, and we determine the associated rate of convergence. In the case of
regenerative systems, we further show that the algorithm converges expo-
nentially fast.

Index Terms—Convergence, ordinal optimization, resource allocation,
stochastic optimization.

I. INTRODUCTION

In a recent paper [1], we presented an algorithm for a class of sto-
chastic discrete resource allocation problems which are hard due to the
combinatorial explosion of the feasible allocation search space, as well
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as the absence of closed-form expressions for the cost function of in-
terest. The algorithm was shown to converge in probability to the global
optimum. An important feature of this algorithm is that it is driven by
ordinal estimates of a cost function, i.e., simple comparisons of esti-
mates, rather than their cardinal values. One can therefore exploit the
fast convergence properties of ordinal comparisons [2]. In this paper,
we address explicitly this feature by analyzing the convergence rate
properties of the algorithm.

In the resource allocation problems studied in [1], there are
r identical resources to be allocated overN user classesso
as to optimize some system performance measure (objective
function). Let sss = [n1; � � � ; nN ] denote an allocation and
S = f[n1; � � � ; nN ]: N

i=1 ni = r; ni 2 f1; � � � ; rgg be the finite
set of feasible allocations, whereni is simply the number of resources
allocated to user classi. Let Li(sss) be the classi cost associated with
the allocation vectorsss. Assuming thatLi(sss) depends only on the
number of resources assigned to classi, we can writeLi(sss) = Li(ni).
Then, the basic resource allocation problem is

(RA)min
sss2S

N

i=1

�iLi(ni)

where, without loss of generality for the purpose of our analysis, we
may set�i = 1 for all i.

In a stochasticsetting, the cost functionLi(sss) is usually an expec-
tation whose exact value is generally difficult to obtain and one resorts
to estimates ofLi(sss) which may be obtained through simulation or
through direct on-line observation of a system. We denote by~Lt

i(sss) an
estimate ofLi(sss) based on observing a sample path for a time period
of lengtht. In [1], an on-line optimization algorithm for solving (RA)
in such a setting was developed and shown to converge in probability to
the global optimum under certain conditions. The contribution of this
paper is twofold: first, we show that under certain additional mild tech-
nical conditions the algorithm converges almost surely as well; in ad-
dition, for a class of problems with regenerative structure, convergence
is shown to be exponentially fast, in the sense that the probability of
finding the optimal allocation converges exponentially to 1 if the simu-
lation length increases linearly. This is a highly desirable property from
a practical point of view.

In Section II we review the stochastic optimization algorithm of [1]
and identify a number of properties based on which we establish almost
sure convergence and determine the associated rate of convergence. In
Section III, we concentrate on resource allocation applied to regener-
ative systems and further show that the algorithm converges exponen-
tially fast.

II. CONVERGENCE OFON-LINE STOCHASTIC OPTIMIZATION

ALGORITHM

The following is the stochastic resource allocation algorithm given
in [1], represented as the Markov processf(~sssk; ~Ck)g where the vector
~sssk = [~n1; k; ~n2; k; � � � ; ~nN; k] is the allocation after thekth step,~Ck is
a subset of user indices after thekth step updated as shown below, and
the “~� ” notation is used to indicate that all quantities involved are based
on estimates~Lt

i(sss) of Li(sss), obtained from a sample path of lengtht;
in particular, the length of the sample path at thekth iteration of the
process is denoted byf(k) and the corresponding cost estimates by
~L
f(k)
i (�). With C0 = f1; � � � ; Ng, after proper initialization, we have:

~ni; k+1 =

~ni; k � 1 if i = ~i�k and~�k(~i�k; ~j
�
k) > 0

~ni; k + 1 if i = ~j�k and~�k(~i�k; ~j
�
k) > 0

~ni; k otherwise

(1)
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where

~i�k =arg max
i2~C

f�~L
f(k)
i (~ni; k)g (2)

~j�k =arg min
i2~C

f�~L
f(k)
i (~ni; k)g (3)

~�k(~i
�
k; ~j

�
k) =�~L

f(k)
~i

(~n~i ; k)��~L
f(k)
~j

(~n~j ; k + 1) (4)

~Ck+1 =

~Ck � f~j�kg if ~�k(~i�k; ~j
�
k) � 0

C0 if j ~Ckj = 1
~Ck otherwise

(5)

where�~L
f(k)
i (ni) = ~L

f(k)
i (ni)�~L

t(k)
i (ni�1). It is clear that (1)–(5)

define a Markov processf(~sssk; ~Ck)g, whose state transition probability
matrix is determined by~i�k; ~j

�
k , and~�k(~i�k; ~j

�
k). For a detailed discus-

sion and interpretation of this process, the reader is referred to [1].
Briefly, ~i�k and~j�k estimate the users “most sensitive” and “least sensi-
tive” to the removal of a resource among those users in the set~Ck. Then,
(1) forces the exchange of a resource from the most to the least sensi-
tive user at thekth step of this process, provided the quantity~�k(~i

�
k; ~j

�
k)

is strictly positive; otherwise, the allocation is unaffected, but the user
with index~j�k is removed from the set~Ck through (5). When this set is
reduced to a single user, it is reset toC0 and the procedure repeats. The
quantity~�k(~i�k; ~j

�
k) is the estimated “potential cost reduction” when an

actual change in allocation takes place.
We will make the following three assumptions, as in [1]:

• A1: For all i = 1; � � � ; N , Li(ni) is such that�Li(ni + 1) >
�Li(ni), where

�Li(ni) = Li(ni)� Li(ni � 1); ni = 1; � � � ; r (6)

with �Li(0) � �1 and�Li(N + 1) � 1.
• A2: For everyi, and everyni, the estimate~Lt

i(ni) is ergodic as
the sample path length increases in the sense that

lim
t!1

~Lt
i(ni) = Li(ni); a.s.

• A3: Let �k(i; j) = �Li(~ni; k) � �Lj(~nj; k + 1). For every
�k(~i

�
k; ~j

�
k) = 0, there is a constantp0 such that

P [~�k(~i
�
k; ~j

�
k) � 0j�k(~i

�
k; ~j

�
k) = 0; (~sssk; ~Ck)] � p0 > 0

for anyk and any pair (~sssk, ~Ck).
For a detailed discussion of these assumptions, see [1]. Note thatA3

is a technical condition guaranteeing that an estimate does not always
give one-sided-biased, incorrect information. Also note that the results
in this paper do not require the technical condition that the optimal
allocation be unique (A3 in [1]). If several allocations exhibit optimal
performance, the proposed scheme will converge to asetof allocations
and will oscillate among the members of the set.

UnderA1–A3, it was proven in [1] that~sssk converges in probability
to the optimal solutionsss� as long asf(k)!1 ask !1. Our main
result in this section is that~sssk also convergesalmost surelyunder some
additional mild assumptions. In order to derive this result (Theorem 1),
we need to first revisit some properties of the process (1)–(5) which
were derived in [1].

A. Properties of Stochastic Resource Allocation Process

We present five inequalities as properties P1)–P5) that were either
derived in [1] or are direct consequences of results in [1] which are
explicitly referenced in what follows. LetL(sss) = N

i=1 Li(ni). First,
define as in [1]:

dk(sss; C) = 1� P [L(~sssk+1) � L(~sssk)j(~sssk; ~Ck) = (sss; C)] (7)

so that[1 � dk(sss; C)] is the probability that either some cost reduc-
tion or no change in cost results from thekth transition in our process

(1)–(5) (i.e., the new allocation has at most the same cost). It was proven
in [1, Lemma 4.2] that the probability of this event is asymptotically 1,
i.e., the process (1)–(5) corresponds to an asymptotic descent resource
allocation algorithm. The following inequality is (65) established in the
proof of Lemma 4.2 in [1]:

P1)

dk(sss; C)

�
f(i; j)j� (i; j)<0g

P [�~L
f(k)
i (~ni) > �~L

f(k)
j (~nj + 1)]:

Note that the setf(i; j)j�k(i; j) < 0g is finite.
Next, given any state(~sssk; ~Ck) reached by the process (1)–(5), define

A
max
k = fjj�Lj(~nj;k) =max

i
f�Li(~ni;k)gg; (8)

A
min
k = fjj�Lj(~nj; k) =min

i
f�Li(~ni; k)gg: (9)

Observe thatAmax
k andAmin

k are, respectively, the sets of indicesi�k
and j�k defined in (2) and (3) if exact measurements were available
(deterministic case). Note thati�k, j�k need not be uniqueat each step
k, hence the need for these sets. We then define

ak(sss; C) = 1� P [~i�k 2 A
max
k j(~sssk; ~Ck) =(sss; C)]; (10)

bk(sss; C) = 1� P [~j�k 2 A
min
k j(~sssk; ~Ck) =(sss; C)]: (11)

Here,[1� ak(sss; C)] is the probability that our stochastic resource al-
location process at stepk correctly identifies an index~i�k as belonging
to the setAmax

k (similarly for [1� bk(sss; C)]). We can then obtain the
following inequality:

P2)

ak(sss; C) =P [~i�k 62 A
max
k j(~sssk; ~Ck) = (sss; C)]

�P [ max
j 62A

f�~L
f(k)
j (~nj; k)g �

max
i2A

f�~L
f(k)
i (~ni; k)gj(~sssk; ~Ck) = (sss; C)]

� min
i2A

P [ max
j 62A

f�~L
f(k)
j (~nj;k)g �

�~L
f(k)
i (~ni; k)j(~sssk; ~Ck) = (sss; C)]

� min
i2A

j 62A

P [�~L
f(k)
j (~nj; k) �

�~L
f(k)
i (~ni; k)j(~sssk; ~Ck) = (sss; C)] :

Note that�Lj(~nj; k) < �Li(~ni; k) for all j 62 Amax
k andi 2 Amax

k .
Similarly, we get

P3)

bk(sss; C) � min
i2A

j 62A

P [�~L
f(k)
j (~nj; k) �

�~L
f(k)
i �(~ni; k)j(~sssk; ~Ck) = (sss; C)]

and�Lj(~nj; k) > �Li(~ni; k) for all j 62 Amin
k andi 2 Amin

k .
Next, we define

ak = sup
i�k

max
(sss;C)

ai(sss; C); bk = sup
i�k

max
(sss;C)

bi(sss; C);

dk = sup
i�k

max
(sss;C)

di(sss; C) (12)
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and we choose a sequence of integersf�kg satisfying

lim
k!1

�k =1; lim
k!1

�k(ak + bk) = 0;

lim
k!1

(1� dbk=2c)
� = 1 (13)

where, for anyx, bxc is the greatest integer smaller thanx. With this
sequence off�kg, we define as in [1]

ek(sss; C) = 1� P [L(~sssk+� ) < L(~sssk)j(~sssk; ~Ck) = (sss; C)] (14)

and observe that[1 � ek(sss; C)] is the probability that strict improve-
ment (i.e., strictly lower cost) results when transitioning from a state
such that the allocation is not optimal to a future state�k steps later.

For any�k , consider the event[L(~sssi+1) � L(~sssi); i = k; � � � ; k +
�k � 1] and observe that

P [L(~sssi+1) � L(~sssi); i = k; � � � ; k + �k � 1j

(~sssk; ~Ck) = (sss; C)]

= P [9h; k � h < k + �k s.t.L(~sssh+1) < L(~sssh);

andL(~sssi+1) � L(~sssi); i = k; � � � ; k + �k � 1; i 6= hj

(~sssk; ~Ck) = (sss; C)]

+ P [L(~sssi+1) = L(~sssi); i = k; � � � ; k + �k � 1j

(~sssk; ~Ck) = (sss; C)]

� P [L(~sssk+� ) < L(~sssk)j(~sssk; ~Ck) = (sss; C)]

+ P [L(~sssi+1) = L(~sssi); i = k; � � � ; k + �k � 1j

(~sssk; ~Ck) = (sss; C)]: (15)

Moreover, it was shown in [1, eq. (81) of Lemma 4.5] that

P [L(~sssi+1) � L(~sssi); i = k; � � � ; k + �k � 1j

(~sssk; ~Ck) = (sss; C)] � (1� dk)
� : (16)

In addition, it follows from [1, eqs. (67), (72), (74), and (77) of
Lemma 4.4] that

P [L(~sssh+1) = L(~sssh); h = k; � � � ; k + �k � 1j

(~sssk; ~Ck) = (sss; C)]

� p�10 (1� p0)
� �(jCj+N) + (�k � 1)(ak + bk)

+

k+� �1

M=k

P [~�M (~i�M ; ~j�M) � 0;

�M (~i�M ; ~j�M) > 0j(~sssk; ~Ck) = (sss; C)]

� p�10 (1� p0)
� �(jCj+N) + (�k � 1)(ak + bk)

+

k+� �1

M=k f(i; j)2~C ; � (i; j)>0g

P [~�M (i; j) � 0j(~sssk; ~Ck) = (sss; C)]: (17)

We can now combine (15)–(17) to establish the following inequality
for any (sss; C):

P4)

ek(sss; C) � [1� (1� dk)
� ] + p�10 (1� p0)

� �(jCj+N)

+ (�k � 1)(ak + bk) +

k+� �1

M=k f(i;j)2~C ; � (i; j)>0g

P [~�M (i; j) � 0j(~sssk; ~Ck) = (sss; C)]:

The last property we will use was established in [1, eq. (63) of The-
orem 1]:

P5)

P [~sssk = sss�] � (1� ebk=2c)
q[(1� dbk=2c)

� ]q

whereq is a finite constant determined by the parameters of the re-
source allocation problem (RA) andek is defined as

ek = sup
i�k

max
sss2S; C

ei(sss; C): (18)

B. Main Convergence Result

As already stated, under assumptionsA1–A3, it was proven in [1]
that~sssk converges in probability to the optimal solutionsss� as long as
f(k)! 1 ask ! 1. By proper selection of the sample path length
f(k), i.e., thekth estimation period, and under some additional mild
assumptions we can now show that the process (1)–(5) converges al-
most surely; we can also determine the associated rate of convergence.
For this purpose, we first recall a result of [2].

Lemma 2.1: Suppose thatf~xt; t � 0g is a stochastic process sat-
isfying a) limt!1 ~xt = x, a.s.; b)limt!1 E[~xt] = x; c) Var[~xt] =
O(1=t). If x > 0, thenP [~xt � 0] = O(1=t):

The assumption in Lemma 2.1 is very mild and almost always sat-
isfied in the simulation or direct sample path observation of discrete-
event dynamic systems. Lemma 2.1 establishes the rate of convergence
for comparing~xt against 0. Using this result, we can prove the fol-
lowing lemma which will be needed for our main result.

Lemma 2.2: Assume that, for everyi, the estimate~Lt
i(ni) satisfies

the assumptions of Lemma 2.1. Then, for anyi; j; i 6= j,

P [�~Lt
i(ni) � �~Lt

j(nj)] =O
1

t

and

P [�~Lt
i(ni) < �~Lt

j(nj)] = 1�O
1

t

provided that�Li(ni) < �Lj(nj).
Proof: Let ~xk = �~Lt

j(nj) � �~Lt
i(ni) andx = �Lj(nj) �

�Li(ni). Then,f~xkg satisfies the assumptions of Lemma 2.1 andx >
0. Thus, the conclusion holds.

Theorem 1: Suppose A1–A3 and the assumptions of Lemma 2.2
hold. If f(k) � k1+c for some constantc > 0, then the process de-
scribed by (1)–(5) converges almost surely to the global optimal allo-
cation.

Proof: If f(k) � k1+c for somec > 0 and if the assumptions of
Lemma 2.2 are satisfied, we know from Lemma 2.2, the definition in
(12) and property (P1) in Section II

dk = O
1

f(k)
= O

1

k1+c
:

Furthermore, since the space of(sss; C) is finite, Lemma 2.2, the defini-
tion in (12), and properties P2)–P3) imply that

ak =O
1

f(k)
= O

1

k1+c
;

bk =O
1

f(k)
= O

1

k1+c
:

Next, choose

�k =
1 + c

� ln(1� p0)
ln(k); k = 1; 2; � � �

and observe thatf�kg above satisfies (13) and that(1 � p0)
� =

(1=k1+c). Then, property P4) gives

ek =O(1� (1� dk)
� ) +O((1� p0)

� )

+O((�k � 1)(ak + bk)) +O
1

f(k)

=O
ln(k)

k1+c
+O((1� p0)

� ) = O
ln(k)

k1+c
:
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Finally, from property P5) we get

P [~sssk = sss�] = 1�O(1� (1� ebk=2c)
q(1� dbk=2c)

q� )

= 1�O(ebk=2c + �kdbk=2c) = 1�O
ln(k)

k1+c
:

Since~sssk can take only a finite set of values, the previous equation can
be rewritten as

P [j~sssk � sss�j � �] = O
ln(k)

k1+c
(19)

for any sufficiently small� > 0. Since k (ln (k)=k
1+c) < 1, we

know from the Borel–Cantelli Lemma [5, pp. 255–256] thatf~ssskg con-
verges almost surely to the optimum allocationsss�.

The inequality P5) establishes the convergence in probability of the
process (1)–(5), while Theorem 1 proves the almost sure convergence.
For any sample path lengthf(k), the proof of Theorem 1 shows that
the rate of convergence in probability is

P [~sssk = sss�] = 1�O
ln(k)

f(k)

provided that�k = O(ln(f(k))).

III. CONVERGENCE OFALGORITHM FORREGENERATIVESYSTEMS

In many cases, knowledge of the structure of a specific discrete-event
dynamic system allows us to gain further insight on the convergence
of the process (1)–(5). To be precise, letfXt(�) 2 R; t � 0g be a
parameterized stochastic process that describes the discrete-event dy-
namic system that we are interested in. We use� to indicate different
“designs” (e.g., parameter settings). In many discrete-event dynamic
systems, estimates of performance measures based on the simulation
or observation over a time periodt can often be constructed in the form

~Lt(�) =
1

t

t

0

`(Xu(�))du (20)

where`(:): R ! R. Although other forms of estimators are possible,
the form of (20) is typical and we shall limit ourselves to it (other forms
are considered in [2]). We consider next the convergence of (1)–(5) for
the important class ofregenerativesystems.

Definition 3.1 [4, p. 19]: A stochastic processfXt(�)g is said to
be regenerative (in a classic sense) if there is an increasing sequence
of nonnegative finite random timesf�i(�); i � 0g such that for each
i � 0

i) fX� (�)+t(�); �k(�) � �i(�), t � 0; k � ig are identically
distributed.

ii) fX� (�)+t(�), �k(�) � �i(�); t � 0; k � ig does not depend
on fXt(�); �j(�); t � �i; 0 � j � ig.

f�i(�); i � 1g is a sequence of regeneration points andTi(�) =
�i(�)� �i�1(�); i � 1; is the cycle time of theith regenerative cycle.
ThenfTi(�); i � 1g is a sequence of i.i.d. random variables. We also
defineT0(�) = �0(�).

Let fXt(�)g be a regenerative process with cycle timesfTi(�)g.
Then for estimators of performance measures of the form (20), Dai in
[2] shows the following result on the convergence rate of comparing
two performance measuresL(�1) andL(�2).

Lemma 3.1: For � = �1 or �2 and fori = 0; 1, assume that

a) limt!1
~Lt(�) = L(�), a.s.

b) The cycle timeTi(�) has finite, continuous moment generating
functionE[esT (�)] in a neighborhood ofs = 0.

c) The cycle timeT1(�) is not degenerate in the sense that
limt!1 P [T1(�) � t] < 1.

d) The functioǹ (:) is bounded andj`(:)j � B; 0 < B <1.
If L(�1) > L(�2), then there exists a constant� > 0 such that

P [ ~Lt(�1) > ~Lt(�2)] = 1�O(e��t)

and

P [ ~Lt(�1) � ~Lt(�2)] =O(e��t); (21)

in other words, the rate of convergence for comparing the two sample
estimators~Lt(�1) and ~Lt(�2) is exponential.

We can now prove the following theorem regarding the almost sure
convergence of the process (1)–(5) and the associated rate of conver-
gence.

Theorem 2: Suppose that assumptions A1–A3 hold and for every
pair i; j; i 6= j, �~Lt

i(ni) � �~Lt
j(nj) is a regenerative process with

regenerative cycle times satisfying b) and c) of Lemma 3.1. Then, there
exists ac > 0 large enough such that iff(k) � c ln(k) for sufficiently
largek, the process described by (1)–(5) converges almost surely to the
global optimal allocation. Furthermore,

P [~sssk = sss�] = 1�O(ln(k)e��f(k)) (22)

for some� > 0.
Proof: Assumption A2 guarantees that�~Lt

i(ni)��~Lt
j(nj) sat-

isfies a) of Lemma 3.1. Since there are only a finite number of feasible
allocations, d) of Lemma 3.1 automatically holds. Under the assump-
tions of the theorem, Lemma 3.1 applies. Thus, there exists an� > 0
such that

ak =O(e��f(k)); bk = O(e��f(k)); dk = O(e��f(k)):

We know from the proof of Theorem 1 that

P [~sssk = sss�] = 1�O(�ke
��f(k)) +O((1� p0)

� ):

Choosec such thatc� > 1 and set

�k =
c�

� ln(1� p0)
ln(k); k = 1; 2; � � � :

Thene�f(k) � k1+c , c0 = c� � 1 > 0. Consequently, we know
from the proof of Theorem 1 thatf~ssskg converges almost surely to the
optimum, and (22) holds.

Finally, note that if we setf(k) = k, then (22) becomesP [~sssk =
sss�] = 1� O(ln(k)e��k), which converges exponentially.
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