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Hybrid systems combine time-driven and event-driven dynamics. formalisms extend event-driven models to allow time-driven
This is a natural framework for manufacturing processes: The phys- activities to take p|ace between event occurrences, or to
ical characteristics of production parts undergo changes at var- - getermine event occurrence times. Other formalisms extend

ious operations described by time-driven models, while the timing fi dri dels to all ts to be iniected :
control of operations is described by event-driven models. Accord- Ime-driven modeis 1o allow events 1o be Injected, causing

ingly, in the framework we propose, manufactured parts are char- JUmps in the state or switching in the dynamics. Regardless
acterized by physical states (e.g., temperature, geometry) subjectof the framework adopted, it is becoming clear that the

to time-driven dynamics and by temporal states (e.g., operation analysis and design of controllers for hybrid systems will

start and stop times) subject to event-driven dynamics. We first pro- require tools that are more than just simple extensions of
vide a tutorial introduction to this hybrid system framework and . -

associated optimal control problems through a single-stage man- those for continuous or discrete systems.
ufacturing process model. We then show how the structure of the In this paper, we describe a specific hybrid system mod-
problem can be exploited to decompose what is a hard nonsmooth,eling framework for which optimal control problems are for-

nonconvex optimization problem into a collection of simpler prob- mulated and solved by combining time-driven and event-

lems. Next, we present extensions to multistage manufacturing pro- |, . . . . .
cesses for which we develop solution algorithms that make use ofdfven methodologies. This framework is motivated by prob-

Bezier approximation techniques. Emphasis is given to the issue oflems encountered in manufacturing settings. A hybrid system
deriving solutions through efficient algorithms, and some explicit description is a natural one for manufacturing processes that

numerical results are included. perform a sequence of operations on a set of production parts,
Keywords—Hybrid system, nonsmooth optimization, optimal with the purpose of each operation to change some physical
control. characteristics of the part. In the context of hybrid systems,

the changes in the physical characteristics are described by

time-driven(continuous) dynamics, while the timing con-

) ) ) ) ) trol of the operations is described byent-driver(discrete-
Hybrid systems combine continuous with discrete dy- eyent) dynamics. Accordingly, in the framework we propose,

namic behavior. Several different frameworks have been ,4nufactured parts are characterizeghbysicalstates (tem-

proposed for describing how the continuous and discrete aS-perature, geometry, bacteria level, or some indirect measure

pects of such systems interact [1]-{5]. Some hybrid system ¢ quality) subject to time-driven dynamics andtemporal

states (operation start and stop times) subject to event-driven
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times of certain departure and arrival events. Alternatively, number of ongoing research directions stemming from the
our framework may be viewed as an extension of the usual hybrid system framework presented in this paper.
time-driven models, and can be described as a switched
system consisting of an indexed set of (generally nonlinear) |
differential equations representing the way the physical state
of each job evolves during processing. In this alternative  The original motivation for the hybrid system model de-
viewpoint, event-driven dynamics determine the processing veloped in this paper came from our interaction with a metal
start and stop times, as well as the order in which the jobs manufacturing company seeking to integrate its metallur-
are processed and the sequence of workcenters visited byical process control operations with its plantwide planning
each job. Accordingly, we adopt a solution approach that and scheduling operations. In this context, individual ingots
combines ideas from queueing networks with ideas from undergo various operations to achieve certain metallurgical
nonlinear optimization. properties that define the “quality” of the finished metal. A
The purpose of this paper is to give a tutorial presenta- common operation in metalmaking involves slowly heating
tion to the present state-of-the-art of our modeling and op- ingots to some desired temperature and holding them at that
timal control framework, including its formulation, analysis, temperature for some relatively long period of time. This is
and synthesis of optimal control policies. In addition to ad- done to remove impurities, add beneficial elements to the
dressing real manufacturing problems, this presentation alsometal, or achieve a desired grain structure (hardness). A
illustrates many of the difficulties inherent in hybrid systems. “dual” to this operation is controlled cooling (annealing).
In particular, the introduction of discrete-event phenomena In either case, the process control operation determines the
into an otherwise continuous system takes it off the well- rate at which the temperature is changed (more generally,
beaten path of differentiable calculus and onto the less well- a “heating profile”), as well as the amount of time that this
traveled path of nonsmooth calculus (Lipschitz continuous temperature is held at each level. The objective of achieving
functions in our case). Moreover, since occurrences of dis- high quality here is clearly in conflict with the plantwide
crete events are often random, hybrid systems are often stoplanning and scheduling objective ¢imely delivery of
chastic, even when the continuous dynamics are completelyfinished metal products to clients. A similar situation arises
deterministic. In describing our framework, we will show in operations such as rolling, milling, or machining metals
how these difficulties arise and how tools from nonsmooth to achieve desired quality-defining shapes. We also mention
calculus and optimal control can be combined to solve somein passing that semiconductor manufacturing processes
broad classes of optimal control problems relevant to man- exhibit several features similar to those of metal manu-
ufacturing. Crucial to the solution approach is the exploita- facturing mentioned here, with the added importance of
tion of structural properties in the optimal state trajectories, timely product delivery due to the time-sensitive competitive
which are due to the event-driven dynamics and the nature ofnature of the semiconductor product market. The hybrid
the cost functions of interest. In particular, an optimal state system framework we describe next is designed to deal with
trajectory can be decomposed into independent segmentsthese tradeoffs between quality and satisfaction of customer
termed “busy periods.” Moreover, each busy period can be demand. We remark, however, that our proposed framework
further decomposed into “blocks” defined by certain events is more generally applicable to any manufacturing process
termed “critical.” This decomposition allows us to replace a where there are a number of tasks that need to be completed
single computationally complex problem by a set of smaller by processing them through a network of workcenters. To
and simpler problems and becomes the key to the develop-reflect the generality of our framework, we will use the
ment of algorithms for obtaining explicit solutions. generic term “jobs” for the tasks, and “servers” to describe
This paper is organized as followd/e begin with a high-  the devices that process the tasks. Whereas in metalmaking
level description of the proposed hybrid system framework the jobs were ingots and the servers ovens, rolling mills, and
in Section Il, followed by a detailed model and optimal con- lathes, more generally, the jobs might be food products or
trol problem formulation for single-stage processes in Sec- computer programs and the servers pasturizers and human
tion 1ll. In Section IlI-A, we consider two specific classes of computer programmers.
problems and explain the main difficulties involved, derive ~ What distinguishes our model from a standard discrete-
necessary conditions for optimality, introduce the concept event queueing model (see, e.g., [6] and [7] for some back-
of “critical jobs,” and identify several structural properties ground) and endows it with hybrid properties is that while a
that allow for the decomposition of the overall nonconvex job is being processed by a server, its physical characteris-
and nonsmooth problem into smaller and simpler ones. In tics (functionality, shape, quality) are changing according to
Section IlI-B, we present an explicit algorithmic procedure some time-driven dynamics (e.g., differential equations). In
for obtaining the optimal control solution which takes advan- our model, the role of the server is to transform the physical
tage of the structural properties presented in Section llI-A. In characteristics of a job from some initial “raw” state to some
Section IV, we extend the framework to two-stage processesfinal “completed” state. To represent the hybrid nature of the
and describe a solution approach based on replacing the nonmodel, we characterize each job byhysicalstate and a
differentable component of the hybrid system dynamics by temporalstate (in general, these are both vectors). The phys-
a Bezier function approximate. In Section V, we outline a ical state represents the physical characteristics of interest

THE HYBRID SYSTEM FRAMEWORK
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Fig. 1. A single-stage manufacturing process.

and evolves according to time-driven differential equations a single-server queueing system as shown in Fig. 1. As in
while the job is being processed by a server. The temporal standard queueing theory, the server is shown as a circle and
state represents processing start and stop times and evolvethe waiting area, or buffer, as an open rectangle.

according to discrete-event dynamics (queueing dynamicsin A total of IV jobs are assigned by an external source and
our case). arrive for processing at known timés< a; < ao < -+ <

Our objective is to formulate and solve optimal control ax < co. Leti = 1, 2, ---, N be the index used to iden-
problems that trade off costs on both the physical and tem-tify each job. The jobs are processed first-come, first-served
poral states of the completed jobs while taking into account (FCFS) by a work-conserving, nonpreemptive server, i.e.,
associated control costs. We assume the sequence of jobs antthe server never idles when there are jobs in the queue and
their arrival times are assigned by an external source. In gen-service is never interrupted. The processing time; (),
eral, a control policy determining how these jobs are pro- which is a function of a control variable;(¢). In general,
cessed through the system involves the selection of 1) thethe control is time-varying over the course of the processing
waveforms that control the evolution of the physical state of time s;. We limit ourselves here, however, to controls con-
each job, 2) the processing time for each job, 3) the order strained to be constant over the duration of service, varying
in which the jobs are to be processed, and, in the case of aonly with each new job, and chosen to ensure that processing
network of servers, 4) the sequence of servers each job willtimes are nonnegative, i.8,{«;) > 0 (work on problems in-
visit. The control policy chosen must also satisfy various con- volving time-varying control may be found in [8]).
straints on the allowable physical states, the allowable con- 1) Time-Driven DynamicsWhile a job is being pro-
trol inputs to the physical process, the order in which the jobs cessed by the server, its physical stateevolves
are processed, and the sequence of machines each job must  according to a deterministic differential equation
visit. Taken separately, methods exist for solving each of the
individual subproblems 1)—4) above: nonlinear optimal con-
trol for 1); discrete-event dynamic system performance op-
timization techniques for 2); and scheduling methods for 3)
and 4). However, when these four subproblems are combined
and tightly coupled, as they are in a hybrid system, the re-
sulting problem is one we cannot generally solve using avail-
able methods.

In what follows, we describe our initial efforts toward a
complete solution of the above four subproblems. Following
a natural progression, our work so far has focused on man-
ufacturing processes consisting of a single operation, with
extensions to a series of operations performed in tandem. To
preserve the tutorial nature of this paper and keep it from
becoming too long, we do not provide complete technical
proofs but refer the reader to appropriate references.

Zz(t) = gi(zi, U, t) Zi("_i) = Cz (1)

wherer; is the processing start time for jeland(; is
the state of the job at that time.

2) Event-Driven Dynamics:The completion time of
each job is denoted by, and is given by the stan-
dard Lindley equation for a FCFS, work-conserving,
nonpreemptive queue [7]

z; = 7 + si(u;) = max(@i—1, a;) + s;(w;) 2)

where we assum®) = —oo so thate; = aq +s1(u1).

Note that the contral, affects both time-driven dynamics
(1) and event-driven dynamics (2), justifying the hybrid
nature of the system. There are two alternative ways to
view this hybrid system. The first is as a discrete event
gueueing system with time-driven dynamics evolving during
processing in the server, as shown in Fig. 2. The other

We begin with a simple manufacturing process con- viewpoint interprets the model as a switched system. To
sisting of a single operation. We represent this process asillustrate, assume each job must be processed until it reaches

Ill. SINGLE-STAGE PROCESSES
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Fig. 2. Typical state trajectory.

a certain “quality” level denoted by;. That is, choose the
processing time for each job such that

s;(u;) = min [t > 0: z(m; + 1)

i+t

— [ st nastGen). @
Fig. 2 shows the evolution of the physical state as a

function of time (the “temporal state”). As illustrated in

the figure, the dynamics of the physical state experience
a “switch” when certain events occur. These events are of

two types: uncontrolled (exogenous) arrival events, and
controlleddeparture events. For the example in Fig. 2, the
first event is an exogenous arrival event at timeWhen this

event occurs, the physical state begins evolving according

to 2(¢) a1(#, ug, £) until it reaches the desired target
I';. At this time, denoted by, we remove job 1 from the

server, which generates a controlled departure event. Note

that the departure event at tineg¢ occurs before the second
job arrives at times,. Thus, there is a period of time, an idle
period defined by the event times anda., during which
the server has no jobs to process. At time processing

on the second job commences, and the dynamics of the

physical state switch té(¢) = go2(z, ug, t). The physical
state evolves according to these dynamics until tirae
when the targel’s is reached and the job is removed from
the server. Note, however, that the third job arrived before

processing on the second job was completed. This job was

forced to wait in the queue until time,, at which point
the physical dynamics switch ti(t) = gs(z, us, t), and
work immediately begins on the third job. As indicated in

Fig. 2, not only do the arrival and departure events cause

switching in the physical dynamics according to (1) but the

sequence in which these events occur is governed by their

own dynamics given in (2).

For the above single-operation framework defined by (1)
and (2), the optimal control objective is to choose a con-
trol policy # = {uy, uz, - -+, uy} to minimize an objective
function of the form

N
J= Z{@(m) + (@)} (4)

=1

only at the job completion times, - - -, z. Note also that
we do notinclude a cost on the physical state:; ). Clearly,
when the stopping criterion in (3) is used to obtain the ser-
vice times, a cost on the physical state is unnecessary because
in that case, we know that the physical state of each com-
pleted job satisfies our quality objectives, i.e{z;) € T;.
More generally, as we describe next, we can indirectly im-
pose a cost on the physical state by appropriate choice of
the functions?;(-) in (4) ands;(-) in (2). This is an “engi-
neering” approximation that makes the problem somewhat
more tractable, yet it still captures the essence of the original
problem. In particular, we have studied two different classes
of problems, each defined in terms of the form of the func-
tionsé;(+), ¢:(-), ands;(-) in (4) and (2). For the first class,
the control is interpreted as the processing time for the job,
and the cost function trades off the quality of the completed
jobs against the job completion times. We refer to these as
Class 1 problems (see also [9]-[11]). For Class 2, the con-
trol is interpreted as the effort applied to the job, and the cost
function trades off processing speed (which is related to the
monetary cost of producing the job) against the job comple-
tion times (see [12]). Mathematically, these two classes of
problems are defined as follows.

Class 1 Problems:

1) Foreveryi =1, ---, N, 6;(-): Rt — R™ is twice

continuously differentiable, strictly convex, monoton-
ically decreasing, and the following limits hold:

do;
lim 6;(w;)=— 1 =0
uig%Jr () uigréJf du,; >
and
de;
lim 6;(u;) = 1 - =0.
ufllnoo (1) ufllnoo du;
2) Foreveryi=1, ---, N,¢;(-): R — Ris twice con-

tinuously differentiable, strictly convex, and its min-
imum is obtained at a finite poird;.

3) Foreveryi =1, ---, N, s;(-): Rt — R* is linear
with s;(u;) = ou; anda > 0.

Class 2 Problems:

1) Foreveryi = 1, .-+, N, 6;(:): Rt — R is twice
continuously differentiable, strictly convex, and
monotonically increasing.

2) Foreveryi=1, -, N,¢;(-): R — R s twice con-
tinuously differentiable, strictly convex, and monoton-
ically increasing.

3) Foreveryi =1, ---, N, 5;(-): Rt — RT is twice
continuously differentiable, strictly convex, monoton-
ically decreasing, and the following limits hold:

. ) ds;
lim s;(u;) =— lim L =
w; —0 u; —0t dU,z
and
. . ds;
lim s;(w;) = lim — =0.
U; — 00 U; —00 duz

Note that although, in general, the state variables evolve con-While the above definitions are somewhat technical, their

tinuously with time, (4) is a multistage optimization problem

interpretation is consistent with the previous discussion re-

since we are concerned with the values of the state variablegyarding time—quality tradeoffs in manufacturing systems. In
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the case of Class 1 problems, we interpret the physicalstate ~ We begin by restating the Class 1 optimization problem,
as a measure of the “quality” of the finishéti job. Beyond which we will hereafter refer to as Problem P1:
a certain minimum processing time, there are decreasing re-

turns insofar as further improvement in quality is concerned. N
A common manufacturing problem is to produce jobs that H;mJ = Z{ei(“i) + i(wi)}s m={ur, uz, -+, un}
meet certain minimum quality standards and deliver them by =1 10
specified due dates. To achieve this, we place a cost on poor (10)
guality and a cost on missing the due date. As an example, .
let subject to

1

U;

and

This set of functions satisfies the conditions of Class 1. Here, si(uw;) =au; >0, a>0 (12)
the controks; is simply the service time. The cost on the con-
trol penalizes short service times, since this generally resultswith a known arrival sequenceé < a; < ay < --- <

in poor quality. Letting$; be the due date of joh the cost an < oo. The function®;(-), andy;(-) are assumed to con-
on the departure time penalizes job earliness and tardiness. form to the Class 1 conditions stated earlier. Observe that al-

Next, consider a Class 2 problem. In this case, our goal though this looks like a standard discrete-time optimal con-
is to process each job so that it achieves a certain desiredrol problem, it is worth pointing out that the indéxn (10)

final statez;(x;) = ¢ from an initial statez;(w;) = {; = 0. does not correspond to time steps; instead, it counts occur-
Interpretingu; as the control effort applied to jaba simple rences of the asynchronous job departure events involved in
form of the physical dynamics is our hybrid system.
Although dynamic programming (DP) is a general-pur-
Zi = u; (6) pose methodology that can be used to solve this problem, and

has been used for other types of hybrid system models, such
where the effort determines the rate at which the quality  as those studied in [14] and [15], the fundamental limitations
evolves and where, for simplicity, we take this effort to be arising from the notorious “curse of dimensionality” are well
constant over the entire processing time. Then, the amountgocumented. For problems of any real sophistication, the
of time we must process a job to reach the desired quality policy space over which one needs to search for the optimal

level g is control policy is so large that it makes the computational
q burden unmanageable, even with today’s fast computers.
si(u;) = w (7) Furthermore, the DP algorithm involves storing historical
! search information and elements of the control policy, which
where the requirement tha(u;) > 0 implies thatu; > 0. makes the memory required for problems of even modest
In this setting, it is typical to consider a quadratic cost on the dimension prohibitive. Consequently, in practice, one tries
amount of effort involved, hence choosing to avoid numerically solving the DP equations.
For deterministic optimal control problems with
0; (u;) = u? (8) real-valued states and controls, an alternative to DP is

provided by variational (gradient-based) approaches (e.g.,
and if there is a due dat® for job 7, we may choose a cost [16] and [17]). Variational techniques, however, are predi-

penalizing tardiness only as follows: cated on the differentiability of the objective function. Due
to the nature of event-driven dynamics, however, hybrid

Vilx;) = {Ov ) i < O (9) systems typically do not yield objective functions with the

(i = 6:)%, @iz 6 requisite “smoothness.” It is, in fact, the nondifferentiability

introduced by the event generating mechanism in hybrid
systems that makes associated optimal control problems so
difficult to solve (see also [15]).

Observe that (7)—(9) satisfy the Class 2 conditions.
The analysis to follow is limited to Class 1 problems. As

previously stated, our purpose is to give the intuition and in- In the case of Problem P1, the root of the nondifferen-

sight behind our main results rather than provide all tech- tiability lies with the max function in the event-driven dy-
nical details. Readers interested in the details are referred to Y y

. namics (11). The functiomax(z;, a;+1) is clearly not dif-
Egga]lr_(gilnlg} ?:T:s[sl:;] ;?gg{g:g Class 1 problems, and to [12]re- . o viaple at the point wherg = a,,1; at all other points,

however, it is differentiable with

A. Analysis of Class 1 Problems d o, i <am
In the following, we present some of the interesting prop- dz; max(zi, ai+1) = 1, if 2 > a1

erties of Class 1 problems. These properties will form the

theoretical foundation of the numerical algorithm presented To illustrate this difficulty and gain some insight as to the na-

at the end of the section. ture of a typical objective function in (10), consider a simple
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Class 1 example wittv = 2. Leta; = 2 anda, = 3, and
define

Or(ur) =—, Oo(uz) = —, Nyt
U1 U2 e
Pr(zy) =21,  a(za) = (z2 — 30)% \‘
ki f (12), this gives th functi R "‘{‘:‘M .
Making use of (11), this gives the cost function mﬁ%%%
1 IR
J(uy, ug) = — + — +af + (2 — 30)* RS
w1 Uo 1 \%ﬁ e ﬁ, L, :
11 R |
=== (a4 w)’ @W"ﬁ";&.\?& SE
w TR
+ [max(ay +u1, az) + ug — 30 SR U 1111 e
1 1 ~ 15
=4+ = 4(2 2 )
L + (24 u) .

+ [max(2 + uy, 3) +uz — 30]*  (13) , _ _ N
Fig. 3. Plotof a portion of7 (w1, u2) showing that itis nonconvex

which is plotted in Fig. 3. As seen in the figure, the objec- 24 nensmeoth.

tive function is generally not smooth: there is evidence of

a “crease” in the surface running parallel to the axis at 1) Nonsmooth OptimizationTo develop a rigorous solu-

u; = 1. This corresponds to all points witly = a,. The tion approach that takes into account the nondifferentiability
surface is not differentiable across this crease, although it isassociated with critical jobs, we use some basic results from
differentiable everywhere else. Another interesting observa- nonsmooth optimization theory (see [19] and [20]). Non-
tionisthat/(uy, us) isnota convex function ofi;, although smooth optimization theory deals with the optimization of
itis convexinuso. Thisis due to the lasttermin (13) involving  Lipschitz continuous functiong: £ — R™, which satisfy

the max function. Nonetheless, we can show [10] that Class|f(z) — f(v)| < K|z — y|, where K is a positive con-

1 problems always have a unique global optimal solution (in stant andz, ¥ € FE, an open subset ¢&@". Note that Lips-

this example, it turns out to hg = 0.452 andu, = 6.965.) chitz functions are continuous, but need not be everywhere
However, the fact thaf(-) in (10) is generally not a convex differentiable. According to Radmacher’s theorem, they are,
function in the control sequende;, - - -, ux}, despite the however, differentiable almost everywhere. The max func-
convexity assumptions ofy(-), andy;(-), adds to the diffi-  tionis a Lipschitz function, continuous and differentiable ev-
culty of obtaining numerical solutions. erywhere except at the point where its arguments are equal.

The points of nondifferentiability illustrated by this ex- Since the sum of Lipschitz functions is Lipschitz, and a com-
ample form a critical component of the analysis to follow, posite function of Lipschitz functions is Lipschitz, our objec-
and, for this reason, jobs associated with them are singledtive function in (10) is Lipschitz continuous. While objec-

out and termed “critical.” tive functions in hybrid optimal control problems can have
Definition 1: Ajobi =1, ---, N — 1is calledcritical if discontinuities (see [15]), they are more often Lipschitz, and
Ty = Gig1- this is due to the event-generating mechanism.

Intuitively, critical jobs in the optimal policy correspond to For continuously differentiable (smooth) functions, a nec-
the idea of processing jalas long as possible (to ensure high essary condition for a point to be a local extremum is that the
quality) and releasing it “just in time” for the next arriving gradient be zero there, and gradient-based methods can be
job to start processing, i.e., precisely at time= a;11. As used to search for points satisfying this condition. The nec-
we will see, it is indeed optimal to control the service times essary condition for general Lipschitz functions, which are
for some selected jobs in this way; determining which ones often referred to asonsmoothunctions, cannot be phrased
in particular is an important part of the problem solution. in terms of the gradient, since the gradient may not exist at

Critical jobs are important for the following reason: If the the local extrema (as in our problem when the optimal so-
optimal solution does not contain any critical jobs, then the lution contains critical jobs). Instead, the conditions for op-
objective function is differentiable at its global minimum. timality are phrased in terms of a generalization of the gra-
In this case, the problem can be solved using gradient-basedlient. Specifically, supposg: R* — R is a locally Lips-
methods, such as a standard two-point boundary-valuechitz continuous function of. € R™, and letS(u) denote
problem (TPBVP) solver (e.g., see [17]). If the solution the set of all indexed sequences, {};°_; C R"that sat-
does contain critical jobs, however, a gradient-based methodisfy the following three conditions: i},,, — « asm — oo,
will not converge, but will “chatter,” jumping back and forth i) the gradientV f(u,,) exists for allm = 1, 2, ---, and
across the crease at the minimum. We have developed anii) lim,, ... Vf(u,) = ¢ exists. Then, theubdifferen-
algorithm that detects this chattering and responds by takingtial of f at « is denoted bydf(«) and is defined as the
action to force certain jobs to be critical (see [18]). Although convex hull of all limits¢ corresponding to every sequence
this algorithm works well most of the time, it is heuristic w,, € S(u). The subdifferential has the following three fun-
and may fail to find the optimal solution. damental properties (see [19])dY (u) is a nonempty, com-
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pact, and convex set iR"”, ii) df(u) is a singletonff f is These definitions are helpful in evaluating the subdif-

continuously differentiable in some open set containing  ferential 3.J(uq, - - -, uy), which is given in terms of the
in which case?f(u) = V f(u.,), and iii) if « is a local ex- left and right derivatives of/(u1, ---, ux) with respect
tremum of f, then0 € 8f(w). Each elemenp of the subd- to uy, ---, un. TO see this, let us fix all controls on some
ifferential is referred to as generalized gradienbr, in the sample path such that jols- - -, m(:) are all in the same
convex case, aubgradient block andz,,;;y < am)+1. Since the service times are

As a simple illustrative example, let us evaluate the sub- given bys; = ou;, by adjusting the contral; (keeping all
differential for the absolute value functiofi(xz) = |z|, at other controls fixed), we change the departure time®f

x = 0, where it is not differentiable. Since = 0 is the all jobsj = 4, -- -, m(é) through

global minimum, it must satisfy the necessary condition for

optimality, i.e.,0 € df(0). In this case, the subdifferential j

is nothing but a closed interval on the real line, whose left x; = max(zi—1, a;) + si(u;) + Z sp(ur)  (16)
and right endpoints are given respectively by the left deriva- k=i+1

tive, lim,qo- ((df(z))/dz) = —1, and the right derivative,
lim, o+ ((df (x))/dxz) = 1. The subdifferential is, therefore, ~where the max accounts for the fact thatjohay be the first
given byd f(0) = [—1, 1], and clearlyp € 9f(0). in its busy period. Moreover,

2) Subdifferential Derivation:The third property of the
subdifferential presented in the previous section is the most d max(z;, aj+1) _ dz; _ 1 forallj=i, -, m(i)—1
important to us, since it provides a way to check if a can- dx; - dx; - J=14 N
didate solution satisfies the necessary conditions for opti-
mality. Solving our optimization problem (10)—(12), there- and
fore, requires deriving an expression for the subdifferential
dJ(uq, - -, uy). As we will see, the special structure of the ) dmax(Tm(i)s Cmi)41)  Dom(i)41
event-driven dynamics (11) makes the derivation of the subd- . ml%f,fln it T (i) = du,, @ =0
ifferential rather straightforward and not much different than 17
the simple example involving(x) = |x| in the previous sec-  where the limit above is obtained by increasingn (16) in
tion. such a way that; approaches;; from the left forj =

Referring back to Fig. 2, we see that, as the hybrid system (). In addition, SINCEr,,, i) < am(i)+1, the state equation
operates, it generates a sequence of departure times in re¢11) implies that(d max(z;, aj4+1))/dz;) = 0 forall j >
sponse to the given sequence of arrival times. These two se+(i). Therefore, recalling (16)
guences taken together definsaample pathit is convenient
to divide a sample path intousyperiods, during which the ] aJ
server is actively processing jobs, aie periods, during xmm%flnmﬂ w;
which the system is empty waiting for jobs to arrive. For-

N

mally, we have the following. . . 0
Definition 2: An idle periodis a time intervalzy, ax11] - mm(i>1T1(IJEln(i)+1 o, z_:[ej(“f) + ()]
such thatey, < agy1 foranyk =1, ---, N — 1. ‘ =1
Definition 3: A busy periodis a time interval(ay, z,] ap, =9 dip; da;
defined by a subsequendé, & + 1, ---, n} such that i) = du + Z dr; du
Tp—1 < ax, i) z; > a;q1 foralli =k, ---,n—1, and =
i) 2, < apq1. o, ds; L dy;
It is also useful to partition each busy period iflocks = dug - du; Z dr;
A block starts with the first job after either a critical job or an J=
idle period and it ends either with the next critical job or with db; m(i) dip;
the last job in the busy period. For any job= 1, - --, N let =gn T > Tr. (18)
us define ‘ g=i

Denoting this left derivative with respectig by £, , we set
n(t) = min{n > ¢: 2, < ap41} (14)
and a8, m(i

_ ! diy
m(i) = min{m > & T < Gyl }- (15) & = T ki)

de;’
g=i 7

(19)

In words,n (%) is the index of the last job in thisusy period

that contains job, andm (i) is the index of the lastjob inthe A similar argument can be made for the right derivative by
blockthat contains job. If the last job in the block that con-  starting withw; such thatz,,,;) > am(i)+1, and noting that
tains jobi is critical, thenm(i) < n(é) andz, ;) = Gm(iy41-

On the other hand, if the last job in the block containing job lim dmax(z;, aj41) _ dz; _ 1 (20)

i is not critical, thenm(i) = n(é) andz,, ¢y < am(iy41- i lagi dz; Cdzy
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for any critical jobj between and the end of the busy period Lemma 3.1:Consider a busy period consisting of jobs

that contains it, given by (¢). Hence {k, -, n(k)}andleti € {k, ---, n(k)}. The optimal con-
trol «} depends only on the arrival timeg, - - -, a,) (it
dmax(z;, aj41) _ dz; 1 forall j =i, -, n(i)-1 o!oes not depend on the arrival times of jobs in other busy pe-
dx; dr riods).
A related, but weaker, property applies to blocks and is
in which case we get referred to agpartial coupling
Lemma 3.2:Consider a block consisting of jobs
n(s) {j,---,m(y)} and leti € {j,---, m(5)}. The optimal
. aJ  db; dip; * ol fi ,
Lim - o bty (21) controlu; depends only on the arrival times anda,,, ;)41
Em(iylamirr Ou  dug o day (it does not depend on any other arrival times).
These decoupling properties are central to the numerical
Denoting this right derivative with respect tg by &, we algorithm presented in Section 1I-B. The idle period decou-
set pling property tells us that the controls for individual busy
‘ periods can be determined independently of each other. This
L+ d; n@ dip; decomposes a large optimization problem consistingvof
&= du; + az d_azj (22) jobs into several smaller subproblems, one for each busy pe-
J=r riod. Further, partial coupling tells us that the controls for

3) Necessary Conditions for Optimalityfor Problem  the jobs that come after a critical one are independent of the
P1, it is easy to establish, using (19) and (22), the inequality controls for the jobs that _pregede the critical job. This de-
& < ¢tforallé = 1,-.-, N (a proof may be found in ~ composes each busy period into subproblems, one for each
[10]). Thus, all intervalsi¢;, ;] are well defined. Then, block. Consequently, if we can identify the busy period struc-

the subdifferential of our objective function (10) is given by ~ture (i.., which jobs will be in which busy periods), and the
block structure within each busy period (i.e., which jobs will

be critical), then the problem can be solved as a collection
of smaller independent subproblems. Therefore, of obvious

" L . importance is the identification of the busy period structure
A necessary condition for optimality then follows directly and the critical jobs within the busy periods

from the fact presented in Section IlI-Al that for a locally
Lipschitz continuous functioif, if « is a local extremum of
f,then0 € df(u) [19].

Theorem 3.1:For Problem P1, an optimal control se-

0 = (&7, &1 x - x [&y, I CRY. (23)

5) Critical Jobs and Critical Intervals: As we mentioned
already, obtaining solutions for our hybrid system model is
complicated by the possibility that the optimal solution may
contain critical jobs. At first sight, it might seem that the

quenceu;, « =1, -+, N, must satisfy possibility of obtaining a solution with:; precisely equal
to a;+1 would be a very rare, even pathological, situation.
Oel¢, &1CR! (24) However, this is not the case; in fact, almost any sample path
will have some critical jobs within its busy periods. To see
foreachi = 1, ..., V. why this is and gain some more insight into critical jobs, let
Using this necessary condition, we were able to show (seeus explain how they occur.
[10]) that the optimal solution for Problem P1 is unique. Consider a busy period on an optimal sample path.
Theorem 3.2:For Problem P1, the optimal control se- Without loss of generality, because of Lemma 3.1, consider
quenceu;, i = 1, ---, N, is unique. the first busy period on the sample path, starting at time

Establishing this uniqueness result is not trivial and it is a;. Suppose this busy period contaiBgobs and that none
particularly interesting because, as Fig. 3 clearly shows, theof these jobs are critical, i.em(1) = n(1). Denote the
objective function is generally not convex and, therefore, optimal departure times for the jobs in this busy period by
may have local minima. Not only does nonconvexity make it z; 5,4 = 1, ---, B. Here,i is the index of the job and?
difficult to establish uniqueness of the optimal solution but it is the number of jobs in the busy period that contains:job
also complicates the derivation of numerical algorithms. We Assuming there exists an arrival sequence that gives such a
remark that this difficulty does not arise in Class 2 problems, busy period, we have the following two properties (detailed
since it is easy to show using basic results from convexity proofs given in [10]).
theory [21] that these problems yield a strictly convex objec- Lemma 3.3:The optimal departure timesz; g,

tive function, in which case there is only a single minimum. ¢ =1, ---, B, depend only om; and B.
4) Decoupling Properties:Due to the nature of the Lemma 3.4:The optimal departure timesz; g,
event-generating mechanism (queueing dynamics), ouri = 1,--., B, are monotonically decreasing i,

hybrid system has two useful decoupling properties thati.e.,z; g < T; 5 forall B > B.

help to simplify its analysis and aid in the development of = The significance of Lemma 3.3 is that it allows us to
explicit algorithms. These properties are stated below asprecomputez; 5 for any givena; and positive integer
lemmas, proofs for which can be found in [10]. The first B. Lemma 3.4 is needed in order to explain the mecha-
decoupling property is thielle period decouplingproperty. nism responsible for critical jobs. In particular, under this
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lemma intervals of the formx; g, x; ;] for any B and
t=1, ---, B—1are well defined since; 5 < x; ;. Then,
the following provides a criterion for checking the presence
of critical jobs in a busy period (proof given in [10]).

Lemma 3.5: A busy period beginning with job= 1 and
containingB jobs on an optimal sample path includes at least
one critical job ifa;4+1 € [, 5, 2; ;] for one or more jobs
i=1---,B—1.

We refer to the time intervalpe; s, x; ;] ascritical in-
tervals Clearly, the wider the critical intervals, the greater
the likelihood that the busy period will contain critical jobs.
For typical Problem P1 examples we have considered, these
intervals are, i_n_fact_, quite wide and result in the frequent oc- Fig. 4. Critical intervals for an example With = 3.
currence of critical jobs.

While Lemma 3.5 can be used to determivteether or not
a busy period will contain critical jobS, it cannot be used to The intuition beh|nd thIS faCt iS not ha.rd to see. From The'
determinewhichjobs in the busy period will be critical. To ~ orem 3.1, we know that each critical job must satigfye
answer this question, one must actually explicitly solve the [& > &' Thus, it is expected thaj™ and¢;" should have
problem. One exception arises when the following sufficient OPPOSite signs, unless one of them were exactly zero. Be-
condition is satisfied (again, a proof is given in [10]): cause of uniqueness (Theorem 3.2), this can only happen in

Lemma 3.6: Consider a busy period beginning with job regions of measure zero, i.e., the objective function cannot
i = 1, and suppose there are a totaléfjobs remaining to have a flat region (i.e., a region with zero slope) either along

@

®

X1,3 X1,2 X1,1 X23 X22 X33

be processed. If there exists soe< N such that;y; < the nondifferentiable “crease” (see Fig. 3) or to either side
z yforalli=1, .-, L—1andzr, 141 < ar41 < 2L L, of it when the crease includes the global minimum. In fact, a
then jobL is critical. T - stronger, necessary, and sufficient condition for critical jobs

Thus, Lemma 3.6 is sufficient to identify a critical job, May be derived, which includes (25) as part of it; we omit i,
whereas Lemma 3.5 implies that there are other situationsSince we do not make use of it in this paper, but the reader
where critical jobs can occur. To illustrate, consider the ex- iS referred to [10] for details. Equation (25) leads to a “sign
ample shown in Fig. 4 for the cagé = 3. In the figure, test,” which will be used in the algorithm to be described next
Z1.1, T1,2, T2 2, T1,3, T2 3, T3 3 have been computed for 1O determine which jobs will be critical.

a given arrival timez; andB = 1, 2, and 3. First, consider

the implications of Lemma 3.6. With = 3 andL = 1, B. A Backward-Recursive Algorithm

according to the lemma, if; » < az < z1,1, as shown in As already mentioned, if the optimal solution to our
Fig. 4(a), then job 1 is critical (regardlessay). Therefore,  hybrid optimal control problem could never contain critical
the optimal departure time for job 145 = a>. Note thatif  jobs, then the objective function would be differentiable at

az < z1,2 then job 2 is definitely in the same busy period as its (unique) global minimum, and a standard gradient-based
job 1, whereas ifi; > x1 1 then job 2 must start a separate  TPBVP solver, like those described in the classical texts
busy period. Thus, the location af relative to the critical  (e.g., [17]), could be used to obtain numerical solutions. As
interval[z1, 2, z1,1] allows us to determine whether job 1is just described, however, critical jobs not only can occur,
critical, whether it ends the first busy period, or whetheritis put are, in fact, a usual feature of our optimal solutions.
included in a busy period containing atleast the firsttwo jobs. As a consequence, our hybrid system optimal control

Similarly, for L = 2, if az < #1,3 andz2,3 < a3 < 233,85 problem will typically have an objective function that is not

shown in Fig. 4(b), then job 2 is critical. differentiable at its minimum, in which case gradient-based
Next, consider Lemma 3.5. Suppose that< z; > and methods will not work. Of course, other methods designed

az < 2,3. Then, withj = 2andB = 3, if 21,3 < az < for solving nonsmooth optimization problems could be

x1,2 andaz < x2 3, job 1is the only job in the busy period  ysed. However, these algorithms are either computationally
satisfying the condition of this lemma, and hence must be very complex or use first-order necessary conditions to
critical. On the other hand, supposg s < a2 < 21,2 and guide their search, in which case they may get trapped in
T3 3 < az < x2 2, as shown in Fig. 4(c). In this case, both 3 |ocal, instead of the global, minimum of this nonconvex
J = 1, 2 satisfy the conditions of the lemma; therefore, either optimization problem. In contrast, the algorithm we develop
or both of jobs 1 and 2 might be critical. Until we actually next is specifically tailored to our hybrid system optimal
solve the problem, however, it is not possible to make a final control problem, and, as such, it is efficient. Although not
determination. yet formally shown, we conjecture that it is guaranteed to

When a case such as the one shown in Fig. 4(c) arises, Weeturn the unique global optimal solution (as opposed to a
need a different criterion for identifying critical jobs. One potentially local minimum).

such criterion is given by the following property: The algorithm is based on the following fundamental ob-
servation: Even though theverall optimization problem is
& -Sj < 0. (25) nonsmooth (recall Fig. 3), the controls within eaglock
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can be obtained by solving a smooth nonlinear optimization
problem with terminal constraints on the departure time of
the last job in the block. For example, consider a busy pe- gess

riod consisting of jobg:, - --, n(k), and suppose that this
busy period contains two blocks, i.en(k) < n(k) and
m(m(k) + 1) = n(k), as shown in Fig. 5. Then, by the

idle period decoupling property (Lemma 3.1) and the partial
coupling property (Lemma 3.2), we can determine the op-

timal controls for the jobs in this busy period by solving two
independent TPBVPs: the first for jolds - - -, m(k), with
terminal constraing,,,(xy = am)+1 (€.9., using a TPBVP

solver and the penalty function approach; see [17]) and thel, - -,

second for jobsn(k) + 1, - - -, n(k), with no terminal con-
straint on the departure time, ). That is, if we can iden-
tify the busy period structuref the optimal solution, and the
block structurewithin each busy period, then we can decom-
pose the solution of a computationally difficult nonsmooth
optimization problem into a collection of simpler, smooth

optimization problems (one for each block). What we need,

lak lam(k)ﬂ
BLOCK 1 BLOCK2

lan(k)ﬂ

Xm(k)

BUSY PERIOD -------= >

Fig. 5. A busy period consisting of two blocks.

The essential idea of the algorithm is to solve the overall
nonsmooth optimization problem, which includes jobs
N by decomposing it into a sequence of subprob-
lems P; (C), each of which is simpler (since it involves
fewer jobs, i.e.;j, ---, k) and is also smooth. That is, we
will only attempt to solve subproblems with(j) = m(k),
in which case, efficient (conjugate) gradient-based methods
can be used to solvé&; ,(C). To do this, the algorithm
proceeds in a backward-recursive manner, starting with
job N and adding earlier jobs one at a time, until all jobs

therefore, is systematic way to identify the busy period and have been considered. As each new 4db added, simple

block structures of the optimal solution.

sign tests on the right and left derivativés and ¢t are

One possibility is to exhaustively search over all possible performed to identify the busy period and block structures,
busy period and block structures for the optimal one. The and smooth optimal control problems are solved (with and

main difficulty with such an approach is its computational
complexity. It can be shown that there &€~ different
busy period structurefl1]. By the same argument, a busy
period containing3 jobs ha2?~! block structuresSuch an

approach is, therefore, infeasible, except for very small prob-

lems. Algorithm 1 given below provides a much more effi-
cient way of determining the optimal busy period and block
structures.

In describing the algorithm, we use the following defini-
tions.

ProblemP; ;,(C):
min J = 2{9 w;) + ()} (26)
g Uk ‘_J
subject to
x; = max(zi_1, a;) + s;(w;) (27)

where, ifC = 1, we include the terminal constraint
Th = Q41

and if C = 0, there is no terminal constraint. As usual, the
arrivalsa;, - - -, az and the terminal constraint,; are as-
sumed known.
We also define
ds ds; dip;
Sk duj duj Zz_: dz;’

(28)

In this notation;” = & .y and&;™ = & ), whereg;
and¢;t were defined in (19) and (22).
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without terminal constraints, as required) to obtain the
optimal controls. The basic structure of the algorithm is as
follows; for complete details, see [18].

Algorithm 1:
e INPUT:
The arrival sequence, ai, -+, any and
a terminal constraint flag TC. |If
TC = 1, the terminal constraint, AN+1,

is also needed.
e INITIALIZE:
If TC 0, solve Py n(0) to get
N = anv + snv(uly), and set m(N) = N and
n(N) = N;
If TC =1, set z}3 = any1 = an + sn(uly),
invert the service function to get
uy = sxrl(aN_,_l —ay), and set
n(N) = n(N +1).
e FOR ALLi =N -1, N -2
Step 1) Set zf = a;41

U,

m(N)=N and
1:
a; + s;(u
invert the service function to get,
uf = s; Hait — ap).
Step 2) Compute & ; and & ,¢41), and
conduct a sign test to determine the
nature of the coupling between jobs i
and the busy period that begins with
job i+ 1.
Step 2.1) If i * & ntiyry < 0 (ie., op-
posite sign), then job 1 Is critical
[recall equation (25)].
Set m(i) =4 and n(i) =
Go to Step 1.
Step 2.2) If &i > 0and & o4 > 0O,
then job ¢ is decoupled from ¢ + 1 and
forms a separate busy period.

-

*), and

n(i+1).
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Solve P, ;(0) to get
xf = a; + s;(u)).
Set m(i) =4 and n(i) = i.

u? and

Go to Step 1.
Step 2.3) If &Gi < 0and & 441y < O,
job ¢ is coupled to i + 1, in which

case a block-by-block forward sweep

is used to merge job 1 into the busy
period that contains job i + 1 (details
omitted).

Check to see if the busy period
formed overlaps with the next (pro-
vided there is one to overlap with),
i.e., check to see fif n(%) <
Tn(i) > On(i)+1-

- If there is no overlap, go to Step
1).

- Otherwise (i.e., there is
overlap), make a recursive call
to Algorithm 1, with a terminal

N and

constraint Tp(i = an(iy+1 to find the
controls that make the last job in the

busy period containing jobs 2, -, n(i)
critical.

Conduct a sign test to see if the
controls computed above are optimal
(details omitted). If so, go to Step
1); else, go to Step 2.3) to merge the
two busy periods.

The easiest way to explain the algorithm, including the
details omitted in Step 2.3), is through a simple example.
Accordingly, let us consider the followiny = 5 problem:

5
min J = E {u;* + 27}
U,y U Pt

i=

subject tar; = max(a;, x;_1) +u? (29)

for the arrival sequencg0.4, 0.5, 0.7, 0.9, 13 Note that,
although this problem has the same interpretation as Class 1
(trades off quality against completion time), the service func-
tionss;(u;) are not linear. Hence, this problem is more gen-
eral than those in Class 1. However, it is possible to show
(using basic facts from convex analysis [21]) that this par-
ticular example has a strictly convex objective function, and
hence satisfaction of the necessary conditions implies that
the unique global solution has been found.

Fig. 6, which plots sample paths (the number of jobs in the
system vs. time), shows the progress of Algorithm 1 (imple-
mented through MATLAB) as it proceeds job by job toward
the final solution.

Initialization (¢ = 5): The algorithm is initialized by
solving P, 5(0) to obtainuf andz? = as; + (u%)®. These
arrival and departure events are plotted in Fig. 6(a).

t=4: Next, job 4 is introduced, and the algorithm

seeks to find the optimal controlg; and v}
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Fig. 6. Example showing the operation of the backward-recursive
Algorithm 1.

for these two jobs in isolation. To do so, the
algorithm must determine whether or not job 4
should be decoupled from job 5, coupled to it, or
be a critical job. To determine this, we assume
job 4 is critical, and set} = a5 = aq + sa(u}),

in which caseu? = s;'(as — a4) [Step 1)].
Then, by computing the quantiti€s 4, and&, 5
[Step 2)], a simple sign test tells us the nature of
the coupling between the two jobs.

1) If &4 4 andéy 5 have opposite signs [Step
2.1)], then by (25), job 4 is critical.

2) If &44 > 0 andéys > 0, then we
know from definitions (19) and (22) that
increasing the control increases the cost.

3) Conversely, i, 4 < 0andéy 5 < 0,then
increasing the control decreases the cost.

Consequently, when the service functisy{-)

is monotonically increasing, as in this example,
then both¢y 4 andéy 5’s being positive implies
that the service time is too long, and there should
be an idle period between jobs 4 and 5 [Step
2.2)]. On the other hand, these quantities being
negative says that the service time is too short,
and job 4 should be merged with job 5 [Step
2.3)]. Asillustrated in Fig. 6(b) sandéy 5 are
both positive, implying that jobs 4 and 5 are de-
coupled into separate busy periods. We, there-
fore, follow Step 2.2) and solv&, 4(0) to ob-
tain«; andx}; the result is shown in Fig. 6(c).
Because of the idle period decoupling property
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(Lemma 3.1), the optimal contral; for job 5
does not need to be reevaluated.

Here we make the following remark: if the service func-
tion is monotonically decreasing, as for Class 2 problems,
Algorithm 1 can still be used if the sign tests in Steps 2.2)
and 2.3) are switched, i.e., both positive implies decoupling
jobsi andi + 1, and both negative implies coupling jobs
and: + 1.

1 =23: The algorithm continues by introducing job 3,
making it critical, computings, 3 and&z ,,4) =
&4, and performing the sign test of Step 2). As
shown in Fig. 6(d)£s 3 andés 4 are both nega-
tive, indicating that jobs 3 and 4 should be cou-
pled by merging job 3 into the same busy period
as job 4. To do this, the algorithm executes Step
2.3) and solved’; ,(0) to get the result shown
in Fig. 6(e). Since there is no overlap betwagn
andas, the algorithm is done with job 3. Again,
because of the idle period decoupling property,
the optimal control for job 5 does not change.
When job 2 is introduced, the sign test in Step
2.1) indicates it should be critical [see Fig. 6(f)].
Once more, because of the partial coupling prop-
erty, the controls for jobs 3-5 are unaffected, and
the algorithm is finished with job 2.

When job 1 is introduced, things get interesting.
In this case, the sign test of Step 2) indicates
that job 1 should be merged into the busy period
containing jobs 2—4 [see Fig. 6(g)] and the algo-
rithm executes Step 2.3). Note that the algorithm
cannot merge job 1 by simply solving; 4(0),
because it may turn out that job 2 is still critical,
in which caseP; 4(0) is a nonsmooth optimiza-
tion problem, which is precisely what we are
trying to avoid. To deal with this possibility,
merging job 1 into the busy period containing
jobs 2-4 requires a block-by-block forward
sweep through the busy period. The first part
of the forward sweep involves solving, »(1),
resulting in Fig. 6(h). A sign test wit; o and
&1,4 then indicates that the block just formed
by merging jobs 1 and 2 should be merged
with the block containing jobs 3 and 4, i.e., we
now know that job 2 willnot be critical. We
already know that job 3 is not critical, hence, the
algorithm proceeds to solvB; 4(0), obtaining
the result shown in Fig. 6(i), and the algorithm
is finished with the first part of Step 2.3). The
algorithm then proceeds to the second part of
Step 2.3) to check if the busy period just formed
overlaps with the busy period containing job 5.
In this case, there is overlap indicating that the
busy period consisting of jobs 1-4 needs to be
merged with the busy period consisting of job 5.
Merging these busy periods requires some care,
because doing so could result in any one of the
jobs1, ---, 4 becoming critical. To merge the
two busy periods, this step begins by making
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a recursive call to Algorithm 1 to solve a fixed
endpoint problem for jobs 1-4 with terminal
constraintzy = a5. Without going into the
details, this results in Fig. 6(j). Conducting a
sign test with¢; 4 and¢; 5 indicates thatjob 4 is
critical. Consequently, the algorithm is finished
with job 1, and the solution is complete.

As just described, Algorithm 1 solves the nonsmooth op-
timization problem by decomposing it into a collection of
simpler and smoothptimization problems, essentially iden-
tifying the block structure, and solving a smooth optimiza-
tion problem for each block. This capability, however, comes
at the cost of a complex recursive procedure that can require
recomputing the controls for each job several times before
the final solution is obtained. It should be clear that the algo-
rithm achieves its best performance when all jobs are critical,
because in that case it only needs to sdRse v (0) (in the
initialization step), and after that all of the other controls are
obtained by inverting the service function [Steps 2.2) and 2.3)
are never invoked]. The next best situation is when every job
forms a separate busy period. In this case, the solution be-
comes one of solvingv problemsP; ;(0), one for each job
t=1, ---, N.The worst case is when all jobs are in a single
busy period, since this generally requires repeated merging
of blocks. Even so, the algorithm is much more efficient than
examining all possible block structures.

We remark that we have recently developed two other al-
gorithms for the Class 1 problems. The first, described in
[11], is another backward algorithm. It is similar to Algo-
rithm 1, except that it searches busy period structures instead
of block structures. We have shown that this algorithm does
not need to search @™ ! possible busy period structures,
but at mose N — 1. The second algorithm, described in [13],
gives an even better performance, requiring a search of only
N busy period structures to solve the problem. Moreover,
we can prove that both algorithms are guaranteed to obtain
the unique optimal solution. Our ongoing research is inves-
tigating the advantages and disadvantages of the various al-
gorithms we have developed.

IV. TWO-STAGE PROCESSES

Next, we look at the simplest case of a manufacturing
process involving multiple operations, i.e., a manufacturing
process that requires a sequence of two operations to be per-
formed on each job. A natural extension of the cost function
(4) for the single-stage case gives the minimization problem

N

J = Z{ei,l(ui,1)+9i,2(ui,2)+1/)i, i, 1)+ i 2(xi,2)}

i=1

where the first subscripted quantity is the job indéx=

1, ---, N) and the second is the server indgx= 1, 2).
Assuming both queues are FCFS, nonidling, and nonpreemp-
tive, the event-driven dynamics are given by two coupled
Lindley equations of the same form as (2)

@1 = max(wi—1,1, &) + 5i,1(ui, 1)

@i 2 = max(wi_1,2,%; 1) + i, 2(i, 2)-
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Note the coupling between the two stages: a departure from F(d)
the firstimmediately becomes an arrival at the second. Again
we need nonnegative service times, is¢.; (u; 1) > 0 and
si 2(ug, 2) > 0.

For this tandem operation case, therefore, we have the fol-
lowing optimal control problem, which we will call Problem

P2:
min .J
N a : .
=3 {81 (wi, 1)+, 2 (s, 2) i, 1 (i 1)+, 2 (w5 2) a—e o a+e d
=1
m={u1 1, -, uN,1, U1,2, -, UN,2} (30) Fig. 7. Bezier approximation of a max function.
subject to
where
z,1 = max(i—1,1, a;) + i, 1(ui,1) (31) ol ‘ ‘
Ti,2 = maX(ﬂUzel,m Ty, 1) + 31,2(%‘,2) (32) Bi,n(t) = —L'(n — L), 1=t
and . . “
and0 < t < 1. The control points define a “character-
si1(ui1) > 0 5i.2(ui,2) > 0 (33) @st_ic polyg_on," an_d t_he Bezier function has _the property th_at
it is contained within the convex hull of this characteristic
with a known arrival sequende< a; < a2 < -+ <ay < polygon. In our case, there are three obvious control points

oco. For the examples in this section, we will assume that the to use: the pointa, a) shown in Fig. 7, where the max func-

functionss; ;(-), 6;, ;(-), and;_;(-) conform to the Class tion is not differentiable, and two pointa — ¢, a) and(a +

2 conditions. Under these conditions, we can show that thee, o + ¢), which define a neighborhood afon thed-axis in

objective function (although nonsmooth) is strictly convex, Fig. 7 (where: is shown ag). An additional property of (¢)

and hence has a unique solution. is that the tangents at the first and last control points coincide
For the single operation case, it was relatively easy to ob- with the first and last segments of the characteristic polygon.

tain the subdifferential as a collection of intervals as shown In our case, the two properties imply that the derivative of

in (23). The situation is not as simple in the two-stage case. the Bezier approximation of the max function is always be-

For one, now the control for each job is a vector, consisting tween zero and one. Making this replacement gives a contin-

of a control for the first operation and another for the second. uously differentiable surrogate, which by our choice ofin

For another, the coupling between the two operations compli- be made to approximate the max function to any arbitrary

cates matters substantially. As a consequence, the resultinglegree of accuracy. For the max function, the Bezier approx-

subdifferential is, in general, a region®3 (the dimension  imation over the rangé = ¢ — ¢ to d = a + ¢ is given by

of the control vector). Determining this region, however, is f(d) = a + ¢t?, wheret = (1/2¢) d — ((a — ¢) /2¢). In other

very difficult, except for the most trivial situations. The dif- words, the max has been replaced by the surrogate

ficulty in determining the subdifferential, therefore, strongly

discourages the use of an algorithm involving generalized max(w;, a;+1)

gradients (to date, we have been unable to develop any such Ait1, if z; < a1 —c¢
scheme). Git1+
An aIterna'uye that prqwdes systematic means for ob- =4 = (i — aipr + €)%, if aigr — € <oy < agpr +¢
taining approximate solutions to our hybrid optimal control de .
problem is based on the following observation. By our Class Ti, if z; > aiy1 +¢

2 (as well as Class 1) assumptions, the only function that is
not everywhere differentiable is the max function appearing
in the event-driven dynamics (31), (32). If we were to re- d

place the max by a continuously differentiable surrogate that dz; max(zi; ai+1)

with a derivative given by

closely approximates it, then we would be left with a smooth 0, if ; < ajy1—e

programming problem, for which well-developed numerical .

algorithms exist (e.g., conjugate gradient methods). = i(ﬂfv‘, —aip1 te), ifap —e<w <aiprte
Accordingly, suppose we replace the max function with a 1, if ©; > a;+1 +e.

Bezier functionasin Fig. 7 (see, e.g., [22]). A Bezier function _ _ _ _
is constructed using + 1 “control points” represented by ~ Using this approach with a standard gradient-based TPBVP

vectorsvy, - - -, v,, and is parametrically given by solver, we can periodically reduce and recompute the
" Bezier function to make the fit increasingly tighter, to
v(t) = Z viB; n(t) achigve any desired accuracy. The .numerical results shown
o next illustrate the effectiveness of this simple approach.
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As an illustration, we consider a problem wiffi = 6 First Stage
jobs. These six jobs arrive at known times 0.2, 0.7, 1.3, 1.4,
1.8, and 2.5, respectively. Each job is processed in the first 4 5t
server until it reaches a physical stgte= 0.5, and in the
second server until it reaches a physical state- 0.6. The 1}
cost function we consider is

N 0.5}
J = Z{aluf 1+ a2uz‘2,2 + /33712,2} (34) o
i=1 o 1 =2 = 4
with parametersy; = 2, ax = 3, andj = 2. Fig. 8 shows Second Stage
= T

the optimal sample paths for each server. Note that the pres-
ence of critical jobs at stage 2 is captured by the Bezier ap-
proximation. It is also worthwhile observing that the optimal
sample path at server 2 consists of either single-job busy pe- |
riods or busy periods containing only critical jobs. In other
words, the optimal control is to always keep the queue be- o.s}
tween the two stages empty. This is not a coincidence but a
reflection of a property of the optimal solutions for this class C5 - - Y l
of problems. We are currently investigating this property in
order to assess its range of applicability (preliminary results Fig. 8. Optimal sample path for a two-stage hybrid system.
are included in [23]).

Of course, the Bezier approach can also be used to solv
single-stage problems. Its simplicity would seem to give it a
clear advantage over Algorithm 1 in Section IlI-B. This, how-

etime, etc. As described in this paper, our research so far has
focused on this last component of the control problem. We

have assumed that a job schedule is given and examined
ever, may notbe the case. Recall that Class 1 problems are nolIhe issues involved in determining the server parameters.

convex, meaning that the _Bemer approximation techmque_, Dealing with single-stage and two-stage processes, we
which uses gradients to guide the search, may get trapped in

alocal minimum. Moreover. the parametenust be reduced encountered most of the difficulties characteristic of hybrid
' ' P ) system optimal control problems, including nondifferentia-
to smaller and smaller values for the Bezier approach to get

. . . bility and nonconvexity of objective functions.
the exact solution, making convergence sometimes slow. Al- Generally speaking, dynamic programming (DP) can be
gorithm 1, on the other hand, may require the solution of y'sp 9, dy prog 9

many subproblems, but each of these subproblems may beused to solve the optimal control problems described in this

simpler (because it usually involves only few jobs) and can paper. In practice, however, the “curse of dimensionality

. . makes it numerically impractical to obtain a control policy
be solved very quickly. An advantage of the Bezier approx- ; T
S : oo s ; by using DP. For deterministic problems, the problem can be
imation may be its generality, in that it is applicable to any

. . . . . phrased as a nonsmooth mathematical programming problem
network configuration whose dynamics can be described in : o L
W " . : that can be treated with a combination of variational tech-
the “max-plus” algebra; in fact, it has been used successfully

for N-stage processed] > 2. As mentioned, an analysis of niques and nonsmooth optimization theory. In general, how-

. . ._ever, these techniques still lead to solution methods no sim-
the several competing algorithms that we have developed is . .
still in progress. pler than solving the DP equations. Our approach has been to

seek and exploit any type of special structure to be found in
our framework. The result is a “divide-and-conquer” scheme
that decomposes the solution of a difficult large-scale non-
In this paper, we introduced a hybrid system modeling smooth optimization problem into a collection of simpler
framework where time-driven dynamics are switched by smaller scale and smooth optimization problems. For these
events characterized by their own dynamics. Although this problems, fast numerical algorithms (e.g., conjugate gradient
framework was motivated by problems in metalmaking, itis methods) can then be used. Alternatively, we showed how
representative of many manufacturing processes, where theBezier functions can be used as surrogates for the nonsmooth
main objective is to trade off the quality of the completed max functions present in the event-driven dynamics to ap-
jobs against the satisfaction of job deadlines, each of the proximate the overall nonsmooth optimization problem with
two factors carrying its own costs. This leads to problems, a smooth one. This approach can be applied to any con-
which, in general, involve a scheduling component (i.e., figuration of servers that can be described using the “max-
deciding the order in which jobs should be processed), aplus” algebra. In contrast, it is not yet clear whether the di-
server assignment component (i.e., deciding which serversvide-and-conquer decomposition algorithms, which include
should perform the processing and the order in which Algorithm 1in Section I11-B, the backward algorithmin [11],
servers must be visited by the jobs), and an optimal control and the forward algorithm in [13], can be extended beyond
component to determine various process control settingssingle-stage processes. Our ongoing research is looking into
that directly affect server parameters such as speed, servicavays to extend the decomposition algorithms. We are also

V. CONCLUSIONS ANDONGOING RESEARCHDIRECTIONS
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conducting a systematic comparison of all of the algorithms  [5]
we have developed to date to catalog their respective advan-
tages and disadvantages. [6]
The work presented in this paper has taken only the first
steps toward analyzing a large class of hybrid systems and []
seeking explicit solutions. We have considered in great de- (8]
tail single-stage processes and identified several properties
based on which we have developed several efficient solu- o]
tion algorithms. Extensions to multistage processes, beyond
the approach presented in Section IV, still remain to be thor-
oughly analyzed. We have also limited ourselves to controls [10]
that are fixed over the duration of a job processing cycle, as [11]
opposed to time-varying control throughout this cycle. Some
early work along these lines presented in [8] suggests a hier- (2]
archical decomposition for hybrid systems that deserves fur-
ther investigation.
An obvious question also relates to the fact that the mod- [13]
eling framework we have studied in this paper is limited to
a deterministic setting. This defines another important re- [14]

search direction involving stochastic hybrid system models

and associated optimal control problems. Along these lines, [15)
recent work in [24] has treated the case where the job arrival
time sequence or the processing times (or both) are modeled 16!
through random processes. Using DP equations, itis possible 17
to extract some structural properties of the optimal control
policy. In particular, it can be shown that simple threshold-
based policies are optimal, i.e., a specific control action is
taken when a certain state variable exceeds a threshold. One

(18]

advantage of a threshold policy is that it converts the optimal [19]

control problem from a search over a space of functions to |5

a simpler parametric optimization problem for determining

the optimal values of the threshold parameters. [21]
Returning to the issue of determining explicit optimal con- 55

trol solutions for specific problems, we believe that in the

case of hybrid systems it is particularly important to take ad- (23]

vantage of structural properties. This observation is related

to the so-calledNo Free Lunch Theoreif25], which identi- [24]

fies the trade-off between generality and computational ef-

ficiency of optimization algorithms. A consequence of the |5

theorem is that it is possible to outperform a general-pur-
pose optimization algorithm (like DP) by incorporating spe-
cialized knowledge about the specific problem being solved.
The complexity of hybrid system optimal control problems is
such that it is very unlikely for any “general” solution proce-
dure to be computationally feasible; a more promising direc-
tion is that of seeking structural properties in broad classes of
interesting problems and developing solution methodologies
tailored to these problems.

REFERENCES

[1] A. Alur, T. A. Henzinger, and E. D. Sontag, Ed$lybrid Sys-
tems Berlin, Germany: Springer-Verlag, 1996.

[2] P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, Eds.,

Hybrid Systems Berlin, Germany: Springer-Verlag, 1998.

[3] R.L.Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Bdg:,

brid Systems Berlin, Germany: Springer-Verlag, 1993, vol. 736,

Lecture Notes in Computer Science.

M. Lemmon, K. He, and I. Markovsky, “Supervisory hybrid sys-

tems,”IEEE Contr. Syst. Magvol. 19, no. 4, pp. 42-55, 1999.

(4]

1122

D. Liberzon and A. Morse, “Basic problems in stability and design
of switched systems,[EEE Contr. Syst. Magvol. 19, no. 5, pp.
59-70, 1999.

C. G. Cassandra®)iscrete Event Systems: Modeling and Perfor-
mance Analysis Homewood, IL: Irwin, 1993.

L. Kleinrock, Queueing Systems New York: Wiley-Interscience,
1975, vol. |, Theory.

K. Gokbayrak and C. G. Cassandras, “Hybrid controllers for hierar-
chically decomposed systems,” Broc. 3rd Int. Workshop Hybrid
Systems: Computation and ContriMarch 2000, pp. 117-129.

C. G. Cassandras, D. L. Pepyne, and Y. Wardi, “Optimal control of
systems with time-driven and event-driven dynamicsPiac. 37th
IEEE Conf. Decision and ControDec. 1998, pp. 7-12.

C. G. Cassandras, D. L. Pepyne, and Y. Wardi, Optimal control of a
class of hybrid systems, submitted for publication.

Y. Wardi, C. G. Cassandras, and D. L. Pepyne, Algorithm for com-
puting optimal controls for single-stage hybrid manufacturing sys-
tems, submitted for publication.

D. L. Pepyne and C. G. Cassandras, “Modeling, analysis, and op-
timal control of a class of hybrid systems]’ Discrete Event Dy-
namic Syst.vol. 8, no. 2, pp. 175-201, 1998.

Y. Cho, C. G. Cassandras, and D. Pepyne, Forward algorithms for
optimal control of a class of hybrid systems, submitted for publica-
tion.

M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework
for hybrid control: Model and optimal control theoryEEE Trans.
Automat. Contr.vol. 43, no. 1, pp. 31-45, 1998.

S. Galan and P. Barton, “Dynamic optimization of hybrid systems,”
Chem. Eng.vol. 22, pp. S183-S190, 1998.

A. E. Bryson and Y. C. HoApplied Optimal ContralHemisphere,
1975.

D. E. Kirk, Optimal Control Theory Englewood Cliffs, NJ: Pren-
tice-Hall, 1970.

D. L. Pepyne, “Performance optimization strategies for discrete
event and hybrid systems,” Ph.D. dissetation, Dept. of Electrical
and Computer Engineering, Univ. of Massachusetts, Amherst, Feb.
1999.

F. H. Clarke,Optimization and Nonsmooth AnalysisNew York:
Wiley-Interscience, 1983.

M. M. Makela and P. NeittaanmakiNonsmooth Optimiza-
tion. Cleveland, OH: World Scientific, 1992.

R. Rockafellar,Convex Analysis Princeton, NJ: Princeton Univ.
Press, 1970, vol. 28, Princeton Mathematics Series.

N. Singh, Systems Approach to Computer Integrated Design and
Manufacturing New York: Wiley, 1996.

C. G. Cassandras, Q. Liu, K. Gokbayrak, and D. L. Pepyne, “Optimal
control of a two-stage hybrid manufacturing system modelPrioc.
38th IEEE Conf. Decision and Contrdbec. 1999, pp. 450-455.

K. Gokbayrak and C. G. Cassandras, “Stochastic optimal control of
a hybrid manufacturing system model,” Rroc. 38th IEEE Conf.
Decision and ContrglDec. 1999, pp. 919-924.

D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,”|EEE Trans. Evol. Computatvol. 1, no. 1, pp. 67-82,
1997.

David L. Pepyne (Member, IEEE) received the
B.S. degree from the University of Hartford, West
Hartford, CT, in 1986, and the M.S. and Ph.D.
degrees from the University of Massachusetts at
Amherst, Amherst, MA, in 1995 and 1999, re-
spectively, all in electrical engineering.

From 1986 to 1990, he served as an Officer in
the United States Air Force, during which time
he was stationed at Edwards Air Force Base, CA,
and worked as a Flight Test Engineer in a simu-
lation laboratory and on a cruise missile test pro-

A

gram. From 1995 to 1997, he was a Project Engineer with Alphatech, Inc.,
Burlington, MA. Since 1999, he has been a Research Fellow in the Division
of Engineering and Applied Sciences at Harvard University, Cambridge,
MA, where his research focuses on complexity theory, intrusion and fault
detection, optimization theory, and optimal control of discrete-event and hy-
brid systems.

Dr. Pepyne is currently an Associate Editor for the IEEE Control Systems
Society Conference Editorial Board.

PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000



Christos G. Cassandras (Fellow, IEEE) re-
ceived the B.S. degree from Yale University,
New Haven, CT, in 1977, the M.S.EE degree
from Stanford University, Stanford, CA, in 1978,
and the S.M. and Ph.D. degrees from Harvard
University, Cambridge, MA, in 1979 and 1982,
respectively.

From 1982 to 1984, he was with ITP Boston,
Inc., where he worked on the design of automated
manufacturing systems. From 1984 to 1996,
he was a faculty member at the Department
of Electrical and Computer Engineering, University of Massachusetts
at Amherst, Amherst, MA. He is currently Professor of manufacturing
engineering and Professor of electrical and computer engineering at Boston
University, Boston, MA. He specializes in the areas of discrete event sys-
tems, stochastic optimization, and computer simulation, with applications
to computer networks, manufacturing systems, and transportation systems.
He has published more than 150 papers in these areas, and two textbooks.
He has guest-edited several technical journal issues and serves on several
editorial boards.

Dr. Cassandras is currently Editor-in-Chief of the IEERANSACTIONS
ON AuTOoMATIC CONTROL and has served as Editor for Technical Notes and
Correspondence and Associate Editor. He is a member of the CSS Board of
Governors, chaired the CSS Technical Committee on Control Theory, and
served as Program Chair of various conferences. He is the recipient of the
1999 Harold Chestnut Prize (IFAC Best Control Engineering Textbook) for
Discrete Event Systems: Modeling and Performance Anadysisa 1991
Lilly Fellowship, and is a member of Phi Beta Kappa and Tau Beta Pi.

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1123



