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a b s t r a c t

We consider resource contention games in a stochastic hybrid system setting using
Stochastic Flow Models (SFM) with multiple classes and class-dependent objectives. We
present a general modeling framework for such games, where Infinitesimal Perturbation
Analysis (IPA) estimators are derived for the derivatives of various class-dependent
objectives. This allows us to study these games from the point of view of system-centric
optimization of a performance metric and compare it to the user-centric approach where
each user optimizes its own performance metric. We derive explicit solutions for a specific
model in which the competing user classes employ threshold control policies and service
is provided on a First Come First Serve (FCFS) basis. The unbiasedness of the IPA estimators
is established in this case and it is shown that under certain conditions the system-centric
and user-centric optimization solutions coincide.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The study of hybrid systems is based on a combination of modeling frameworks originating in both time-driven and
event-driven dynamic systems and resulting in hybrid automata. In a stochastic setting, such frameworks are augmented
withmodels for randomprocesses that affect either the time-driven dynamics or the events causing discrete state transitions
or both. A general-purpose stochastic hybrid automaton model may be found in [1] along with various classes of Stochastic
Hybrid Systems (SHS) which exhibit different properties or suit different types of applications. Stochastic Flow Models
(SFMs) are examples of SHS obtained through an abstraction process applied to a large class of Discrete Event Systems
(DES). They are especially useful in analyzing settings where users compete over different sharable resources, particularly
communication networks with large traffic volumes (e.g., [2,3]). It should be stressed that such models may not always
provide accurate representations for the purpose of analyzing the performance of the underlying system. What we are
interested in, however, is control and optimization, in which case the value of a SFM lies in capturing only those system
features needed to design an effective controller that can potentially optimize performance without any attempt at
estimating the corresponding optimal performance value with accuracy. In particular, as explained next and explicitly
seen in the analysis of subsequent sections, a SFM serves to provide only functional expressions for performance gradient
estimators which are then used as surrogates of gradient estimates for the original DES. The values of these estimates,
however, are still obtained based on information directly observed on the DES sample path, not the SFM whose sample
paths are never used and never have to be realized.

While in most traditional fluid models the flow rates involved are treated as deterministic parameters, a SFM, as
introduced in [4], treats flow rates as stochastic processes. With onlyminor technical assumptions imposed on the properties
of such processes, a new approach for sensitivity analysis and optimization was recently proposed, based on Infinitesimal
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Perturbation Analysis (IPA) [5]. The essence of this approach is the on-line estimation of gradients (sensitivities) of
certain performance measures with respect to various controllable parameters. These estimates may be incorporated in
standard gradient-based algorithms to optimize system parameter settings. IPA was originally developed as a technique for
evaluating gradients of sample performance functions in queueing systems and using them as unbiased gradient estimates
of performancemetrics expressed as expectations of these sample functions. However, IPA estimates become biased (hence
unreliable for control purposes) when dealing with aspects of queueing systems such as multiple user classes, blocking due
to limited resource capacities, and various forms of feedback control. The emergence of SFMshas rekindled the interest in IPA
because SFMs allow us to circumvent these limitations, yielding simple unbiased gradient estimates of useful metrics even
in the presence of blocking and a variety of feedback control mechanisms [6,7]. It is also possible to show [8] that for simple
systems (e.g., G/G/1 queues with or without blocking) the IPA gradient estimators obtained through the SFM counterparts
of those systems are the same as, or can asymptotically approximate, the gradient estimators obtained through IPA applied
to the original DES.

When it comes tomultiple user classes possibly competing for limited resources, IPA has been applied to problemswhere
flows are differentiated in terms of admission to a system, but once admitted all flows are treated alike [9]. IPA for SFMs that
can differentiate flow classes by associating different performancemetrics to them has been a challenge and developing IPA
estimates for gradients of class-dependent metrics has been elusive. Recently, [10] studied a multiclass SFM to analyze a
dynamic priority call center. This model breaks new ground by differentiating among flow classes even after they enter the
system; however, the analysis is very specific to the call center application and hard to extend to a general multiclass SFM.
In addition, it is limited to state perturbations but not general performance metrics, and unbiasedness for the estimators
derived was not established.

In [11], we developed a general multiclass SFM, where we introduced the class of ‘‘induced events’’ in addition to
the two common event types (exogenous and endogenous) in previous SFMs. This new class of events greatly enriches
the modeling power, but also considerably complicates IPA. Nonetheless, we developed IPA algorithms for estimating
performance derivatives that subsequently allow us to optimize the underlying system. In [12], we extended our results
and proposed a general IPA framework for stochastic hybrid systems with arbitrary structures. In the proposed multiclass
SFM, each class is associated with its own performance metrics, such as workload, throughput, or loss rate due to overflow.
This is an important new element in the analysis of SFMs, allowing us to study the difference between user-centric and
system-centric optimization, something that was not previously possible, and to place resource contention problems in a
resource contention game framework.

Resource contention games form a class of non-cooperative games inwhich two ormore ‘‘users’’ compete for one ormore
sharable resources by submitting requests for their use over time. In problems studied thus far using SFMs, a purely ‘‘system-
centric’’ point of view is adopted: the system defines an objective function and seeks to optimize it through appropriate
control actions. In a resource contention game, however, there are multiple user types (referred to as user ‘‘classes’’) and
each user defines its own objective function and seeks to optimize it. This gives rise to a game setting with a ‘‘user-centric’’
perspective. The contribution of this paper is to provide a general setting for resource contention games modeled through
SFMs and then study a specific class of such games using IPA techniques to estimate user-specific performance derivatives
and obtain both system-centric and user-centric solutions through gradient-based algorithms.

In Section 2 of the paper we present the general resource contention game setting using SFMs. We also describe how IPA
can be used to estimate general-purpose performance metric derivatives with respect to parameters that the users control.
In Section 3, we consider a specific class of games and present a detailed SFM which includes induced events to capture the
user-dependent behavior of flows. We show how IPA is used to estimate performance metric derivatives for the specific
problem and establish the unbiasedness of these estimates. We then compare user-centric to system-centric optimization
for this problem and provide a condition under which the two solutions coincide. In Section 4, we include some numerical
examples to illustrate the difference between the two solutions.

2. SFM framework for resource contention games

We consider a setting where N ‘‘players’’ corresponding to N user classes compete at time t for a resource with total
service capacity C(t), where C(t) may be a random process. The ith user class submits requests at a rate αi(t), generally
time-varying and random. The ith user class is also allocated a portion of the service capacity C(t) at time t , denoted by
ci(x(t, θ), θ, C(t)), which satisfies for all i = 1, . . . ,N:

N−
i=1

ci(x(t, θ), θ, C(t)) = C(t), 0 ≤ ci(x(t, θ), θ, C(t)) ≤ C(t) (1)

where x(t, θ) = [x1(t, θ), . . . , xN(t, θ)], xi(t, θ) ≥ 0 is the number of ith user class requests waiting to be processed at
time t , and θ = [θ1, . . . , θN ] is a vector of control parameters used to determine how the resource capacity is allocated to
different classes. Note that θi may itself be a vector of parameters all under the control of user class i. Also note that we use
the notation x(t, θ) to stress the dependence of the state on the parameter vector θ.
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Adopting a SFM for this process, we let xi(t, θ) ∈ R+ (where R+ denotes the set of non-negative real numbers) and
observe that the system dynamics are given by

dxi(t, θ)
dt+

= fi(x(t, θ), θ)

=


0 xi(t, θ) = 0 and αi(t) − βi(x(t, θ), θ) ≤ 0
αi(t) − βi(x(t, θ), θ) otherwise (2)

where βi(x(t, θ), θ) is a control policy determining the actual service rate of class i = 1, . . . ,N and satisfying for all t:

βi(x(t, θ), θ) ≤ ci(x(t, θ), θ, C(t)). (3)

The random processes {C(t)}, {x(t, θ)}, and {αi(t)}, {βi(x(t, θ), θ)} for all i = 1, . . . ,N are defined on a common probability
space (Ω, F , P). In addition, we will assume that C(t) is independent of θ. The process {αi(t)}, on the other hand, may
generally be dependent on θ.

Let Li(θ) be an objective function specified by the ith user class which, in general, may be defined over a finite interval
[0, T ] or over an infinite horizon. The goal of the ith user class is to minimize

Ji(θ) = E [Li(θ)] . (4)

Clearly, the objective of user class i may conflict with that of another class j ≠ i, giving rise to a non-cooperative resource
contention game. On the other hand, from the system’s perspective, we define an optimization problem which involves a
weighted sum of all Ji(θ):

J(θ) =

N−
i=1

wiJi(θ) (5)

where wi ∈ R+. The latter problem is termed ‘‘system-centric’’, while the former involves N separate optimization
problems defining the ‘‘user-centric’’ approach. Under appropriate conditions, one can generally determine a solution
θs

= [θ s
1, . . . , θ

s
N ] to the system-centric optimization problem. The same is not always true for the user-centric approach

if, for instance, θi and θj, j ≠ i, are subject to some constraint of the form g(θi, θj) ≤ 0 that induces an interdependence
between them. Even if the user-centric approach leads to a solution θu

= [θu
1 , . . . , θu

N ], this, in general, differs from the
system-centric solution θs. It is then interesting to compare, for each user class, Ji(θs) and Ji(θu) and seek ways to ensure
that Ji(θs) = Ji(θu) since we generally expect that Ji(θs) < Ji(θu). The gap Ji(θs) − Ji(θu) < 0 is a measure of inefficiency of a
user-centric approach and sometimes referred to as the ‘‘price of anarchy’’.

The dynamics in (2) reflect the hybrid nature of this system with each user class operating in at least two ‘‘modes’’
depending on the value of xi(t) and the sign of αi(t) − βi(x(t), θ). Additional modes are possible depending on the precise
nature of the control policy βi(x(t), θ) as we will see in the next section. Using the notation established in [12] for general
SHS, let us classify the events that may occur in the SFM defined by (1)–(3) as follows, where we shall use τk to denote the
kth event time:
1. Exogenous events. An event is exogenous if its occurrence time τk is independent of the controllable vector θ, i.e., dτk

dθ = 0.
Exogenous events typically correspond to uncontrolled random changes in input processes. In our particular setting, the
capacity {C(t)} is a process independent of θ. Thus, if {C(t)} is modeled as a piecewise constant process, then any event
associatedwith a jump in C(t) is, by definition, an exogenous event. The processes {αi(t)} or {βi(t)}may also be independent
of θ for some or all i = 1, . . . ,N; if any such process is independent of θ, then additional exogenous events may similarly
be defined.
2. Endogenous events. Using the definition in [12], an event occurring at time τk is endogenous if there exists a continuously
differentiable function gk such that

τk = min{t > τk−1 : gk(x(t, θ), θ) = 0}. (6)

Based on this definition, the event ‘‘xi(t, θ) becomes 0’’ is an endogenous event with corresponding switching function

g(x(t, θ), θ) = xi. (7)

Additional endogenous events may be present depending on the specific nature of the control policies βi(x(t, θ), θ). If, for
example, there is a discontinuity in βi(x(t, θ), θ) for xi(t) > 0 that causes a switch in the time-driven dynamics fi(x(t, θ), θ),
then an endogenous event is defined with some associated switching function, as we will see in the next section.
3. Induced events. An event at time τk is induced if it is triggered by the occurrence of another event at time τm ≤ τk. The
triggering event may be exogenous, endogenous, or itself an induced event. Induced events arise, for example, when it is
necessary tomodel user requests on a First Come First Served (FCFS) basis as in [11], a case thatwewill revisit for the specific
resource contention game defined in the next section.

In what follows, we study the processes through which event time and state derivatives (sensitivities) with respect to
θ evolve over time in a particular sample path without attempting to select any explicit control policies βi(x(t, θ), θ) or



Author's personal copy

304 C. Yao, C. Cassandras / Nonlinear Analysis: Hybrid Systems 5 (2011) 301–319

ci(x(t, θ), θ, C(t)). Using the IPA framework presented in [12], we define the following notation for all state and event time
sample derivatives:

x′

i,j(t) ≡
∂xi(t)
∂θj

, τ ′

k,j ≡
∂τk

∂θj
, i, j = 1, . . . ,N.

To simplify notation, we will write x(t) instead of x(t, θ) when no ambiguity arises. Similarly, we write fi(t) instead of
fi(x(t, θ), θ).

Since x(t) is continuous at event times τk, i.e., xi,j(τ+

k ) = xi,j(τ−

k ), taking derivatives on both sides with respect to θj gives

x′

i,j(τ
+

k ) = x′

i,j(τ
−

k ) +

fi(τ−

k ) − fi(τ+

k )

· τ ′

k,j. (8)

For any exogenous event at τk, by definition, τ ′

k,j =
∂τk
∂θj

= 0, therefore x′

i,j(τ
+

k ) = x′

i,j(τ
−

k ). On the other hand, for an
endogenous event that satisfies gk(x(t, θ), θ) = 0 in (6), taking derivatives with respect to θj gives

∂gk
∂x

[
∂x
∂θj

(τ−

k ) +
dx
dt

(τ−

k )τ ′

k,j

]
+

∂gk
∂θj

= 0

which implies that

τ ′

k,j = −


N−
i=1

∂gk
∂xi

fi(τ−

k )

−1 
∂gk
∂θj

+

N−
i=1

∂gk
∂xi

x′

i,j(τ
−

k )


. (9)

For the endogenous event ‘‘xi(t) becomes 0’’, we have gk(x, θ) = xi and (9) reduces to

τ ′

k,j = −
x′

i,j(τ
−

k )

αi(τ
−

k ) − βi(x(τ−

k ), θ)
. (10)

Using this result in (8) and observing that fi(τ+

k ) = 0, we get

x′

i,j(τ
+

k ) = 0. (11)

For any other endogenous event defined based on the specific form of βi(x(t), θ) when xi(t) > 0, the event time derivatives
τ ′

k,j can be evaluated from (9), and then (8) can be used to obtain x′

i,j(τ
+

k ).
If induced events are present, then, as shown in [12], the SFM must include additional state variables whose derivatives

with respect to θ must also be evaluated. The precise way in which induced events occur depends on the specific process
we are interested in. We will return to this issue when analyzing the class of resource contention games considered in the
next section.

We now return to the ith user class objective function Ji(θ) = E [Li(θ)]. We are interested in the IPA derivative ∂Li/∂θj
which obviously depends on the specific form of Li(θ) defined by user class i. Here, for illustrative purposes, we limit
ourselves to a common case where Li(θ) is defined as the average workload of class i over a given time interval [0, T ]:

Li(θ) =
1
T

∫ T

0
xi(t)dt

which can be re-written as

Li(θ) =
1
T

NT−
k=0

∫ τk+1

τk

xi(t)dt (12)

where NT is the number of events contained in [0, T ]. In this case, the IPA derivative ∂Li/∂θj can be obtained as

∂Li

∂θj
=

1
T

NT−
k=0

[
xi(τk+1) · τ ′

k+1,j − xi(τk) · τ ′

k,j +

∫ τk+1

τk

x′

i,j(t)dt
]

(13)

where τ ′

k,j, k = 1, . . . ,NT , are obtained as described above and x′

i,j(t), i, j = 1, . . . ,N , are obtained by solving

d
dt

x′

i,j(t) =
∂ fi
∂xi

x′

i,j(t) +
∂ fi
∂θj

(14)

which is the result of taking derivatives on both sides of (2) with respect to θj. The solution of this equation is given by

x′

i,j(t) = e
 t
τk

∂ fi(x(u),θ)
∂xi

du
[∫ t

τk

∂ fi(x(v), θ)

∂θj
· e−

 v
τk

∂ fi(x(u),θ)
∂xi

dudv + l
]

(15)
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Fig. 1. A two-class stochastic flow model (SFM).

for t ∈ [τk, τk+1), where l is an initial condition obtained through (8) or similarly, depending on whether an additional
endogenous or induced event is involved in the SFM. In addition, recalling the system dynamics in (2), fi(t) = 0 during
periods [τk, τk+1) when xi(t) = 0; therefore, ∂ fi

∂xi
=

∂ fi
∂θj

= 0, then using (15), x′

i,j(t) = x′

i,j(τ
+

k ) = 0 according to (11) for all
t ∈ [τk, τk+1) and (13) reduces to

∂Li

∂θj
=

1
T


xi(τNT ) · τ ′

NT ,j − xi(τ0) · τ ′

0,j +
−
k∈Ωi

∫ τk+1

τk

x′

i,j(t)dt


(16)

where Ωi is the set of all periods during which xi(t) > 0, defined as

Ωi = {k : xi(t) > 0 for all t ∈ [τk−1, τk], k = 1, . . . ,NT } .

Observe that the evaluation of dLi/dθj above only depends on information related to the event times τk and their derivatives
and on x′

i,j(t).

3. A class of resource contention games

In this section, we study a specific class of resource contention games where multiple users compete for access to a
single sharable resource using threshold-based admission control and a FCFS processing policy. Each user defines a ‘‘class’’
of tasks that are randomly generated, placed in a common queue, and processed on a FCFS basis across all such classes.
We first describe the SFM abstraction of such a system, limiting ourselves to two user classes (our analysis directly applies
to three or more classes at the expense of added notation) and provide a formal stochastic hybrid automaton framework.
Then, using IPA-based user-specific performance derivative estimates, we formulate a resource contention game and show
that with the proper adjustment mechanism this user-centric approach can converge to the same optimal solution as that
obtained through system-centric optimization.

3.1. SFM for the resource contention game

A two-class SFM is shown in Fig. 1. Similar to the general setting in the last section, we define several real-valued and
non-negative randomprocesses on a common probability space (Ω, F , P). In particular, the process {xi(t)}, i = 1, 2, defines
the (real-valued) fluid content of class i in the system, {C(t)} is the total service capacity at time t , and {ci(t)}, i = 1, 2,
characterizes the service capacities of both classes where, clearly, C(t) = c1(t) + c2(t), consistent with (1). The external
arrival flow processes {ri(t)}, i = 1, 2, characterize the task arrival rates at time t . The parameter θi in this case is a threshold
controlled by user class i to limit the inflow; alternatively, it may be viewed as a buffer capacity assigned to class i: When
xi(t) ≥ θi, some of the class i incoming flow is dropped, giving rise to the overflow or loss process {li(t)} and the actual input
flow process {αi(t)}, i = 1, 2, which are defined as follows:

αi(t) =


ci(t) xi(t) = θi and ri(t) ≥ ci(t)
ri(t) otherwise (17)

li(t) = ri(t) − αi(t) =


ri(t) − ci(t) xi(t) = θi and ri(t) ≥ ci(t)
0 otherwise. (18)

Observe that both αi(t) and li(t) depend on θi. Similar to prior work on SFMs (e.g., [6,7]), the class i queue content can be
either empty, full, or neither. Accordingly, an interval [τk, τl], k < l, over which xi(t) = 0 for all t ∈ [τk, τl] corresponds to
an empty period (EP) for this class, while an interval [τk, τl], k < l, over which xi(t) = θi for all t ∈ [τk, τl] corresponds to a
full period(FP). A boundary period (BP) is either an EP or FP; a nonboundary period (NBP) is a supremal interval during which
0 < xi(t) < θi. Finally, the output flow processes {βi(t)}, i = 1, 2, characterize departing flow rates, which in this case are
specifically defined as

βi(t) =


ri(t) xi(t) = 0 and ri(t) ≤ ci(t)
ci(t) otherwise. (19)
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It is obvious from this definition that βi(t) satisfies condition (3). As illustrated in Fig. 1, the part of the content representing
flow class i is generally time-varying, depending on θi or changes in ri(t) or ci(t); in the figure, the class 1 portion of
the content decreases at some time instant, coinciding with some event which might, for instance, be a downward jump
in r1(t).

We are interested in the behavior of this SFMover a finite time interval [0, T ]. Regarding the arrival and service processes,
we will impose no restrictions on their probabilistic characterizations, but will make the following assumption:

Assumption 3.1. W.p. 1, the arrival ri(t) ≥ 0, i = 1, 2, and service capacity C(t) ≥ 0 are piecewise constant functions in
the interval [0, T ].

We define a vector x(t) = [x1(t), x2(t)] as in the last section, and the system dynamics in (2) become:

dxi(t)
dt+

=

0 xi(t) = 0 and ri(t) ≤ ci(t)
0 xi(t) = θi and ri(t) ≥ ci(t)
αi(t) − βi(t) otherwise.

(20)

Thus, when 0 < xi(t) < θi we simply have dxi
dt+ = ri(t) − ci(t). When xi(t) = 0 and ri(t) ≤ ci(t), the outflow rate is limited

by the external arrival flow rate; similarly, when xi(t) = θi and ri(t) ≥ ci(t), the inflow rate is limited by the service flow
rate, leading to the loss rate li(t) in (18). We will use x(t) =

∑2
i=1 xi(t) to denote the total system content at t .

The crucial difference between a single class SFM, as in [13], and the two-class SFM in Fig. 1 is the behavior of the service
capacity ci(t). Whereas in the single-class model the service capacity allocation is independent of the system state, ci(t) in
the two-class SFM depends on the queue contents and the inflow processes so as to satisfy the FCFS nature of the underlying
DES as explained next. Initially, the service capacity is allocated proportional to the inflow rates, i.e.,

ci(0) = C(0)
αi(0)∑
j

αj(0)
. (21)

This allocation is maintained until there is a change in αi(t)/
∑

j αi(t) at some time t > 0. When that happens, the total
content x(t) is the unprocessed workload under the initial service flow allocation. Let ω(t) denote the amount of time
required to process this workload, at which point the new service rate allocation can take effect. Thus, the formal definition
of ω(t) is through the relationship:∫ t+ω(t)

t
C(τ )dτ = x(t) x(t) > 0

ω(t) = 0 x(t) = 0.
(22)

Finally, at time t + ω(t) the new allocation takes effect:

ci(t + ω(t)) = C(t + ω(t))
αi(t)∑
j

αj(t)
. (23)

Therefore, in this SFM any event at t that causes a change in αi(t)/
∑

j αi(t) is critical in that it ‘‘induces’’ another event at
t+ω(t)which results in a service rate allocation change. Similarly to the general setting in Section 2, we use τk, k = 1, 2 . . . ,
to denote event occurrence times in increasing order of k. Using this notation, we define the set of inflow change events in
the interval [0, τk]:

zk = {m : ∃i ∈ {1, 2} s.t. αi(τ
−

m ) ≠ αi(τ
+

m ), m ≤ k}. (24)

To avoid degenerate cases where C(τ ) = 0 for all τ > t , we will assume, whenever (22) is used, that C(τ ) > 0 for a
sufficiently long time interval to ensure that ω(t) < ∞.

The following lemma establishes the fact that the service flow allocation mechanism in (21)–(23) captures the FCFS
nature of the underlying system modeled as a SFM (the proof of the lemma is given in [14]).

Lemma 3.1. For ω(t) defined in (22),∫ t+ω(t)

t
c1(s)ds = x1(t),

∫ t+ω(t)

t
c2(s)ds = x2(t).

This result asserts that any class i flow entering the SFM at t leaves at the same time t + ω(t) for both classes i = 1, 2. This is
consistent with the defining property of a FCFS policy in a queueing system, i.e., the waiting time of a customer arriving at t in a
FCFS queue is the same regardless of its class.
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The presence of a delay ω(t) in (21)–(23) introduces induced events into this system. Based on the definition of induced
events given in Section 2 (see also [12] and analysis therein), we need to augment our state description through state
variables ym(t),m = 1, 2, . . . , associatedwith inflow change events occurring at times τm,m = 1, 2 . . . , to provide ‘‘timers’’
triggered when such an inflow change event occurs and then measure the amount of time until the queue content x(τm) is
depleted, i.e.,

dym(t)
dt

=


−C(t) τm ≤ t < τm + ω(τm), m ∈ zm
0 otherwise (25)

ym(τ+

m ) =


x(τm) ym(τ−

m ) = 0, m ∈ zm
0 otherwise.

Clearly, these state variables are only used for inflow change events, so that ym(t) = 0 unless m ∈ zm. Intuitively,
ym(t) decreases from x(τm) at the rate of the service capacity C(t) until this queue content is depleted, at which time
ym(τm + ω(τm)) = 0 and the associated induced event takes place.

This SFM includes all exogenous and endogenous events defined in the general setting of Section 2. In addition, there
are: (i) endogenous events that initiate a FP for either user class with an associated switching function g(x(t), θ) = xi − θi,
i = 1, 2, and (ii) induced events as described above caused by the service flow allocation mechanism in (21)–(23). We will
refer to the latter as ω-events, because they are all related to the definition of ω(t) in (22). An event of this type occurring at
time τk is ‘‘induced’’ by an inflow change event at some time τm < τk, that is, any event (exogenous, endogenous, or itself
an ω-event) such that some αi(t), i = 1, 2, changes value at t = τm, m ∈ zm as defined in (24). Thus, an event at time τk is
an ω-event if there exists an event at τm, m ∈ zm, such that

τk(θ) = τm + ω(τm) > τm

and
∫ τm+ω(τm)

τm

C(τ )dτ = x(τm) > 0.

It should be clear that an ω-event occurs at time τm + ω(τm) when the workflow x(τm) present at the time the event was
induced becomes depleted and a service flow reallocation must result. If, however, x(τm) = 0, by (22) we get ω(τm) = 0
and the event has no further effect on the SFM.

We stress again that an ω-event can occur in the following three ways: (i) Induced by an exogenous event at τm such
that αi(τ

−
m ) ≠ αi(τ

+
m ). (ii) Induced by an endogenous event at τm. If xi(θ, τm) = 0, then by (17) and (20) this is not an

inflow change event. If, on the other hand, xi(θ, τm) = θi, from (17) and (20), we see that αi(τ
−
m ) = ri(τm) > 0 and

αi(τ
+
m ) = ci(τ+

m ) < ri(τm), i.e., this is an inflow change event. (iii) Induced by anotherω-event at τm which takes place while
xi(t) = θi, i = 1, 2. When this happens, (23) in conjunction with (17), causes a new inflow change at τk = τm + ω(τm). In
particular, (23) and (17) imply that:

βi(τ
+

k ) = C(τk)
αi(τ

+
m )∑

j
αj(τ

+
m )

αi(τ
+

k ) = βi(τ
+

k ) = C(τk)
αi(τ

+
m )∑

j
αj(τ

+
m )

.

Thus, a chain ofω-events is generated. If we index the events forming this chain by s, these indices are a subset of {1, 2, . . .},
and we get {αi.s}, s = 1, 2, . . . , with

αi,s+1 =
C(τs+1)∑

j
αj,s

αi,s.

The convergence properties of {αi.s} depend on the ratio C(τs+1)/
∑

j αj,s. In contrast to a single-class SFM where no events
occur during a FP, this sequence is potentially infinite if xi(t) = θi for all t > τm, which dramatically affects performance
sensitivity in such resource contention settings. A complete analysis of {αi.s} is provided in [14], but it is worth mentioning
that if C(τs+1)/

∑
j αj,s < 1, which typically occurs when ri(t) ≥ C(t) for some i, then {αi.s} is monotonically decreasing

with αi.s → 0. Thus, class i may ultimately be denied access to service unless its FP ends before this limit is reached.

3.2. Stochastic hybrid automaton model

In this section, we develop a stochastic hybrid automaton model for the SFM in Fig. 1, which provides a formal setting
facilitating its analysis. We begin by considering a typical sample path of the SFM in terms of the values xi(t) can take. We
define discrete aggregate states by decomposing the sample path into intervals (π, π ′

], π < π ′, that fall into one of three
types: (i) xi(t) = 0 for all t ∈ (π, π ′

], (ii) 0 < xi(t) < θi for all t ∈ (π, π ′
], and (iii) xi(t) = θi for all t ∈ (π, π ′

]. Denote
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Fig. 2. Aggregate state transition diagram.

the associated aggregate state by si(t) and the corresponding three values by 0, 0+, and θi respectively. This defines a set
Φi = {0, 0+, θi}. It follows that for the two-class SFM we have an aggregate state s(t) = (s1(t), s2(t)) taking values in the
set

Φ = {(0, 0), (0, 0+), (0, θ2), (0+, 0), (0+, 0+), (0+, θ2), (θ1, 0), (θ1, 0+), (θ1, θ2)}.

Thus, an aggregate state value of 0 corresponds to an EP for this class, a value of θi corresponds to a FP, and aggregate state
0+ corresponds to a NBP. The aggregate state transition diagram is shown in Fig. 2. Within each aggregate state, the system
follows the dynamics (20) and all transitions are caused by events defined in the previous section. A distinctive feature in
the diagram is the diagonal transition from (0+, 0+) to (0, 0), whose existence follows from Lemma 3.1 where we saw that
any class i flow entering the SFM at t leaves at the same time t + ω(t) for both classes i = 1, 2. If r1(t) = r2(t) = 0 and
xi(t) > 0 for both i = 1, 2, then the lemma implies that the time to deplete the current content of each class is the same,
i.e., both class contents become zero simultaneously, which corresponds to the transition from (0+, 0+) to (0, 0). In fact, this
represents the most common form of queue depletion; the transitions from (0+, 0+) to (0, 0+) or to (0+, 0) only occur by
certain ω-events, as asserted by the following corollary (its proof is embedded in the proof of Lemma 3.1).

Corollary 3.1. The transition from (0+, 0+) to (0, 0+) must be caused by an ω-event triggered by an inflow change event that
reduces r1 > 0 to 0. Similarly, the transition from (0+, 0+) to (0+, 0)must be caused by anω-event triggered by an inflow change
event that reduces r2 > 0 to 0.

Note that the hybrid automaton model in Fig. 2 is incomplete because it does not include the information captured by
the state variables ym(t), m = 1, 2, . . . , in (25). Suppose at time t ∈ (τk, τk+1] the system is in the aggregate state (s1, s2)
and transitions to (s′1, s

′

2) at τk+1. If the event at τk+1 is an inflow change event, then from (25), yk+1 will become positive
from 0; if the event at τk+1 is an induced event, i.e., τk+1 = τm +ω(τm) for somem, then also based on (25), ym will decrease
to 0. In order to keep track of these ‘‘timers’’, we augment the aggregate state to (s1(t), s2(t), n(t)), where n(t) = 0, 1, . . . ,
is the number of strictly positive yk at t . From (25), n(t) actually indicates the number ofω-events which have been induced
by some inflow change event but have not yet occurred at time t . Clearly a complete transition diagram now becomesmuch
more complicated. We limit ourselves to Fig. 3 showing all possible outgoing transitions from a typical state (0+, 0+, n)
with n > 0. For example, when the state is (0+, 0+, n) and an inflow change event occurs, a new event is induced and the
number of such events is increased by 1. Note that since 0 < xi(t) < θi for i = 1, 2 at (0+, 0+, n), only an exogenous event
(a jump in some ri(t)) could induce a new future event. Similar diagrams can be obtained for other aggregate states. It is
noteworthy in Fig. 3 that transitions from (0+, 0+, ·) to (0, 0+, ·) or (0+, 0, ·) are caused by ω-events, consistent with the
Corollary above.

3.3. Resource contention optimization

An optimization problem for the resource contention setting above is defined by treating θ = [θ1, θ2] as a controllable
parameter vector.Whereas in [11]we assumed that θi > 0, i = 1, 2, are not otherwise constrained, in this paperwe consider
the case where

θ1 + θ2 = Θ (26)

i.e., a fixed amount of total queueing capacity is to be allocated to the two user classes. We seek to optimize performance
metrics of the form J(θ; x(0), T ) = E[L(θ; x(0), T )] where L(θ; x(0), T ) is a sample function of interest evaluated in the
interval [0, T ] with initial conditions x(0). Typical performance metrics of interest are the loss volume (due to overflow
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Fig. 3. Outgoing transitions from a state (0+, 0+, n), n > 0, in the set (0+, 0+, ·).

processes), the loss probability, the average workload (i.e., the queue contents), and the system throughput. In addition,
delay metrics can be incorporated through fluid versions of Little’s law. We shall limit ourselves to the class-dependent loss
volumes, Li(θ; x(0), T ), and average workloads, Qi(θ; x(0), T ), i = 1, 2, and write for notational simplicity Li(θ) and Qi(θ). Let
NT be the total number of events observed in a sample path over [0, T ]. The average workload of flow class i, i = 1, 2, is

Qi(θ) =
1
T

∫ T

0
xi(t, θ)dt =

1
T

−
k∈Ωi

∫ τk

τk−1

xi(t, θ)dt (27)

with τ0 = 0, and Ωi is the set of all non-empty periods (NEPs) for class i, defined as

Ωi = {k : xi(t) > 0 for all t ∈ [τk−1, τk], k = 1, . . . ,NT } .

The average loss rate of flow class i, i = 1, 2, is

Li(θ) =
1
T

∫ T

0
li(t, θ)dt =

1
T

−
k∈Ψi

∫ τk

τk−1

[ri(t) − αi(t)] dt (28)

where we have used the fact that li(t) = ri(t) − αi(t) and li(t) ≥ 0 only in FPs of class i, with the definition:

Ψi = {k : xi(t) = θi for all t ∈ [τk−1, τk], k = 1, . . . ,NT } .

In the user-centric approach, class 1 and class 2 individually optimize their own performance metric defined as

Ji(θ) = γ1,iE[Qi(θ)]θi + γ2,iE [Li(θ)] (29)

where γi,j are user-based weights reflecting the relative importance of workload and loss rate. We point out that although
Ji(θ) is a function of both θ1 and θ2, class i is limited to controlling its own threshold parameter θi only. A game theoretic
approach is a natural one in the context of the resource contention setting we have described, since users are generally not
cooperative: rather, they compete for a limited resource (in our case, the queuing capacity Θ). Moreover, it is often the case
that there is no centralized coordination and it is necessary to attain an equilibrium based on actions taken by the individual
users without any central resource allocation control.
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In the system-centric approach, we assume that there exists a central controller responsible for determining an optimal
resource allocation based on a weighted sum of all classes’ objective functions, as defined in (5), i.e.

J(θ) = w1J1(θ) + w2J2(θ). (30)

Ideally, onewould like to guarantee that the optimal solution obtained by the system-centric optimization process coincides
with that of the user-centric approach, assuming that one even exists in this case. Thus, our goal will be to seek solutions
for both optimization problems (if they exist) and study their difference.

Given that we do not wish to impose any limitations on the processes {ri(t)} and {C(t)} (other than mild technical
conditions), it is infeasible to obtain closed-form expressions for Ji(θ). Therefore, similar to our previous work in [11], we
seek iterative gradient-based methods such as stochastic approximation algorithms (e.g., [15]) of the form

θi,k+1 = θi,k − ηkHi,k(θk; x(0), ξT ), k = 0, 1, . . . (31)

where, in the case of (30), Hi,k(θk; x(0), ξT ) is an estimate of ∂ J(θ)/∂θi, i = 1, 2, evaluated at θ = (θ1,k, θ2,k) over a sample
path of length [0, T ] denoted by ξT . In the case of (29), Hi,k(θk; x(0), ξT ) is an estimate of ∂ Ji(θ)/∂θi, i = 1, 2, evaluated at
θ = (θ1,k, θ2,k). We make use of IPA to obtain estimates of ∂ J(θ)/∂θi or ∂ Ji(θ)/∂θi, which implies the need for evaluating
the sample derivatives of Qi(θ) and Li(θ). It is clear from (27) and (28) that this requires the sample derivatives of the states
xi(t, θ) and of the event times τk(θ) where the explicit dependence on the parameter θ is included for emphasis.

3.4. IPA derivatives

Similar to the general setting in Section 2, we define the following for all state and event time sample derivatives:

x′

i,j(t) ≡
∂xi(t)
∂θj

, y′

m,j(t) ≡
∂ym(t)

∂θj
, τ ′

k,j ≡
∂τk

∂θj
(32)

for i, j = 1, 2, and k,m = 1, 2, . . . . We will make use of the general expressions in (8), (9) and (15) to obtain x′

i,j(t) and
τ ′

k,j for the specific SFM in Fig. 1. In addition, using the definition in (25), we can derive state and event time derivatives at
induced events. Since an induced event at τk is triggered by an inflow change event at τm, such that τk = τm + ω(τm), then,
based on (25), we must have ym(τ−

k ) = 0, and taking derivatives on both sides with respect to θj we get:

y′

m,j(τ
−

k ) +
∂ym(τ−

k )

∂t
· τ ′

k,j = 0

which gives y′

m,j(τ
−

k ) − C(τ−

k )τ ′

k,j = 0 or (noting that C(τ−

k ) ≠ 0, otherwise depletion at τk is not possible):

τ ′

k,j =
y′

m,j(τ
−

k )

C(τ−

k )
. (33)

Along the same lines as the state derivatives x′

i,j(t), we can also obtain y′

m,j(t) as follows. First, between any two consecutive
events,

y′

m,j(t) = y′

m,j(τ
+

k ) t ∈ [τk, τk+1), m ∈ zk .

Since ym(t) is continuous as long as ym(t) > 0 in (25), for any event that occurs while ym(t) > 0,

ym(τ+

k ) = ym(τ−

k ), m ∈ zk−1 . (34)

Taking derivatives with respect to θj,

y′

m,j(τ
+

k ) +
∂ym(τ+

k )

∂t
τ ′

k,j = y′

m,j(τ
−

k ) +
∂ym(τ−

k )

∂t
τ ′

k,j

where ∂ym(τ+

k )

∂t = −C(τ+

k ), ∂ym(τ−

k )

∂t = −C(τ−

k ) so that

y′

m,j(τ
+

k ) = y′

m,j(τ
−

k ) + [C(τ+

k ) − C(τ−

k )]τ ′

k,j. (35)

If ym(τ−

k ) = 0 and m ∈ zk−1, then, by definition, an induced event occurs at τk, and τk = τm + ω(τm). Recalling (25),
ym(t) = 0 thereafter, so we also reset:

y′

m,j(τ
+

k ) = 0 if τk = τm + ω(τm). (36)

Finally, if an inflow change event occurs at τk, recall from (25) that at τk we initialize yk(t) by setting

yk(τ+

k ) = x(τ+

k ) = x(τ−

k ) =

2−
i=1

xi(τ−

k ).
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Therefore, taking derivatives with respect to θj,

y′

k,j(τ
+

k ) +
∂yk,j(τ+

k )

∂t
τ ′

k,j =

2−
i=1

x
′

i,j(τ
−

k ) +

2−
i=1

∂xi(τ−

k )

∂t
τ ′

k,j

and since ∂yk,j(τ
+

k )

∂t = −C(τ+

k ), ∂xi(τ
−

k )

∂t = fi,k(τ−

k ), we get

y′

k,j(τ
+

k ) =

2−
i=1

x
′

i,j(τ
−

k ) +


2−

i=1

fi,k(τ−

k ) + C(τ+

k )


τ ′

k,j. (37)

We can now derive the state derivatives x′

i,j(t), y
′

m,j(t), and event time derivative τ ′

k,j as evaluated at every event in the
system. In between any two consecutive events, using (15) and noting that ∂βi

∂θj
= 0 for i, j = 1, 2, for all t ∈ [τk, τk+1) we

have

x′

i,j(t) = x′

i,j(τ
+

k ), y′

m,j(t) = y′

m,j(τ
+

k ). (38)

At event time τk, depending on the event type, we have:
1. Exogenous events. As already seen in Section 2, τ ′

k,j = 0 in this case, and using (8) and (34), we have

τ ′

k,j = 0, x′

i,j(τ
+

k ) = x′

i,j(τ
−

k ) (39)

y′

m,j(τ
+

k ) = y′

m,j(τ
−

k ) m ∈ zk−1 .

2. Endogenous events. If an endogenous event initiates a FP for flow class i, then the switching function in (6) is g(x(t), θ) =

xi − θi. Applying (9) and (8) gives, for j = i,

τ ′

k,j =
1 − x′

ij(τ
−

k )

ri(τ−

k ) − ci(τ−

k )
, x′

ij(τ
+

k ) = 1 (40)

and for j ≠ i,

τ ′

k,j =
−x′

i,j(τ
−

k )

ri(τ−

k ) − ci(τ−

k )
, x′

i,j(τ
+

k ) = x′

i,j(τ
−

k ). (41)

In addition, based on (36), y′
m(τ+

k ) = y′
m(τ−

k ), m ∈ zk−1.
If the event initiates an EP, we have already obtained in (11) and (10):

τ ′

k =
−x′

i,j(τ
−

k )

ri(τ−

k ) − ci(τ−

k )
, x′

i,j(τ
+

k ) = 0 (42)

and based on (36), y′
m(τ+

k ) = y′
m(τ−

k ), m ∈ zk−1.
3. ω-events. Suppose an ω-event occurs at τk induced by an inflow change event at τm so that τk = τm + ω(τm). In this case,
fi,k(τ−

k ) = αi(τ
−

k ) − ci(τ−

k ), fi,k+1(τ
+

k ) = αi(τ
+

k ) − ci(τ+

k ), and based on (33) and (8),

τ ′

k,j =
y′

m,j(τ
−

k )

C(τ−

k )
(43)

x′

i,j(τ
+

k ) = x
′

i,j(τ
−

k ) +

αi(τ

−

k ) − αi(τ
+

k ) + ci(τ+

k ) − ci(τ−

k )
 y′

m,j(τ
−

k )

C(τ−

k )
. (44)

In addition, using (35) and (36), we have

y′

m(τ+

k ) =


0 τk = τm + ω(τm)

y′

m(τ−

k ) otherwise , m ∈ zk−1 .

Finally, if any event at τk is also an inflow change event, then we use (37) for the state variable yk, where τ ′

k,j is given by (39),
(40), (41), (42), or (43) depending on the type of event that caused the inflow change.

Based on (39) through (44), we can evaluate all x′

i,j(t) and τ ′

k,j along a given sample path. We can then return to (27) and
(28) and evaluate the performance metric derivatives:

∂Qi(θ)

∂θj
=

1
T

−
k∈Ωi

x′

i,j(τk−1) · (τk − τk−1) (45)

∂Li(θ)
∂θj

=
1
T

−
k∈Ψi


[ri(τ+

k−1) − αi(τ
+

k−1)](τ
′

k,j − τ ′

k−1,j)

. (46)
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It is worth pointing out that a state derivative x′

i,j(t) is always reset to zero when an EP for class i occurs as indicated in
(42). This derivative can only become non-zero when a FP occurs at time τk, in which case x′

ii(τ
+

k ) = 1 as seen in (40).
Subsequently, the value of x′

i,j(t)may bemodified through (41) and (44) until the next EP when it is reset to zero once again.
It is also important to observe that the entire process of evaluating ∂Qi(θ)/∂θj and ∂Li(θ)/∂θj depends only on event time
information and on flow rate values at certain event times. The behavior of the SFM in between events does not affect the IPA
process. Thus, the optimization process is robust with respect to potential modeling errors in the time-driven dynamics.

The unbiasedness of the IPA derivatives ∂Qi(θ)/∂θj and ∂Li(θ)/∂θj can be ensured by Assumption 3.1 and the following
additional assumption.

Assumption 3.2. (a) For every θ ∈ Θ , w.p. 1, two events cannot occur at exactly the same time, unless one event induces
the other, (b) W.p. 1, no two processes {ri(t)}, {βi(t)}, i = 1, 2, have identical values during any open subinterval of [0, T ].

We point out that even if the conditions of Assumption 3.2 do not hold, it is possible to use one-sided derivatives and
still carry out IPA, as in [4]. Consequently, establishing the unbiasedness of ∂Qi(θ)/∂θj and ∂Qi(θ)/∂θj reduces to verifying
the Lipschitz continuity of the sample functions Qi(θ) and Li(θ) with appropriate Lipschitz constants. To begin with, we will
need the following additional assumptions.

Assumption 3.3. W.p. 1, all external processes are bounded, i.e., 0 < Cmin ≤ C(t) ≤ Cmax < ∞, ri(t) ≤ Ri < ∞, i = 1, 2,
and feasible threshold parameters are also bounded from below, i.e., there exists some ϵ > 0 such that θi ≥ ϵ > 0, i = 1, 2.

Assumption 3.4. Let N1 denote the number of exogenous events during interval [0, T ]. Then, E[N1] < ∞.

The proof of unbiasedness relies on two lemmas. First, Lemma 3.2 provides a bound for the expected number of events
in the interval [0, T ]. This is necessary because, as we have already seen, there may be potentially infinite ω-event chains in
a sample path of this SFM.

Lemma 3.2. Let NT be the number of events occurring during interval [0, T ]. Then, E[NT ] < ∞.

Proof. See Appendix. �

Using Lemma 3.2, we can further bound all state and event time derivatives, as shown in the next lemma.

Lemma 3.3. For all t ∈ [0, T ], |x′

i(θ, t)| is bounded w.p. 1, and for all k = 1, 2, . . . ,NT , |τ
′

k| is also bounded w.p. 1.

Proof. See Appendix. �

Now, with the above two Lemmas, we are able to verify the Lipschitz continuity and finally establish the unbiasedness
of IPA estimators.

Theorem 3.1. Under Assumptions 3.1–3.3, the IPA estimators ∂Qi(θ)/∂θj and ∂Li(θ)/∂θj, i, j = 1, 2, are unbiased estimates of
dE[Qi(θ)]/dθj and dE[Li(θ)]/dθj, respectively.

Proof. See Appendix. �

3.5. User-centric and system-centric optimization

Recall that in the user-centric optimization approach, class i aims at minimizing the performance metric defined in (29),
whereas in the system-centric approach the objective is to minimize a weighted sum of all classes’ performance metrics as
shown in (30). For the latter case, we use the IPA estimators (45) and (46) and the iterative scheme (31) with a constant time
between iterations duringwhich the system collects all observed data for evaluating ∂Qi(θ)

∂θj
and ∂Li(θ)

∂θj
and hence ∂ J(θ)

∂θj
, j = 1, 2.

This leads to a solution of the system-centric optimization problem underwell-known appropriate technical conditions [15]
on the step size sequence {ηn}.

In the case of user-centric optimization, however, each user has no information on the other’s performance and no control
over the other user’s threshold. The resulting game is carried out by having users take turns, so that user i executes (31)
with ∂ Ji(θ)

∂θi
evaluated after a time interval over which this user collects observed data for evaluating ∂Qi(θ)

∂θi
and ∂Li(θ)

∂θi
and

hence ∂ Ji(θ)
∂θi

. At the (k + 1)th iteration, suppose it is class 1’s turn to make a move: it executes (31) using the result of the
previous step, denoted by (θ1,k, θ2,k), to evaluate θ1,k+1. Since the controllable thresholds are subject to (26), it follows that
θ2,k+1 = Θ −θ2,k. It is easy to see that such a process does not generally converge. For example, whenΘ is small and cannot
satisfy the individual needs of either class, the game consists of oscillations between (0, Θ) and (Θ, 0). This is in contrast
to the game considered in our earlier work [11] where the constraint (26) is not present and the user-centric optimization
process does converge to a point θu

= (θu
1 , θu

2 ). This, however, differs from the system-centric optimal θs
= (θ s

1, θ
s
2). In fact,

Ji(θs) < Ji(θu) for both i = 1, 2 and the gap Ji(θs) − Ji(θu) < 0 reflects the inefficiency of ‘‘selfish play’’, sometimes also
referred to as the ‘‘price of anarchy’’.
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In order to enforce convergence in the resource contention gamewhere (26) applies,we introduce a ‘‘negotiation scheme’’
as follows. At the kth iteration, suppose the current resource allocation is (θ1,k, θ2,k). Class 1 evaluates its next ‘‘candidate’’
control, denoted by θ1

1,k through (31) using the IPA estimate of ∂ J1(θ)
∂θ1

from (45) and (46), and hence the control for class 2 as
well, denoted by θ1

2,k = Θ − θ1
1,k. Similarly, class 2 evaluates θ2

1,k and θ2
2,k. Then, the new allocation for the next iteration is

obtained from

θ1,k+1 =

2−
i=1

ζiθ
i
1,k, θ2,k+1 =

2−
i=1

ζiθ
i
2,k (47)

where
∑2

i=1 ζi = 1 and ζi is the negotiation weight for class i (agreed upon in advance); this represents the class’s relative
‘‘power’’ or, alternatively, a ‘‘price’’ that class i is willing to pay to influence the ultimate allocation. It is obvious that as
ζ1 varies from 0 to 1, the user-centric optimization result will range from the J1(θ) optimum to the J2(θ) optimum, and
the following result gives a simple sufficient condition under which the user-centric optimization will also converge to
the system-centric optimal point θs. However, it should be pointed out that this condition is quite restrictive. Generally,
even when the negotiation scheme is used, there is still no guarantee that user-centric optimization will converge to θs. We
also point out that this optimization scheme imposes synchronized updates of the competing users’ gradient estimates and
controls.

Theorem 3.2. Let {ηi,k}, k = 1, 2, . . . , be the step size sequence used by class i = 1, 2. If ζ1η1,k = ζ2η2,k, for all k = 1, 2, . . . ,
then, if the system-centric optimization process converges to θs, the user centric optimization processes converge to (θu

1 , θu
2 ) =

θu
= θs.

Proof. See Appendix. �

This discussion has been based on the premise that sample paths of the SFM are available to the system optimizer and
to the individual users. While this is possible in a simulated environment, in actuality the resource contention game takes
place in a DES and what is available to the system and to the players is a DES sample path over [0, T ] denoted by ξDES

T (θ).
The system-centric objective function is denoted by JDEST (θ) and the user-centric objective functions by JDESi,T (θ), i = 1, 2.
Therefore, we rewrite the iterative scheme (31) as

θi,k+1 = θi,k − ηkHi,k(θk; x(0), ξDES
T ), k = 0, 1, . . .

to emphasize the fact that the sample path fromwhich data are obtainable is the one actually observed that involves discrete
resource requests. Clearly, Hi,k(θk; x(0), ξDES

T ) is an estimate of dJDEST (θ)/dθi when the control is set at θk for the system-
centric optimization and of dJDESi,T (θ)/dθi, i = 1, 2, for the user-centric optimization. None of these derivative estimates
is in fact available, since the IPA estimators (45) and (46) are based on the SFM, an abstraction of the underlying DES.
Therefore, (45) and (46) provide approximations of the performance derivative estimates obtained from the expressions
derived through the SFM, but using data available from the actual DES. What facilitates this process is the fact that (45) and
(46) are evaluated on an event by event basis; thus, we need to identify each SFM event with a DES event, as explained next.

An exogenous SFMevent corresponds to a jump in the process {C(t)} or {ri(t)}, i = 1, 2. In theDES, a simple rate estimator
is used to measure ri(t), periodically updated over t; if |ri(t)− ri(t −∆)| > ϵ for some adjustable ∆, ϵ, then we identify this
as an exogenous SFM event. From (39), however, there is no effect from such events on the actual estimators (45) and (46).
The same applies to |C(t) − C(t − ∆)| > ϵ.

For any endogenous event ‘‘xi(t) becomes 0 ’’, observe that there is no difference between DES and SFM: when this event
occurs in a DES sample path, we identify it with a SFM event that empties a queue. We then simply apply (42).

On the other hand, for an endogenous event ‘‘xi(t) becomes θi’’ in the SFM, we have to recognize that in a DES the queue
content may ‘‘chatter’’ near θi. For example, suppose at time t , the class i queue becomes full in the DES, i.e., xi(t) = ⌈θi⌉
(where ⌈θi⌉ is the ceiling function). If ri(t) ≥ ci(t), then it follows from (20) that the SFM enters a FP for class i. However, in
the DES sample path it is still possible that a ‘‘resource service completion’’ event takes place next at time t1 > t , resulting
in xi(t1) = ⌈θi⌉ − 1 < θi, whereas in the SFM we would have xi(t1) = θi. Moreover, suppose that at t2 > t1, a ‘‘request
arrival’’ event occurs in the DES, therefore xi(t2) = ⌈θi⌉ once again. Since in the SFM we still have xi(t1) = θi, this event
should be ignored. In other words, during the interval [t, t2], the queue length of the actual DES system ‘‘chatters’’ between
⌈θi⌉ and ⌈θi⌉ − 1, while in the SFM a FP is taking place. This raises the issue of properly identifying the start and end of a FP
in the SFM. We resolve this by calculating ci through (23) and (22) and measurements of ri(t) and C(t) from the DES using
simple rate estimators as mentioned above. Then, we can identify an event at τk as initiating a FP for class i if the following
condition holds:

xi(τk−1) < θi, xi(τk) = θi, ci(τk) ≤ ri(τk)

at which point we can use (40) and (41). Similarly, we detect the end of a FP at τk if

xi(τk−1) = θi, xi(τk) < θi, ci(τk) > ri(τk).

Finally, ω-events are easy to detect since they involve a simple timer initiated at the associated inflow change event which
is also easy to detect once its type (exogenous, endogenous, or another ω-event) is identified.
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Fig. 4. Simulation example: Symmetric case.

Fig. 5. Simulation example: Asymmetric case.

4. Resource contention game simulation examples

We present numerical results obtained from simulating a two-class FCFS queueing system subject to (26) with Θ = 60.
In this system, requests of both classes arrive according to Markov Modulated Poisson Processes (MMPP), with mean
interarrival times uniformly distributed over [0.6 s, 1.2 s] and [0.6 s, 1 s ] respectively. The overall service capacity C(t)
is a piecewise constant random process with mean 0.9 s and times between changes in the capacity value are exponentially
distributed withmean 500 s. In what follows, wewill use the same negotiation weights and step sizes for both classes when
applying user-centric optimization, therefore, based on Theorem 3.2, we expect the user-centric and system-centric optima
to coincide.

Fig. 4 shows simulation results of both system-centric and user-centric optimization (three different sample paths shown
for each). In this case, the weights in the system-centric objective (30) are set to w1 = w2 = 1. In the user-centric
optimization, the two classes have the same relative weights for workload and loss rate, i.e. γ1,1

γ2,1
=

γ1,2
γ2,2

in (29). The ‘‘actual’’
system-centric objective function, which was obtained by exhaustive simulation of the underlying DES averaged over 50
sample paths, is symmetric with an actual system-centric optimal point (30, 30) as seen in the figure.

Fig. 5 shows another example for the same system (two different sample paths shown), except that classes now have
different relative weights, γ1,1 = 0.8, γ2,1 = 2500 for class 1 and γ1,2 = 0.6, γ2,2 = 2750 for class 2, so that γ1,1

γ2,1
>

γ1,2
γ2,2

(class 1 puts more emphasis on reducing workload) and the objective function is asymmetric with a system-centric optimal
point (20, 40), shifting to a smaller θ1.

In both cases, the user-centric and system-centric optimization processes converge to a point close to the ‘‘true’’ optimum
(obtained by exhaustive brute-force simulation), illustrating the effectiveness of our method. Moreover, in contrast to the
result in [11], under the sufficient condition given in Theorem 3.2, there is no gap between the corresponding optimal
points.

5. Conclusions

We have presented a general resource contention game setting using SFMs, where multiple user classes with different
class-dependent objectives compete for a sharable resource. In this setting, IPA estimators were obtained for the derivatives
of various class-dependent objectives through which gradient-based optimization can be carried out, either system-centric



Author's personal copy

C. Yao, C. Cassandras / Nonlinear Analysis: Hybrid Systems 5 (2011) 301–319 315

for a system-wide objective or user-centricwhere each user class optimizes its own performancemetric.We derived explicit
solutions for a specific game in which the competing user classes employ threshold control policies and service is provided
on a First Come First Serve (FCFS) basis. The unbiasedness of the IPA estimatorswas established in this case and it was shown
that under certain conditions the system-centric and user-centric optimization solutions coincide.We also discussed how to
use the SFM-based IPA estimators evaluated with data obtained from the actual observed DES sample paths and illustrated
the effectiveness of our approach through simulation examples in which we contrasted system-centric and user-centric
optimization.

Ongoing research is directed atmodifying the iterative scheme followed by the game so that it becomes asynchronous. In
other words, users may be allowed to take control actions (changing their respective threshold parameters) whenever they
feel their IPA estimates are sufficiently accurate rather than the synchronized fashion we have adopted thus far. Moreover,
we are exploring different games where system-centric and user-centric optima can be guaranteed to coincide.

Acknowledgements

The second author was supported in part by the National Science Foundation under Grant EFRI-0735794, by AFOSR
under grants FA9550-07-1-0361 and FA9550-09-1-0095, byDOEunder grant DE-FG52-06NA27490, and byONRunder grant
N00014-09-1-1051.

Appendix

Proof of Lemma 3.2. Let N1,N2 and N3 denote the number of exogenous events, endogenous events and ω-events
respectively. First, by Assumption 3.4,

E [N1] ≤ n1 (48)

for some positive number n1.
For endogenous events, they can be further classified into (i) events that initiate FPs, which we will call ‘‘ρ events’’, and

(ii) events that initiate EPs, which we will call ‘‘σ events’’. Let Nρ and Nσ denote the number of ρ events and σ events
respectively, so that N2 = Nρ + Nσ . By definition, each ρ event corresponds to one FP, hence, the number of ρ events is the
same as the number of FPs. For any FP, based on the system dynamics (20), it is either ended by an exogenous event that
increases C(t) or decreases ri(t) or by an ω-event that increases ci(t) through (23). The number of FPs that are ended by
exogenous events is obviously bounded by the total number of exogenous events N1. Next, consider a FP that is ended by an
ω-event and let τ be its starting time. There are two cases regarding the ω-event that ends the FP.
Case 1: The ω-event that ends the FP is induced by an inflow change event before τ . In this case, because the system is in a
NBP before τ , i.e., αi(t) = ri(t), the inflow change eventmust be an exogenous event that increases ri. Therefore, the number
of FPs in this case is bounded by the total number of exogenous events N1.
Case 2: The ω-event that ends the FP is induced by an inflow change event at or after τ . Suppose this inflow change event
occurs at τp ≥ τ . Then, based on Lemma 1 in [11], τp+ω(τp) ≥ τ +ω(τ) and the duration of the FP is τp+ω(τp)−τ ≥ ω(τ).
By the definition of ω(t) in (22), since xi(τ ) = θi, we have ω(τ) =

θi
ci(τ )

. By Assumption 3.2, θi ≥ ϵ > 0, and
ci(τ ) < C(τ ) ≤ Cmax, therefore, the length of any FP is such that

τp + ω(τp) − τ ≥
ϵ

Cmax

which implies that the number of such FPs over an interval [0, T ] is bounded by T/(ϵ/Cmax) = TCmax/ϵ.
Combing the two cases above, the number of FPs that are ended by ω-events is bounded by N1 +

TCmax
ϵ

. Recalling that the
remaining FPs are ended by exogenous events and that the number of FPs is given by Nρ , we have

Nρ ≤ 2N1 +
TCmax

ϵ
. (49)

Similarly, the number of σ events, Nσ , is equal to the number of EPs in [0, T ]. Since EPs can only be ended by exogenous
events, the number of EPs is bounded by the total number of exogenous events, i.e.,

Nσ ≤ N1. (50)

Combining (49), (50) and (48), we have

E [N2] ≤ 3E [N1] +
TCmax

ϵ

≤ 3n1 +
TCmax

ϵ
≡ n2. (51)

Therefore, the expected number of endogenous events is also bounded.
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Finally, for ω-events, as shown in Section 3.1, they can be induced in three ways:
(i) Induced by an exogenous event. Obviously the number of such ω-events is bounded by N1.
(ii) Induced by an endogenous event. Obviously the number of such ω-events is bounded by N2.
(iii) Induced by another ω-event which takes place while xi(t) = θi, i = 1, 2. For ω-events in this category, as discussed

in Section 3.1, they will form multiple sequences of ω-events, referred to as ‘‘ω-event chains’’. All such chains are initiated
by either an exogenous or an endogenous event, and exist only in FPs. Within any one of these chains, from the system
dynamics (22), the time between any ω-event at τ ′ and the one that immediately precedes it is, by the definition of ω(t)
in (22), is given by θi

ci(τ
′−)

. Since θi ≥ ϵ > 0 and ci(τ ) < C(τ ) ≤ Cmax by Assumption 3.2, we have θi
ci(τ

′−)
≥

ϵ
Cmax

, i.e., the
time between two consecutive events in the chain is bounded by ϵ

Cmax
. On the other hand, since the length of any chain is

bounded by T , the number of ω-events in any one chain is bounded by T/(ϵ/Cmax) = TCmax/ϵ. In addition, since all chains
are initiated by either an exogenous or an endogenous event, it follows that the number of ω-event chains is bounded by
N1 + N2. We conclude from this analysis that the number of ω-events in this category is bounded by (N1 + N2) ·

TCmax
ϵ

.
Combining all types of ω-events above, we have

N3 ≤ (N1 + N2) ·


TCmax

ϵ
+ 1


.

Together with (48) and (51), this implies

E [N3] = E
[
(N1 + N2) ·


TCmax

ϵ
+ 1

]
≤ (E [N1] + E [N2]) ·


TCmax

ϵ
+ 1


≤ (n1 + n2) ·


TCmax

ϵ
+ 1


≡ n3.

Thus,

E [NT ] = E [N1] + E [N2] + E [n3]
≤ n1 + n2 + n3 < ∞

and the result of the Lemma is established. �
Proof of Lemma 3.3. First, using Lemma 3.2, we know that E[NT ] is bounded, i.e., NT is finite w.p. 1. Since, from (38), we
know that x′

i,j(t) is fixed between any two consecutive events, we only have to prove the boundedness of {x′

i,j(τ
+

k )} and {τ ′

kj}

for all k ∈ {0, 1, 2, . . . ,NT }. We proceed to prove this by induction on k. When k = 0, x′

i,j(τ
+

0 ) = 0, i = 1, 2, and τ ′

0j = 0,
which are obviously bounded. Assume that for some integer n, 0 ≤ n < NT , and for all k ≤ n, |x′

i,j(τ
+

k )| and |τ ′

kj| are bounded.
At τn+1, there are four possible event types that can occur:
Case 1: An exogenous event occurs at τn+1. Then, from (39), we know that

τ ′

n+1,j = 0

x′

i,j(τ
+

n+1) = x′

i,j(τ
−

n+1) = x′

i,j(τ
+

n ) i, j = 1, 2.

Since, by the induction hypothesis, |x′

i,j(τ
+
n )| is bounded, it follows that |x′

i,j(τ
+

n+1)| and τ ′

n+1,j are also bounded.
Case 2: A ρ event (defined in the proof of Lemma 3.2) occurs at τn+1. From (40) to (41), if j = i,

τ ′

n+1,j =
1 − x′

ij(τ
−

n+1)

ri(τ−

n+1) − ci(τ−

n+1)
=

1 − x′

ij(τ
+
n )

ri(τ−

n+1) − ci(τ−

n+1)

x′

ij(τ
+

n+1) = 1 i, j = 1, 2

where x′

ij(τ
+

n+1) is obviously bounded. Regarding τ ′

n+1,j,τ ′

n+1,j

 ≤
1 +

x′

ij(τ
+
n )
ri(τ−

n+1) − ci(τ−

n+1)


where |x′

ij(τ
+
n )| is bounded by the induction hypothesis, and |ri(τ−

n+1)−ci(τ−

n+1)| > 0, otherwise (i.e., if |ri(τ−

n+1)−ci(τ−

n+1)| =

0), we cannot have xi(τ−

n+1) < θi and xi(τ+

n+1) = θi. Therefore, there exists a strictly positive number ~ , such that
|ri(τ−

n+1) − ci(τ−

n+1)| > ~ and we getτ ′

n+1j

 ≤
1 +

x′

ij(τ
+
n )
ri(τ−

n+1) − ci(τ−

n+1)
 ≤

1 +
x′

ij(τ
+
n )


~

which implies that |τ
′

n+1,j| is also bounded.
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On the other hand, if j ≠ i, then

τ ′

n+1,j =
−x′

ij(τ
−

n+1)

ri(τ−

n+1) − ci(τ−

n+1)

x′

i,j(τ
+

n+1) = x′

i,j(τ
−

n+1) = x′

i,j(τ
+

n )

where x′

i,j(τ
+

n+1) is obviously bounded by the induction hypothesis. Regarding τ
′

n+1,j, with a similar argument we haveτ ′

n+1,j

 ≤

x′

ij(τ
+
n )
ri(τ−

n+1) − ci(τ−

n+1)


where |ri(τ−

n+1) − ci(τ−

n+1)| is lower bounded, and together with the induction hypothesis, we can prove the boundedness
of |τ

′

n+1,j| once again.
We conclude from the above analysis, that |x′

i,j(τ
+

n+1)| and τ ′

n+1,j are bounded in Case 2.
Case 3: A σ event (defined in the proof of Lemma 3.2) occurs at τn+1. Then, according to (42)

τ ′

n+1,j =
−x′

ij(τ
−

n+1)

ri(τ−

n+1) − ci(τ−

n+1)

x′

ij(τ
+

n+1) = 0 i = 1, 2.

Obviously |x′

ij(τ
+

n+1)| is bounded, and using a similar argument as in Case 2, it is easy to prove the boundedness of |τ
′

n+1,j|.
Case 4: An ω-event occurs at τn+1. Suppose that the inflow change event that induces this ω-event occurs at time τm, where
τm ∈ {τ0, . . . , τn}, and τm + ω(τm) = τn+1. Based on (44), (43) and (37), we have

τ ′

n+1,j =

2∑
i=1

x
′

i,j(τ
−
m ) +

[
2∑

i=1
fi,m(τ−

m ) + C(τ+
m )

]
τ ′

m,j

C(τ+
n )

x′

ij(τ
+

n+1) = x′

ij(τ
+

n ) +

αi(τ

−

n+1) − αi(τ
+

n+1) + ci(τ+

n+1) − ci(τ−

n+1)

· τ ′

n+1,j.

By (17) and Assumption 3.3,
2−

i=1

fi,m(τ−

m ) =

2−
i=1

αi,m(τ−

m ) − C(τ−

m )

≤ r1(τ−

m ) + r2(τ−

m ) + C(τ−

m )

≤ R1 + R2 + Cmax.

Also by Assumption 3.3, C(τ+
n ) ≥ Cmin, therefore,

τ ′

n+1,j

 ≤

2∑
i=1

x′

i,j(τ
−
m )

+ (R1 + R2 + 2Cmax) ·
τ ′

m,j


Cmin

. (52)

Similarly,αi(τ
+

n ) − ci(τ+

n ) − αi(τ
+

n+1) + ci(τ+

n+1)
 ≤

αi(τ
+

n )
+ ci(τ+

n )
+ αi(τ

+

n+1)
+ ci(τ+

n+1)


≤ Ri + Cmax + Ri + Cmax

and we get:x′

ij(τ
+

n+1)
 ≤

x′

ij(τ
+

n )
+ 2 · (Ri + C) ·

τ ′

n+1,j

 . (53)

Since τm ∈ {τ0, . . . , τn}, the induction hypothesis applies to |x
′

i,j(τ
−
m )| and |τ ′

m,j| in (52), which implies the boundedness of
|τ ′

n+1,j|. Then, |x
′

ij(τ
+

n+1)| is also bounded from (53).
This concludes the inductive step and completes the proof of the lemma. �

Proof of Theorem 3.1. Invoking Lemma A2 in [16], the unbiasedness of the IPA estimators ∂Li(θ)
∂θj

and ∂Qi(θ)
∂θj

relies on the
Lipschitz continuity of Li(θ) and Qi(θ). From (46), and together with Assumption 3.3, we have∂Li(θ)∂θj

 =

 1T −k∈Ψi


ri

τ+

k−1


− αi


τ+

k−1

 
τ ′

k,j − τ ′

k−1,j
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≤
1
T

−
k∈Ψi


[Ri + Ri]

τ ′

k,j

+ τ ′

k−1,j


≤

1
T

· NT ·

2Ri

τ ′

k,j

+ τ ′

k−1,j

 .
Using Lemmas 3.2 and 3.3, it follows that∂Li(θ)∂θj

 < B1 < ∞

for some finite B1 with 1
T · NT · [2Ri(|τ

′

k,j| + |τ ′

k−1,j|)] < B1. Therefore,

|1Li(θ)| =

∂Li(θ)∂θj

 1θj
 < B1

1θj
 . (54)

In other words, Li(θ) is Lipschitz Continuous with finite Lipschitz constant B1.
For Qi(θ), by definition

Qi(θ) =
1
T

∫ T

0
xi(t)dt, i = 1, 2

hence,∂Qi(θ)

∂θj

 =
1
T

∫ T

0
x′

ij(t)dt
 ≤

1
T

∫ T

0

x′

ij(t)
 dt.

Based on Lemma 3.3, we know that |x′

ij(t)| is bounded, therefore, the above equation guarantees the boundedness of
|∂Qi(θ)/∂θj|. i.e.,∂Qi(θ)

∂θj

 < B2 < ∞

where B2 is such that 1
T

 T
0 |x′

ij(t)|dt < B2, and we get

|1Qi(θ)| =

∂Qi(θ)

∂θj

 1θj
 < B2

1θj
 . (55)

Thus, Qi(θ) is also Lipschitz continuous with finite Lipschitz constant B2. �

Proof of Theorem 3.2. Based on (47), for any iteration k,

θ1,k+1 = ζ1θ
1
1,k + ζ2θ

2
1,k

= ζ1


θ1,k − η1,k ·

∂ J1(θ)

∂θ1


+ ζ2(Θ − θ2

2,k)

= ζ1


θ1,k − η1,k ·

∂ J1(θ)

∂θ1


+ ζ2


Θ −


θ2,k − η2,k ·

∂ J2(θ)

∂θ2


= ζ1


θ1,k − η1,k ·

∂ J1(θ)

∂θ1


+ ζ2


θ1,k + η2,k ·

∂ J2(θ)

∂θ2


= (ζ1 + ζ2) · θ1,k − ζ1η1,k ·

∂ J1(θ)

∂θ1
+ ζ2η2,k ·

∂ J2(θ)

∂θ2

= θ1,k − ζ1η1,k ·
∂ J1(θ)

∂θ1
+ ζ2η2,k ·

∂ J2(θ)

∂(Θ − θ1)

= θ1,k − ζ1η1,k ·
∂ J1(θ)

∂θ1
− ζ2η2,k ·

∂ J2(θ)

∂θ1
.

Then if ζ1η1,k = ζ2η2,k, which we denote as ηk, the above equation is further reduced to

θ1,k+1 = θ1,k − ηk ·
∂ J1(θ)

∂θ1
− ηk ·

∂ J2(θ)

∂θ1
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= θ1,k − ηk


∂ J1(θ)

∂θ1
+

∂ J2(θ)

∂θ1


= θ1,k − ηk ·

∂ J(θ)

∂θ1
. (56)

Similarly,

θ2,k+1 = θ2,k − ηk ·
∂ J(θ)

∂θ2
. (57)

From (56) and (57), one can see that under the given condition the user-centric optimization is equivalent to a system-centric
optimization using a step size sequence {ηk}, therefore both will converge to the same point. �
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