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CYBER-PHYSICAL SYSTEMS
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SENSOR NETWORK AS A CONTROL SYSTEM
What is the function of a SENSOR NETWORK?

1. Seek and detect “Data Sources”
(or “Targets”)

2. Once a Data Source Is detected, collect data from it,
track it if mobile

3. Continue to seek data sources while collecting data from

detected sources
Christos G. Cassandras CODES Lab. - Boston University



OUTLINE

= Sensor Networks as Control Systems

= No knowledge of mission space:
Coverage control, Persistent Monitoring

= Full knowledge of mission space:
Data Collection, Data Harvesting, Reward Maximization

= Distributed Optimization Framework

= Information exchange among nodes:
Event-driven communication

= Sensor + Actuation Networks: “Smart Parking” system
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SENSOR NETWORK AS A CONTROL SYSTEM

Know nothing - must deploy : : Know everything - must deploy resources
resources (how many? where?) Data fusion, build prob. map of to maximize benefit from interacting with
- Cooperate but operate autonomously target locations (static) or data sources (targets): track, get data
- Manage Communication, Energy trajectories (dynarlmc) - Manage Communication, Energy
. Position/Move v v
to optimize Localize
COVERAGE detection prob. TARGET targets DATA
COLLECTION
Update Position/Move
event density to optimize
information data collection quality
Model for
optimization
COVERAGE: v A BN DATA COLLECTION:
persistently look for TRADEOEF: optimize data quality
new targets Control node location — congregate nodes
= spread nodes out {0 optimi around known targets
and search 0 Optimize
GOVERAGE + DATA COLLECTION/
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MOTIVATIONAL PROBLEM: COVERAGE CONTROL

Deploy sensors to maximize “event” detection probability

— unknown event locations
— event sources may be mobile
— sensors may be mobile

R(x) e
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Perceived event density (data sources) over given region (mission space)
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OPTIMAL COVERAGE IN A MAZE

| Continue | Nodes # |ZB | [| Low Detection Boost | [¥| Evaluate Objective Function: 247.7703... Event d.e.tectlon
DIZI ] 10 14 20 25 20 34 40 45 50 54 60 Al | pFObablllty P(x,s)
0 269 M >0.97
1 [3.54 0.97
2 (20
3 .0
: Ia 4 2.0
: 5 20
G —
10 7 —0.5
o
g
e 10
15 1 11
12
13
20 Ji_.ll
25
30
35
40
) http://cod lor.bu.edu/
50 I—
Integration Resolution |E Max Speed !ﬁ Sensing Decay 0.02 | Sensing Range i@g Max Morm i@l Comm. Weight IZIEI_I Est. Zhong and Cassandras’ 2008

Christos G. Cassandras CODES Lab. - Boston University



COVERAGE: PROBLEM FORMULATION

= N mobile sensors, each located at s.€ R?

= Data source at x emits signal with energy £

= Signal observed by sensor node i (at s, )

= SENSING MODEL:
p,;(x,s,) = P[Detected by i | A(x), s, ]
( A(x) = data source emits at x )

= Sensing attenuation:
p,(x, s;) monotonically decreasing in d(x) = |jx - s ||

Christos G. Cassandras CODES Lab. - Boston University



COVERAGE: PROBLEM FORMULATION

= Joint detection prob. assuming sensor independence
(s=1[sq,...,s5] : node locations)

Event sensing probability

= OBJECTIVE: Determine locations s = [s,...,s,] tO
maximize total Detection Probability:

max j R(x)P(x,S)dx

Perceived event density
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DISTRIBUTED COOPERATIVE SCHEME
= Set

H(s,,...,8y) = jR(x){l—H[l—pi (x)]}dx

i=1

= Maximize H(s,,...,s,) by forcing nodes to move using
gradient information:

apk (X) Sk _xdx

od, (x) d,(x)

Desired displacement = V- At

Cassandras and Li, 2005
Zhong and Cassandras, 2011
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PERSISTENT

MONITORING

(PERSISTENT SEARCH,
SURVEILLANCE)



COVERAGE CONTROL v PERSISTENT MONITORING

PERSISTENT MONITORING:
— environment cannot be fully covered by stationary team of nodes
— all areas of mission space must be visited infinitely often
— minimize some measure of overall uncertainty
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PER

Dok broun: Agents play a cooperative PACMAN
| VHV':H gl game against “uncertainty” which
Ite: .
NO uncertainty CO”t'ﬂUOUSly I‘egenerates

JAVA multi-agent simulator designed to interactively test various
controllers. Polygonal obstacles may be added to the environment.
http://codescolor.bu.edu/simulators/density/density.html
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PERSISTENT MONITORING PROBLEM

SENSING MODEL: p(x,s) Probability agent at s senses point x

UNCERTAINTY MODEL: Associate to x Uncertainty Function R(x,?)

such that 5 y s
R(x0) :{ If R(x,2)=0, A(x) < Bp(x,s(t))

A(x)—Bp(x,s(¢)) otherwise

Christos G. Cassandras CODES Lab. - Boston University



PERSISTENT MONITORING PROBLEM

Partition mission space Q = [0,L] into M intervals:

O O
(04 v Y 04
1 <_. 4_. M

For each interval i = 1,...,M define Uncertainty Function R (z):

FPNIC if R (£)=0, 4, < BP(5(1))
()= {Al. —BP(s(t)) otherwise

pi(s;)=p(a,s;)

where P,(s) = joint prob. I is sensed by agents located at s = [s4,...,5,]

Christos G. Cassandras CODES Lab. - Boston University



OPTIMAL CONTROL PROBLEM

Determine u,(z),...,u,(?) such that

Uncertainty
measure

n

s, =u,, |u,(#)|<L, 0<s,(F)<L - Agent dynamics

ooy [0 if R.(£) =0, 4, < BP(5(1))
()= A —BP(s(t)) otherwise

Uncertainty
dynamics

Sensing model
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OPTIMAL CONTROL SOLUTION

Optimal trajectory is fully characterized by parameter vectors:
0.=l0,-0 j=1...N
such that agent j switches
from u (1) =11to u (1) =-1 at s; = 6y, if kis odd

fromu, (1) =-1to u;(t)=1 ats,= 0, if kis even

Cassandras, Lin, Ding, 20012
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DATA COLLECTION



COVERAGE + DATA COLLECTION

Recall tradeoff:

COVERAGE: 4 TRADEOFF: DATA COLLECTION:
persistently look for Control node location optimize data quality
new targets ‘ to optimize = congregate nodes
= spread nodes out GOVERAGE + DATA COLLECTIONJ around known targets

MODIFIED DISTRIBUTED OPTIMIZATION OBJECTIVE:

collect info from detected data sources (targets) while maintaining
a good coverage to detect future events

S(u) : data source value

H(s, 1) = [ RGx)P(x,8)dx +|B Y., Sw)F(u,s)
Q

D, : set of data sources, F(u,s) : joint data collection

estimated based on sensor observations quality at u
(e.g., covariance)
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DEMO: REACTING TO EVENT DETECTION

Important to note:

There is no
external control
causing this
behavior.
Algorithm includes
tracking
functionality
automatically

Max Speed [4.0| Sensing Decay 0.08 Sensing Range [30.0] Max Norm [1.0) Kdelta [0.0 | Est. Threshold [0.0 | Comm.
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DATA COLLECTION:

REWARD MAXIMIZATION,
DATA HARVESTING



REWARD MAXIMIZATION MISSION

TARGETS
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REWARD MAXIMIZATION MISSION

CONTINUED

This is like the notorious TRAVELING SALESMAN
problem, except that...

> ... there are multiple (cooperating) salesmen

> ... there are deadlines + time-varying rewards

> ... environment Is stochastic
(nodes may fall, threats damage nodes, etc.)

Christos G. Cassandras CODES Lab. - Boston University



COOPERATIVE RECEDING HORIZON (CRH)
CONTROL: MAIN IDEA

* Do not attempt to assign nodes to targets
« Cooperatively steer nodes

towards “high expected reward” regions
* Repeat process periodically/on-event A A

« Worry about final node-target assignment  Turns out nodes
at the last possible instant converge to targets
HORIZON, h Il o their own!

Solve optimization problem
by selecting all u; to maximize
total expected rewards over H

vt s /u.

Christos G. Cassandras CODES Lab. - Boston University



REWARD MAXIMIZATION DEMO

[I. 2 Robots,
4 Targets Case



Bd 18,000  EXid 27,1 040) e B¢ 33, 0.00)

R e PR R s ity RS s WG B 000)

(Fail Lars: 0)

[@id: 7 r 1i00) _ f Ekid: 20.r, 0.00
J EXid- 15,1 EI.DD; L B)id 5,r 0 me

mjd: 26, 0.00)

Biid: 14,r 0.00)

id: 12,0 0.00) ;
WG 32, 0.00) @d: 11, 0.00]

Mid: 28, 0.00)
B¢ 2r0@ s 17 - o

| |
120 140




BOSTON UNIVERSITY TEST BEDS

R:300, D:100 R:200, D:100
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THE BIGGER PICTURE:
DISTRIBUTED
OPTIMIZATION



DISTRIBUTED COOPERATIVE OPTIMIZATION

N system components
(processors, agents, vehicles, nodes),
one common objective:

s.t. constraintson s,

Christos G. Cassandras CODES Lab. - Boston University



DISTRIBUTED COOPERATIVE OPTIMIZATION

Controllable state
=1

Update Direction, usually
d, (s(k)) =V, H (s(k))

s.t. constraintson s,

i requires knowledge of all s,...,sy
Inter-node communication

Christos G. Cassandras CODES Lab. - Boston University




HOW MUCH
COMMUNICATION
FOR
OPTIMAL COOPERATION ?



SYNCHRONIZED (TIME-DRIVEN) COOPERATION

COMMUNICATE + UPDATE

] ————— — —— —)

S o —— — — — — — —

Drawbacks:
= Excessive communication (critical in wireless settings!)
= Faster nodes have to wait for slower ones
» Clock synchronization infeasible
= Bandwidth limitations
= Security risks

Christos G. Cassandras CODES Lab. - Boston University



ASYNCHRONOUS COOPERATION

= Nodes not synchronized, delayed information used

Update frequency for each node )
is bounded LR ) (5(5))

>
+ converges
technical conditions

Bertsekas and Tsitsiklis, 1997
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ASYNCHRONOUS (EVENT-DRIVEN) COOPERATION

UPDATE
COMMUNICATE

= UPDATE at I : locally determined, arbitrary (possibly periodic)
* COMMUNICATE from1: only when absolutely necessary

Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

Node state at any time 7 : x(¢)

= si(k) =x/()
Node state at ¢, : s (k)

AT UPDATE TIME ¢, : s] (k) : node j state estimated by node i

Estimate examples:

= EHGESHCM)] Most recent value

t, — 7’ (k) |
k A 'ai'df(xf(fj(k))) Linear prediction

J

N (k) =x,(c (K)) +

Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

AT ANY TIME 7 :

= x/(¢) : node i state estimated by node j

= If node i knows how j estimates its state, then it can evaluate x/(¢)

= Node i uses
* itS own true state, x,(¢)
» the estimate that j uses, x/(¢)

.. and evaluates an ERROR FUNCTION g(x, (1), x/ (1))

Error Function examples: Hxl. () —x/ (f)H1’

x,(0) -/ (1),

Christos G. Cassandras CODES Lab. - Boston University



WHEN SHOULD A NODE COMMUNICATE?

Compare ERROR FUNCTION g(x; (), x/ (1)) to THRESHOLD &

Node | communicates its state to node j only when it detects that

its true state x (¢) deviates from j’ estimate of it x;(¢)

= Event-Driven Control

Christos G. Cassandras CODES Lab. - Boston University



CONVERGENCE

Asynchronous distributed state update process at each i:
S. (k -|-]_) =g, (k) +o-d. (3" (k)) Estimates of other nodes,

evaluated by node i

K,|d, (s"(k)H if k sends update
0.(k-1) otherwise

w-|

THEOREM: Under certain conditions, there exist positive constants
o and K such that

lim VH (s(k)) = 0

Zhong and Cassandras, IEEE TAC, 2010

INTERPRETATION:
Event-driven cooperation achievable with
minimal communication requirements = energy savings

Christos G. Cassandras CODES Lab. - Boston University



COONVERGENCE WHEN DELAYS ARE PRESENT

g(xi'x}'/

Error function trajectory with
NO DELAY

i il il gl L
7 T,0/ 7] 0, 0y T, O,
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COONVERGENCE WHEN DELAYS ARE PRESENT

Add a boundedness assumption:

ASSUMPTION: There exists a non-negative integer D such

that if a message Is sent before ¢, , from node i to node j, it
will be received before ¢,.

INTERPRETATION: at most D state update events can occur between a node
sending a message and all destination nodes receiving this message.

THEOREM: Under certain conditions, there exist positive constants
o and K such that

lim VH (s(k)) = 0

k—o0

NOTE: The requirements on a and K ; depend on D and they are tighter.

Zhong and Cassandras, IEEE TAC, 2010
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SYNCHRONOUS v ASYNCHRONOUS

OPTIMAL COVERAGE PERFORMANCE

Energy savings + Extended lifetime
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SYNCHRONOUS v ASYNCHRONOUS:

No. of communication events SYNCHRONOUS v ASYNCHRONOUS:
for a deployment problem with obstacles

Achieving optimality
In a problem with obstacles
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DEMO: OPTIMAL DISTRIBUTED DEPLOYMENT WITH
OBSTACLES — SIMULATED AND REAL

Nodes # E | Low Detection Boost [1000 1000000 | 7.0249856E7 | Evaluate Objectivg Event dete(:tion _
i 5 10 15 20 25 30 35 45 a0 a5 <] prObabIIIty P(}x?s)

>0. 97
0. 97
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i ]
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Max Speed @ Sensing Decay 0.030 Sensing Range |57.0] Max Norm @ Kdelta |0.0 Est. Threshold |0.0

g At b b i

s b VL e LAy oy

Christos G. Cassandras D CODESLab - Boston Uni\}ei_éi';



SENSOR + ACTUATION NETWORK

ANTERNET

L
N 4""" i Data collection:
CYBER : o | relatively easy...

— — — — = " | | | |
L

PHYSICAL

. &
§ =

i e Control:
a challenge...
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SENSOR + ACTUATION:

A “SMART PARKING”
SYSTEM



“SMART PARKING" - MOTIVATION

of vehicles on the road in the downtowns of major cities are

cruising for a parking spot. It takes the average driver minutes to
find a parking spot in the downtown core of a major city.

R. Arnott, T.Rave, R.Schob, Alleviating Urban Traffic Congestion. 2005

Over one year in a Los Angeles business [
district, cars cruising for parking created the M
equivalent of = trips around the world, burning

gallons of gasoline and producing
tons of carbon dioxide.

Donald Shoup, The High Cost of Free Parking. 2005

Christos G. Cassandras CISE - CODES Lab. - Boston University



“SMART PARKING" - CONCEPT
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"SMART PARKING” - CONCEPT
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GUIDANCE-BASED PARKING —- DRAWBACKS...

Drivers: City:
» May not find a vacant space » Imbalanced parking utilization
« May miss better space » May create ADDED CONGESTION

(as multiple drivers converge

* Processing info while driving
to where a space exists)

ﬁ Short stay spaces

&

ﬁ' o R

Searching for parking = Competing for parking



SMART PARKING — NEW FEATURES

« System finds BEST parking space for driver
(based on PROXIMITY to destination + parking COST)

« Space RESERVED = guaranteed parking space

« System continuously IMPROVES assigned parking space

« System ensures FAIRNESS in parking space allocation

« Parking space UTILIZATION INCREASES

Driver makes decisions = System makes optimal

decisions for driver



GUIDANCE-BASED PARKING v " SMART PARKING”

COLLECTING DATA IS NOT “SMART”, S
JUST A NECESSARY STEP TOBEING &
“SMART” sipg cullaniia

PROCESSING DATA TO MAKE
GOOD DECISIONS IS “SMART"™



SMART PARKING — IMPLEMENTATION

+ Parking space availability mmmp = Standard sensors
detection (e.g., magnetic, cameras)
= Wireless sensor networking

» Vehicle localization mm) = GPS

+ System-Driver mm) = Smartphone
communication = Vehicle navigation system

» Parking reservation mm) = Folding/Retreating barrier
= Red/Green/Yellow light system




PROBLEM FORMULATION

Request

-

RESERVE

Allocation

’

®
@

\

Departure

Y e

e

Allocation
Falil

Allocation
Succeed



OBJECTIVE FUNCTION

Objective function
at kth decision point: ~ J(k)=min > > x,-J, (k)

X iew (OR (k) jeqr (k)

Decision variables:

X

{O if user iis NOT assigned to resource j

1 if useriis assigned to resource j

User cost function:

M, (k) . D,
Jl.j=/1i- / -|-(]__2i‘, ij
R

cost upper bound < > max proximity to dest.
E—

weight



MIXED INTEGER LINEAR PROBLEM (MILP)

Satisfiec&Jser Cost Unsatisfied User Cost
s N\ A N\

min > > xJy()+ ) - ) x)

ieW (k)UR(k)je; (k) ieW (k) jeQ, (k)

s.t.
D x,<1 Vjel(k)

ieW (k)UR(k)

le.j <1 VieW(k)

j€Q; (k)

inj =1 VieR(k) ---»| Reservation Guarantee

J€Q; (k)

D x,J(k)<J, wy(k) VieR(k) |.»| Reservation Upgrade

Jj€Q; (k)

x )—x .20 Viel'(k),iei|jeQ. (k)
(HEQZI,(,()’”) " jelk) {|] 3 )} --»| Fairness

me W(k)}

me {m|jeQm(k),tmj >t
x; €{01} VieW(k)UR(k),jeQ, (k)

l.j’




“SMART PARKING” TEST BED
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SIMULATION CASE STUDY
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CASE STUDY RESULTS

on-street Utilizat] Wandering Ratio
1 : . . 0.8 . : . .
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NG: No guidance (status quo)



KEY CONCLUSIONS

1. 10-20% higher parking utilization
= HIGHER REVENUE,
LOWER CONGESTION

2. % drivers searching for parking (wandering) < 2%
= HIGHER REVENUE,
LOWER CONGESTION

3. 50% reduction in parking time under heavy traffic
= LOWER CONGESTION,
LESS FUEL,
DRIVER COMFORT



IMPLEMENTATION

“Smart Parking” proof-of-concept study implemented in a small (27
space) garage at Boston University during summer 2011

- Parking request through iPhone app.

- Smart Parking Allocation Center (SPAC): Server located in CODES Lab
SPAC determines optimal allocation for request (if one exists) and notifies
driver through iPhone app showing the identity of reserved spot

- Garage gateway: Laptop computer located in garage

-Sensor and light system device: Custom-built
device affixed on ceiling over each parking spot.




BUNIverse “Upload [l Browse - .
http://www.bu.edu/buniverse/view/?v=1zgb6NnD

Smart Parking
Application

By: cstewart (1) in faculty, staff

Professaor Christos Cassandras talks
about the Smart Parking app in this
video.

§ tags: systems engineering

2loveit 90 @ 250

Report abuze

: e App ;
Valet Parkmgc\'otfit parking spots, Destprice

Mew technolosy finds




PROJECT TEAM, RECOGNITION

TEAM: Yanfeng Geng (PhD student), Ted Grunberg (Undergrad. Student),
Andy Ochs, Mikhail Gurevich, Greg Berman (BU SOM students)

« 2011 IBM/IEEE Smarter Planet Challenge competition, team won 2nd
place prize

* Best Student Paper Award, Finalist, 2011 IEEE Multi-Conference
on Systems and Control

e Third prize poster on “Smart Parking”, INFORMS 2011 Northeastern
Conference

 Ongoing implementation under BU OTD “Ignition Award”

« Working with City of Boston under IBM Award for “Combating Climate
Change Through Smarter Urban Transportation Policies”

» Geng, Y., and Cassandras, C.G., “Dynamic Resource Allocation in Urban Settings: A “Smart Parking”
Approach”, Proc. of 2011 IEEE Multi-Conference on Systems and Control, Oct. 2011.

» Geng, Y., and Cassandras, C.G., “A New “Smart Parking” System Based on Optimal Resource
Allocation and Reservations”, Proc. of 14th IEEE Intelligent Transportation Systems Conf., pp. 979-984,
Nov. 2011.



http://www.bu.edu/buniverse/view/?v=1zgb6NnD



“SMART CITY" AS A CYBER-PHYSICAL SYSTEM

TRAFFIC LIGHT

. Data collection Geng, Y., and Cassandras, C.G.,
— — : “Traffic Light Control Using
e el Infinitesimal Perturbation

Analysis”, subm. to 51st IEEE
Conf. Decision and Control, 2012

W\/\/ SENSOR
NETWORKS

Control and
Optimization
Actions

Information
Processing

- ——
-----

N Decision Making

“SMART PARKING™

Christos G. Cassandras CISE - CODES Lab. - Boston University
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