
Optimal Control of Hybrid Systems in
Manufacturing

DAVID L. PEPYNE, MEMBER, IEEE,AND CHRISTOS G. CASSANDRAS, FELLOW, IEEE

Invited Paper

Hybrid systems combine time-driven and event-driven dynamics.
This is a natural framework for manufacturing processes: The phys-
ical characteristics of production parts undergo changes at var-
ious operations described by time-driven models, while the timing
control of operations is described by event-driven models. Accord-
ingly, in the framework we propose, manufactured parts are char-
acterized by physical states (e.g., temperature, geometry) subject
to time-driven dynamics and by temporal states (e.g., operation
start and stop times) subject to event-driven dynamics. We first pro-
vide a tutorial introduction to this hybrid system framework and
associated optimal control problems through a single-stage man-
ufacturing process model. We then show how the structure of the
problem can be exploited to decompose what is a hard nonsmooth,
nonconvex optimization problem into a collection of simpler prob-
lems. Next, we present extensions to multistage manufacturing pro-
cesses for which we develop solution algorithms that make use of
Bezier approximation techniques. Emphasis is given to the issue of
deriving solutions through efficient algorithms, and some explicit
numerical results are included.

Keywords—Hybrid system, nonsmooth optimization, optimal
control.

I. INTRODUCTION

Hybrid systems combine continuous with discrete dy-
namic behavior. Several different frameworks have been
proposed for describing how the continuous and discrete as-
pects of such systems interact [1]–[5]. Some hybrid system

Manuscript received October 29, 1999; revised March 18, 2000. The
work of D. L. Pepyne was supported by the U.S. Army under Contracts
DAAL03-92-G-0115 and DAAH04-0148, by the U.S. Air Force under
Grant F49620-98-1-0387, by the Office of Naval Research under Contract
N00014-98-10720, and by EPRI/DoD under Contract WO8333-03.
The work of C. G. Cassandras was supported by the National Science
Foundation under Grants EEC-9527422 and ACI-9873339, by AFOSR
under Grant F49620-98-1-0387, by the Air Force Research Laboratory
under Contract F30602-99-C-0057, and by EPRI/DoD under Contract
WO8333-03.

D. L. Pepyne is with the Division of Engineering and Applied Science,
Harvard University, Cambridge, MA 02138 USA (e-mail: pepyne@hrl.har-
vard.edu).

C. G. Cassandras is with the Department of Manufacturing Engineering,
Boston University, Boston, MA 02215 USA (e-mail: cgc@bu.edu).

Publisher Item Identifier S 0018-9219(00)06467-7.

formalisms extend event-driven models to allow time-driven
activities to take place between event occurrences, or to
determine event occurrence times. Other formalisms extend
time-driven models to allow events to be injected, causing
jumps in the state or switching in the dynamics. Regardless
of the framework adopted, it is becoming clear that the
analysis and design of controllers for hybrid systems will
require tools that are more than just simple extensions of
those for continuous or discrete systems.

In this paper, we describe a specific hybrid system mod-
eling framework for which optimal control problems are for-
mulated and solved by combining time-driven and event-
driven methodologies. This framework is motivated by prob-
lems encountered in manufacturing settings. A hybrid system
description is a natural one for manufacturing processes that
perform a sequence of operations on a set of production parts,
with the purpose of each operation to change some physical
characteristics of the part. In the context of hybrid systems,
the changes in the physical characteristics are described by
time-driven(continuous) dynamics, while the timing con-
trol of the operations is described byevent-driven(discrete-
event) dynamics. Accordingly, in the framework we propose,
manufactured parts are characterized byphysicalstates (tem-
perature, geometry, bacteria level, or some indirect measure
of quality) subject to time-driven dynamics and bytemporal
states (operation start and stop times) subject to event-driven
dynamics. A common problem in manufacturing is to design
a control strategy to trade off job completion deadlines (satis-
faction of customer demand) against the quality of the com-
pleted jobs. These two objectives are normally conflicting;
when a product is in high demand, a natural tendency is to
try to produce as many as possible as quickly as possible.
Under such circumstances, quality often suffers. The hybrid
system modeling framework described in this paper is de-
signed specifically to address this optimal control problem.

Our hybrid system framework can be viewed as an exten-
sion of queueing network models, with the physical state
of the jobs undergoing service determining the occurrence

0018–9219/00$10.00 © 2000 IEEE

1108 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

times of certain departure and arrival events. Alternatively,
our framework may be viewed as an extension of the usual
time-driven models, and can be described as a switched
system consisting of an indexed set of (generally nonlinear)
differential equations representing the way the physical state
of each job evolves during processing. In this alternative
viewpoint, event-driven dynamics determine the processing
start and stop times, as well as the order in which the jobs
are processed and the sequence of workcenters visited by
each job. Accordingly, we adopt a solution approach that
combines ideas from queueing networks with ideas from
nonlinear optimization.

The purpose of this paper is to give a tutorial presenta-
tion to the present state-of-the-art of our modeling and op-
timal control framework, including its formulation, analysis,
and synthesis of optimal control policies. In addition to ad-
dressing real manufacturing problems, this presentation also
illustrates many of the difficulties inherent in hybrid systems.
In particular, the introduction of discrete-event phenomena
into an otherwise continuous system takes it off the well-
beaten path of differentiable calculus and onto the less well-
traveled path of nonsmooth calculus (Lipschitz continuous
functions in our case). Moreover, since occurrences of dis-
crete events are often random, hybrid systems are often sto-
chastic, even when the continuous dynamics are completely
deterministic. In describing our framework, we will show
how these difficulties arise and how tools from nonsmooth
calculus and optimal control can be combined to solve some
broad classes of optimal control problems relevant to man-
ufacturing. Crucial to the solution approach is the exploita-
tion of structural properties in the optimal state trajectories,
which are due to the event-driven dynamics and the nature of
the cost functions of interest. In particular, an optimal state
trajectory can be decomposed into independent segments,
termed “busy periods.” Moreover, each busy period can be
further decomposed into “blocks” defined by certain events
termed “critical.” This decomposition allows us to replace a
single computationally complex problem by a set of smaller
and simpler problems and becomes the key to the develop-
ment of algorithms for obtaining explicit solutions.

This paper is organized as follows. We begin with a high-
level description of the proposed hybrid system framework
in Section II, followed by a detailed model and optimal con-
trol problem formulation for single-stage processes in Sec-
tion III. In Section III-A, we consider two specific classes of
problems and explain the main difficulties involved, derive
necessary conditions for optimality, introduce the concept
of “critical jobs,” and identify several structural properties
that allow for the decomposition of the overall nonconvex
and nonsmooth problem into smaller and simpler ones. In
Section III-B, we present an explicit algorithmic procedure
for obtaining the optimal control solution which takes advan-
tage of the structural properties presented in Section III-A. In
Section IV, we extend the framework to two-stage processes
and describe a solution approach based on replacing the non-
differentable component of the hybrid system dynamics by
a Bezier function approximate. In Section V, we outline a

number of ongoing research directions stemming from the
hybrid system framework presented in this paper.

II. THE HYBRID SYSTEM FRAMEWORK

The original motivation for the hybrid system model de-
veloped in this paper came from our interaction with a metal
manufacturing company seeking to integrate its metallur-
gical process control operations with its plantwide planning
and scheduling operations. In this context, individual ingots
undergo various operations to achieve certain metallurgical
properties that define the “quality” of the finished metal. A
common operation in metalmaking involves slowly heating
ingots to some desired temperature and holding them at that
temperature for some relatively long period of time. This is
done to remove impurities, add beneficial elements to the
metal, or achieve a desired grain structure (hardness). A
“dual” to this operation is controlled cooling (annealing).
In either case, the process control operation determines the
rate at which the temperature is changed (more generally,
a “heating profile”), as well as the amount of time that this
temperature is held at each level. The objective of achieving
high quality here is clearly in conflict with the plantwide
planning and scheduling objective oftimely delivery of
finished metal products to clients. A similar situation arises
in operations such as rolling, milling, or machining metals
to achieve desired quality-defining shapes. We also mention
in passing that semiconductor manufacturing processes
exhibit several features similar to those of metal manu-
facturing mentioned here, with the added importance of
timely product delivery due to the time-sensitive competitive
nature of the semiconductor product market. The hybrid
system framework we describe next is designed to deal with
these tradeoffs between quality and satisfaction of customer
demand. We remark, however, that our proposed framework
is more generally applicable to any manufacturing process
where there are a number of tasks that need to be completed
by processing them through a network of workcenters. To
reflect the generality of our framework, we will use the
generic term “jobs” for the tasks, and “servers” to describe
the devices that process the tasks. Whereas in metalmaking
the jobs were ingots and the servers ovens, rolling mills, and
lathes, more generally, the jobs might be food products or
computer programs and the servers pasturizers and human
computer programmers.

What distinguishes our model from a standard discrete-
event queueing model (see, e.g., [6] and [7] for some back-
ground) and endows it with hybrid properties is that while a
job is being processed by a server, its physical characteris-
tics (functionality, shape, quality) are changing according to
some time-driven dynamics (e.g., differential equations). In
our model, the role of the server is to transform the physical
characteristics of a job from some initial “raw” state to some
final “completed” state. To represent the hybrid nature of the
model, we characterize each job by aphysicalstate and a
temporalstate (in general, these are both vectors). The phys-
ical state represents the physical characteristics of interest

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1109

Fig. 1. A single-stage manufacturing process.

and evolves according to time-driven differential equations
while the job is being processed by a server. The temporal
state represents processing start and stop times and evolves
according to discrete-event dynamics (queueing dynamics in
our case).

Our objective is to formulate and solve optimal control
problems that trade off costs on both the physical and tem-
poral states of the completed jobs while taking into account
associated control costs. We assume the sequence of jobs and
their arrival times are assigned by an external source. In gen-
eral, a control policy determining how these jobs are pro-
cessed through the system involves the selection of 1) the
waveforms that control the evolution of the physical state of
each job, 2) the processing time for each job, 3) the order
in which the jobs are to be processed, and, in the case of a
network of servers, 4) the sequence of servers each job will
visit. The control policy chosen must also satisfy various con-
straints on the allowable physical states, the allowable con-
trol inputs to the physical process, the order in which the jobs
are processed, and the sequence of machines each job must
visit. Taken separately, methods exist for solving each of the
individual subproblems 1)–4) above: nonlinear optimal con-
trol for 1); discrete-event dynamic system performance op-
timization techniques for 2); and scheduling methods for 3)
and 4). However, when these four subproblems are combined
and tightly coupled, as they are in a hybrid system, the re-
sulting problem is one we cannot generally solve using avail-
able methods.

In what follows, we describe our initial efforts toward a
complete solution of the above four subproblems. Following
a natural progression, our work so far has focused on man-
ufacturing processes consisting of a single operation, with
extensions to a series of operations performed in tandem. To
preserve the tutorial nature of this paper and keep it from
becoming too long, we do not provide complete technical
proofs but refer the reader to appropriate references.

III. SINGLE-STAGE PROCESSES

We begin with a simple manufacturing process con-
sisting of a single operation. We represent this process as

a single-server queueing system as shown in Fig. 1. As in
standard queueing theory, the server is shown as a circle and
the waiting area, or buffer, as an open rectangle.

A total of jobs are assigned by an external source and
arrive for processing at known times

. Let be the index used to iden-
tify each job. The jobs are processed first-come, first-served
(FCFS) by a work-conserving, nonpreemptive server, i.e.,
the server never idles when there are jobs in the queue and
service is never interrupted. The processing time is ,
which is a function of a control variable . In general,
the control is time-varying over the course of the processing
time . We limit ourselves here, however, to controls con-
strained to be constant over the duration of service, varying
only with each new job, and chosen to ensure that processing
times are nonnegative, i.e., (work on problems in-
volving time-varying control may be found in [8]).

1) Time-Driven Dynamics:While a job is being pro-
cessed by the server, its physical stateevolves
according to a deterministic differential equation

(1)

where is the processing start time for joband is
the state of the job at that time.

2) Event-Driven Dynamics:The completion time of
each job is denoted by and is given by the stan-
dard Lindley equation for a FCFS, work-conserving,
nonpreemptive queue [7]

(2)

where we assume so that .
Note that the control affects both time-driven dynamics

(1) and event-driven dynamics (2), justifying the hybrid
nature of the system. There are two alternative ways to
view this hybrid system. The first is as a discrete event
queueing system with time-driven dynamics evolving during
processing in the server, as shown in Fig. 2. The other
viewpoint interprets the model as a switched system. To
illustrate, assume each job must be processed until it reaches

1110 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Fig. 2. Typical state trajectory.

a certain “quality” level denoted by . That is, choose the
processing time for each job such that

(3)

Fig. 2 shows the evolution of the physical state as a
function of time (the “temporal state”). As illustrated in
the figure, the dynamics of the physical state experience
a “switch” when certain events occur. These events are of
two types: uncontrolled (exogenous) arrival events, and
controlleddeparture events. For the example in Fig. 2, the
first event is an exogenous arrival event at time. When this
event occurs, the physical state begins evolving according
to until it reaches the desired target

. At this time, denoted by , we remove job 1 from the
server, which generates a controlled departure event. Note
that the departure event at time occurs before the second
job arrives at time . Thus, there is a period of time, an idle
period defined by the event times and , during which
the server has no jobs to process. At time processing
on the second job commences, and the dynamics of the
physical state switch to . The physical
state evolves according to these dynamics until time,
when the target is reached and the job is removed from
the server. Note, however, that the third job arrived before
processing on the second job was completed. This job was
forced to wait in the queue until time , at which point
the physical dynamics switch to , and
work immediately begins on the third job. As indicated in
Fig. 2, not only do the arrival and departure events cause
switching in the physical dynamics according to (1) but the
sequence in which these events occur is governed by their
own dynamics given in (2).

For the above single-operation framework defined by (1)
and (2), the optimal control objective is to choose a con-
trol policy to minimize an objective
function of the form

(4)

Note that although, in general, the state variables evolve con-
tinuously with time, (4) is a multistage optimization problem
since we are concerned with the values of the state variables

only at the job completion times . Note also that
we do not include a cost on the physical state . Clearly,
when the stopping criterion in (3) is used to obtain the ser-
vice times, a cost on the physical state is unnecessary because
in that case, we know that the physical state of each com-
pleted job satisfies our quality objectives, i.e., .
More generally, as we describe next, we can indirectly im-
pose a cost on the physical state by appropriate choice of
the functions in (4) and in (2). This is an “engi-
neering” approximation that makes the problem somewhat
more tractable, yet it still captures the essence of the original
problem. In particular, we have studied two different classes
of problems, each defined in terms of the form of the func-
tions , , and in (4) and (2). For the first class,
the control is interpreted as the processing time for the job,
and the cost function trades off the quality of the completed
jobs against the job completion times. We refer to these as
Class 1 problems (see also [9]–[11]). For Class 2, the con-
trol is interpreted as the effort applied to the job, and the cost
function trades off processing speed (which is related to the
monetary cost of producing the job) against the job comple-
tion times (see [12]). Mathematically, these two classes of
problems are defined as follows.

Class 1 Problems:

1) For every , is twice
continuously differentiable, strictly convex, monoton-
ically decreasing, and the following limits hold:

and

2) For every , is twice con-
tinuously differentiable, strictly convex, and its min-
imum is obtained at a finite point .

3) For every , is linear
with and .

Class 2 Problems:

1) For every , is twice
continuously differentiable, strictly convex, and
monotonically increasing.

2) For every , is twice con-
tinuously differentiable, strictly convex, and monoton-
ically increasing.

3) For every , is twice
continuously differentiable, strictly convex, monoton-
ically decreasing, and the following limits hold:

and

While the above definitions are somewhat technical, their
interpretation is consistent with the previous discussion re-
garding time–quality tradeoffs in manufacturing systems. In

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1111

the case of Class 1 problems, we interpret the physical state
as a measure of the “quality” of the finishedth job. Beyond
a certain minimum processing time, there are decreasing re-
turns insofar as further improvement in quality is concerned.
A common manufacturing problem is to produce jobs that
meet certain minimum quality standards and deliver them by
specified due dates. To achieve this, we place a cost on poor
quality and a cost on missing the due date. As an example,
let

(5)

This set of functions satisfies the conditions of Class 1. Here,
the control is simply the service time. The cost on the con-
trol penalizes short service times, since this generally results
in poor quality. Letting be the due date of job, the cost
on the departure time penalizes job earliness and tardiness.

Next, consider a Class 2 problem. In this case, our goal
is to process each job so that it achieves a certain desired
final state from an initial state .
Interpreting as the control effort applied to job, a simple
form of the physical dynamics is

(6)

where the effort determines the rate at which the quality
evolves and where, for simplicity, we take this effort to be
constant over the entire processing time. Then, the amount
of time we must process a job to reach the desired quality
level is

(7)

where the requirement that implies that .
In this setting, it is typical to consider a quadratic cost on the
amount of effort involved, hence choosing

(8)

and if there is a due date for job , we may choose a cost
penalizing tardiness only as follows:

(9)

Observe that (7)–(9) satisfy the Class 2 conditions.
The analysis to follow is limited to Class 1 problems. As

previously stated, our purpose is to give the intuition and in-
sight behind our main results rather than provide all tech-
nical details. Readers interested in the details are referred to
[9]–[11] and [13] regarding Class 1 problems, and to [12] re-
garding Class 2 problems.

A. Analysis of Class 1 Problems

In the following, we present some of the interesting prop-
erties of Class 1 problems. These properties will form the
theoretical foundation of the numerical algorithm presented
at the end of the section.

We begin by restating the Class 1 optimization problem,
which we will hereafter refer to as Problem P1:

(10)

subject to

(11)

and

(12)

with a known arrival sequence
. The functions , and are assumed to con-

form to the Class 1 conditions stated earlier. Observe that al-
though this looks like a standard discrete-time optimal con-
trol problem, it is worth pointing out that the indexin (10)
does not correspond to time steps; instead, it counts occur-
rences of the asynchronous job departure events involved in
our hybrid system.

Although dynamic programming (DP) is a general-pur-
pose methodology that can be used to solve this problem, and
has been used for other types of hybrid system models, such
as those studied in [14] and [15], the fundamental limitations
arising from the notorious “curse of dimensionality” are well
documented. For problems of any real sophistication, the
policy space over which one needs to search for the optimal
control policy is so large that it makes the computational
burden unmanageable, even with today’s fast computers.
Furthermore, the DP algorithm involves storing historical
search information and elements of the control policy, which
makes the memory required for problems of even modest
dimension prohibitive. Consequently, in practice, one tries
to avoid numerically solving the DP equations.

For deterministic optimal control problems with
real-valued states and controls, an alternative to DP is
provided by variational (gradient-based) approaches (e.g.,
[16] and [17]). Variational techniques, however, are predi-
cated on the differentiability of the objective function. Due
to the nature of event-driven dynamics, however, hybrid
systems typically do not yield objective functions with the
requisite “smoothness.” It is, in fact, the nondifferentiability
introduced by the event generating mechanism in hybrid
systems that makes associated optimal control problems so
difficult to solve (see also [15]).

In the case of Problem P1, the root of the nondifferen-
tiability lies with the max function in the event-driven dy-
namics (11). The function is clearly not dif-
ferentiable at the point where ; at all other points,
however, it is differentiable with

if
if

To illustrate this difficulty and gain some insight as to the na-
ture of a typical objective function in (10), consider a simple

1112 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Class 1 example with . Let and , and
define

Making use of (11), this gives the cost function

(13)

which is plotted in Fig. 3. As seen in the figure, the objec-
tive function is generally not smooth: there is evidence of
a “crease” in the surface running parallel to theaxis at

. This corresponds to all points with . The
surface is not differentiable across this crease, although it is
differentiable everywhere else. Another interesting observa-
tion is that isnota convex function of , although
it is convex in . This is due to the last term in (13) involving
the max function. Nonetheless, we can show [10] that Class
1 problems always have a unique global optimal solution (in
this example, it turns out to be and .)
However, the fact that in (10) is generally not a convex
function in the control sequence , despite the
convexity assumptions on , and , adds to the diffi-
culty of obtaining numerical solutions.

The points of nondifferentiability illustrated by this ex-
ample form a critical component of the analysis to follow,
and, for this reason, jobs associated with them are singled
out and termed “critical.”

Definition 1: A job is calledcritical if
.

Intuitively, critical jobs in the optimal policy correspond to
the idea of processing jobas long as possible (to ensure high
quality) and releasing it “just in time” for the next arriving
job to start processing, i.e., precisely at time . As
we will see, it is indeed optimal to control the service times
for some selected jobs in this way; determining which ones
in particular is an important part of the problem solution.

Critical jobs are important for the following reason: If the
optimal solution does not contain any critical jobs, then the
objective function is differentiable at its global minimum.
In this case, the problem can be solved using gradient-based
methods, such as a standard two-point boundary-value
problem (TPBVP) solver (e.g., see [17]). If the solution
does contain critical jobs, however, a gradient-based method
will not converge, but will “chatter,” jumping back and forth
across the crease at the minimum. We have developed an
algorithm that detects this chattering and responds by taking
action to force certain jobs to be critical (see [18]). Although
this algorithm works well most of the time, it is heuristic
and may fail to find the optimal solution.

Fig. 3. Plot of a portion ofJ(u ; u) showing that it is nonconvex
and nonsmooth.

1) Nonsmooth Optimization:To develop a rigorous solu-
tion approach that takes into account the nondifferentiability
associated with critical jobs, we use some basic results from
nonsmooth optimization theory (see [19] and [20]). Non-
smooth optimization theory deals with the optimization of
Lipschitz continuous functions , which satisfy

, where is a positive con-
stant and , an open subset of . Note that Lips-
chitz functions are continuous, but need not be everywhere
differentiable. According to Radmacher’s theorem, they are,
however, differentiable almost everywhere. The max func-
tion is a Lipschitz function, continuous and differentiable ev-
erywhere except at the point where its arguments are equal.
Since the sum of Lipschitz functions is Lipschitz, and a com-
posite function of Lipschitz functions is Lipschitz, our objec-
tive function in (10) is Lipschitz continuous. While objec-
tive functions in hybrid optimal control problems can have
discontinuities (see [15]), they are more often Lipschitz, and
this is due to the event-generating mechanism.

For continuously differentiable (smooth) functions, a nec-
essary condition for a point to be a local extremum is that the
gradient be zero there, and gradient-based methods can be
used to search for points satisfying this condition. The nec-
essary condition for general Lipschitz functions, which are
often referred to asnonsmoothfunctions, cannot be phrased
in terms of the gradient, since the gradient may not exist at
the local extrema (as in our problem when the optimal so-
lution contains critical jobs). Instead, the conditions for op-
timality are phrased in terms of a generalization of the gra-
dient. Specifically, suppose is a locally Lips-
chitz continuous function of , and let denote
the set of all indexed sequences {} that sat-
isfy the following three conditions: i) as ,
ii) the gradient exists for all , and
iii) exists. Then, thesubdifferen-
tial of at is denoted by and is defined as the
convex hull of all limits corresponding to every sequence

. The subdifferential has the following three fun-
damental properties (see [19]): i) is a nonempty, com-

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1113

pact, and convex set in , ii) is a singletoniff is
continuously differentiable in some open set containing,
in which case , and iii) if is a local ex-
tremum of , then . Each element of the subd-
ifferential is referred to as ageneralized gradient, or, in the
convex case, asubgradient.

As a simple illustrative example, let us evaluate the sub-
differential for the absolute value function, , at

, where it is not differentiable. Since is the
global minimum, it must satisfy the necessary condition for
optimality, i.e., . In this case, the subdifferential
is nothing but a closed interval on the real line, whose left
and right endpoints are given respectively by the left deriva-
tive, , and the right derivative,

. The subdifferential is, therefore,
given by , and clearly, .

2) Subdifferential Derivation:The third property of the
subdifferential presented in the previous section is the most
important to us, since it provides a way to check if a can-
didate solution satisfies the necessary conditions for opti-
mality. Solving our optimization problem (10)–(12), there-
fore, requires deriving an expression for the subdifferential

. As we will see, the special structure of the
event-driven dynamics (11) makes the derivation of the subd-
ifferential rather straightforward and not much different than
the simple example involving in the previous sec-
tion.

Referring back to Fig. 2, we see that, as the hybrid system
operates, it generates a sequence of departure times in re-
sponse to the given sequence of arrival times. These two se-
quences taken together define asample path. It is convenient
to divide a sample path intobusyperiods, during which the
server is actively processing jobs, andidle periods, during
which the system is empty waiting for jobs to arrive. For-
mally, we have the following.

Definition 2: An idle periodis a time interval
such that for any .

Definition 3: A busy periodis a time interval
defined by a subsequence such that i)

, ii) for all , and
iii) .

It is also useful to partition each busy period intoblocks.
A block starts with the first job after either a critical job or an
idle period and it ends either with the next critical job or with
the last job in the busy period. For any job let
us define

(14)

and

(15)

In words, is the index of the last job in thebusy period
that contains job, and is the index of the last job in the
blockthat contains job. If the last job in the block that con-
tains job iscritical, then and .
On the other hand, if the last job in the block containing job

is not critical, then and .

These definitions are helpful in evaluating the subdif-
ferential , which is given in terms of the
left and right derivatives of with respect
to . To see this, let us fix all controls on some
sample path such that jobs are all in the same
block and . Since the service times are
given by , by adjusting the control (keeping all
other controls fixed), we change the departure timesof
all jobs through

(16)

where the max accounts for the fact that jobmay be the first
in its busy period. Moreover,

for all

and

(17)
where the limit above is obtained by increasingin (16) in
such a way that approaches from the left for

. In addition, since , the state equation
(11) implies that for all

. Therefore, recalling (16)

(18)

Denoting this left derivative with respect to by , we set

(19)

A similar argument can be made for the right derivative by
starting with such that , and noting that

(20)

1114 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

for any critical job between and the end of the busy period
that contains it, given by . Hence

for all

in which case we get

(21)

Denoting this right derivative with respect to by , we
set

(22)

3) Necessary Conditions for Optimality:For Problem
P1, it is easy to establish, using (19) and (22), the inequality

for all (a proof may be found in
[10]). Thus, all intervals are well defined. Then,
the subdifferential of our objective function (10) is given by

(23)

A necessary condition for optimality then follows directly
from the fact presented in Section III-A1 that for a locally
Lipschitz continuous function, if is a local extremum of

, then [19].
Theorem 3.1:For Problem P1, an optimal control se-

quence , must satisfy

(24)

for each .
Using this necessary condition, we were able to show (see

[10]) that the optimal solution for Problem P1 is unique.
Theorem 3.2:For Problem P1, the optimal control se-

quence , is unique.
Establishing this uniqueness result is not trivial and it is

particularly interesting because, as Fig. 3 clearly shows, the
objective function is generally not convex and, therefore,
may have local minima. Not only does nonconvexity make it
difficult to establish uniqueness of the optimal solution but it
also complicates the derivation of numerical algorithms. We
remark that this difficulty does not arise in Class 2 problems,
since it is easy to show using basic results from convexity
theory [21] that these problems yield a strictly convex objec-
tive function, in which case there is only a single minimum.

4) Decoupling Properties:Due to the nature of the
event-generating mechanism (queueing dynamics), our
hybrid system has two useful decoupling properties that
help to simplify its analysis and aid in the development of
explicit algorithms. These properties are stated below as
lemmas, proofs for which can be found in [10]. The first
decoupling property is theidle period decouplingproperty.

Lemma 3.1:Consider a busy period consisting of jobs
and let . The optimal con-

trol depends only on the arrival times (it
does not depend on the arrival times of jobs in other busy pe-
riods).

A related, but weaker, property applies to blocks and is
referred to aspartial coupling.

Lemma 3.2:Consider a block consisting of jobs
and let . The optimal

control depends only on the arrival times and
(it does not depend on any other arrival times).

These decoupling properties are central to the numerical
algorithm presented in Section III-B. The idle period decou-
pling property tells us that the controls for individual busy
periods can be determined independently of each other. This
decomposes a large optimization problem consisting of
jobs into several smaller subproblems, one for each busy pe-
riod. Further, partial coupling tells us that the controls for
the jobs that come after a critical one are independent of the
controls for the jobs that precede the critical job. This de-
composes each busy period into subproblems, one for each
block. Consequently, if we can identify the busy period struc-
ture (i.e., which jobs will be in which busy periods), and the
block structure within each busy period (i.e., which jobs will
be critical), then the problem can be solved as a collection
of smaller independent subproblems. Therefore, of obvious
importance is the identification of the busy period structure
and the critical jobs within the busy periods.

5) Critical Jobs and Critical Intervals:As we mentioned
already, obtaining solutions for our hybrid system model is
complicated by the possibility that the optimal solution may
contain critical jobs. At first sight, it might seem that the
possibility of obtaining a solution with precisely equal
to would be a very rare, even pathological, situation.
However, this is not the case; in fact, almost any sample path
will have some critical jobs within its busy periods. To see
why this is and gain some more insight into critical jobs, let
us explain how they occur.

Consider a busy period on an optimal sample path.
Without loss of generality, because of Lemma 3.1, consider
the first busy period on the sample path, starting at time

. Suppose this busy period containsjobs and that none
of these jobs are critical, i.e., . Denote the
optimal departure times for the jobs in this busy period by

, . Here, is the index of the job and
is the number of jobs in the busy period that contains job.
Assuming there exists an arrival sequence that gives such a
busy period, we have the following two properties (detailed
proofs given in [10]).

Lemma 3.3:The optimal departure times ,
, depend only on and .

Lemma 3.4:The optimal departure times ,
, are monotonically decreasing in ,

i.e., for all .
The significance of Lemma 3.3 is that it allows us to

precompute for any given and positive integer
. Lemma 3.4 is needed in order to explain the mecha-

nism responsible for critical jobs. In particular, under this

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1115

lemma intervals of the form for any and
are well defined since . Then,

the following provides a criterion for checking the presence
of critical jobs in a busy period (proof given in [10]).

Lemma 3.5:A busy period beginning with job and
containing jobs on an optimal sample path includes at least
one critical job if for one or more jobs

.
We refer to the time intervals ascritical in-

tervals. Clearly, the wider the critical intervals, the greater
the likelihood that the busy period will contain critical jobs.
For typical Problem P1 examples we have considered, these
intervals are, in fact, quite wide and result in the frequent oc-
currence of critical jobs.

While Lemma 3.5 can be used to determinewhether or not
a busy period will contain critical jobs, it cannot be used to
determinewhich jobs in the busy period will be critical. To
answer this question, one must actually explicitly solve the
problem. One exception arises when the following sufficient
condition is satisfied (again, a proof is given in [10]):

Lemma 3.6:Consider a busy period beginning with job
, and suppose there are a total ofjobs remaining to

be processed. If there exists some such that
for all and ,

then job is critical.
Thus, Lemma 3.6 is sufficient to identify a critical job,

whereas Lemma 3.5 implies that there are other situations
where critical jobs can occur. To illustrate, consider the ex-
ample shown in Fig. 4 for the case . In the figure,

, , , , , have been computed for
a given arrival time and 1, 2, and 3. First, consider
the implications of Lemma 3.6. With and ,
according to the lemma, if , as shown in
Fig. 4(a), then job 1 is critical (regardless of). Therefore,
the optimal departure time for job 1 is . Note that if

then job 2 is definitely in the same busy period as
job 1, whereas if then job 2 must start a separate
busy period. Thus, the location of relative to the critical
interval allows us to determine whether job 1 is
critical, whether it ends the first busy period, or whether it is
included in a busy period containing at least the first two jobs.
Similarly, for , if and , as
shown in Fig. 4(b), then job 2 is critical.

Next, consider Lemma 3.5. Suppose that and
. Then, with and , if

and , job 1 is the only job in the busy period
satisfying the condition of this lemma, and hence must be
critical. On the other hand, suppose and

, as shown in Fig. 4(c). In this case, both
satisfy the conditions of the lemma; therefore, either

or both of jobs 1 and 2 might be critical. Until we actually
solve the problem, however, it is not possible to make a final
determination.

When a case such as the one shown in Fig. 4(c) arises, we
need a different criterion for identifying critical jobs. One
such criterion is given by the following property:

(25)

Fig. 4. Critical intervals for an example withN = 3.

The intuition behind this fact is not hard to see. From The-
orem 3.1, we know that each critical job must satisfy

. Thus, it is expected that and should have
opposite signs, unless one of them were exactly zero. Be-
cause of uniqueness (Theorem 3.2), this can only happen in
regions of measure zero, i.e., the objective function cannot
have a flat region (i.e., a region with zero slope) either along
the nondifferentiable “crease” (see Fig. 3) or to either side
of it when the crease includes the global minimum. In fact, a
stronger, necessary, and sufficient condition for critical jobs
may be derived, which includes (25) as part of it; we omit it,
since we do not make use of it in this paper, but the reader
is referred to [10] for details. Equation (25) leads to a “sign
test,” which will be used in the algorithm to be described next
to determine which jobs will be critical.

B. A Backward-Recursive Algorithm

As already mentioned, if the optimal solution to our
hybrid optimal control problem could never contain critical
jobs, then the objective function would be differentiable at
its (unique) global minimum, and a standard gradient-based
TPBVP solver, like those described in the classical texts
(e.g., [17]), could be used to obtain numerical solutions. As
just described, however, critical jobs not only can occur,
but are, in fact, a usual feature of our optimal solutions.
As a consequence, our hybrid system optimal control
problem will typically have an objective function that is not
differentiable at its minimum, in which case gradient-based
methods will not work. Of course, other methods designed
for solving nonsmooth optimization problems could be
used. However, these algorithms are either computationally
very complex or use first-order necessary conditions to
guide their search, in which case they may get trapped in
a local, instead of the global, minimum of this nonconvex
optimization problem. In contrast, the algorithm we develop
next is specifically tailored to our hybrid system optimal
control problem, and, as such, it is efficient. Although not
yet formally shown, we conjecture that it is guaranteed to
return the unique global optimal solution (as opposed to a
potentially local minimum).

The algorithm is based on the following fundamental ob-
servation: Even though theoverall optimization problem is
nonsmooth (recall Fig. 3), the controls within eachblock

1116 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

can be obtained by solving a smooth nonlinear optimization
problem with terminal constraints on the departure time of
the last job in the block. For example, consider a busy pe-
riod consisting of jobs , and suppose that this
busy period contains two blocks, i.e., and

, as shown in Fig. 5. Then, by the
idle period decoupling property (Lemma 3.1) and the partial
coupling property (Lemma 3.2), we can determine the op-
timal controls for the jobs in this busy period by solving two
independent TPBVPs: the first for jobs , with
terminal constraint (e.g., using a TPBVP
solver and the penalty function approach; see [17]) and the
second for jobs , with no terminal con-
straint on the departure time . That is, if we can iden-
tify the busy period structureof the optimal solution, and the
block structurewithin each busy period, then we can decom-
pose the solution of a computationally difficult nonsmooth
optimization problem into a collection of simpler, smooth
optimization problems (one for each block). What we need,
therefore, is systematic way to identify the busy period and
block structures of the optimal solution.

One possibility is to exhaustively search over all possible
busy period and block structures for the optimal one. The
main difficulty with such an approach is its computational
complexity. It can be shown that there are different
busy period structures[11]. By the same argument, a busy
period containing jobs has block structures. Such an
approach is, therefore, infeasible, except for very small prob-
lems. Algorithm 1 given below provides a much more effi-
cient way of determining the optimal busy period and block
structures.

In describing the algorithm, we use the following defini-
tions.

Problem :

(26)

subject to

(27)

where, if , we include the terminal constraint

and if , there is no terminal constraint. As usual, the
arrivals and the terminal constraint are as-
sumed known.

We also define

(28)

In this notation, and , where
and were defined in (19) and (22).

Fig. 5. A busy period consisting of two blocks.

The essential idea of the algorithm is to solve the overall
nonsmooth optimization problem, which includes jobs

by decomposing it into a sequence of subprob-
lems , each of which is simpler (since it involves
fewer jobs, i.e.,) and is also smooth. That is, we
will only attempt to solve subproblems with ,
in which case, efficient (conjugate) gradient-based methods
can be used to solve . To do this, the algorithm
proceeds in a backward-recursive manner, starting with
job and adding earlier jobs one at a time, until all jobs
have been considered. As each new jobis added, simple
sign tests on the right and left derivatives and are
performed to identify the busy period and block structures,
and smooth optimal control problems are solved (with and
without terminal constraints, as required) to obtain the
optimal controls. The basic structure of the algorithm is as
follows; for complete details, see [18].

Algorithm 1:
INPUT:
The arrival sequence, and
a terminal constraint flag . If

, the terminal constraint, ,
is also needed.
INITIALIZE:
If , solve to get ,

, and set and
;

If , set ,
invert the service function to get

, and set and
.

FOR ALL :
Step 1) Set , and

invert the service function to get,
.

Step 2) Compute and , and
conduct a sign test to determine the
nature of the coupling between jobs
and the busy period that begins with
job .
Step 2.1) If (i.e., op-
posite sign), then job is critical
[recall equation (25)].

Set and .
Go to Step 1.

Step 2.2) If and ,
then job is decoupled from and
forms a separate busy period.

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1117

Solve to get and
.

Set and .
Go to Step 1.

Step 2.3) If and ,
job is coupled to , in which
case a block-by-block forward sweep
is used to merge job into the busy
period that contains job (details
omitted).

Check to see if the busy period
formed overlaps with the next (pro-
vided there is one to overlap with),
i.e., check to see if and

.
- If there is no overlap, go to Step

1).
- Otherwise (i.e., there is

overlap), make a recursive call
to Algorithm 1, with a terminal
constraint to find the
controls that make the last job in the
busy period containing jobs
critical.

Conduct a sign test to see if the
controls computed above are optimal
(details omitted). If so, go to Step
1); else, go to Step 2.3) to merge the
two busy periods.

The easiest way to explain the algorithm, including the
details omitted in Step 2.3), is through a simple example.
Accordingly, let us consider the following problem:

subject to (29)

for the arrival sequence0.4, 0.5, 0.7, 0.9, 1.3. Note that,
although this problem has the same interpretation as Class 1
(trades off quality against completion time), the service func-
tions are not linear. Hence, this problem is more gen-
eral than those in Class 1. However, it is possible to show
(using basic facts from convex analysis [21]) that this par-
ticular example has a strictly convex objective function, and
hence satisfaction of the necessary conditions implies that
the unique global solution has been found.

Fig. 6, which plots sample paths (the number of jobs in the
system vs. time), shows the progress of Algorithm 1 (imple-
mented through MATLAB) as it proceeds job by job toward
the final solution.

Initialization : The algorithm is initialized by
solving to obtain and . These
arrival and departure events are plotted in Fig. 6(a).

Next, job 4 is introduced, and the algorithm
seeks to find the optimal controls and

Fig. 6. Example showing the operation of the backward-recursive
Algorithm 1.

for these two jobs in isolation. To do so, the
algorithm must determine whether or not job 4
should be decoupled from job 5, coupled to it, or
be a critical job. To determine this, we assume
job 4 is critical, and set ,
in which case, [Step 1)].
Then, by computing the quantities and
[Step 2)], a simple sign test tells us the nature of
the coupling between the two jobs.

1) If and have opposite signs [Step
2.1)], then by (25), job 4 is critical.

2) If and , then we
know from definitions (19) and (22) that
increasing the control increases the cost.

3) Conversely, if and , then
increasing the control decreases the cost.

Consequently, when the service function
is monotonically increasing, as in this example,
then both and ’s being positive implies
that the service time is too long, and there should
be an idle period between jobs 4 and 5 [Step
2.2)]. On the other hand, these quantities being
negative says that the service time is too short,
and job 4 should be merged with job 5 [Step
2.3)]. As illustrated in Fig. 6(b), and are
both positive, implying that jobs 4 and 5 are de-
coupled into separate busy periods. We, there-
fore, follow Step 2.2) and solve to ob-
tain and ; the result is shown in Fig. 6(c).
Because of the idle period decoupling property

1118 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

(Lemma 3.1), the optimal control for job 5
does not need to be reevaluated.

Here we make the following remark: if the service func-
tion is monotonically decreasing, as for Class 2 problems,
Algorithm 1 can still be used if the sign tests in Steps 2.2)
and 2.3) are switched, i.e., both positive implies decoupling
jobs and , and both negative implies coupling jobs
and .

The algorithm continues by introducing job 3,
making it critical, computing and

, and performing the sign test of Step 2). As
shown in Fig. 6(d), and are both nega-
tive, indicating that jobs 3 and 4 should be cou-
pled by merging job 3 into the same busy period
as job 4. To do this, the algorithm executes Step
2.3) and solves to get the result shown
in Fig. 6(e). Since there is no overlap between
and , the algorithm is done with job 3. Again,
because of the idle period decoupling property,
the optimal control for job 5 does not change.
When job 2 is introduced, the sign test in Step
2.1) indicates it should be critical [see Fig. 6(f)].
Once more, because of the partial coupling prop-
erty, the controls for jobs 3–5 are unaffected, and
the algorithm is finished with job 2.
When job 1 is introduced, things get interesting.
In this case, the sign test of Step 2) indicates
that job 1 should be merged into the busy period
containing jobs 2–4 [see Fig. 6(g)] and the algo-
rithm executes Step 2.3). Note that the algorithm
cannot merge job 1 by simply solving ,
because it may turn out that job 2 is still critical,
in which case is a nonsmooth optimiza-
tion problem, which is precisely what we are
trying to avoid. To deal with this possibility,
merging job 1 into the busy period containing
jobs 2–4 requires a block-by-block forward
sweep through the busy period. The first part
of the forward sweep involves solving ,
resulting in Fig. 6(h). A sign test with and

then indicates that the block just formed
by merging jobs 1 and 2 should be merged
with the block containing jobs 3 and 4, i.e., we
now know that job 2 willnot be critical. We
already know that job 3 is not critical, hence, the
algorithm proceeds to solve , obtaining
the result shown in Fig. 6(i), and the algorithm
is finished with the first part of Step 2.3). The
algorithm then proceeds to the second part of
Step 2.3) to check if the busy period just formed
overlaps with the busy period containing job 5.
In this case, there is overlap indicating that the
busy period consisting of jobs 1–4 needs to be
merged with the busy period consisting of job 5.
Merging these busy periods requires some care,
because doing so could result in any one of the
jobs becoming critical. To merge the
two busy periods, this step begins by making

a recursive call to Algorithm 1 to solve a fixed
endpoint problem for jobs 1–4 with terminal
constraint . Without going into the
details, this results in Fig. 6(j). Conducting a
sign test with and indicates that job 4 is
critical. Consequently, the algorithm is finished
with job 1, and the solution is complete.

As just described, Algorithm 1 solves the nonsmooth op-
timization problem by decomposing it into a collection of
simpler and smoothoptimization problems, essentially iden-
tifying the block structure, and solving a smooth optimiza-
tion problem for each block. This capability, however, comes
at the cost of a complex recursive procedure that can require
recomputing the controls for each job several times before
the final solution is obtained. It should be clear that the algo-
rithm achieves its best performance when all jobs are critical,
because in that case it only needs to solve (in the
initialization step), and after that all of the other controls are
obtained by inverting the service function [Steps 2.2) and 2.3)
are never invoked]. The next best situation is when every job
forms a separate busy period. In this case, the solution be-
comes one of solving problems , one for each job

. The worst case is when all jobs are in a single
busy period, since this generally requires repeated merging
of blocks. Even so, the algorithm is much more efficient than
examining all possible block structures.

We remark that we have recently developed two other al-
gorithms for the Class 1 problems. The first, described in
[11], is another backward algorithm. It is similar to Algo-
rithm 1, except that it searches busy period structures instead
of block structures. We have shown that this algorithm does
not need to search all possible busy period structures,
but at most . The second algorithm, described in [13],
gives an even better performance, requiring a search of only

busy period structures to solve the problem. Moreover,
we can prove that both algorithms are guaranteed to obtain
the unique optimal solution. Our ongoing research is inves-
tigating the advantages and disadvantages of the various al-
gorithms we have developed.

IV. TWO-STAGE PROCESSES

Next, we look at the simplest case of a manufacturing
process involving multiple operations, i.e., a manufacturing
process that requires a sequence of two operations to be per-
formed on each job. A natural extension of the cost function
(4) for the single-stage case gives the minimization problem

where the first subscripted quantity is the job index
and the second is the server index .

Assuming both queues are FCFS, nonidling, and nonpreemp-
tive, the event-driven dynamics are given by two coupled
Lindley equations of the same form as (2)

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1119

Note the coupling between the two stages: a departure from
the first immediately becomes an arrival at the second. Again
we need nonnegative service times, i.e., and

.
For this tandem operation case, therefore, we have the fol-

lowing optimal control problem, which we will call Problem
P2:

(30)

subject to

(31)

(32)

and

(33)

with a known arrival sequence
. For the examples in this section, we will assume that the

functions , , and conform to the Class
2 conditions. Under these conditions, we can show that the
objective function (although nonsmooth) is strictly convex,
and hence has a unique solution.

For the single operation case, it was relatively easy to ob-
tain the subdifferential as a collection of intervals as shown
in (23). The situation is not as simple in the two-stage case.
For one, now the control for each job is a vector, consisting
of a control for the first operation and another for the second.
For another, the coupling between the two operations compli-
cates matters substantially. As a consequence, the resulting
subdifferential is, in general, a region in (the dimension
of the control vector). Determining this region, however, is
very difficult, except for the most trivial situations. The dif-
ficulty in determining the subdifferential, therefore, strongly
discourages the use of an algorithm involving generalized
gradients (to date, we have been unable to develop any such
scheme).

An alternative that provides systematic means for ob-
taining approximate solutions to our hybrid optimal control
problem is based on the following observation. By our Class
2 (as well as Class 1) assumptions, the only function that is
not everywhere differentiable is the max function appearing
in the event-driven dynamics (31), (32). If we were to re-
place the max by a continuously differentiable surrogate that
closely approximates it, then we would be left with a smooth
programming problem, for which well-developed numerical
algorithms exist (e.g., conjugate gradient methods).

Accordingly, suppose we replace the max function with a
Bezier function as in Fig. 7 (see, e.g., [22]). A Bezier function
is constructed using “control points” represented by
vectors and is parametrically given by

Fig. 7. Bezier approximation of a max function.

where

and . The control points define a “character-
istic polygon,” and the Bezier function has the property that
it is contained within the convex hull of this characteristic
polygon. In our case, there are three obvious control points
to use: the point shown in Fig. 7, where the max func-
tion is not differentiable, and two points and

, which define a neighborhood ofon the -axis in
Fig. 7 (where is shown as). An additional property of
is that the tangents at the first and last control points coincide
with the first and last segments of the characteristic polygon.
In our case, the two properties imply that the derivative of
the Bezier approximation of the max function is always be-
tween zero and one. Making this replacement gives a contin-
uously differentiable surrogate, which by our choice ofcan
be made to approximate the max function to any arbitrary
degree of accuracy. For the max function, the Bezier approx-
imation over the range to is given by

, where . In other
words, the max has been replaced by the surrogate

if

if

if

with a derivative given by

if

if

if

Using this approach with a standard gradient-based TPBVP
solver, we can periodically reduce and recompute the
Bezier function to make the fit increasingly tighter, to
achieve any desired accuracy. The numerical results shown
next illustrate the effectiveness of this simple approach.

1120 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

As an illustration, we consider a problem with
jobs. These six jobs arrive at known times 0.2, 0.7, 1.3, 1.4,
1.8, and 2.5, respectively. Each job is processed in the first
server until it reaches a physical state , and in the
second server until it reaches a physical state . The
cost function we consider is

(34)

with parameters , , and . Fig. 8 shows
the optimal sample paths for each server. Note that the pres-
ence of critical jobs at stage 2 is captured by the Bezier ap-
proximation. It is also worthwhile observing that the optimal
sample path at server 2 consists of either single-job busy pe-
riods or busy periods containing only critical jobs. In other
words, the optimal control is to always keep the queue be-
tween the two stages empty. This is not a coincidence but a
reflection of a property of the optimal solutions for this class
of problems. We are currently investigating this property in
order to assess its range of applicability (preliminary results
are included in [23]).

Of course, the Bezier approach can also be used to solve
single-stage problems. Its simplicity would seem to give it a
clear advantage over Algorithm 1 in Section III-B. This, how-
ever, may not be the case. Recall that Class 1 problems are not
convex, meaning that the Bezier approximation technique,
which uses gradients to guide the search, may get trapped in
a local minimum. Moreover, the parametermust be reduced
to smaller and smaller values for the Bezier approach to get
the exact solution, making convergence sometimes slow. Al-
gorithm 1, on the other hand, may require the solution of
many subproblems, but each of these subproblems may be
simpler (because it usually involves only few jobs) and can
be solved very quickly. An advantage of the Bezier approx-
imation may be its generality, in that it is applicable to any
network configuration whose dynamics can be described in
the “max-plus” algebra; in fact, it has been used successfully
for -stage processes, . As mentioned, an analysis of
the several competing algorithms that we have developed is
still in progress.

V. CONCLUSIONS ANDONGOING RESEARCHDIRECTIONS

In this paper, we introduced a hybrid system modeling
framework where time-driven dynamics are switched by
events characterized by their own dynamics. Although this
framework was motivated by problems in metalmaking, it is
representative of many manufacturing processes, where the
main objective is to trade off the quality of the completed
jobs against the satisfaction of job deadlines, each of the
two factors carrying its own costs. This leads to problems,
which, in general, involve a scheduling component (i.e.,
deciding the order in which jobs should be processed), a
server assignment component (i.e., deciding which servers
should perform the processing and the order in which
servers must be visited by the jobs), and an optimal control
component to determine various process control settings
that directly affect server parameters such as speed, service

Fig. 8. Optimal sample path for a two-stage hybrid system.

time, etc. As described in this paper, our research so far has
focused on this last component of the control problem. We
have assumed that a job schedule is given and examined
the issues involved in determining the server parameters.
Dealing with single-stage and two-stage processes, we
encountered most of the difficulties characteristic of hybrid
system optimal control problems, including nondifferentia-
bility and nonconvexity of objective functions.

Generally speaking, dynamic programming (DP) can be
used to solve the optimal control problems described in this
paper. In practice, however, the “curse of dimensionality”
makes it numerically impractical to obtain a control policy
by using DP. For deterministic problems, the problem can be
phrased as a nonsmooth mathematical programming problem
that can be treated with a combination of variational tech-
niques and nonsmooth optimization theory. In general, how-
ever, these techniques still lead to solution methods no sim-
pler than solving the DP equations. Our approach has been to
seek and exploit any type of special structure to be found in
our framework. The result is a “divide-and-conquer” scheme
that decomposes the solution of a difficult large-scale non-
smooth optimization problem into a collection of simpler
smaller scale and smooth optimization problems. For these
problems, fast numerical algorithms (e.g., conjugate gradient
methods) can then be used. Alternatively, we showed how
Bezier functions can be used as surrogates for the nonsmooth
max functions present in the event-driven dynamics to ap-
proximate the overall nonsmooth optimization problem with
a smooth one. This approach can be applied to any con-
figuration of servers that can be described using the “max-
plus” algebra. In contrast, it is not yet clear whether the di-
vide-and-conquer decomposition algorithms, which include
Algorithm 1 in Section III-B, the backward algorithm in [11],
and the forward algorithm in [13], can be extended beyond
single-stage processes. Our ongoing research is looking into
ways to extend the decomposition algorithms. We are also

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1121

conducting a systematic comparison of all of the algorithms
we have developed to date to catalog their respective advan-
tages and disadvantages.

The work presented in this paper has taken only the first
steps toward analyzing a large class of hybrid systems and
seeking explicit solutions. We have considered in great de-
tail single-stage processes and identified several properties
based on which we have developed several efficient solu-
tion algorithms. Extensions to multistage processes, beyond
the approach presented in Section IV, still remain to be thor-
oughly analyzed. We have also limited ourselves to controls
that are fixed over the duration of a job processing cycle, as
opposed to time-varying control throughout this cycle. Some
early work along these lines presented in [8] suggests a hier-
archical decomposition for hybrid systems that deserves fur-
ther investigation.

An obvious question also relates to the fact that the mod-
eling framework we have studied in this paper is limited to
a deterministic setting. This defines another important re-
search direction involving stochastic hybrid system models
and associated optimal control problems. Along these lines,
recent work in [24] has treated the case where the job arrival
time sequence or the processing times (or both) are modeled
through random processes. Using DP equations, it is possible
to extract some structural properties of the optimal control
policy. In particular, it can be shown that simple threshold-
based policies are optimal, i.e., a specific control action is
taken when a certain state variable exceeds a threshold. One
advantage of a threshold policy is that it converts the optimal
control problem from a search over a space of functions to
a simpler parametric optimization problem for determining
the optimal values of the threshold parameters.

Returning to the issue of determining explicit optimal con-
trol solutions for specific problems, we believe that in the
case of hybrid systems it is particularly important to take ad-
vantage of structural properties. This observation is related
to the so-calledNo Free Lunch Theorem[25], which identi-
fies the trade-off between generality and computational ef-
ficiency of optimization algorithms. A consequence of the
theorem is that it is possible to outperform a general-pur-
pose optimization algorithm (like DP) by incorporating spe-
cialized knowledge about the specific problem being solved.
The complexity of hybrid system optimal control problems is
such that it is very unlikely for any “general” solution proce-
dure to be computationally feasible; a more promising direc-
tion is that of seeking structural properties in broad classes of
interesting problems and developing solution methodologies
tailored to these problems.

REFERENCES

[1] A. Alur, T. A. Henzinger, and E. D. Sontag, Eds.,Hybrid Sys-
tems. Berlin, Germany: Springer-Verlag, 1996.

[2] P. Antsaklis, W. Kohn, M. Lemmon, A. Nerode, and S. Sastry, Eds.,
Hybrid Systems. Berlin, Germany: Springer-Verlag, 1998.

[3] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, Eds.,Hy-
brid Systems. Berlin, Germany: Springer-Verlag, 1993, vol. 736,
Lecture Notes in Computer Science.

[4] M. Lemmon, K. He, and I. Markovsky, “Supervisory hybrid sys-
tems,”IEEE Contr. Syst. Mag., vol. 19, no. 4, pp. 42–55, 1999.

[5] D. Liberzon and A. Morse, “Basic problems in stability and design
of switched systems,”IEEE Contr. Syst. Mag., vol. 19, no. 5, pp.
59–70, 1999.

[6] C. G. Cassandras,Discrete Event Systems: Modeling and Perfor-
mance Analysis. Homewood, IL: Irwin, 1993.

[7] L. Kleinrock, Queueing Systems. New York: Wiley-Interscience,
1975, vol. I, Theory.

[8] K. Gokbayrak and C. G. Cassandras, “Hybrid controllers for hierar-
chically decomposed systems,” inProc. 3rd Int. Workshop Hybrid
Systems: Computation and Control, March 2000, pp. 117–129.

[9] C. G. Cassandras, D. L. Pepyne, and Y. Wardi, “Optimal control of
systems with time-driven and event-driven dynamics,” inProc. 37th
IEEE Conf. Decision and Control, Dec. 1998, pp. 7–12.

[10] C. G. Cassandras, D. L. Pepyne, and Y. Wardi, Optimal control of a
class of hybrid systems, submitted for publication.

[11] Y. Wardi, C. G. Cassandras, and D. L. Pepyne, Algorithm for com-
puting optimal controls for single-stage hybrid manufacturing sys-
tems, submitted for publication.

[12] D. L. Pepyne and C. G. Cassandras, “Modeling, analysis, and op-
timal control of a class of hybrid systems,”J. Discrete Event Dy-
namic Syst., vol. 8, no. 2, pp. 175–201, 1998.

[13] Y. Cho, C. G. Cassandras, and D. Pepyne, Forward algorithms for
optimal control of a class of hybrid systems, submitted for publica-
tion.

[14] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework
for hybrid control: Model and optimal control theory,”IEEE Trans.
Automat. Contr., vol. 43, no. 1, pp. 31–45, 1998.

[15] S. Galan and P. Barton, “Dynamic optimization of hybrid systems,”
Chem. Eng., vol. 22, pp. S183–S190, 1998.

[16] A. E. Bryson and Y. C. Ho,Applied Optimal Control: Hemisphere,
1975.

[17] D. E. Kirk, Optimal Control Theory. Englewood Cliffs, NJ: Pren-
tice-Hall, 1970.

[18] D. L. Pepyne, “Performance optimization strategies for discrete
event and hybrid systems,” Ph.D. dissetation, Dept. of Electrical
and Computer Engineering, Univ. of Massachusetts, Amherst, Feb.
1999.

[19] F. H. Clarke,Optimization and Nonsmooth Analysis. New York:
Wiley-Interscience, 1983.

[20] M. M. Makela and P. Neittaanmaki,Nonsmooth Optimiza-
tion. Cleveland, OH: World Scientific, 1992.

[21] R. Rockafellar,Convex Analysis. Princeton, NJ: Princeton Univ.
Press, 1970, vol. 28, Princeton Mathematics Series.

[22] N. Singh,Systems Approach to Computer Integrated Design and
Manufacturing. New York: Wiley, 1996.

[23] C. G. Cassandras, Q. Liu, K. Gokbayrak, and D. L. Pepyne, “Optimal
control of a two-stage hybrid manufacturing system model,” inProc.
38th IEEE Conf. Decision and Control, Dec. 1999, pp. 450–455.

[24] K. Gokbayrak and C. G. Cassandras, “Stochastic optimal control of
a hybrid manufacturing system model,” inProc. 38th IEEE Conf.
Decision and Control, Dec. 1999, pp. 919–924.

[25] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,”IEEE Trans. Evol. Computat., vol. 1, no. 1, pp. 67–82,
1997.

David L. Pepyne (Member, IEEE) received the
B.S. degree from the University of Hartford, West
Hartford, CT, in 1986, and the M.S. and Ph.D.
degrees from the University of Massachusetts at
Amherst, Amherst, MA, in 1995 and 1999, re-
spectively, all in electrical engineering.

From 1986 to 1990, he served as an Officer in
the United States Air Force, during which time
he was stationed at Edwards Air Force Base, CA,
and worked as a Flight Test Engineer in a simu-
lation laboratory and on a cruise missile test pro-

gram. From 1995 to 1997, he was a Project Engineer with Alphatech, Inc.,
Burlington, MA. Since 1999, he has been a Research Fellow in the Division
of Engineering and Applied Sciences at Harvard University, Cambridge,
MA, where his research focuses on complexity theory, intrusion and fault
detection, optimization theory, and optimal control of discrete-event and hy-
brid systems.

Dr. Pepyne is currently an Associate Editor for the IEEE Control Systems
Society Conference Editorial Board.

1122 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 7, JULY 2000

Christos G. Cassandras (Fellow, IEEE) re-
ceived the B.S. degree from Yale University,
New Haven, CT, in 1977, the M.S.EE degree
from Stanford University, Stanford, CA, in 1978,
and the S.M. and Ph.D. degrees from Harvard
University, Cambridge, MA, in 1979 and 1982,
respectively.

From 1982 to 1984, he was with ITP Boston,
Inc., where he worked on the design of automated
manufacturing systems. From 1984 to 1996,
he was a faculty member at the Department

of Electrical and Computer Engineering, University of Massachusetts
at Amherst, Amherst, MA. He is currently Professor of manufacturing
engineering and Professor of electrical and computer engineering at Boston
University, Boston, MA. He specializes in the areas of discrete event sys-
tems, stochastic optimization, and computer simulation, with applications
to computer networks, manufacturing systems, and transportation systems.
He has published more than 150 papers in these areas, and two textbooks.
He has guest-edited several technical journal issues and serves on several
editorial boards.

Dr. Cassandras is currently Editor-in-Chief of the IEEE TRANSACTIONS

ON AUTOMATIC CONTROL and has served as Editor for Technical Notes and
Correspondence and Associate Editor. He is a member of the CSS Board of
Governors, chaired the CSS Technical Committee on Control Theory, and
served as Program Chair of various conferences. He is the recipient of the
1999 Harold Chestnut Prize (IFAC Best Control Engineering Textbook) for
Discrete Event Systems: Modeling and Performance Analysisand a 1991
Lilly Fellowship, and is a member of Phi Beta Kappa and Tau Beta Pi.

PEPYNE AND CASSANDRAS: OPTIMAL CONTROL OF HYBRID SYSTEMS IN MANUFACTURING 1123

