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FROM SENSOR NETWORKS
TO "SMART PARKING" APPS
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INTERNET

CYBER

PHYSICAL

Data collection:
relatively easy…

Control:
a challenge…



2. Once a Data Source is detected, collect data from it,
track it if mobile

?
?

? ?
?

?
?

SENSOR NETWORK AS A CONTROL SYSTEM
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What is the function of a SENSOR NETWORK? 

3. Continue to seek data sources while collecting data from 
detected sources

?
?

?

?

?
??

?
?

1. Seek and detect “Data Sources”
(or “Targets”)



OUTLINE 
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 Sensor Networks as Control Systems

 No knowledge of mission space:
Coverage control, Persistent Monitoring

 Full knowledge of mission space: 
Data Collection, Data Harvesting, Reward Maximization

 Distributed Optimization Framework

 Information exchange among nodes:
Event-driven communication

 Sensor + Actuation Networks: “Smart Parking” system



SENSOR NETWORK AS A CONTROL SYSTEM

Position/Move
to optimize
detection prob. TARGET

DETECTION
TARGET

DETECTION
DATA

COLLECTION
DATA

COLLECTION

Localize
targets

Update 
event density
information

Position/Move
to optimize
data collection quality

Know nothing - must deploy 
resources (how many? where?)
- Cooperate but operate autonomously
- Manage Communication, Energy

COVERAGE:
persistently look for
new targets 
 spread nodes out

and search

DATA COLLECTION:
optimize data quality
 congregate nodes 
around known targets
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Model for 
optimization

COVERAGECOVERAGE

Data fusion, build prob. map of
target locations (static) or 
trajectories (dynamic)

Know everything - must deploy resources
to maximize benefit from interacting with 
data sources (targets): track, get data
- Manage Communication, Energy

TRADEOFF:
Control node location

to optimize
COVERAGE + DATA COLLECTION



COVERAGE
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MOTIVATIONAL PROBLEM: COVERAGE CONTROL

Deploy sensors to maximize “event” detection probability 
– unknown event locations
– event sources may be mobile
– sensors may be mobile 

Perceived event density (data sources) over given region (mission space)
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• Meguerdichian et al, IEEE INFOCOM, 2001
• Cortes et al, IEEE Trans. on Robotics and 

Automation, 2004
• Cassandras and Li, Eur. J. of Control, 2005
• Ganguli et al, American Control Conf., 2006 
• Hussein and Stipanovic, American Control 

Conf., 2007
• Hokayem et al, American Control Conf., 2007



OPTIMAL COVERAGE IN A MAZE
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http://codescolor.bu.edu/coverage
Zhong and Cassandras, 2008Zhong and Cassandras, 2008



COVERAGE: PROBLEM FORMULATION


 

Sensing attenuation: 
pi

 

(x, si

 

) monotonically decreasing in di

 

(x) 
 

||x - si

 

||

 Data source at x
 

emits signal with energy E

 N
 

mobile sensors, each located at si

 

R2

 Signal observed by sensor node i
 

(at si )


 

SENSING MODEL: 
]),(|by  Detected[),( iii sxAiPsxp 

( A(x) = data source emits at x
 

)
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
 

Joint detection prob.  assuming sensor independence
( s = [s1 ,…,sN

 

] : node locations)                                              

 
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OBJECTIVE: Determine locations s = [s1 ,…,sN

 

] to 
maximize total Detection Probability:

 ),()(max dxxPxR


s
s

COVERAGE: PROBLEM FORMULATION
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Perceived event density

Event sensing probability



CONTINUEDDISTRIBUTED COOPERATIVE SCHEME
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
 

Maximize H(s1 ,…,sN

 

) by forcing nodes to move using 
gradient information:

  dx
xd
xs

xd
xpxpxR

s
H

k

k

k

k
N

kii
i

k
 
 









)()(
)()(1)(

,1

k
i

k
k
i

k
i s

Hss



 1
Desired displacement = V·t

Cassandras and Li, 2005 
Zhong and Cassandras, 2011 

Cassandras and Li, 2005 
Zhong and Cassandras, 2011



PERSISTENT
MONITORING

(PERSISTENT SEARCH,
SURVEILLANCE)
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COVERAGE CONTROL v PERSISTENT MONITORING

PERSISTENT MONITORING: 
– environment cannot be fully covered by stationary team of nodes
– all areas of mission space must be visited infinitely often
– minimize some measure of overall uncertainty


?

?
?? ?

?

?

?

?
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PERSISTENT SEARCH IN 2D MISSION SPACE

Agents play a cooperative PACMAN 
game against “uncertainty” which 
continuously regenerates…

Dark brown:
HIGH uncertainty

White:
NO uncertainty

JAVA multi‐agent simulator designed to interactively test various 

 
controllers. Polygonal obstacles may be added to the environment. 

 
http://codescolor.bu.edu/simulators/density/density.html

http://codescolor.bu.edu/simulators/density/density.html
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PERSISTENT MONITORING PROBLEM

s(t)

x

SENSING MODEL: p(x,s) Probability agent at s
 

senses point x

UNCERTAINTY MODEL:  Associate to x
 

Uncertainty Function R(x,t) 
such that
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PERSISTENT MONITORING PROBLEM

…

Partition mission space  = [0,L] into M intervals:

1 M

For each interval i
 

= 1,…,M define Uncertainty Function Ri

 

(t):
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(s) = joint prob. i is sensed by agents located at s = [s1 ,…,sN
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OPTIMAL CONTROL PROBLEM

s.t.
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(t) such that
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Agent dynamics

Uncertainty 
dynamics
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OPTIMAL CONTROL SOLUTION

Optimal trajectory is fully characterized by parameter vectors:

1112 1413 2122 2423

  NjjSjj ,,1    ,1   

such that agent j
 

switches 
from to at sj

 

= jk

 

, if k
 

is odd
from to at sj

 

= jk

 

, if k
 

is even
1)(* tu j 1)(* tu j

1)(* tu j 1)(* tu j

Cassandras, Lin, Ding, 20012Cassandras, Lin, Ding, 20012



DATA COLLECTION



Recall tradeoff:

MODIFIED DISTRIBUTED OPTIMIZATION OBJECTIVE:
collect info from detected data sources (targets) while maintaining 
a good coverage to detect future events

Hs, t  


RxPx, sdx  ∑u∈Dt
SuFu, s

COVERAGE:
persistently look for
new targets 
 spread nodes out

DATA COLLECTION:
optimize data quality
 congregate nodes 
around known targets

TRADEOFF:
Control node location

to optimize
COVERAGE + DATA COLLECTION
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COVERAGE + DATA COLLECTION

Dt : set of data sources,
estimated based on sensor observations

S(u) : data source value

F(u,s) : joint data collection
quality at u
(e.g., covariance)
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DEMO: REACTING TO EVENT DETECTION

Important to note:

There is no 
external control 
causing this 
behavior. 
Algorithm includes 
tracking 
functionality 
automatically
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DEMO: REACTING TO EVENT DETECTION

Important to note:

There is no 
external control 
causing this 
behavior. 
Algorithm includes 
tracking 
functionality 
automatically



DATA COLLECTION:
REWARD MAXIMIZATION,

DATA HARVESTING



REWARD MAXIMIZATION MISSION 

?

?

?

UNKNOWN
TARGETSX

X
X

X

X
X

Node 4 “repelled” by Node 3 
 Search task performed

TARGETS
WITH DIFFERENT
REWARDS AND DEADLINES

MISSION OBJECTIVE: MAXIMIZE TOTAL REWARD COLLECTED
BY VISITING TARGETS BEFORE THEIR “DEADLINES” EXPIRE
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REWARD MAXIMIZATION MISSION CONTINUED

… there are multiple (cooperating) salesmen

… there are deadlines + time-varying rewards

… environment is stochastic
(nodes may fail, threats damage nodes, etc.)

This is like the notorious TRAVELING SALESMAN  
problem, except that…
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COOPERATIVE RECEDING HORIZON (CRH) 
CONTROL: MAIN IDEA
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u1

u2 u3

ACTION
HORIZON, h

PLANNING
HORIZON, H

Solve optimization problem
by selecting all ui to maximize
total expected rewards over H

• Do not attempt to assign nodes to targets
• Cooperatively steer nodes 

towards “high expected reward” regions
• Repeat process periodically/on-event
• Worry about final node-target assignment

at the last possible instant
Turns out nodes

converge to targets
on their own!



REWARD MAXIMIZATION DEMO
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BOSTON UNIVERSITY TEST BEDS

SMARTS Kickoff MeetingChristos G. Cassandras
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THE BIGGER PICTURE:
DISTRIBUTED
OPTIMIZATION



DISTRIBUTED COOPERATIVE OPTIMIZATION
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…

N system components 
(processors, agents, vehicles, nodes), 
one common objective:



DISTRIBUTED COOPERATIVE OPTIMIZATION
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i

Controllable state
si

 

, i = 1,…,ni

))(()()1( kdksks iiii s

Step Size

Update Direction, usually 
))(())(( kHkd ii ss 

i

Ns

sts

ssH
i

on  sconstraint  ..

),,(min 1 

i

 

requires knowledge of all s1 ,…,sN

Inter-node communication



HOW MUCH
COMMUNICATION

FOR
OPTIMAL COOPERATION ?



SYNCHRONIZED (TIME-DRIVEN) COOPERATION

Christos G. Cassandras

 

CODES Lab. -

 

Boston University

1

2

3

COMMUNICATE + UPDATE

Drawbacks:
 Excessive communication (critical in wireless settings!)
 Faster nodes have to wait for slower ones
 Clock synchronization infeasible
 Bandwidth limitations
 Security risks



ASYNCHRONOUS COOPERATION
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1

2

3

 Nodes not synchronized, delayed information used

Bertsekas and Tsitsiklis, 1997Bertsekas and Tsitsiklis, 1997

Update frequency for each node
is bounded 

+ 
technical conditions


))(()()1( kdksks iiii s

converges



ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION
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2

3

UPDATE
COMMUNICATE

 UPDATE at i : locally determined, arbitrary (possibly periodic)
 COMMUNICATE from i :   only when absolutely necessary

1



WHEN SHOULD A NODE COMMUNICATE?
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Node state at any time t
 

:  xi

 

(t)

Node state at tk

 

:  si

 

(k)
 si

 

(k) = xi

 

(tk

 

)

j

i
tk

)(kjEstimate examples:

))(()( kxks j
j

i
j  Most recent value
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jji

j

j
kj

j
i
j  




 Linear prediction

: node j
 

state estimated by node i)(ksi
jAT UPDATE TIME tk

 

:



WHEN SHOULD A NODE COMMUNICATE?
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AT ANY TIME t
 

:

 If node i
 

knows how j
 

estimates its state, then it can evaluate )(tx j
i

 Node i
 

uses 
• its own true state, xi

 

(t)
• the estimate that j

 
uses, )(tx j

i

… and evaluates an ERROR FUNCTION  )(),( txtxg j
ii

Error Function examples:
21

)()(     ,)()( txtxtxtx j
ii

j
ii 

 : node i
 

state estimated by node j)(tx j
i
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ii

j

)(txi

i

WHEN SHOULD A NODE COMMUNICATE?

Node i communicates its state to node j only when it detects that 
its true state xi

 

(t) deviates from  j’ estimate of it
so that  

)(tx j
i

  i
j

ii txtxg )(),(

 )(),( txtxg j
iiCompare ERROR FUNCTION to THRESHOLD i

 Event-Driven Control



Christos G. Cassandras

 

CODES Lab. -

 

Boston University

CONVERGENCE 

Asynchronous distributed state update process at each i:
))(()()1( kdksks i

iii s  Estimates of other nodes, 
evaluated by node i

THEOREM: Under certain conditions, there exist positive constants
α

 
and Kδ

 

such that
0))((lim 


kH

k
s

INTERPRETATION: 
Event-driven cooperation achievable with
minimal communication requirements  energy savings

Zhong and Cassandras, IEEE TAC, 2010Zhong and Cassandras, IEEE TAC, 2010








otherwise)1(
update sends  if)(()(

k
kkdKk

i

i
i

i 
  s
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COONVERGENCE WHEN DELAYS ARE PRESENT

Red curve:

Black curve:

ij
0 t

0

 ki

 j
ii xxg ~,

 jii xxg ,
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3

ij
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1
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2
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3 ij

4
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 j
ii xxg ,

 ki

0
tij

3
ij
2

ij
1

ij
0

Error function trajectory with
NO DELAY

DELAY



Christos G. Cassandras

 

CODES Lab. -

 

Boston University

COONVERGENCE WHEN DELAYS ARE PRESENT

ASSUMPTION: There exists a non-negative integer D
 

such 
that if a message is sent before tk-D from node i

 
to node j, it 

will be received before tk

 

.

INTERPRETATION: at most D state update events can occur between a node 
sending a message and all destination nodes receiving this message.

Add a boundedness assumption:

THEOREM: Under certain conditions, there exist positive constants
α

 
and Kδ

 

such that
0))((lim 


kH

k
s

NOTE: The requirements on α

 

and Kδ

 

depend on D and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010Zhong and Cassandras, IEEE TAC, 2010



SYNCHRONOUS v ASYNCHRONOUS 
OPTIMAL COVERAGE PERFORMANCE
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SYNCHRONOUS v ASYNCHRONOUS:
No. of communication events
for a deployment problem with obstacles

SYNCHRONOUS v ASYNCHRONOUS:
Achieving optimality
in a problem with obstacles

Energy savings + Extended lifetime



DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH 
OBSTACLES – SIMULATED AND REAL
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SENSOR + ACTUATION NETWORK
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INTERNET

CYBER

PHYSICAL

Data collection:
relatively easy…

Control:
a challenge…



SENSOR + ACTUATION:
A “SMART PARKING”

SYSTEM



30% of vehicles on the road in the downtowns of major cities are 
cruising for a parking spot. It takes the average driver 7.8 minutes to 
find a parking spot in the downtown core of a major city.

R. Arnott, T.Rave, R.Schob, Alleviating Urban Traffic Congestion. 2005

Over one year in a small Los Angeles business 
district, cars cruising for parking created the 
equivalent of 38 trips around the world, burning 
47,000 gallons of gasoline and producing 730 
tons of carbon dioxide.

Donald Shoup, The High Cost of Free Parking. 2005

“SMART PARKING” - MOTIVATION
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OPTIMAL
PARKING SPOT

Find optimal parking 

spot for 

DESTINATION A

Minimize a 
function of 
COST and
DISTANCE 
from A

“SMART PARKING” - CONCEPT



DESTINATION

OPTIMAL
PARKING SPOT

“SMART PARKING” - CONCEPT



GUIDANCE-BASED PARKING – DRAWBACKS…

Drivers:
• May not find a vacant space
• May miss better space
• Processing info while driving

City:
• Imbalanced parking utilization
• May create ADDED CONGESTION
(as multiple drivers converge

to where a space exists)

Searching for parking  
 

Competing for parking



SMART PARKING – NEW FEATURES

Driver makes decisions  
 

System makes optimal
decisions for driver

• System finds BEST parking space for driver 
(based on PROXIMITY to destination + parking COST)

• Space RESERVED  guaranteed parking space

• System continuously IMPROVES assigned parking space

• System ensures FAIRNESS in parking space allocation

• Parking space UTILIZATION INCREASES



GUIDANCE-BASED PARKING v “SMART PARKING”

COLLECTING DATA IS NOT “SMART”, 
JUST A NECESSARY STEP TO BEING 

“SMART”

PROCESSING DATA TO MAKE 
GOOD DECISIONS IS “SMART”

INFO

INFOACTION



• Parking space availability
detection

• Vehicle localization

• System-Driver
communication

• Parking reservation

SMART PARKING – IMPLEMENTATION



 
Standard sensors 
(e.g., magnetic, cameras)



 
Wireless sensor networking 



 
GPS



 
Smartphone



 
Vehicle navigation system



 
Folding/Retreating barrier



 
Red/Green/Yellow light system



Allocation 
Fail

Allocation 
Succeed

Allocation

WAIT

RESERVE

Request

Departure

...

1

2

N

PROBLEM FORMULATION
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“SMART PARKING” TEST BED
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On-street parking spaces
Off-street parking spaces

Points of interest

SIMULATION CASE STUDY



CASE STUDY RESULTS

Traffic

Traffic

Traffic

Traffic

SP: BU Smart Parking system       G: Parking using guidance-based systems
NG: No guidance (status quo) 



1. 10-20% higher parking utilization  


 
HIGHER REVENUE,

LOWER CONGESTION

2.  % drivers searching for parking (wandering) < 2%


 
HIGHER REVENUE,

LOWER CONGESTION

3.  50% reduction in parking time under heavy traffic


 
LOWER CONGESTION,

LESS FUEL,
DRIVER COMFORT

KEY CONCLUSIONS



“Smart Parking” proof-of-concept study implemented in a small (27 
space) garage at Boston University during summer 2011:

- Smart Parking Allocation Center (SPAC): Server located in CODES Lab
SPAC determines optimal allocation for request (if one exists) and notifies 
driver through iPhone app showing the identity of reserved spot

- Garage gateway: Laptop computer located in garage

-Sensor and light system device: Custom-built 
device affixed on ceiling over each parking spot. 

- Parking request through iPhone app.

IMPLEMENTATION



http://www.bu.edu/buniverse/view/?v=1zqb6NnD

http://www.necn.com/09/23/11/JoeBattParkingapp/landing_scitech.html?blockID=566574&feedID=4213



TEAM: Yanfeng Geng (PhD student), Ted Grunberg (Undergrad. Student),
Andy Ochs, Mikhail Gurevich, Greg Berman (BU SOM students)

• 2011 IBM/IEEE Smarter Planet Challenge competition, team won 2nd
place prize 

• Best Student Paper Award, Finalist, 2011 IEEE Multi-Conference
on Systems and Control

• Third prize poster on “Smart Parking”, INFORMS 2011 Northeastern
Conference 

• Ongoing implementation under BU OTD “Ignition Award”
• Working with City of Boston under IBM Award for “Combating Climate

Change Through Smarter Urban Transportation Policies”

PROJECT TEAM, RECOGNITION

• Geng, Y., and Cassandras, C.G., “Dynamic Resource Allocation in Urban Settings: A “Smart Parking” 
Approach”, Proc. of 2011 IEEE Multi-Conference on Systems and Control, Oct. 2011.
• Geng, Y., and Cassandras, C.G., “A New “Smart Parking” System Based on Optimal Resource 
Allocation and Reservations”, Proc. of

 

14th IEEE Intelligent Transportation Systems Conf., pp. 979-984, 
Nov. 2011.



http://www.bu.edu/buniverse/view/?v=1zqb6NnD



“SMART CITY” AS A CYBER-PHYSICAL SYSTEM

Christos G. Cassandras

 

CISE -

 

CODES Lab. -

 

Boston University

Decision Making

Data collection

Energy
Management

Safety

Security

Control and
Optimization

Actions

Information
Processing

Privacy

“SMART PARKING”

TRAFFIC LIGHT
CONTROL

SENSOR
NETWORKS

Geng, Y., and Cassandras, C.G., 
“Traffic Light Control Using 
Infinitesimal Perturbation 
Analysis”, subm. to 51st IEEE 
Conf. Decision and Control, 2012
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