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Abstract We describe the use of Stochastic Flow Models (SFMs) for control and
optimization (rather than performance analysis) of computer networks.
After reviewing earlier work applying Infinitesimal Perturbation Anal-
ysis (IPA) to SFMs without feedback or with additive feedback, we
consider systems operating with a multiplicative feedback control mech-
anism. Using IPA, we derive gradient estimators for loss and through-
put related performance metrics with respect to a feedback gain pa-
rameter and show their unbiasedness. We also illustrate the use of
these estimators in network control by combining them with standard
gradient–based stochastic approximation schemes and providing several
simulation-based examples.

1. Introduction
A natural modelling framework for computer networks is provided by

Discrete Event Systems (DES), most notably through queueing theory,
e.g., Kleinrock (1975). However, it has become increasingly difficult for
traditional queueing theory to handle the complexity of today’s com-
puter networks. First of all, the enormous traffic volume in today’s
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Internet (which is still growing) makes packet-by-packet queueing anal-
ysis infeasible. Moreover, the discovery of self-similar patterns in the
Internet traffic distribution (see Leland et al., (1993)) and the resulting
inadequacies of Poisson traffic models (see Paxson and Floyd (1995)) fur-
ther complicate queueing analysis. Consequently, performance analysis
techniques that do not depend on detailed traffic distributional infor-
mation are highly desirable. Fluid models have thus become increas-
ingly attractive. The argument leading to the popularity of fluid models
is that random phenomena may play different roles at different time
scales. When the variations on the faster time scale have less impact
than those on the slower time scale, the use of fluid models is justi-
fied. The efficiency of a fluid model rests on its ability to aggregate
multiple events. By ignoring the micro-dynamics of each discrete entity
and focusing on the change of the aggregated flow rate instead, a fluid
model allows the aggregation of events associated with the movement
of multiple packets within a time period of a constant flow rate into a
single rate change event. Introduced by Anick et al., (1982) and later
proposed by Kobayashi and Ren (1992) for the analysis of multiplexed
data streams and by Cruz (1991) for network performance analysis, fluid
models have been shown to be especially useful for simulating various
kinds of high speed networks (see Kesidis et al., (1996), Kumaran and
Mitra (1998), Liu et al., (1999), Yan and Gong (1999)). Stochastic Flow
Models (SFM) have the extra feature that the flow rates are treated as
general stochastic processes, which distinguishes itself from the approach
adopted in Akella and Kumer (1986) and other work, e.g., Perkins and
Srikant (1999), Perkins and Srikant (2001).

While the aggregation property of SFMs brings efficiency to perfor-
mance analysis, the resulting accuracy depends on traffic conditions, the
structure of the underlying network, and the nature of the performance
metrics of interest. On the other hand, SFMs often capture the criti-
cal features of the underlying “real” network, which is useful in solving
control and optimization problems. In control and optimization, e.g.,
Kelly et al., (1998) and Low (2000), estimating the gradients of given
performance metrics with respect to key parameters becomes an essen-
tial task. Perturbation Analysis (PA) methods (see Ho and Cao (1991),
Cassandras and Lafortune (1999)) are therefore suitable, if appropriately
applied to a SFM as an abstraction of an underlying network component
or a network, as in recent work by Wardi et al., (2002), Liu and Gong
(1999), Cassandras et al., (2002), and Cassandras et al., (2003). In a
single node with threshold-based buffer control, Infinitesimal Perturba-
tion Analysis (IPA) has been shown to yield simple sensitivity estima-
tors for loss and workload metrics with respect to threshold parameters;
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see Cassandras et al., (2002). In the multiclass case studied in Cas-
sandras et al., (2003), the estimators generally depend on traffic rate
information, but not on the stochastic characteristics of the arrival and
service processes involved. In addition, the estimators obtained are un-
biased under very weak structural assumptions on the defining traffic
processes. As a result, they can be evaluated based on data observed
on a sample path of the actual (discrete-event) network and combined
with gradient-based optimization schemes as shown in Cassandras et al.,
(2002) and Cassandras et al., (2003). This makes it possible to adjust
parameters on line in order to adapt to rapidly changing network situ-
ations. On-line management is appealing in today’s computer networks
and will become even more important as high speed network technolo-
gies, such as Gigabyte Ethernet and optical networks become popular.
In such cases, huge amounts of resources may suddenly become available
or unavailable. Since manually managing network resources has become
unrealistic, it is critical for network components, i.e., routers and end
hosts, to automatically adapt to rapidly changing conditions.

An important feature in today’s Internet management is the presence
of feedback mechanisms. For example, in Random Early Detection (see
Floyd and Jacobson 1993), an IP router may send congestion signals to
TCP flows by dropping packets and a TCP flow should adjust its window
size (and therefore its sending rate) according to feedback signals (for
example, acknowledgement packets sent back from a destination node;
see Jacobson (1988)). However, queueing networks have been studied
largely based on the assumption that the system state, typically queue
length information, has no effect on arrival and service processes, i.e.,
in the absence of feedback. Unfortunately, the presence of feedback
significantly complicates analysis, and makes it extremely difficult to
derive closed-form expressions of performance metrics such as average
queue length or mean waiting time (unless stringent assumptions are
made; see Takacs (1963), Foley and Disney (1983), Avignon and Dis-
ney (1977/78), Wortman et al., (1991)), let alone developing analytical
schemes for performance optimization. It is equally difficult to extend
the theory of PA for discrete-event queueing systems in the presence of
feedback. The importance of incorporating feedback to networks as well
as their SFM counterparts, and the effectiveness of IPA methods applied
to SFMs to date motivates the study of SFMs with multiplicative feed-
back. We define α(t) as the maximal external incoming flow rate for
a node in the network and introduce a feedback mechanism by setting
the inflow rate to c · α(t) when the buffer content x(t) is greater than a
certain intermediate threshold φ. It is worth noticing that this form of
feedback has been widely adopted in today’s Internet, i.e., in the Ran-
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dom Early Detection (RED) (see Floyd and Jacobson 1993) and other
algorithms.

The rest of the chapter is organized as follows. Section 2 briefly re-
views earlier work applying IPA to SFMs. Section 3 presents the SFM
framework with multiplicative feedback. In Section 4 we carry out IPA
and derive explicit sensitivity estimators for loss and throughput related
metrics. We also prove unbiasedness of these estimators. In Section 5
we present some numerical examples to illustrate the use of IPA estima-
tion in on-line queueing system control. Conclusions and future research
directions are given in Section 6.

2. Review of IPA in SFMs
In this section we briefly review earlier results incorporating IPA to

SFMs. Consider a network node where buffer control at the packet
level takes place using a simple threshold-based policy: when a packet
arrives and the queue length x(t) is below a given level b, it is accepted;
otherwise, it is rejected. This can be modeled as a queueing system.
Next, we adopt a simple SFM for the system, treating packets as “fluid.”
The buffer content at time t is again denoted by x(t) and it is limited
to θ, which may be viewed as the capacity or as a threshold parameter
used for buffer control. When the buffer level reaches θ the system starts
to overflow. In the underlying DES, both x(t) and b are integers; in the
SFM, x(t) and θ are treated as real numbers. As we will explain later,
analyzing the SFM provides useful information for solving control and
optimization problems defined on the underlying network node. Figure
1.1 shows a typical network node on the left with buffer control and its
SFM counterpart on the right. In the SFM, the maximal processing
rate of the server is generally time-varying and denoted by β(t). The
incoming rate, also generally time-varying, is denoted by α(t). We also
use δ(t) and γ(t) to denote the outflow flow rate and the overflow rate
due to excessive incoming fluid at a full buffer respectively.

b

α(t)

θ
β(t)

γ(t)

x(t)

Queuing Model SFM

Figure 1.1. A network node with threshold-based buffer control and its SFM coun-
terpart
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Over a time interval [0, T ], the buffer content x(t; θ) is determined by
the following one-sided differential equation,

dx(t; θ)
dt+

=





0, if x(t; θ) = 0 and α(t)− β(t) ≤ 0,
0, if x(t; θ) = θ and α(t)− β(t) ≥ 0,
α(t)− β(t), otherwise

(1.1)

The overflow rate γ(t; θ) is given by

γ(t; θ) =
{

max{α(t)− β(t), 0}, if x(t; θ) = θ,
0, if x(t; θ) < θ.

(1.2)

A typical state trajectory over [0, T ] can be decomposed into two kinds
of intervals: empty periods and buffering periods. Empty Periods (EP)
are intervals during which the buffer is empty, while Buffering Periods
(BP) are intervals during which the buffer is nonempty. We define EPs
to always be closed intervals, whereas BPs are open intervals unless
containing one of the boundary points 0 or T .

We consider two performance metrics, the Loss Volume LT (θ) and
the Cumulative Workload (or just Work) QT (θ), both defined on the
interval [0, T ] as:

LT (θ) =
∫ T

0
γ(t; θ)dt, (1.3)

and

QT (θ) =
∫ T

0
x(t; θ)dt. (1.4)

Let us denote the kth BP as Bk. Define Φ(θ) as the index set for all
BPs with at least one overflow period. For every k ∈ Φ(θ), there is a
(random) number Mk ≥ 1 of overflow periods in Bk, i.e., intervals during
which the buffer is full and α(t)−β(t) > 0. Let us denote these overflow
periods by Fk,m, m = 1, . . . , Mk, in increasing order and express them
as Fk,m = [uk,m(θ), vk,m], k = 1, . . . , K. Observe that the starting time
uk,m(θ) generally depends on θ, whereas the ending time vk,m is locally
independent of θ, since it corresponds to a change of sign in α(t)− β(t)
in (1.1), which has been assumed independent of θ.

Through Infinitesimal Perturbation Analysis (IPA), the following sam-
ple derivatives can be obtained, as shown in Cassandras et al., (2002):

Proposition 2.1. For every θ ∈ Θ,

L
′
T (θ) = − |Φ(θ)| . (1.5)

and
Q
′
T (θ) =

∑

k∈Φ(θ)

[ηk(θ)− uk,1(θ)]. (1.6)
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Under certain technical conditions (see Cassandras et al., (2002)), it
is also proved that

Proposition 2.2. The IPA estimators L
′
T (θ) and Q

′
T (θ) are unbiased,

i.e.,

∂E[LT (θ)]
∂θ

= E
[
L
′
T (θ)

]
and

∂E[QT (θ)]
∂θ

= E
[
Q
′
T (θ)

]

These IPA estimators are extremely simple to implement not only in
a SFM, but in the actual network component as well: (1.5) is merely
a counter of all BPs observed in [0, T ] in which at least one overflow
event takes place. The estimator is nonparametric in the sense that no
knowledge of the traffic or processing rates is required, nor does (1.5)
depend on the nature of the random processes involved. In (1.6), the
contribution of a BP, Bk, to the sample derivative Q

′
T (θ) is the length

of the interval defined by the first point at which the buffer becomes full
and the end of the BP. Once again, as in (1.5), the IPA derivative Q

′
T (θ)

is nonparametric, since it requires only the recording of times at which
the buffer becomes full (i.e., uk,1(θ)) and empty (i.e., ηk(θ)) for any BP
which has at least one overflow period. In other words, (1.5) and (1.6)
may be directly obtained from a single sample path of the network node,
and the final values of the estimators are independent of the SFM.

The analysis above can be extended to a network with multiple nodes.
In Sun et al., (2003), a tandem network is studied, where the output of a
node becomes the input to a downstream node, and the dynamics of each
node follow those of the single-node system described above. Figure 1.2
shows such a tandem network. By similar techniques as in Cassandras et
al., (2002), IPA analysis can be carried out and the unbiasedness of IPA
estimators can be proved for loss and work related metrics with respect
to the parameters θ, b2, . . . , bm.

 

bm b2 

γ1(t) 

α1(t) 

β1(t) 

γ2(t) 

β2(t) 

γm(t) 

βm(t) 
θ 

α2(t) αm(t) 

Figure 1.2. SFM of a tandem network

Figure 1.3 illustrates another extension by introducing feedback. In
this case, α(t) is not the inflow rate. The actual incoming flow is the out-
put of a traffic shaper. A traffic shaper modifies some incoming process
α(t), according to system information (i.e., queue content information
x(t)), and creates the actual incoming flow to the node. We denote the
actual inflow rate (which is also the output of the traffic shaper) by
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u(t). If we regard queue content as state information, x(t) being input
to the above traffic shaper implies a feedback controller of the form:
u(t) = u(α(t), x(t)). Because u(t) depends on x(t) and x(t) depends on
the buffer capacity θ, the inflow rate is not independent of θ. However
in what follows we will simply use u(t) for notational simplicity unless
the dependence needs to be stressed. The system dynamics are:

dx(t; θ)
dt+

=





0, if x(t; θ) = 0 and u(t)− β(t) ≤ 0,
0, if x(t; θ) = θ and u(t)− β(t) ≥ 0,
u(t)− β(t), otherwise

(1.7)

The outflow rate δ(t) is given by

δ(t) =
{

β(t) if x > 0
min {u(t), β(t)} if x = 0 (1.8)

The overflow rate γ(t) is given by

γ(t) =
{

max {u(t)− δ(t), 0} if x = θ
0 if x < θ

(1.9)

Similarly, δ(t) and γ(t) are functions of α(t), x(t) and θ. But we do not
explicitly indicate the dependence unless it is necessary to do so.

In Yu and Cassandras (2003), an additive feedback mechanism is stud-
ied by setting the inflow rate u(t) to be

u(t) = α(t)− p(x(t)),

where p(x) is a feedback function. Using similar techniques as in Cassan-

α(t) u(t)=u(α(t), x(t))
µ(t)Traffic

shaper

x(t)θ

Figure 1.3. A SFM with feedback

dras et al., (2002), we can derive the IPA sample derivatives L
′
T (θ) and

Q
′
T (θ) and prove their unbiasedness under modest technical assumptions.

Moreover, in the case of linear feedback, i.e., p(x) = cx, the estimators
again turn out to be nonparametric; for details, see Yu and Cassandras
(2003).
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The feedback mechanism in Yu and Cassandras (2003) implies that
state information, i.e., buffer content, is instantaneously available to the
controller. This is reasonable for situations such as manufacturing sys-
tems, but unlikely to hold in high-speed distributed environments such
as communication networks. This stringent requirement, together with
a natural interest in feedback policies which are readily applicable to
real-world networks, leads to the problem of deriving IPA gradient es-
timators for SFMs with multiplicative feedback mechanisms. Consider
a single-node SFM with threshold-based buffer control as in Cassandras
et al., (2002). Once again, we define α(t) as the maximal external in-
coming flow rate and introduce a feedback mechanism by setting the
inflow rate to c · α(t) when the buffer content x(t) is greater than a
certain intermediate threshold φ. Compared with Yu and Cassandras
(2003), the current mechanism has two main advantages: (i) System
information is needed only when the buffer content reaches or leaves the
threshold φ, while in Yu and Cassandras (2003) it has to be continu-
ously available; as a result, the cost of communicating state information
is greatly reduced, and (ii) The multiplicative feedback mechanism can
be easily implemented in an actual network, for example via probabilis-
tic dropping. Similar to our previous work, applying IPA and deriving
the SFM-based sensitivity information of certain performance metrics
with respect to key parameters is still our primary interest. However,
the following differences makes the problem more challenging: First, our
interest switches from θ, which decides the feedback range to c, which
decides the feedback gain. Secondly, the feedback only applies in part
of the range, i.e. there is no feedback when x < φ. While these features
make the implementation of this feedback mechanism simple, they also
complicate the IPA estimation.

3. A SFM with Multiplicative Feedback
The SFM for a typical network node that we consider consists of a

server with a finite buffer as shown in Fig. 1.3. In the remainder of
this chapter, we study the following traffic shaper with multiplicative
feedback :

u(t) =
{

cα(t) if φ < x ≤ θ
α(t) if 0 ≤ x < φ

(1.10)

where α(t) is the maximal inflow rate, c is the feedback gain parameter
and φ < θ is an intermediate threshold. We assume 0 < c ≤ 1, thus
ensuring that the effect of feedback is more pronounced when x > φ.
When the buffer level is below φ, the whole flow is accepted into the
system; when the buffer level is above φ, part of the flow may be rejected
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before entering the system. Thus, φ decides the feedback range and c
decides the feedback gain. As discussed before, the inflow rate u(t) is
a function of x(t) and c. Since the queue length x(t) is a function of φ
and θ, u(t) depends on φ and θ too. But in what follows we will simply
denote it by u(t) for notational simplicity unless the dependence needs
to be stressed. Note that from an implementation standpoint (1.10) is a
policy in which packets arriving at a node after its queue content exceeds
a level φ are dropped with probability 1− c. The policy can be readily
extended to one with multiple thresholds φ1, . . . , φn and corresponding
gains c1, . . . , cn to resemble the RED algorithm Floyd and Jacobson 1993
adopted as part of congestion control in the Internet. Thus, a byproduct
of the analysis that follows is to develop means for determining state-
dependent packet dropping probabilities that optimize a performance
metric of choice.

The only requirement imposed by the feedback mechanism in (1.10) is
that the source be notified of the events: “x(t) reaches φ” or “x(t) leaves
φ”. It is also assumed that the stochastic processes {α(t)} and {β(t)}
are independent of the buffer level x(t) and of the parameters c, φ or θ.
Further, it is assumed that the rate processes are bounded in the sense
that there exist αmax and βmax such that w.p. 1 α(t) ≤ αmax < ∞ and
β(t) ≤ βmax < ∞. Finally, we assume that the real-valued parameter c
is confined to a closed and bounded (compact) interval C and that c > 0
for all c ∈ C. Now we can see that the dynamics of the buffer content
are given by

dx(t)
dt+

=





max {u(t)− δ(t), 0}
u(t)− δ(t)
min {u(t)− δ(t), 0}

when x(t) = 0
when 0 < x(t) < θ
when x(t) = θ

(1.11)

where δ(t) is the outflow rate defined in (1.8). Note that the above
dynamics are not yet complete, because the case x(t) = φ in (1.10) is
not specified. In order to fully specify it, let us take a closer look at all
possible cases when x(t) = φ:

Case 1. β(t) < cα(t): The buffer level at t+ becomes x(t+) > φ;
Case 2. α(t) < β(t): The buffer level at t+ becomes x(t+) < φ;
Case 3 cα(τ) ≤ β(τ) ≤ α(τ) for all τ in an interval [t, t + ε) for some

ε > 0: There are two further cases to consider: (i) If we set u(τ) = cα(τ),
it follows that

dx

dt

∣∣∣∣
t=τ

= cα(τ)− β(τ) ≤ 0
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and the buffer content immediately starts decreasing. Therefore x(τ+) <
φ and the actual incoming rate becomes u(τ+) = α(τ+). Thus,

dx

dt

∣∣∣∣
t=τ+

= α(τ+)− β(τ+) ≥ 0

and the buffer content starts increasing again. This process repeats,
resulting in a “chattering” behavior. (ii) If, on the other hand, we set
u(τ) = α(τ), it follows that dx

dt

∣∣
t=τ+ = α(τ+)− β(τ+) ≥ 0. Then, upon

crossing φ, the actual input rate must switch to cα(τ+) which gives
cα(τ+) − β(τ+) ≤ 0. This implies that the buffer content immediately
decreases below φ and a similar chattering phenomenon occurs.

The chattering behavior above is due to the nature of the SFM and
does not occur in the actual DES where buffer levels are maintained for
finite periods of time; in the present SFM, it is readily prevented by
setting u(τ) = β(τ) and dx(t)

dt = 0 for all τ ≥ t such that the buffer
content is maintained at φ. Note that u(t) is a function of of x(t) and c,
i.e., u(t) = u(t, x(t); c). Now we can complete the dynamics by modifying
(1.10) as follows:

u(t, x(t); c) =





α(t)
cα(t)
β(t)
α(t)
cα(t)

when 0 < x < φ
when x(t) = φ and β(t) < cα(t)
when x(t) = φ and cα(t) ≤ β(t) ≤ α(t)
when x(t) = φ and α(t) < β(t)
when φ < x ≤ θ

(1.12)
with the initial condition x(0; c) = 0.

Our objective is to obtain sensitivity information of some performance
metrics with respect to key parameters. We limit ourselves to consider-
ing c as the controllable parameter of interest. For a finite time horizon
[0, T ] during which c is fixed, we define the throughput as:

HT =
1
T

∫ T

0
δ(t)dt (1.13)

and the loss rate as:

LT =
1
T

∫ T

0
1[x(t) = θ](u(t)− δ(t))dt

=
1
T

∫ T

0
1[x(t) = θ](cα(t)− β(t))dt (1.14)

where 1[·] is the usual indicator function. A typical optimization problem
is to determine c∗ that maximizes a cost function of the form

JT (θ) = E[HT (c)]− λ · E[LT (c)] (1.15)
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where λ generally reflects the trade-off between maintaining proper through-
put and incurring high loss. Care must also be taken in defining the
previous expectations over a finite time horizon, since they generally de-
pend on initial conditions; we shall assume that the queue is empty at
time 0.

Note that we do not make any stationarity assumption here since the
performance metrics are defined over a finite time interval. Moreover,
the finite-horizon formulation is suitable for the “moving finite horizon”
type of network performance problems where one trades off short-term
quasi-stationary behavior against long-term changes possibly caused by
user behavior.

In order to accomplish this optimization task, we rely on estimates
of dE[HT (c)]/dc and dE[LT (c)]/dc provided by the sample derivatives
dHT (c)/dc and dLT (c)/dc. Accordingly, the main objective of the fol-
lowing sections is the derivation of dHT (c)/dc and dLT (c)/dc, which we
will pursue through IPA techniques. For any sample performance metric
L(θ) and a generic parameter θ, the IPA gradient estimation technique
computes dL(θ)/dθ along an observed sample path. If the IPA-based
estimate dL(θ)/dθ satisfies dE[L(θ)]/dθ = E[dL/dθ], it is unbiased. Un-
biasedness is the principal condition for making the application of IPA
practical, since it enables the use of the IPA sample derivative in stochas-
tic gradient-based algorithms. A comprehensive discussion of IPA and
its applications can be found in Ho and Cao (1991), Glasserman (1991)
and Cassandras and Lafortune (1999).

4. Infinitesimal Perturbation Analysis
In this section we tackle the performance optimization problem raised

in the last section. After introducing the notion of sample path decom-
position in Section 4.1, we present our main results, namely, the IPA
gradient estimates and their unbiasedness in Section 4.2. As we will see,
the IPA gradient estimates rely on event time sample derivatives, which
will be derived in Section 4.3. Some critical properties for the proof of
unbiasedness will be established in Section 4.4.

4.1 Sample Path Decomposition and Event
Definition

As already mentioned, our objective is to estimate the derivatives
dE[HT (c)]/dc and dE[LT (c)]/dc through the sample derivatives dHT (c)/dc
and dLT (c)/dc, which are commonly referred to as IPA estimators. In
the process, however, it will be necessary to identify events of interest
and decompose the sample path first.
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For a fixed c, the interval [0, T ] is divided into alternating bound-
ary periods and non-boundary periods. A Boundary Period (BP) is
defined as a time interval during which x(t) = θ or x(t) = 0, and a
Non-Boundary Period (NBP) is defined as a time interval during which
0 < x(t) < θ. BPs are further classified as Empty Periods (EP) and
Full Periods (FP). An EP is an interval such that x(t) = 0; a FP is an
interval such that x(t) = θ. We assume that there are N NBPs in the
interval [0, T ], where N is a random number. We index these NBPs by
n = 1, . . . , N and express them as [ηn, ζn). Figure 1.4 shows a typical
sample path of the SFM.

tζ
n

η
n

θ

φ

η
n+1

0
ζ

n+1
η

n+2

Figure 1.4. A typical sample path

We define the following random index sets:

ΨF (c) = {n : x(t) = θ for all t ∈ [ζn−1, ηn), n = 1, . . . , N} (1.16)
ΨE(c) = {n : x(t) = 0 for all t ∈ [ζn−1, ηn), n = 1, . . . , N} (1.17)

so that if n ∈ ΨF , the nth BP (which immediately precedes the nth
NBP) is a FP; if n /∈ ΨF , the nth BP (which immediately precedes the
nth NBP) is an EP.

Next, we identify events of interest in the SFM : (i) A jump in α(t) or
β(t) is termed an exogenous event, reflecting the fact that its occurrence
time is independent of the controllable parameter c, and (ii) The buffer
content x(t) reaches any one of the critical values 0, φ or θ; this is termed
an endogenous event to reflect the fact that its occurrence time gener-
ally depends on c. Note that the combination of these events and the
continuous dynamics in (1.11) gives rise to a stochastic hybrid system
model of the underlying discrete event system of Fig. 1.3.

Finally, we further decompose the sample path according to the events
defined above. Let us consider a typical NBP [ηn, ζn) as shown in Fig.
1.5. Let πn,i denote times when x(t) reaches or leaves 0, φ or θ in this
NBP, where i = 0, 1, . . . , In−1, in which In is the number of such events
in [ηn, ζn). Note that the starting point of the NBP is ηn = πn,0. To
maintain notational consistency we also set ζn = πn,In even though this
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tζnηn

θ

φ

0
πn,1 πn,2 πn,4πn,3 πn,5

x(t;c)

πn,6

Figure 1.5. A typical NBP

point is not included in [ηn, ζn). We can now see that a sample path
is decomposed into five sets of intervals that we shall refer to as the
modes of the SFM: (i) Mode 0 is the set M0 of all EPs contained in the
sample path, (ii) Mode 1 is the set M1 of intervals [πn,i, πn,i+1) such that
x(πn,i) = 0 or φ and 0 < x(t) < φ for all t ∈ (πn,i, πn,i+1), n = 1, . . . , N ,
(iii) Mode 2 is the set M2 of intervals [πn,i, πn,i+1) such that x(t) = φ
for all t ∈ [πn,i, πn,i+1), n = 1, . . . , N , (iv) Mode 3 is the set M3 of
intervals [πn,i, πn,i+1) such that x(πn,i) = φ or θ and φ < x(t) < θ for
all t ∈ (πn,i, πn,i+1), n = 1, . . . , N and (v) Mode 4 is the set M4 of all
FPs contained in the sample path. Note that the events occurring at
times πn,i are all endogenous for i = 1, . . . , In and we should express
them as πn,i(c) to stress this fact; for notational economy, however, we
will only write πn,i. Finally, recall that for i = 0, we have πn,0 = ηn,
corresponding to an exogenous event starting the nth NBP. As shown in
Fig. 1.5, the NBP [ηn, ζn) is decomposed into In = 7 intervals, including
three M1 intervals [πn,0, πn,1), [πn,2, πn,3), [πn,4, πn,5), three M3 intervals
[πn,1, πn,2), [πn,3, πn,4), [πn,6, πn,7), and one M2 interval [πn,5, πn,6).

4.2 IPA Gradient Estimates for Performance
Metrics and Their Unbiasedness

In this section we present the IPA gradient estimates for performance
metrics and prove their unbiasedness.

Theorem 1.1 The IPA estimator of dE [HT (c)] /dc is:

∂HT

∂c
=

1
T

∑

n∈ΨE

B(ζn−1)
∂ζn−1

∂c
(1.18)

in which ∂ζn−1

∂c is given by Lemma 1.10.

Proof. See Appendix.
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Theorem 1.2 The IPA estimator of dE [LT (c)] /dc is:

dLT (c)
dc

=
1
T

∑

n∈ΨF

{
−A(ζn−1)

∂ζn−1

∂c
+

1
c
H(ζn−1, ηn)

}
+

LT

c
(1.19)

in which ∂ζn−1

∂c is given by Lemma 1.10.

Proof. See Appendix.
In addition, we define the Suppression Traffic Volume to be the av-

erage volume which is denied admission before entering the system and
denote it by RT :

RT =
1
T

∫ T

0
1 [x(t) ≥ φ] [α(t)− u(t)] dt

Theorem 1.3 The IPA estimator of dE [RT (c)] /dc is:

∂RT

∂c
=

1
T



−

∑

i∈M2

{
[α(πi)− β(πi)]

∂πi

∂c

}

+
∑

i∈M3∪M4

[
(1− c)α(πi+1)

∂πi+1

∂c
− (1− c)α(πi)

∂πi

∂c
−

∫ πi+1

πi

α(t)dt

]



(1.20)

in which ∂πi
∂c is given by lemmas 1.5-1.9 in the following section.

Proof. See Appendix.
Note that in our previous work on SFM-based IPA (see Cassandras et

al., (2002), Sun et al., (2003), Yu and Cassandras (2003)), only raw data
from a network node are required for IPA estimation, such as detecting a
FP or an EP. However, the IPA estimators (1.18), (1.19) and (1.20) rely
on flow rates and mode identification, which are all defined in a SFM
context, making it less obvious to find their analogs in an actual node.
Specifically, when the buffer level reaches φ and cα(t) ≤ β(t) ≤ α(t),
the SFM enters Mode 2 and the buffer level should stay at φ until this
condition no longer applies. However, in the underlying DES, the buffer
level will oscillate around φ instead and we must carefully define such
a chattering interval so that it corresponds to Mode 2 of the SFM. As
a result, errors in the recursive calculation of the event time sample
derivatives ∂πi/∂c may be introduced. To minimize the effect of such
errors, we make use of the estimators whose form involves ∂πi/∂c the
least. For example, the IPA estimator for the throughout sensitivity,
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dHT (c)/dc, can either be directly evaluated by (1.18) or derived indi-
rectly through estimators of dLT (c)/dc and dRT (c)/dc as follows. Recall
the flow balance equation

HT (c) + LT (c) + RT (c) = ᾱ

where ᾱ, the time average of the defining process α(t) over [0, T ], is
independent of c. The above equation then gives

∂HT

∂c
= −∂LT

∂c
− ∂RT

∂c
(1.21)

The two evaluations (1.18) and (1.21) are equivalent in the SFM. But
because of the discrepancy between DES and SFM, they may yield dif-
ferent results when applied to an actual network node. We select the
latter estimation option for the following reason. The direct estimation
of dHT /dc in (1.18) entirely relies on the evaluation of event time sample
derivatives ∂πi/∂c. As mentioned above, evaluating these from actual
network data may introduce errors. On the other hand, the second and
last terms in (1.19) can be directly observed from a DES sample path by
counting the number of departures and number of packets dropped when
the buffer is full; only the first term still involves event time derivatives.
Similarly, the last term of dRT /dc in (1.20) can be evaluated directly
from actual network data. Recall that the inflow rate is u(t) = cα(t)
when x > φ. Thus,

∫ πi+1

πi
cα(t)dt is the inflow volume when x > φ and

the last term in (1.20) can be obtained from the incoming packet volume
divided by c when the buffer level is above or equal to φ. In this way, raw
network data can be partially used in this indirect estimation approach.

Next we establish the unbiasedness of the IPA estimators (1.18), (1.19)
and (1.20). First we make the following assumption:

Assumption 1 For every c, w.p.1, no two events (either exogenous or
endogenous) occur at the same time.

This assumption precludes a situation where the queue content reaches
one of the critical threshold values 0, φ or θ at the same time πi as an
exogenous event which might cause it to leave the threshold; this would
prevent the existence of the event time sample derivative ∂πi/∂c which
will be derived in the sequel (however, one could still carry out per-
turbation analysis with one-sided derivatives as in Cassandras et al.,
(2002)). Moreover, by Assumption 1, N , the number of NBPs in the
sample path, is locally independent of c (since no two events may occur
simultaneously, and the occurrence of exogenous events does not depend
on c, there exists a neighborhood of c within which, w.p.1, the number
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of NBPs in [0, T ] is constant). Hence, the random index set ΨF is also
locally independent of c. Similarly, the decomposition of the sample
path into modes is also locally independent of c.

Normally, the unbiasedness of an IPA derivative dL(θ)/dθ for some
performance metric L(θ) is ensured by the following two conditions (see
Rubinstein and Shapiro (1993), Lemma A2, p.70): (i) For every θ ∈ Θ̃,
the sample derivative exists w.p.1, and (ii) W.p.1, the random function
L(θ) is Lipschitz continuous throughout Θ̃, and the (generally random)
Lipschitz constant has a finite first moment. Based on the monotonicity
properties that will be established in Section 4.4, we can readily verify
the two conditions and consequently establish the unbiasedness of the
IPA estimators in the following theorem.

Theorem 1.4 Under Assumption 1, the IPA estimators (1.18), (1.19)
and (1.20) are unbiased, i.e.,

∂E[LT (c)]
∂c

= E

[
∂LT (c)

∂c

]
,

∂E[HT (c)]
∂c

= E

[
∂HT (c)

∂c

]

and
∂E[RT (c)]

∂c
= E

[
∂RT (c)

∂c

]

Proof. See Appendix.

4.3 Event Time Sample Derivatives
In this section, we derive sample derivatives for event times, which

are necessary in the process of obtaining IPA estimators for performance
metrics.

First we make the following additional assumptions:

Assumption 2 α(t) and β(t) are piecewise constant functions that can
take a finite number of values.

This assumption can be regarded as an approximation of general time-
varying processes. As we will see later, we do not set any upper bound
on the numbers of values that α(t) and β(t) can possibly take, essentially
allowing the piecewise constant process to approximate a general time-
varying process as close as possible. The assumption is brought in mostly
for ease of analysis. Due to this assumption and recalling the dynamics
in (1.11), x(t) has to be a piecewise linear function of time t, as shown
in Fig. 1.4.
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Assumption 3 W.p.1, there exists an arbitrarily small positive constant
ε such that for all t, |α(t)− β(t)| ≥ ε > 0 and for a fixed c:

|cα(t)− β(t)| ≥ ε > 0

Combining the above two assumptions, we obtain for every pair of
possible values of α(t) indexed by i and β(t) indexed by j:

|cαi − βj | ≥ ε

which is equivalent to

cαi − βj ≥ ε or cαi − βj ≤ −ε

Therefore we obtain

c ≥ βj + ε

αi
or c ≤ βj − ε

αi

which implies an “invalid interval”
(

βj−ε
αi

,
βj+ε
αi

)
for c. According to

Assumption 2, there are a finite number of such invalid intervals. We
shall also refer to a valid interval as the maximal interval between two
adjacent invalid intervals. In what follows, we shall concentrate on a
typical NBP [ηn, ζn(c)) and drop the index n from the event times πn,i

in order to simplify notation.
Assumptions 2-3 are needed to ensure the existence of the sample

derivatives ∂πi/∂c, but they can be significantly weakened by simply
assuming that w.p. 1 an event such that cα(t) − β(t) changes sign
cannot coincide with any endogenous event (e.g., x(t) reaches the level
θ). This weaker condition introduces some technical complications in the
derivations that follow which we will choose to avoid here by restricting
ourselves to piecewise constant rate processes satisfying the last two
assumptions.

In the rest of this section, we derive the sample derivative ∂πi/∂c
through a series of lemmas which cover all possible values that x(πi; c)
can take in an interval [πi, πi+1).

Lemma 1.5 Under Assumptions 4-6, if a FP ends at time ηn, i.e.,
x(ηn; c) = θ, then

∂ηn

∂c
= 0

Proof. See Appendix.
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Lemma 1.6 Under Assumptions 4-6, if an EP ends at time ηn, i.e.,
x(ηn; c) = 0, then

∂ηn

∂c
= 0

Proof. See Appendix.
The above two lemmas show that an event time perturbation is always

eliminated after a NBP ends. The following lemma further asserts that
the same is true after a finite interval during which x(t; c) = φ.

Lemma 1.7 Under Assumptions 4-6, if an M2 interval ends at time πi,
x(πi; c) = φ, then

∂πi

∂c
= 0

Proof. See Appendix.
Next, we define the following shorthand notation:

A(t) = cα(t)− β(t) and B(t) = α(t)− β(t)

Lemma 1.8 Under Assumptions 4-6, if [πi, πi+1) ∈ M3, then

∂πi+1

∂c
=

A(π+
i )

A(π−i+1)
· ∂πi

∂c
− 1

A(π−i+1)

∫ πi+1

πi

α(τ)dτ (1.22)

Proof. See Appendix.
Define

H(πi, t) =
∫ t

πi

δ(t)dt (1.23)

as the node throughput during time interval [πi, t). In addition, we have
the following flow balance equation:

∫ πi+1

πi

cα(t)dt−H(πi, πi+1) = x(πi+1; c)− x(πi; c)

which gives
∫ πi+1

πi

α(t)dt =
x(πi+1; c)− x(πi; c) + H(πi, πi+1)

c
. (1.24)

Combining Lemma 1.8 and (1.24) gives

∂πi+1

∂c
=

A(π+
i )

A(π−i+1)
· ∂πi

∂c
− x(πi+1; c)− x(πi; c) + H(πi, πi+1)

cA(π−i+1)
(1.25)

where
[x(πi+1; c)− x(πi; c)] ∈ {φ− θ, 0, θ − φ} .
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θ

φ
πi

t

α(t)

x(t;c)

πi+1

σi,1 σi,2 σi ,3 σi,4

Figure 1.6. The Decomposition of an M3 Interval

According to Assumption 2, α(t) and β(t) are piecewise constant func-
tions. The interval [πi, πi+1) can be then decomposed by exogenous
events occurring when α(t) jumps from one value to another.

As shown in Fig. 1.6, we use σi,k, k = 1, . . . Si to denote the kth such
exogenous event and let πi = σi,0 and πi+1 = σi,Si+1 in order to maintain
notational consistency. Moreover we define the value of α(t) in interval
[σi,k, σi,k+1) as αi,k. It follows that

∫ πi+1

πi

α(t)dt =
Si∑

k=0

αi,k (σi,k+1 − σi,k)

If we use the following shorthand

bi,k = σi,k+1 − σi,k for all i, k, (1.26)

to define the length of an interval between two exogenous α(t) jump
events, we get

∫ πi+1

πi
α(t)dt =

∑Si
k=0 αi,kbi,k. Then, (1.22) becomes

∂πi+1

∂c
=

A(π+
i )

A(π−i+1)
· ∂πi

∂c
−

∑Si
k=0 αi,kbi,k

A(π−i+1)
(1.27)

Similar to the work in Yu and Cassandras (2003), our ultimate pur-
pose is to apply the IPA estimators (which we will derive in next section
based on event time sample derivatives) to an actual underlying DES.
The three expressions (1.22), (1.25) and (1.27) provide alternative ways
to evaluate the event time sample derivative which are equivalent in the
SFM context. In the discrete-event setting, however, some information
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required for IPA estimation may be more difficult to obtain than other.
For example, (1.27) depends on the evaluation of αi,k, the maximal in-
coming rate and bi,k, the length of intervals between two α(t) jump
events. This information may be difficult to acquire or measure if the
source is remote. On the other hand, (1.25) requires a throughput eval-
uation during the time interval [πi, πi+1), which may be much easier to
obtain, i.e., in an actual network node, it can be done by simply count-
ing processed packets. In summary, we want to remind readers that
different forms of IPA estimators exist and that one should select the
appropriate one based on implementation considerations. We also point
out that (1.22) can be further simplified when the service rate β(t) = β
is constant:

∂πi+1

∂c
=

cα(π+
i )− β

cα(π−i+1)− β
· ∂πi

∂c
− [x(πi+1; c)− x(πi; c)] + β(πi+1 − πi)

c2α(π−i+1)− cβ

In this case, only πi+1 − πi, the length of the Mode 3 interval has to be
evaluated.

Lemma 1.9 If [πi, πi+1) ∈ M1,

∂πi+1

∂c
=

B(π+
i )

B(π−i+1)
· ∂πi

∂c
(1.28)

Proof. See Appendix.
The combination of Lemmas 1.5 through 1.9 provides a linear recur-

sive relationship for obtaining the event time sample derivative ∂πi/∂c,
and the coefficients involved are based on information directly available
from a sample path of the SFM and the throughput given in (1.23).
Moreover, ∂ζn

∂c , the event time sample derivatives for the end of a NBP
[ηn, ζn), can also be derived by combining the above lemmas. Recall that
ζn = πn,In . Using the previous lemmas, we can also obtain a recursive
expression for ∂ζn

∂c as follows:

Lemma 1.10 For a NBP [ηn, ζn),

∂ζn

∂c
=





B(π+
n,In−1)

B(π−n,In
)
· ∂πn,In−1

∂c if x(ζn; c) = 0

−H(πn,In−1,πn,In )

cA(π−n,In
)

if x(ζn; c) = θ and
x(πn,In−1; c) = θ

A(π+
n,In−1)

A(π−n,In
)
· ∂πn,In−1

∂c − θ−φ+H(πn,In−1,πn,In)

cA(π−n,In
)

if x(ζn; c) = θ and
x(πn,In−1; c) = φ

(1.29)

Proof. See Appendix.
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To summarize, event time sensitivities ∂πi
∂c are triggered only in Mode

3 through the second term in (1.22). The sensitivities are subsequently
reset to zero after a Mode 0 (EP), Mode 2, or Mode 4 (FP) interval. With
the help of the five lemmas derived above, we are now able to derivative
IPA estimators for various performance metrics in the following section.

4.4 Monotonicity and Lipschitz Continuity of
x(t; c) with respect to c

In this section we establish some monotonicity properties that are
critical in the proof of unbiasedness (Theorem 1.4). As mentioned be-
fore, the buffer content is a function of c, i.e., x(t) = x(t; c). In this
section we establish the monotonicity and Lipschitz continuity of the
function x(t; c) with respect to the parameter c. As we will show later,
this property is critical in proving unbiasedness of IPA estimators. We
first establish this result for SFMs with the general feedback scheme
introduced in Section 2, and verify its applicability to the specific mul-
tiplicative feedback mechanism of Section 3.

Consider a SFM with feedback defined in Section 2 where c is a generic
controllable parameter of the traffic shaper. We assume that c and θ
are independent of each other. As mentioned before, u(t), the actual
inflow rate, δ(t), the outflow rate and γ(t) are all functions of some
defining process α(t), queue content x(t), thresholds θ, φ, and c, the
parameter of interest. But for notational simplicity we will suppress
these dependencies unless it is necessary.

We make the following assumptions on the dependence of u(t) on
x(t; c) and c. Based on these assumptions we can establish the mono-
tonicity and Lipschitz continuity of x(t; c) for SFMs with general neg-
ative feedback. We will subsequently verify them for the multiplicative
feedback mechanism introduced in Section 3.

Assumption 4 For any fixed t and c, u(t, x; c) is a monotonically non-
inceasing function of x, i.e., when x1 > x2, u(t, x1; c) ≤ u(t, x2; c) for
all t and c.

Assumption 5 For any fixed t and x, u(t, x; c) is a monotonically non-
decreasing function of c.

Assumption 6 u(t, x; c) is Lipschitz continuous with respect to c, i.e.

|u(t, x; c + ∆c)− u(t, x; c)| ≤ K∆c

in which K is the Lipschitz constant.
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We assume that for all c, x(t; c) is a continuous function with respect
to t, and x(t; c) = 0 when t = 0. For notational simplicity, we use SFMN

to denote the state trajectory of the nominal system under parameter c
and SFMP to denote its perturbed counterpart under parameter c+∆c.
Throughout this section, for a function f(·) we use f ′(·) to represent
f(c + ∆c), the corresponding function in SFMP , while f(·) represents
f(c), the corresponding function in SFMN . Thus, the buffer level is
denoted by x(t) in SFMN and x′(t) in SFMP .

Define buffer level perturbations as

∆x(t) = x(t; c + ∆c)− x(t; c) = x′(t)− x(t)

with respect to a perturbation ∆c. The following lemma establishes
monotonicity:

Lemma 1.11 Under Assumption 5, for any ∆c > 0,

∆x(t) ≥ 0 For all t ≥ 0 (1.30)

Proof. See Appendix.
In order to establish the Lipschitz continuity, first we present the

following lemma leading to Theorem 1.13:

Lemma 1.12 Define

∆δ(t) = δ(t, x′(t); c + ∆c)− δ(t, x(t); c) = δ′(t)− δ(t)

and
∆γ(t) = γ(t, x′(t); c + ∆c)− γ(t, x(t); c) = γ′(t)− γ(t).

Then under Assumption 5, for any ∆c > 0,

∆δ(t) ≥ 0, ∆γ(t) ≥ 0

Proof. See Appendix.

Theorem 1.13 Under Assumptions 4-6,

∆x(t) ≤ KT∆c

Proof. See Appendix.
It is also easy to verify the above results for ∆c < 0.
In order to establish that the general results in this section cover the

feedback mechanism defined in (1.12), i.e., to prove that Lemma 1.11
and Theorem 1.13 hold for u(t) in (1.12), we need to verify Assumptions
4-6.
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For Assumption 4, assume x1 < x2. There are three possible cases: (i)
if x1 < φ, u(t, x1; c) = α(t) ≥ u(t, x2; c); (ii) if x1 = φ < x2, u(t, x2; c) =
cα(t) ≤ u(t, x1; c); (iii) if φ < x1 < x2, u(t, x1; c) = u(t, x2; c) = cα(t).
Therefore, for any x1, x2, if x1 < x2, u(t; x1; c) ≥ u(t;x2; c) and the
assumption is verified.

For Assumptions 5 and 6, there are again three possible cases:
Case 1. if x < φ, u(t, x; c) = u(t, x; c + ∆c) = α(t), which gives

u(t, x; c + ∆c)− u(t, x; c) = 0;
Case 2. if x > φ, u(t, x; c) = cα(t), u(t, x; c + ∆c) = (c + ∆c)α(t),

which gives u(t, x; c + ∆c)− u(t, x; c) = α(t) ·∆c ≥ 0;
Case 3. if x = φ, since cα(t) ≤ (c + ∆c)α(t) ≤ α(t), there are four

cases to consider regarding the relative values of cα(t), (c+∆c)α(t), α(t)
and β(t):

Case 3.1. cα(t) ≤ (c + ∆c)α(t) ≤ α(t) ≤ β(t), u(t, x; c) = u(t, x; c +
∆c) = α(t). It follows that u(t, x; c + ∆c)− u(c; t, x) = 0;

Case 3.2. cα(t) ≤ (c + ∆c)α(t) ≤ β(t) ≤ α(t), u(t, x; c) = u(t, x; c +
∆c) = β(t). It follows that u(t, x; c + ∆c)− u(c; t, x) = 0;

Case 3.3. cα(t) ≤ β(t) ≤ (c + ∆c)α(t) ≤ α(t), u(t, x; c) = β(t) and
u(c + ∆c; t, x′(t)) = (c + ∆c)α(t), so that u(t, x; c + ∆c) ≥ u(t, x; c).
Moreover, it follows that

u(t, x; c + ∆c)− u(t, x; c) =(c + ∆c)α(t)− β(t)
≤(c + ∆c)α(t)− cα(t)
=α(t) ·∆c

Case 3.4. β(t) ≤ cα(t) ≤ (c + ∆c)α(t) ≤ α(t), u(t, x; c) = u(t, x; c +
∆c) = cα(t). It follows that u(t, x; c + ∆c)− u(t, x; c) = 0.

Combining all of the above cases verifies Assumption 5. In order to
verify Assumption 6, note that u(t, x; c+∆c)−u(t, x; c) ≤ α(t) ·∆c from
the above cases. Recalling that we have assumed the process {α(t)} to
be such that w.p. 1 α(t) ≤ αmax < ∞, it follows that

u(t, x; c + ∆c)− u(t, x; c) ≤ α(t) ·∆c ≤ αmax ·∆c (1.31)

Hence Assumption 6 is also verified with the Lipschitz constant K =
αmax. Therefore, Lemma 1.11 and Theorem 1.13 hold for the feedback
mechanism (1.10).

5. Optimization Examples
In this section we present some numerical examples to illustrate how

the IPA estimators we have developed are used in optimization problems.
As suggested before, the solution to an optimization problem defined for
an actual queueing system may be approximated by the solution to the
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same problem based on a SFM of the system. Let us now consider the
feedback-based buffer control problem defined in Section 3 with cost
function (1.15):

JDES
T (c) = E[HDES

T (c)]− λ · E[LDES
T (c)]

The optimal value of c which maximizes JDES
T (c) above may be deter-

mined through a standard stochastic approximation algorithm (details
on such algorithms, including conditions required for convergence to an
optimum may be found, for instance, in Kushner and Yin (1997)):

cn+1 = cn + νnHn(cn, ωDES
n ), n = 0, 1, . . . (1.32)

where Hn(cn, ωDES
n ) is an estimate of dJT /dc evaluated at c = cn and

{νn} is a step size sequence. Hn(·), the form of the estimator, comes from
SFM-based IPA analysis, i.e., from (1.18) and (1.19), but the data input
to the estimator are based on a DES sample path denoted by ωDES

n .
Obviously, the resulting gradient estimator Hn(cn, ωDES

n ) is now an ap-
proximation leading to a sub-optimal solution of the above optimization
problem.

Note that, after a control update, the state must be reset to zero, in
accordance with our convention that all performance metrics are defined
over an interval with an initially empty buffer. In the case of off-line
control (as in the numerical examples we present), this simply amounts
to simulating the system after resetting its state to 0. In the more
interesting case of on-line control, we proceed as follows. Suppose that
the nth iteration ends at time τn and the state is x(cn; τn) [in general,
x(cn; τn) > 0]. At this point, the threshold is updated and its new
value is cn+1. Let τ0

n be the next time that the buffer is empty, i.e.,
x(cn+1; τ0

n) = 0. At this point, the (n + 1)th iteration starts and the
next gradient estimate is obtained over the interval [τ0

n, τ0
n + T ], so that

τn+1 = τ0
n + T and the process repeats. The implication is that over

the interval no estimation is carried out while the controller waits for
the system to be reset to its proper initial state; therefore, sample path
information available over [τn, τ0

n] is effectively wasted as far as gradient
estimation is concerned.

Figure 1.7 shows examples of the application of (1.32) to a network
node modeled as in Fig. 1.3 under two different parameter settings
(scenarios). The service rate β(t) remains constant throughout the sim-
ulation but α(t) is piecewise constant: it remains constant for an expo-
nentially distributed period of time and when it switches the next value
of α(t) is generated according to a transition probability matrix. For
simplicity, we assume that all elements of the transition probability ma-
trix are equal and the only feasible value of these elements is q = 1/m, in
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Scenario 1

151617
181920
2122

0 0.2 0.4 0.6 0.8 1c
cost function DESIPA Algo.

Scenario 2

-60-50-40-30-20-10010
20

0 0.2 0.4 0.6 0.8 1
c

cost functio
n

DESIPA Algo.
Figure 1.7. Numerical results for SFM-based gradient optimization of an actual net-
work node

which m is the number of values α(t) can take. For different scenarios,
α(t) value sets, the value of β, the initial value of feedback gain c0 and
overflow penalty λ also vary. Table 1 summarizes the settings for both
scenarios. Also shown in the table are c0, the initial feedback gain value,
and c∗, the value obtained through (1.32). In Fig. 1.7, the curve “DES”
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Scenario θ φ λ q = 1
m

α value set β c0 c∗

1 15 5 2 0.125 100,28,27,24,21,20,14,9 30 0.95 0.62

2 15 2 2 0.25 150,60,30,8 15 0.95 0.21

Table 1.1. Summary of parameter settings for two scenarios

denotes the cost function JT (c) obtained through exhaustive simulation
for different (discrete) values of c with T = 100000; the curve “IPA
Algo.” represents the optimization process (1.32) with the simulation
time horizon for each step of (1.32) set to T ′ = 10000, and with constant
step size ν = 0.01. As shown in Fig. 1.7, the gradient-based algorithm
(1.32) converges to the neighborhood of the optimal feedback gain.

6. Conclusions and Future Directions
SFMs have recently been used to capture the dynamics of complex

stochastic discrete event systems, such as computer networks, and to im-
plement control and optimization methods based on gradient estimates
of performance metrics obtained through IPA. In Yu and Cassandras
(2003) we showed that IPA can be used in SFMs with additive feedback
and here we have further explored the effect of feedback by considering a
single-node SFM with a controllable inflow rate as a multiplicative func-
tion of the state (i.e., queue level) feedback parameterized by a feedback
gain c and a threshold φ (capturing a quantization in the state feed-
back). We have developed IPA estimators for the loss volume and aver-
age workload with respect to the feedback gain parameter c and shown
their unbiasedness, despite the complications brought about by the pres-
ence of feedback. This scheme bypasses the need for continuous state
information seen in additive mechanisms and involves only knowledge
of a single event representing the queue level crossing the threshold φ.
Moreover, even if this state information is not instantaneously supplied,
the delays involved are naturally built into the IPA estimator, based on
which appropriate control parameters can be selected.

This work opens up a variety of possible extensions. First, looking
at the feedback mechanism (1.12), note that c represents the feedback
gain and φ represents the range. Instead of controlling c or φ sepa-
rately (along the lines of previous work in Yu and Cassandras (2002)),
it may be more effective to control the (c, φ) pair jointly. Next, noticing
that probabilistic dropping/marking mechanisms are widely adopted in
computer networks (e.g., in Random Early Detection or Random Early
Marking), it is appealing to apply IPA specifically to these algorithms.



Multiplicative Feedback Control in Networks 27

Finally, of obvious interest is the application of our SFM-based IPA
estimators to an actual underlying DES such as the internet, i.e., to
determine the value of c that minimizes a weighted sum of loss volume
and average workload, as we have done in Cassandras et al., (2002) and
Yu and Cassandras (2003). As mentioned earlier, one advantage of IPA
is that the estimators depend only on data directly observable along a
sample path of the actual DES (not just the SFM which is an abstraction
of the system); see, for example, Cassandras et al., (2002) and Yu and
Cassandras (2003). Here, however, we have seen that this direct con-
nection to the DES no longer holds because the estimators rely on the
identification of “modes” whose definition does not always have a direct
correspondence to a DES. As a result, in order to successfully apply the
SFM-based IPA estimators to an actual DES, we need to carefully select
and interpret an appropriate abstraction of the underlying DES.
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Appendix
Proof of Theorem 1.1. Recall the definition of throughput:

HT =
1

T

∫ T

0

δ(t)dt.

Using (1.8), we can rewrite this equation as follows:

HT =
1

T





∑
i∈M0

∫ πi+1

πi

α(t)dt +
∑

i/∈M0

∫ πi+1

πi

β(t)dt





=
1

T





∑
i∈M0

∫ πi+1

πi

[α(t)− β(t)] dt +
∑

i/∈M0

∫ πi+1

πi

β(t)dt +
∑

i∈M0

∫ πi+1

πi

β(t)dt





=
1

T

{ ∑
i∈M0

∫ πi+1

πi

[α(t)− β(t)] dt +

∫ T

0

β(t)dt

}

Differentiating with respect to c we obtain:

∂HT

∂c
=

1

T

∑
i∈M0

{
[α(πi+1)− β(πi+1)]

∂πi+1

∂c
+ [β(πi)− α(πi)]

∂πi

∂c

}

Note that, if [πi, πi+1) ∈ M0, πi is the start of an EP. Hence it is also the end of some
NBP, i.e., πi = ζn−1 and πi+1 = ηn for some n ∈ ΨE . Combining this with Lemma
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1.6, we get ∂πi+1/∂c = 0. The above equation then becomes:

∂HT

∂c
=

1

T

∑
i∈M0

[β(πi)− α(πi)]
∂πi

∂c

=
1

T

∑
n∈ΨE

[β(ζn−1)− α(ζn−1)]
∂ζn−1

∂c

Proof of Theorem 1.2. If [ζn−1, ηn) is a FP, we have x(t) = θ for all t ∈
[ζn−1, ηn). Recalling that ΨF is locally independent of c, it follows from (1.14) that

dLT (c)

dc
=

1

T

∑
n∈ΨF

{
[cα(ηn)− β(ηn)]

∂ηn

∂c
− [cα(ζn−1)− β(ζn−1)]

∂ζn−1

∂c
+

∫ ηn

ζn−1

α(t)dt

}

Combining the above equation with Lemma 1.5 it follows that

dLT (c)

dc
=

1

T

∑
n∈ΨF

{
− [cα(ζn−1)− β(ζn−1)]

∂ζn−1

∂c
+

∫ ηn

ζn−1

α(t)dt

}

Moreover, we have the flow balance equation

c

∫ ηn

ζn−1

α(t)dt =

∫ ηn

ζn−1

β(t)dt + Ln + x(ηn; c)− x(ζn−1; c)

in which Ln is the lost volume because of overflow in the FP [ζn−1, ηn). Noticing that
x(ηn; c) = x(ζn−1; c) = θ, we obtain:

dLT (c)

dc
=

1

T

∑
n∈ΨF

{
− [cα(ζn−1)− β(ζn−1)]

∂ζn−1

∂c
+

1

c

[∫ ηn

ζn−1

β(t)dt + Ln

]}

Since ∑
n∈ΨF

Ln = T · LT ,

we obtain:

dLT (c)

dc
=

1

T

∑
n∈ΨF

{
− [cα(ζn−1)− β(ζn−1)]

∂ζn−1

∂c
+

1

c

∫ ηn

ζn−1

β(t)dt

}
+

LT

c

=
1

T

∑
n∈ΨF

{
− [cα(ζn−1)− β(ζn−1)]

∂ζn−1

∂c
+

1

c
H(ζn−1, ηn)

}
+

LT

c

Proof of Theorem 1.3. According to (1.11) and (1.12), when the system is in
Mode 2, the suppressed flow rate is α(t) − β(t); when the system is in Mode 3 or 4,
the suppressed flow rate is (1− c) α(t). Therefore

RT =
1

T

{ ∑
i∈M2

∫ πi+1

πi

[α(t)− β(t)] dt +
∑

i∈M3∪M4

∫ πi+1

πi

(1− c) α(t)dt

}
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Differentiating with respect to c we obtain:

∂RT

∂c
=

1

T

{ ∑
i∈M2

{
[α(πi+1)− β(πi+1)]

∂πi+1

∂c
− [α(πi)− β(πi)]

∂πi

∂c

}

+
∑

i∈M3∪M4

[
(1− c)α(πi+1)

∂πi+1

∂c
− (1− c)α(πi)

∂πi

∂c
−

∫ πi+1

πi

α(t)dt

]}

(1.A.1)

According to Lemma 1.7,
∂πi+1

∂c
= 0 if i ∈ M2. Thus we get (1.20).

Proof of Theorem 1.4. We prove the unbiasedness of the IPA derivatives by
establishing that the unbiasedness Conditions (i) and (ii) are satisfied for the random
functions LT (c), HT (c) and RT (c). Condition (i) is in force by Assumptions 4-6.
Regarding Condition (ii), we have the following flow balance equations for SFMN

and SFMP respectively:

x(T )− x(0) =

∫ T

0

u(t)dt−
∫ T

0

δ(t)dτ −
∫ T

0

γ(t)dt

and

x′(T )− x′(0) =

∫ T

0

u′(t)dt−
∫ T

0

δ′(t)dt−
∫ T

0

γ′(t)dt

Combining the above equations and recalling the assumption that x′(0) = x(0) = 0,
we obtain: ∫ T

0

∆u(t)dt = ∆x(T ) +

∫ T

0

∆δ(t)dt +

∫ T

0

∆γ(t)dt (1.A.2)

According to Lemma 1.11, ∆x(T ) ≥ 0. According to Lemma 1.12, ∆δ(t) ≥ 0, ∆γ(t) ≥
0. Therefore, ∫ T

0

∆u(t)dt ≥ 0.

Moreover,

∫ T

0

∆δ(t)dt ≤
∫ T

0

∆u(t)dt,

∫ T

0

∆γ(t)dt ≤
∫ T

0

∆u(t)dt (1.A.3)

Recall that
∆u(t) = u(t, x′(t); c + ∆c)− u(t, x(t); c)

According to Assumption 5, u(t, x′(t); c + ∆c) ≤ u(t, x(t); c + ∆c). Thus,

∆u(t) ≤ u(t, x(t); c + ∆c)− u(t, x(t); c)

According to (1.31), u(t, x(t); c + ∆c)− u(t, x(t); c) ≤ αmax ·∆c. Hence,

∆u(t) ≤ αmax ·∆c

which gives ∫ T

0

∆u(t)dt ≤ αmaxT ·∆c

Therefore, from (1.A.3) we get

∫ T

0

∆γ(t)dt ≤
∫ T

0

∆u(t)dt ≤ αmaxT ·∆c
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and ∫ T

0

∆δ(t)dt ≤
∫ T

0

∆u(t)dt ≤ αmaxT ·∆c

In other words, both LT (c) and HT (c) are Lipschitz continuous. For RT (c), recall the
flow balance equation

ᾱ = LT (c) + HT (c) + RT (c),

where

ᾱ =
1

T

∫ T

0

α(t)dt,

is the time average of α(t), independent of c. Hence

RT (c) = ᾱ− LT (c)−HT (c)

is also Lipschitz continuous. This completes the proof.
Proof of Lemma 1.5. If x(t) decreases from θ at time ηn, this defines the start of

a NBP. From (1.11) and (1.12) we must have cα(η−n )−β(η−n ) ≥ 0 and cα(η+
n )−β(η+

n ) <
0. From Assumption 3 we know that cα(η−n ) − β(η−n ) > ε, cα(η+

n ) − β(η+
n ) < ε.

Recalling Assumption 2, we conclude that a jump in α(t) or β(t) occurs at time ηn.
Since α(t) or β(t) are independent of c, Assumption 1 implies that there exists a
neighborhood of c within which a change of c does not affect ηn. This implies that
ηn is locally independent of c and the result follows.

Proof of Lemma 1.6. The proof is similar to that of the previous lemma, with
α(η−n )− β(η−n ) ≥ 0 and α(η+

n )− β(η+
n ) < 0.

Proof of Lemma 1.7. At the end of an M2 interval, x(t) may either increase or
decrease from φ. On one hand, x(t) increasing from φ at time πi defines the start of
a M3 interval. Specifically, from (1.11) and (1.12) we have cα(π−i ) ≤ β(π−i ) ≤ α(π−i )
and cα(π+

i ) > β(π+
i ). Since α(t) and β(t) are independent of c, we conclude that an

exogenous event occurs at time πi. Moreover, from Assumption 3 we know that there
exists a neighborhood of c within which a change of c does not affect πi. This implies
that πi is locally independent of c. On the other hand, x(t) decreasing from φ at
time πi defines the start of a M1 interval. Specifically from (1.11) we have cα(π−i ) ≤
β(π−i ) ≤ α(π−i ) and cα(π+

i ) > β(π+
i ), which implies that πi is the occurrence time of

an exogenous event and therefore locally independent of c. The result follows when
we combine the above arguments.

Proof of Lemma 1.8. If [πi, πi+1) ∈ M3, from (1.11) and (1.12) we have

∫ πi+1

πi

[cα(t)− β(t)] dt = x(πi+1; c)− x(πi; c) (1.A.4)

Note that x(πi; c) and x(πi+1; c) can only take values from the set {θ, φ}. Therefore,
differentiating with respect to c we obtain:

[
cα(π−i+1)− β(π−i+1)

] ∂πi+1

∂c
− [

cα(π+
i )− β(π+

i )
] ∂πi

∂c
+

∫ πi+1

πi

α(t)dt = 0

which gives

∂πi+1

∂c
=

cα(π+
i )− β(π+

i )

cα(π−i+1)− β(π−i+1)

∂πi

∂c
− 1

cα(π−i+1)− β(π−i+1)

∫ πi+1

πi

α(t)dt
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Proof of Lemma 1.9. If [πi, πi+1) ∈ M1, from (1.11) and (1.12) we obtain:

x(πi+1; c)− x(πi; c) =

∫ πi+1

πi

[α(t)− β(t)] dt

Note that x(πi; c) and x(πi+1; c) can only take values from the set {0, φ}. Therefore,
differentiating with respect to c we obtain:

[
α(π−i+1)− β(π−i+1)

] ∂πi+1

∂c
− [

α(π+
i )− β(π+

i )
] ∂πi

∂c
= 0

which gives
∂πi+1

∂c
=

α(π+
i )− β(π+

i )

α(π−i+1)− β(π−i+1)
· ∂πi

∂c

Proof of Lemma 1.10. Recall that ζn = πn,In is the end of a NBP and
x(ζn; c) = θ or 0. Therefore [πn,In−1, πn,In), the last interval in the NBP, is either an
M1 or an M3 interval.

Case 1: If it is an M1 interval, according to Lemma 1.9 we obtain:

∂ζn

∂c
=

B(π+
n,In−1)

B(π−n,In
)
· ∂πn,In−1

∂c

Case 2: If it is an M3 interval, according to Lemma 1.8 we obtain:

∂ζn

∂c
=

A(π+
n,In−1)

A(π−n,In
)
· ∂πn,In−1

∂c
− x(πn,In)− x(πn,In−1) + H(πn,In−1, πn,In)

cA(π−n,In
)

Since x(ζn; c) = θ, the above equation becomes

∂ζn

∂c
=

A(π+
n,In−1)

A(π−n,In
)
· ∂πn,In−1

∂c
− θ − x(πn,In−1) + H(πn,In−1, πn,In)

cA(π−n,In
)

(1.A.5)

Moreover because [πn,In−1, πn,In) is an M3 interval, x(πn,In−1; c) = θ or φ. If
x(πn,In−1; c) = θ = x(πn,In ; c), the interval [πn,In−1, πn,In) forms a NBP itself and
from Lemma 1.8 we have:

∂ζn

∂c
=

A(π+
n,In−1)

A(π−n,In
)
· ∂πn,In−1

∂c
− H(πn,In−1, πn,In)

cA(π−n,In
)

.

In addition, from Lemmas 1.5 and 1.6 it follows that

∂πn,In−1

∂c
=

∂ηn

∂c
= 0.

We then obtain:
∂ζn

∂c
= −H(πn,In−1, πn,In)

cA(π−n,In
)

(1.A.6)

Similarly, if x(πn,In−1; c) = φ, it follows that

∂ζn

∂c
=

A(π+
n,In−1)

A(π−n,In
)
· ∂πn,In−1

∂c
− θ − φ + H(πn,In−1, πn,In)

cA(π−n,In
)

(1.A.7)
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Combining (1.A.5), (1.A.6) and (1.A.7) we get (1.29).
Proof of Lemma 1.11. The proof has two steps. First we show that, if

x′(t) = x(t),

dx′(t+)

dt
≥ dx(t+)

dt
(1.A.8)

Before proceeding we point out that according to Assumption 5, u(t, x; c) is a
monotonically nondecreasing function of c for any fixed t and x, i.e., u(t, x; c) ≤
u(t, x; c + ∆c).

Assume x′(t) = x(t) = x0. The value of x0 can be classified as follows:
Case 1. x0 = 0: In view of Assumption 5, u(t, x0; c) ≤ u(t, x0; c+∆c). Thus, there

are three cases to consider regarding the relative values of u(t, 0; c), u(t, 0; c+∆c) and
β(t).

Case 1.1. u(t, 0; c) ≤ u(t, 0; c + ∆c) ≤ β(t): The buffer content will remain empty
for both sample paths:

∂x′(t+)

∂t
=

∂x(t+)

∂t
= 0

Case 1.2. u(t, 0; c) ≤ β(t) ≤ u(t, 0; c + ∆c): According to (1.11),

∂x′(t+)

∂t
= u(t, 0; c + ∆c)− β(t) ≥ ∂x(t+)

∂t
= 0

Case 1.3. β(t) ≤ u(t, 0; c) ≤ u(t, 0; c + ∆c): According to (1.11),

∂x′(t+)

∂t
= u(t, 0; c + ∆c)− β(t) ≥ u(t, 0; c)− β(t) =

∂x(t+)

∂t

Case 2. 0 < x0 < θ: In this case, (1.11) gives

∂x(t+)

∂t
= u(t, x0; c)− β(t)

and
∂x′(t+)

∂t
= u(t, x0; c + ∆c)− β(t)

which implies
∂x′(t+)

∂t
≥ ∂x(t+)

∂t

according to Assumption 5.
Case 3. x0 = θ: There are three sub-cases to consider:
Case 3.1. u(t, θ; c) ≤ u(t, θ; c + ∆c) ≤ β(t): According to (1.11) and Assumption

5,
∂x′(t+)

∂t
= u(t, 0; c + ∆c)− β(t) ≥ u(t, 0; c)− β(t) =

∂x(t+)

∂t

Case 3.2. u(t, θ; c) ≤ β(t) ≤ u(t, θ; c + ∆c): According to (1.11), SFMP will stay
at θ so that

∂x′(t+)

∂t
= 0

SFMN will drop from θ so that

∂x(t+)

∂t
= u(t, θ; c)− β(t) < 0
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Combining the above two equations gives

∂x′(t+)

∂t
≥ ∂x(t+)

∂t

Case 3.3. β(t) ≤ u(t, θ; c) ≤ u(t, θ; c + ∆c): According to (1.11), both sample
paths will stay at θ, i.e.,

∂x′(t+)

∂t
=

∂x(t+)

∂t
= 0

Combining all of the above cases, we conclude that

∂x′(t+)

∂t
≥ ∂x(t+)

∂t

which implies that SFMP will never go below SFMN for any t > τ when x(τ) = x′(τ).
Moreover when t = 0, x′(0) = x(0) = 0. It follows that ∆x(t) ≥ 0, for all t ≥ 0.

Proof of Lemma 1.12. For ∆δ(t), regarding all possible value combinations of
x(t) and x′(t) we have the following cases:

Case 1. x′(t) > x(t) > 0: According to (1.8), δ′(t) = δ(t) = β(t);
Case 2. x′(t) > 0, x(t) = 0: According to (1.8), δ(t) = min (u(t), β(t)) ≤ β(t) =

δ′(t);
Case 3. x′(t) = 0, x(t) > 0: According to Lemma 1.11, this case is impossible;
Case 4. x′(t) = 0, x(t) = 0: According to (1.8), δ(t) = min (u(t), β(t)), δ′(t) =

min (u′(t), β(t)). Moreover Assumption 5 gives u(t) = u(t, 0; c) ≤ u(t, 0; c + ∆c) =
u′(t), so δ(t) ≤ δ′(t).

Combining the above four cases gives ∆δ(t) ≥ 0.
Similarly for ∆γ(t), regarding all the possible value combinations of x(t) and x′(t)

we have the following cases:
Case 1. x(t) ≤ x′(t) < θ: According to (1.9), γ(t) = γ′(t) = 0;
Case 2. x(t) < x′(t) = θ: According to (1.9), γ(t) = 0 ≤ γ′(t);
Case 3. x(t) = x′(t) = θ: According to (1.9), γ(t) = max (u(t)− β(t), 0) and
γ′(t) = max (u′(c + ∆c; t, θ)− β(t), 0). Moreover, Assumption 5 gives u(t) =

u(t, 0; c) ≤ u′(t) = u(t, 0; c + ∆c), so γ(t) ≤ γ′(t).
Case 4. x(t) = θ, x′(t) < θ: This case is impossible according to Lemma 1.11.
Combining the above cases gives ∆γ(t) ≥ 0.
Proof of Theorem 1.13. We have the following flow balance equations for

SFMN and SFMP respectively:

x(t)− x(0) =

∫ t

0

u′(τ)dτ −
∫ t

0

δ(τ)dτ −
∫ t

0

γ(τ)dτ, for all t ≥ 0

and

x′(t)− x′(0) =

∫ t

0

u′(τ)dτ −
∫ t

0

δ′(τ)dτ −
∫ t

0

γ′(τ)dτ, for all t ≥ 0

Combining the above equations and recalling that x′(0) = x(0) = 0, we obtain:

∆x(t) =

∫ t

0

∆u(τ)dτ −
∫ t

0

∆δ(τ)dτ −
∫ t

0

∆γ(τ)dτ (1.A.9)

Recalling Lemma 1.12, ∆δ(τ) ≥ 0 and ∆γ(τ) ≥ 0 for all τ, 0 < τ < t. Then, (1.A.9)
implies

∆x(t) ≤
∫ t

0

∆u(τ)dτ (1.A.10)
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On the other hand,

∆u(τ) = u(τ, x′(τ); c + ∆c)− u(τ, x(τ); c) (1.A.11)

Lemma 1.11 gives x′(τ) ≥ x(τ), from which we obtain

u(τ, x′(τ); c + ∆c) ≤ u(τ, x(τ); c + ∆c)

according to Assumption 4. Combining the above inequality with (1.A.11) gives

∆u(τ) ≤ u(τ, x(τ); c + ∆c)− u(τ, x(τ); c) (1.A.12)

According to Assumption 6,

u(τ, x(τ); c + ∆c)− u(τ, x(τ); c) ≤ K∆c (1.A.13)

Combining (1.A.12) and (1.A.13) we get:

∆u(τ) ≤ K∆c (1.A.14)

Thus, from (1.A.10) and (1.A.14) we obtain:

∆x(t) ≤
∫ t

0

∆u(τ)dτ ≤ Kt∆c ≤ KT∆c for all t, 0 ≤ t ≤ T
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