
Nonlinear Analysis: Hybrid Systems 25 (2017) 246–262

Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

Optimal design of personalized prostate cancer therapy using
Infinitesimal Perturbation Analysis✩

Julia L. Fleck ∗, Christos G. Cassandras
Division of Systems Engineering and Center for Information and Systems Engineering, Boston University, Brookline, MA 02446, USA

a r t i c l e i n f o

Article history:
Available online 23 September 2016

Keywords:
Stochastic hybrid system (SHS)
Perturbation analysis
Personalized cancer therapy

a b s t r a c t

The standard treatment for advanced prostate cancer is hormone therapy in the form
of continuous androgen suppression (CAS), which unfortunately frequently leads to
resistance and relapse. An alternative scheme is intermittent androgen suppression
(IAS), in which patients are submitted to cycles of treatment (in the form of androgen
deprivation) and off-treatment periods in an alternating manner. In spite of extensive
recent clinical experience with IAS, the design of ideal protocols for any given patient
remains a challenge. The level of prostate specific antigen (PSA) is frequently monitored
to determine when patients will be taken off therapy and when therapy will resume. In
this work, we propose a threshold-based policy for optimal IAS therapy design that is
parameterized by lower andupper PSA threshold values and is associatedwith a costmetric
that combines clinically relevant measures of therapy success. We use a Stochastic Hybrid
Automaton (SHA) model of prostate cancer evolution under IAS and perform Infinitesimal
Perturbation Analysis (IPA) to adaptively adjust PSA threshold values so as to improve
therapy outcomes. We also apply this methodology to clinical data from real patients, and
obtain promising results and valuable insights for personalized IAS therapy design.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is currently deemed a ‘‘disease of stages’’, and tumors are believed to progress through a series of ‘‘states’’ before
becoming malignant [1]. A case in point is prostate cancer, which is known to be a multistep process [2]. For instance, a
patient diagnosed with localized prostate cancer who has had all the tumor surgically removed is considered to remain in
the state of ‘‘localized disease’’ until he progresses to a new state. At each state, distinct therapies can be prescribed, and the
time spent by the patient in any given state is a measure of the efficacy of the corresponding intervention.

The primary treatments for patients with localized prostate cancer are surgery, radiation therapy, or active
surveillance [2], which can be used alone or in combination. For patients who evolve into a state of metastatic disease,
standard treatment is hormone therapy in the form of continuous androgen suppression (CAS) [2]. The initial response to
CAS is frequently positive, leading to a significant decrease in tumor size; unfortunately, most patients eventually develop
resistance and relapse. A generally acceptable mechanism for explaining such relapse is the existence of an androgen-
independent cancer cell phenotype that is resistant to secondary endocrine therapy and whose outgrowth leads to tumor
recurrence [3].
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Intermittent androgen suppression (IAS) therapy is an alternative treatment strategy for delaying or even preventing
time to relapse. The goal of IAS is to prevent the existing tumor from progressing into an androgen-independent state. In
spite of extensive recent clinical experience with IAS, the design of an ideal protocol for any given patient remains one of
the main challenges associated with effectively implementing this therapy [4]. Although clinical trials [5,6] revealed that
the success of IAS ultimately depends on the ability to tailor on and off-treatment schemes to individual patients, defining
optimal personalized IAS treatment schemes remains an unsolved problem.

A number of mathematical models have been proposed to explain the progression of prostate cancer in patients who are
submitted to hormone therapy. In [3] a model is developed in which prostate tumors are composed of two subpopulations
of cancer cells, one that is sensitive to androgen suppression and another that is not, without directly addressing the issue
of IAS therapy design. The evolution of a prostate tumor under IAS is modeled using a hybrid dynamical system approach
in [7], and numerical bifurcation analyses are applied to study the effect of different therapy protocols on tumor growth
and time to relapse. Various works that extend [3,7] have recently been developed, and we briefly review some of them.
In [8] a nonlinearmodel is proposed to explain the competition betweendifferent cancer cell subpopulations,while switched
ordinary differential equations are used in themodel from [9]. In [10] the problem of personalized prostate cancer treatment
is formulated as an optimal control problem using a piecewise affine systemmodel. In [4] a feedback control system is used
to model the prostate tumor under IAS for patient classification; an extension of this work, in which conditions for patient
relapse are derived, is presented in [11].

Although themajority of existingmodels provide insights into the dynamics of prostate cancer evolution under androgen
deprivation therapy, they fail to address the issue of therapy design. Moreover, previous works that suggest optimal
treatment schemes by classifying patients into groups have beenbased onmoremanageable, albeit less accurate, approaches
to nonlinear hybrid dynamical systems. Addressing this limitation, a nonlinear hybrid automaton model was recently
developed and δ-reachability analysiswas performed to identify patient-specific treatment schemes in [12]. In spite of being
in good agreementwith published clinical data, this model does not account for noise and fluctuations inherently associated
with cell population dynamics andmonitoring of clinical data. In contrast, a hybridmodel of tumor growth under IAS therapy
that incorporates stochastic effects is proposed in [13], but is not used for personalized therapy design.

A first attempt to define optimal personalized IAS therapy schemes using stochastic models of prostate cancer evolution
was reported in [14]. Building upon the Infinitesimal Perturbation Analysis (IPA) framework established in [14], here
we implement an IPA-driven gradient-based optimization algorithm capable of adaptively adjusting controllable therapy
settings so as to improve IAS therapy outcomes. From a practical perspective, the goal of this paper is to set the stage for the
use of basic IPA techniques for optimal personalized cancer therapy design. Therefore, we introduce the relevant concepts
related to an IPA-based systemof optimal cancer therapy design and illustrate its application to the case of advanced prostate
cancer.

The remainder of this paper is organized as follows. In Section 2, we present a Stochastic Hybrid Automaton (SHA)model
of prostate cancer evolution, based on which we formulate the problem of optimal IAS therapy design. Section 3 details
the derivation of IPA estimators for therapy evaluation and optimization. The IPA estimators are then incorporated into
a gradient-based optimization algorithm and simulation results providing interesting insights are thus obtained. Sample
results are given in Section 4, and we include final remarks, along with a discussion of the proposed methodology in light of
the application performed for IAS therapy of prostate cancer, in Section 5.

2. Problem formulation

2.1. Stochastic model of prostate cancer evolution

We consider a system composed of a prostate tumor under IAS therapy, which is modeled as a Stochastic Hybrid
Automaton (SHA). Details of the problem formulation are given in [14], but for completeness we include here a condensed
description of the SHA modeling framework. We adopt a standard SHA definition [15]:

Gh = (Q , X, E,U, f , φ, Inv, guard, ρ, q0, x0) (1)

where Q is a set of discrete states; X is a continuous state space; E is a finite set of events; U is a set of admissible controls;
f is a vector field, f : Q × X × U → X; φ is a discrete state transition function, φ : Q × X × E → Q ; Inv is a set defining an
invariant condition (when this condition is violated at some q ∈ Q , a transition must occur); guard is a set defining a guard
condition, guard ⊆ Q × Q × X (when this condition is satisfied at some q ∈ Q , a transition is allowed to occur); ρ is a reset
function, ρ : Q × Q × X × E → X; q0 is an initial discrete state; x0 is an initial continuous state.

In this context, a SHA model of prostate cancer progression can be defined in terms of the following:
1. A discrete state set Q =


qON , qOFF


, where qON (qOFF , respectively) is the on-treatment (off-treatment, respectively)

operational mode of the system. Patients undergoing IAS therapy will temporarily stop being medicated once the size of
their cancer cell populations decreases by a predetermined desirable amount. Since population sizes are not directly
observable, this reduction is estimated in terms of the patient’s Prostate-Specific Antigen (PSA) level, a biomarker
commonly used for monitoring the outcome of hormone therapy. In this context, therapy is suspended when a patient’s
PSA level reaches a lower threshold value, and reinstated once the size of cancer cell populations has increased
considerably, i.e., once the patient’s PSA level reaches an upper threshold value.
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Fig. 1. Schematic representation of Intermittent Androgen Suppression (IAS) therapy.

2. A state space X = {x1 (t) , x2 (t) , x3 (t) , z1 (t) , z2 (t)}, defined in terms of the biomarkers commonly monitored during
IAS therapy, as well as ‘‘clock’’ state variables that measure the time spent by the system in each discrete state. We
assume that prostate tumors are composed of two coexisting subpopulations of cancer cells, Hormone Sensitive Cells
(HSCs) and Castration Resistant Cells (CRCs), and thus define a state vector x (t) = [x1 (t) , x2 (t) , x3 (t)] with xi (t) ∈ R+,
such that x1 (t) is the total population of HSCs, x2 (t) is the total population of CRCs, and x3 (t) is the concentration of
androgen in the serum. Prostate cancer cells secrete high levels of PSA, hence a common assumption is that the serum
PSA concentration can bemodeled as a linear combination of the cancer cell subpopulations. It is also frequently assumed
that both HSCs and CRCs secrete PSA equivalently [7], and in this work we adopt these assumptions. Finally, we define
variable zi (t) ∈ R+, i = 1, 2, where z1 (t) (z2 (t), respectively) is the ‘‘clock’’ state variable corresponding to the time
when the system is in state qON (qOFF , respectively), and is reset to zero every time a state transition occurs. Setting
z (t) = [z1 (t) , z2 (t)], the complete state vector is [x (t) , z (t)].

3. An event set E = {e1, e2}, where e1 corresponds to the condition [x1 (t) + x2 (t) = θ1 from above] (i.e., x1

t−

+x2


t−


>

θ1) and e2 corresponds to the condition [x1 (t) + x2 (t) = θ2 from below] (i.e., x1

t−

+x2


t−


< θ2), where the notation
t− indicates the time instant immediately preceding time t .

4. An admissible control set U = {0, 1}, such that the control is defined, at any time t , as:

u (x (t) , z (t)) ≡


0 if x1 (t) + x2 (t) < θ2, q (t) = qOFF

1 if x1 (t) + x2 (t) > θ1, q (t) = qON .
(2)

This is a simple form of hysteresis control to ensure that androgen deprivation will be suspended whenever a patient’s
PSA level drops below a minimum threshold value, and that treatment will resume once the patient’s PSA level reaches
a maximum threshold value. To this end, IAS therapy is viewed as a controlled process characterized by two parameters:
θ = [θ1, θ2] ∈ Θ , with θ1 < θ2, and where θ1 ∈


θmin
1 , θmax

1


is the lower threshold value of the patient’s PSA level, and

θ2 ∈

θmin
2 , θmax

2


is the upper threshold value of the patient’s PSA level, with θmax

1 < θmin
2 . An illustrative representation

of such threshold-based IAS therapy scheme is depicted in Fig. 1. Simulation driven by clinical data [5,6] was performed
to generate the plot in Fig. 1, which shows a typical profile of PSA level variations along several treatment cycles.

5. System dynamics. The continuous (time-driven) dynamics capture the prostate cancer cell population dynamics, which
are defined in terms of their proliferation, apoptosis, and conversion rates. As in [14], we incorporate stochastic effects
into the deterministic model from [12] as follows:

ẋ1(t) =


α1

1 + e−(x3(t)−k1)k2
−

β1

1 + e−(x3(t)−k3)k4
− m1


1 −

x3(t)
x3,0


− λ1


· x1(t) + µ1 + ζ1(t) (3)

ẋ2(t) =


α2


1 − d

x3(t)
x3,0


− β2


x2(t) + m1


1 −

x3(t)
x3,0


x1(t) + ζ2(t) (4)

ẋ3(t) =


−

x3(t)
σ

+ µ3 + ζ3(t)
if x1(t) + x2(t) > θ1
and q(t) = qON

x3,0 − x3(t)
σ

+ µ3 + ζ3(t)
if x1(t) + x2(t) < θ2
and q(t) = qOFF

ż1(t) =


1 if q(t) = qON

0 otherwise (5)

z1(t+) = 0
if x1(t) + x2(t) = θ1
and q(t) = qON
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ż2(t) =


1 if q(t) = qOFF

0 otherwise (6)

z2(t+) = 0
if x1(t) + x2(t) = θ2
and q(t) = qOFF

where α1 and α2 are the HSC proliferation constant and CRC proliferation constant, respectively; β1 and β2 are the
HSC apoptosis constant and CRC apoptosis constant, respectively; k1 through k4 are HSC proliferation and apoptosis
exponential constants; m1 is the HSC to CRC conversion constant; x3,0 corresponds to the patient-specific androgen
constant; σ is the androgen degradation constant; λ1 is the HSC basal degradation rate; µ1 and µ3 are the HSC basal
production rate and androgen basal production rate, respectively. Finally, {ζi(t)}, i = 1, 2, 3, are stochastic processes
which we allow to have arbitrary characteristics and only assume them to be piecewise continuous w.p. 1. The processes
{ζi(t)}, i = 1, 2, represent noise and fluctuations inherently associated with cell population dynamics, while {ζ3(t)}
reflects randomness associated with monitoring clinical data, more specifically, with monitoring the patient’s androgen
level.

It is clear from (3)–(5) that x1 (t) and x2 (t) are dependent on x3 (t), whose dynamics are affected bymode transitions.
To make explicit the dependence of x1 (t) and x2 (t) on the discrete state (mode) q (t), we let τk (θ) be the time of
occurrence of the kth event (of any type), and denote the state dynamics over any interevent interval [τk (θ) , τk+1 (θ))
as

ẋn(t) = f xnk (t), żi(t) = f zik (t), n = 1, 2, 3, i = 1, 2.

We include θ as an argument to stress the dependence of the event times on the controllable parameters, but we will
subsequently drop this for ease of notation as long as no confusion arises.

We thus start by assuming q(t) = qON for t ∈ [τk, τk+1). Solving (5) yields, for t ∈ [τk, τk+1),

x3(t) = x3(τ+

k )e−(t−τk)/σ + e−t/σ
·

 t

τk

eε/σ [µ3 + ζ3(ε)] dε.

It is then possible to define, for t ∈ [τk, τk+1),

hON

t, ζ̃3(t)


≡ x3(τ+

k )e−(t−τk)/σ + µ3σ [1 − e−(t−τk)/σ ] + ζ̃3(t) (7)

where, for notational simplicity, we let

ζ̃3(t) =

 t

τk

e−(t−ε)/σ ζ3(ε)dε. (8)

Next, let q(t) = qOFF for t ∈ [τk, τk+1), so that (5) implies that, for t ∈ [τk, τk+1),

x3(t) = x3(τ+

k )e−(t−τk)/σ + (µ3σ + x3,0)[1 − e−(t−τk)/σ ] + ζ̃3(t).

Similarly as above, we define, for t ∈ [τk, τk+1),

hOFF

t, ζ̃3(t)


≡ x3(τ+

k )e−(t−τk)/σ + (µ3σ + x3,0)[1 − e−(t−τk)/σ ] + ζ̃3(t). (9)

It is then possible to rewrite (5) as follows:

x3(t) =

hON

t, ζ̃3(t)


if q(t) = qON

hOFF

t, ζ̃3(t)


if q(t) = qOFF .

Although we include ζ̃3(t) as an argument in (7) and (9) to stress the dependence on the stochastic process, we will
subsequently drop this for ease of notation as long as no confusion arises. Hence, substituting (7) and (9) into (3)–(4),
yields

ẋ1(t) =




α1

1 + φON

α (t)
−1

− β1

1 + φON

β (t)
−1

+ m1


hON (t)
x3,0


− (m1 + λ1)


· x1(t)

+µ1 + ζ1(t) if q(t) = qON
α1

1 + φOFF

α (t)
−1

− β1

1 + φOFF

β (t)
−1

+ m1


hOFF (t)
x3,0


− (m1 + λ1)


· x1(t)

+µ1 + ζ1(t) if q(t) = qOFF

(10)

ẋ2(t) =



α2


1 − d

hON (t)
x3,0


− β2


x2(t) + m1


1 −

hON (t)
x3,0


x1(t) + ζ2(t) if q(t) = qON

α2


1 − d

hOFF (t)
x3,0


− β2


x2(t) + m1


1 −

hOFF (t)
x3,0


x1(t) + ζ2(t) if q(t) = qOFF

(11)
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Fig. 2. Stochastic hybrid automaton model of prostate cancer evolution under IAS therapy.

with

φON
α (t) = e−(hON (t)−k1)k2

φON
β (t) = e−(hON (t)−k3)k4

φOFF
α (t) = e−(hOFF (t)−k1)k2

φOFF
β (t) = e−(hOFF (t)−k3)k4 .

The discrete (event-driven) dynamics are dictated by the occurrence of events that cause state transitions. Based on the
event set E = {e1, e2} we have defined, the occurrence of e1 results in a transition from qON to qOFF and the occurrence of
e2 results in a transition from qOFF to qON . The corresponding SHA model of prostate cancer evolution under IAS therapy
is shown in Fig. 2.

2.2. IAS therapy evaluation and optimization

Within the SHA framework we propose, the problem of personalizing an IAS treatment scheme can be cast as the search
for the optimal IAS therapy that satisfies some performance criterion. In this sense, an IAS therapy can be viewed as a
controlled process u (θ, t) characterized by the parameter vector θ , as in (2), whose effect can be quantified in terms
of performance metrics of the form J [u (θ, t)]. Although it is clearly infeasible to evaluate J [u (θ, t)] over all possible
values of θ , there exist very efficient ways to perform the search for an optimal IAS therapy within a stochastic hybrid
system framework. In particular, Perturbation Analysis (PA) is a methodology to efficiently estimate the sensitivity of the
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system’s performance with respect to θ (note that when θ is a real-valued scalar, this amounts to estimating the derivative
dJ/dθ ). This is accomplished by extracting data from a sample path (simulated or actual) of the observed system based on
which an unbiased estimate of dJ/dθ can indeed be obtained. The attractive feature of PA is that the resulting estimates
are extracted from a single sample path in a non-intrusive manner and the computational cost of doing so is, in most
cases of interest, minimal [15]. This is in contrast to the conventional finite difference estimate of dJ/dθ obtained through
[J (θ + ∆) − J (θ)] /∆. Thus, for a vector θ of dimension N , estimating the gradient ∇J (θ) requires a single sample path
(with some overhead) instead of N + 1 sample paths. The simplest family of PA estimators is Infinitesimal Perturbation
Analysis (IPA), which has been shown to provide unbiased gradient estimates [16] for virtually arbitrary stochastic hybrid
systems.

We further emphasize that alternative techniques, such as genetic algorithms (GA) or other stochastic optimization
methods that seek global optimality (e.g., [17–21]), require either that the value of J (θ) be known or that it be estimated
through repeated simulation. Moreover, we caution that applying such approaches to cancer therapy design calls for a
strictly off-line and extremely time-consuming implementation. We elaborate on this caveat in what follows: first, J (θ)
would have to be estimated, which requires accurate knowledge of the stochastic processes; this is something IPA does
not need, as explained above. Second, executing a GA is a very time consuming task in itself, e.g., in selecting the proper
parameter values to execute such an algorithm [17]. Given that simple gradient-based algorithms work very well, as our
results show (see Section 4), applying sophisticated stochastic global optimizationmethods such as GAs to solve the specific
optimization problem we describe adds unnecessary complexity, even if the stochastic processes involved were known.
Regarding the precise stochastic process models used, to the best of our knowledge, all other approaches require full
knowledge of such models. However, we emphasize that IPA is robust to the stochastic process models used. It is important
to clarify that this does not imply that IPA is independent of these processes, only that the development of our IPA-based
methodology is unaffected by the choice of such processes because their information is contained in the event time data
(which are directly observable given that IPA is a data-driven method).

Furthermore, since our goal is to design personalized therapies, it is important to drive our threshold adaptation based
on patient-specific data which are directly observable (though we only emulate this in this work, since it is currently very
difficult to access individual patient data). However, we envision this happening in the near future, so that with every new
therapy cycle we would have more personalized data, thus allowing us to properly adapt thresholds to a specific patient.
Finally, we highlight that an additional benefit deriving from the use of IPA is the ability to obtain sensitivity estimates with
respect to various system parameters; we further discuss this fact in another paper [22].

Returning to our problem of personalized cancer therapy design, for the SHA model of prostate cancer evolution we
consider here, our goal is to estimate the effects of different therapies u (θ, t) by adapting IPA estimators of the form
dJ [u (θ, t)] /dθ , and to ultimately design optimal therapy schemes by solving problems of the form minθ∈Θ J [u (θ, t)].
As in [14], here we make use of a sample function defined in terms of complementary measures of therapy success. In
particular, we consider the most adequate IAS treatment schemes to be those that (i) ensure PSA levels are kept as low as
possible; (ii) reduce the frequency of on and off-treatment cycles. From a practical perspective, (i) translates into the ability
to successfully keep the size of cancer cell populations under control, which is directly influenced by the duration of the on
and off-treatment periods. On the other hand, (ii) aims at reducing the duration of on-treatment periods, thus decreasing the
exposure of patients tomedication and their side effects, and consequently improving the patients’ quality of life throughout
the treatment. Clearly there is a trade-off between keeping tumor growth under control and the cost associated with the
corresponding IAS therapy. The latter is related to the duration of the therapy and could potentially include fixed set up costs
incurred when therapy is reinstated. For simplicity, we disconsider fixed set up costs and take (ii) to be linearly proportional
to the length of the on-treatment cycles. Hence, we define our sample function as the sum of the average PSA level and the
average duration of an on-treatment cycle over a fixed time interval [0, T ].We also take into account that it may be desirable
to design a therapy scheme which favors (i) over (ii) (or vice-versa) and thus associate weight W with (i) and 1 − W with
(ii), where 0 ≤ W ≤ 1. Finally, to ensure that the trade-off between (i) and (ii) is captured appropriately, we normalize our
sample function: we divide (i) by the value of the patient’s PSA level at the start of the first on-treatment cycle (PSAinit ), and
normalize (ii) by T .

Recall that the total population size of prostate cancer cells is assumed to reflect the serum PSA concentration, and that
we have defined clock variableswhichmeasure the time elapsed in each of the treatmentmodes, so that our sample function
can be written as

L (θ, x(0), z(0), T ) =
1
T


W
 T

0


x1 (θ, t) + x2 (θ, t)

PSAinit


dt + (1 − W )

 T

0

z1 (t)
T

dt


(12)

where x(0) and z(0) are given initial conditions. We can then define the overall performance metric as

J (θ, x(0), z(0), T ) = E [L (θ, x(0), z(0), T )] . (13)

Hence, the problem of determining the optimal IAS therapy can be formulated as

min
θ∈Θ

E [L (θ, x(0), z(0), T )] . (14)

We note that it is not possible to derive a closed-form expression of J (θ, x(0), z(0), T ) without imposing limitations on the
processes {ζi(t)}, i = 1, 2, 3. Nevertheless, by assuming only that ζi(t), i = 1, 2, 3, are piecewise continuous w.p. 1, we can
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successfully apply the IPAmethodology developed for general SHS in [16] and obtain an estimate of∇J (θ) by evaluating the
sample gradient ∇L (θ). The knowledge of such gradient values can then be used to improve current operating conditions
or to compute an optimal θ∗ through an iterative optimization algorithm of the form

θi,k+1 = θi,k − ρkHi,k (θk, x(0), T , ωk) (15)

where θi, i = 1, 2 are the therapy thresholds, ρk is the step size at the kth iteration, k = 1, . . . , andωk denotes a sample path
fromwhich data are extracted and used to computeHi,k (θk, x(0), T , ωk), which is an estimate of dJ (θ) /dθi. Wewill assume
that the derivatives dL (θ) /dθi exist w.p. 1 for all θi ∈ R+. It is also simple to verify that L (θ) is Lipschitz continuous for
θi ∈ R+. We will further assume that {ζi(t)}, i = 1, 2, 3, are stationary random processes over [0, T ] and that no two events
can occur at the same timew.p. 1. Under these conditions, it has been shown in [16] that dL (θ) /dθi is an unbiased estimator
of dJ (θ) /dθi, i = 1, 2. Hence, our goal is to compute the sample gradient ∇L (θ) using data extracted from a sample path
of the system (e.g., by simulating a sample path of our SHA model using clinical data), and use this value as an estimate of
∇J (θ).

3. Infinitesimal perturbation analysis

For the sake of completeness, we provide here a brief overview of the IPA framework developed for stochastic hybrid
systems in [16]. Consider a sample path of the system over [0, T ] and denote the time of occurrence of the kth event (of any
type) by τk (θ), where θ corresponds to the control parameter of interest. Although we use the notation τk (θ) to stress the
dependency of the event time on the control parameter, we will subsequently use τk to indicate the time of occurrence of
the kth event where no confusion arises. In order to further simplify notation, we shall denote the state and event time
derivatives with respect to parameter θ as x′(t) ≡

∂x(θ,t)
∂θ

and τ ′

k ≡
∂τk
∂θ

, respectively, for k = 1, . . . ,N . Additionally,
considering that the system is at some discrete mode during an interval [τk, τk+1), we will denote its time-driven dynamics
over such interval as fk (x, θ, t). It is shown in [16] that the state derivative satisfies

d
dt

x′(t) =
∂ fk(t)
∂x

x′(t) +
∂ fk(t)
∂θ

(16)

with the following boundary condition:

x′(τ+

k ) = x′(τ−

k ) +

fk−1(τ

−

k ) − fk(τ+

k )

.τ ′

k (17)

when x(θ, t) is continuous in t at t = τk. The notation τ+

k (τ−

k , respectively) indicates the time instant immediately
succeeding (preceding, respectively) event time τk. Otherwise,

x′(τ+

k ) =
dρ

q, q′, x, e


dθ

(18)

where ρ

q, q′, x, e


is the reset function defined in (1).

Knowledge of τ ′

k is, therefore, needed in order to evaluate (17). Following the framework in [16], the expressions of the
event time derivative depend on the type of event that takes place at τk and are given as follows:

(i) Exogenous event. This type of event causes a discrete state transition which is independent of parameter θ and, as a
result, τ ′

k = 0.
(ii) Endogenous event. In this case, there exists a continuously differentiable function gk : Rn

× Θ → R such that
τk = min {t > τk−1 : gk (x(θ, t), θ) = 0}, which leads to

τ ′

k = −


∂gk
∂x

.fk−1(τ
−

k )

−1

.


∂gk
∂φ

+
∂gk
∂x

.x′(τ−

k )


(19)

where ∂gk
∂x .fk−1(τ

−

k ) ≠ 0.
(iii) Induced event. Such an event is triggered by the occurrence of another event at time τm ≤ τk and the expression of τ ′

k
depends on the event time derivative of the triggering event (τ ′

m) (details can be found in [16]).

Thus, IPA captures how changes in θ affect the event times and the state of the system. Since interesting performance
metrics are usually expressed in terms of τk and x(t), IPA can ultimately be used to infer the effect that a perturbation in θ will
have on suchmetrics.We end this overview by returning to our problem of personalized prostate cancer therapy design and
thus defining the derivatives of the states xn(θ, t) and zj(θ, t) and event times τk(θ)with respect to θi, i, j = 1, 2, n = 1, 2, 3,
as follows:

x′

n,i(t) ≡
∂xn(θ, t)

∂θi
, z ′

j,i(t) ≡
∂zj(θ, t)

∂θi
, τ ′

k,i ≡
∂τk(θ)

∂θi
. (20)

In what follows, we derive the IPA state and event time derivatives for the events identified in our SHAmodel of prostate
cancer progression.
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3.1. State and event time derivatives

We proceed by analyzing the state evolution of our SHA model of prostate cancer progression considering each of the
states (qON and qOFF ) and events (e1 and e2) therein defined.

1. The system is in state qON over interevent time interval [τk, τk+1). Using (16) for x1 (t), we obtain, for i = 1, 2,

d
dt

x′

1,i(t) =
∂ f x1k (t)

∂x1
x′

1(t) +
∂ f x1k (t)

∂x2
x′

2(t) +
∂ f x1k (t)

∂z1
z ′

1(t) +
∂ f x1k (t)

∂z2
z ′

2(t) +
∂ f x1k (t)

∂θi
.

From (10), we have ∂ f
x1
k (t)
∂x2

=
∂ f

x1
k (t)
∂zi

=
∂ f

x1
k (t)
∂θi

= 0, i = 1, 2, and

∂ f x1k (t)
∂x1

= α1

1 + φON

α (t)
−1

− β1

1 + φON

β (t)
−1

− m1


1 −

hON (t)
x3,0


− λ1.

It is thus simple to verify that solving (16) for x′

1,i(t) yields, for i = 1, 2,

x′

1,i(t) = x′

1,i(τ
+

k )eA(t), t ∈ [τk, τk+1) (21)

with

A (t) ≡

 t

τk


α1

1 + φON
α (ε)

−
β1

1 + φON
β (ε)


dε −

 t

τk

m1

x3,0
hON (ε) dε − (m1 + λ1) (t − τk) . (22)

In particular, at τ−

k+1:

x′

1,i(τ
−

k+1) = x′

1,i(τ
+

k )eA(τk) (23)

where A (τk) is given from (22).

Similarly for x2 (t), we have from (11) that ∂ f
x2
k (t)
∂zi

=
∂ f

x2
k (t)
∂θi

= 0, i = 1, 2, and

∂ f x2k (t)
∂x1

= m1


1 −

hON (t)
x3,0


∂ f x2k (t)

∂x2
= α2


1 − d

hON (t)
x3,0


− β2.

Combining the last two equations and solving for x′

2,i(t) yields, for i = 1, 2 and t ∈ [τk, τk+1),

x′

2,i(t) = x′

2,i(τ
+

k )eB1(t) + B2

t, x′

1,i(τ
+

k ), A (t)


(24)

with

B1 (t) ≡

 t

τk


α2


1 − d

hON (ε)

x3,0


− β2


dε (25)

B2 (·) ≡ eB1(t)
 t

τk

G1 (ε, τk) e−B1(ε)dε

where G1 (t, τk) = m1


1 −

hON (t)
x3,0


x′

1,i(τ
+

k )eA(t), t ∈ [τk, τk+1).

In particular, at τ−

k+1:

x′

2,i(τ
−

k+1) = x′

2,i(τ
+

k )eB1(τk) + B2

τk, x′

1,i(τ
+

k ), A (τk)


(26)

where B1 (τk) and B2

τk, x′

1,i(τ
+

k ), A (τk)

are given from (25).

Finally, for the ‘‘clock’’ state variable, from (5)–(6) we have ∂ f
zi
k (t)
∂xn

=
∂ f

zi
k (t)
∂zi

=
∂ f

zi
k (t)
∂θi

= 0, n, i = 1, 2, so that
d
dt z

′

j,i(t) = 0, j, i = 1, 2, for t ∈ [τk, τk+1). Hence, z ′

j,i(t) = z ′

j,i(τ
+

k ), j, i = 1, 2 and t ∈ [τk, τk+1).
2. The system is in state qOFF over interevent time interval [τk, τk+1). Starting with x1 (t), based on (10) we once again have

∂ f
x1
k (t)
∂x2

=
∂ f

x1
k (t)
∂zi

=
∂ f

x1
k (t)
∂θi

= 0, i = 1, 2, but now

∂ f x1k (t)
∂x1

= α1

1 + φOFF

α (t)
−1

− β1

1 + φOFF

β (t)
−1

− m1


1 −

hOFF (t)
x3,0


− λ1.
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Therefore, (16) implies that, for i = 1, 2:

x′

1,i(t) = x′

1,i(τ
+

k )eC(t), t ∈ [τk, τk+1) (27)

with

C (t) ≡

 t

τk


α1

1 + φOFF
α (ε)

−
β1

1 + φOFF
β (ε)


dε −

 t

τk

m1

x3,0
hOFF (ε) dt − (m1 + λ1) (t − τk) . (28)

In particular, at τ−

k+1:

x′

1,i(τ
−

k+1) = x′

1,i(τ
+

k )eC(τk) (29)

where C (τk) is given from (28).
Similarly for x2(t), we have

∂ f x2k (t)
∂x1

= m1


1 −

hOFF (t)
x3,0


∂ f x2k (t)

∂x2
= α2


1 − d

hOFF (t)
x3,0


− β2.

It is thus straightforward to verify that (16) yields, for i = 1, 2 and t ∈ [τk, τk+1),

x′

2,i(t) = x′

2,i(τ
+

k )eD1(t) + D2

t, x′

1,i(τ
+

k ), C (t)


(30)

with

D1 (t) ≡

 t

τk


α2


1 − d

hOFF (ε)

x3,0


− β2


dε (31)

D2 (·) ≡ eD1(t)
 t

τk

G2 (ε, τk) e−D1(ε)dε

where G2 (t, τk) = m1


1 −

hOFF (t)
x3,0


x′

1,i(τ
+

k )eC(t), t ∈ [τk, τk+1).

In particular, at τ−

k+1:

x′

2,i(τ
−

k+1) = x′

2,i(τ
+

k )eD1(τk) + D2

τk, x′

1,i(τ
+

k ), C (τk)


(32)

where D1 (τk) and D2

τk, x′

1,i(τ
+

k ), C (τk)

are given from (31).

Finally, for the ‘‘clock’’ state variable, based on (5)–(6) we once again have ∂ f
zi
k (t)
∂xn

=
∂ f

zi
k (t)
∂zi

=
∂ f

zi
k (t)
∂θi

= 0, n, i = 1, 2,
so that d

dt z
′

j,i(t) = 0, j, i = 1, 2, for t ∈ [τk, τk+1). As a result, z ′

j,i(t) = z ′

j,i(τ
+

k ), j, i = 1, 2 and t ∈ [τk, τk+1).
3. A state transition from qON to qOFF occurs at time τk. This necessarily implies that event e1 took place at time τk, i.e.,

q(t) = qON , t ∈ [τk−1, τk) and q(t) = qOFF , t ∈ [τk, τk+1). From (17) we have, for i = 1, 2,

x′

1,i(τ
+

k ) = x′

1,i(τ
−

k ) +

f x1k (τ−

k ) − f x1k+1(τ
+

k )

· τ ′

k,i (33)

and

x′

2,i(τ
+

k ) = x′

2,i(τ
−

k ) +

f x2k (τ−

k ) − f x2k+1(τ
+

k )

· τ ′

k,i (34)

where f x1k (τ−

k ) − f x1k+1(τ
+

k ) and f x2k (τ−

k ) − f x2k+1(τ
+

k ) ultimately depend on hON

τ−

k


and hOFF


τ+

k


. Evaluating hON


τ−

k


from (7) over the appropriate time interval results in

hON τ−

k


= x3(τ+

k−1)e
−(τk−τk−1)/σ + µ3σ [1 − e−(τk−τk−1)/σ ] + ζ̃3(τk)

and it follows directly from (9) that hOFF

τ+

k


= x3(τ+

k ). Moreover, by continuity of xn(t) (due to conservation of mass),
xn(τ+

k ) = xn(τ−

k ), n = 1, 2. Also, since we have assumed that {ζi(t)} , i = 1, 2, 3, is piecewise continuous w.p.1
and that no two events can occur at the same time w.p.1, ζi(τ−

k ) = ζi(τ
+

k ), i = 1, 2, 3. Hence, for x1(t), evaluating
∆1

f (τk) ≡ f x1k (τ−

k ) − f x1k+1(τ
+

k ) yields

∆1
f (τk, ζ3 (τk)) =


α1

1 + φON

α (τ−

k )
−1

− α1

1 + φOFF

α (τ+

k )
−1

− β1

1 + φON

β (τ−

k )
−1

+ β1

1 + φOFF

β (τ+

k )
−1

+
m1

x3,0


hON τ−

k


− x3(τk)


· x1(τk). (35)
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Finally, the term τ ′

k,i, which corresponds to the event time derivative with respect to θi at event time τk, is determined
using (19), as detailed in (40) later.

A similar analysis applies to x2(t), so that f x2k (τ−

k ) and f x2k+1(τ
+

k ) ultimately depend on hON

τ−

k


and hOFF


τ+

k


,

respectively. Hence, evaluating ∆2
f (τk) ≡ f x2k (τ−

k ) − f x2k+1(τ
+

k ) from (11) yields

∆2
f (τk, ζ3 (τk)) =

α2d
x3,0


x3(τk) − hON τ−

k


· x2(τk) −

m1

x3,0


hON τ−

k


− x3(τk)


· x1(τk). (36)

In the case of the ‘‘clock’’ state variable, z1(t) is discontinuous in t at t = τk, while z2(t) is continuous. Hence, based on
(18) and (5), we have that z ′

1,i(τ
+

k ) = 0. From (17) and (6), it is straightforward to verify that z ′

2,i(τ
+

k ) = z ′

2,i(τ
−

k )−τ ′

k,i, i =

1, 2.
4. A state transition from qOFF to qON occurs at time τk. This necessarily implies that event e2 took place at time τk, i.e.,

q(t) = qOFF , t ∈ [τk−1, τk) and q(t) = qON , t ∈ [τk, τk+1). The same reasoning as above holds, so that (33)–(34) also apply.
For x1(t), f

x1
k (τ−

k ) − f x1k+1(τ
+

k ) can be evaluated from (10) and ultimately depends on hOFF

τ−

k


and hON


τ+

k


. Evaluating

hOFF

τ−

k


from (9) over the appropriate time interval results in

hOFF τ−

k


= x3(τ+

k−1)e
−(τk−τk−1)/σ + (µ3σ + x3,0)[1 − e−(τk−τk−1)/σ ] + ζ̃3(τk)

and it follows directly from (7) that hON

τ+

k


= x3(τ+

k ).
As in the previous case, continuity due to conservation ofmass applies, so that evaluating∆1

f (τk) ≡ f x1k (τ−

k )−f x1k+1(τ
+

k )
yields

∆1
f (τk, ζ3 (τk)) =


α1

1 + φOFF

α (τ−

k )
−1

− α1

1 + φON

α (τ+

k )
−1

− β1

1 + φOFF

β (τ−

k )
−1

+ β1

1 + φON

β (τ+

k )
−1

+
m1

x3,0


hOFF τ−

k


− x3(τk)


· x1(τk). (37)

Similarly for x2(t), by evaluating ∆2
f (τk) ≡ f x2k (τ−

k ) − f x2k+1(τ
+

k ) from (11), and making the appropriate simplifications
due to continuity, we obtain

∆2
f (τk, ζ3 (τk)) =

α2d
x3,0


x3(τk) − hOFF τ−

k


· x2(τk) −

m1

x3,0


hOFF τ−

k


− x3(τk)


· x1(τk). (38)

In the case of the ‘‘clock’’ state variable, z1(t) is continuous in t at t = τk, while z2(t) is discontinuous. As a result, based
on (17) and (5), we have that z ′

1,i(τ
+

k ) = z ′

1,i(τ
−

k )− τ ′

k,i. From (18) and (6), it is simple to verify that z ′

2,i(τ
+

k ) = 0, i = 1, 2.

Note that, since z ′

j,i(t) = z ′

j,i(τ
+

k ), t ∈ [τk, τk+1), we will have that z ′

j,i(τ
−

k ) = z ′

j,i(τ
+

k−1), j, i = 1, 2. Moreover, the sample
path of our SHA consists of a sequence of alternating e1 and e2 events, which implies that z ′

1,i(τ
−

k ) = 0 if event e1 occurred
at τk−1, while z ′

2,i(τ
−

k ) = 0 if event e2 occurred at τk−1. Then, adopting the notation p, p = {1, 2} such that p + p = 3, we
have:

z ′

p,i(τ
+

k ) =


−τ ′

k,i if event epoccurs at τk
0 otherwise. (39)

We now proceed with a general result which applies to all events defined for our SHA model. We denote the time of
occurrence of the jth state transition by τj, define its derivative with respect to the control parameters as τ ′

j,i ≡
∂τj
∂θi

, i = 1, 2,
and also define f xnj


τj


≡ ẋn(τj), n = 1, 2.

Lemma 1. When an event ep, p = 1, 2, occurs, the derivative τ ′

j,i, i = 1, 2, of state transition times τj, j = 1, 2, . . . with respect
to the control parameters θi, i = 1, 2, satisfies:

τ ′

j,i =


1 − x′

1,i(τ
−

j ) − x′

2,i(τ
−

j )

f x1j−1(τ
−

j ) + f x2j−1(τ
−

j )

if event e1 occurs and i = 1
or event e2 occurs and i = 2

−x′

1,i(τ
−

j ) − x′

2,i(τ
−

j )

f x1j−1(τ
−

j ) + f x2j−1(τ
−

j )

if event e1 occurs and i = 2
or event e2 occurs and i = 1.

(40)

Proof. We begin with an occurrence of event e1 which causes a transition from state qON to state qOFF at time τj. This implies
that gj(x, θ) = x1 + x2 − θ1 = 0. As a result, ∂gk

∂x1
=

∂gk
∂x2

= 1, ∂gk
∂x3

=
∂gk
∂zi

=
∂gk
∂θ2

= 0, i = 1, 2, and ∂gk
∂θ1

= −1, and it is simple
to verify that (40) follows from (19).

Next, consider event e2 at time τj, leading to a transition fromstate qOFF to state qON . In this case, gj(x, θ) = x1+x2−θ2 = 0,
so that ∂gk

∂x1
=

∂gk
∂x2

= 1, ∂gk
∂x3

=
∂gk
∂zi

=
∂gk
∂θ1

= 0, i = 1, 2, and ∂gk
∂θ2

= −1. Substituting into (19) once again yields (40).
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We note that the numerator in (40) is determined using (23) and (26) if q(τ−

j ) = qON , or (29) and (32) if q(τ−

j ) = qOFF .
Moreover, the denominator in (40) is computed using (10)–(11) and it is simple to verify that, if event e1 takes place at
time τj,

f x1j−1(τ
−

j ) + f x2j−1(τ
−

j ) = α1

1 + φON

α (τ−

j )
−1

· x1(τj) −


β1

1 + φON

β (τ−

j )
−1

+ λ1


· x1(τj) + µ1

+


α2


1 − d

hON

τ−

j


x3,0


− β2


· x2(τj) + ζ1(τj) + ζ2(τj) (41)

and, if event e2 takes place at time τj,

f x1j−1(τ
−

j ) + f x2j−1(τ
−

j ) = α1

1 + φOFF

α (τ−

j )
−1

· x1(τj) −


β1

1 + φOFF

β (τ−

j )
−1

+ λ1


· x1(τj) + µ1

+


α2


1 − d

hOFF

τ−

j


x3,0


− β2


· x2(τj) + ζ1(τj) + ζ2(τj). (42)

Wenowproceed to present the expression of the cost derivative corresponding to the performancemetric defined in (12).

3.2. Cost derivative

Let us denote the total number of on and off-treatment periods (complete or incomplete) in [0, T ] by KT . Also let ξk denote
the start of the kth period and ηk denote the end of the kth period (of either type). Finally, letMT = ⌊

KT
2 ⌋ be the total number

of complete on-treatment periods, and ∆ON
m denote the duration of themth complete on-treatment period, where clearly

∆ON
m ≡ ηm − ξm,m = 1, 2, . . . .

Theorem 1. The derivative of the sample function L(θ) with respect to the control parameters satisfies:

dL(θ)

dθi
=

W
T

KT
k=1

 ηk

ξk


x′

1,i(θ, t) + x′

2,i(θ, t)

PSAinit


dt +

(1 − W )

T

MT
m=1

∆ON
m

T
·

η′

m,i − ξ ′

m,i


−

(1 − W )

T
1 [KT is odd] · ξ ′

MT+1,i ·


T − ξMT+1

T


(43)

where 1 [·] is the usual indicator function and PSAinit is the value of the patient’s PSA level at the start of the first on-treatment
cycle.

Proof. We assume, without loss of generality, that the start of our sample path will coincide with the start of the first
on-treatment period. Note also that we choose to end our sample path at time T , and that this choice is independent of
θi, i = 1, 2. Consequently, we will have [0, T ] ≡


ξ1, ηKT


, which implies that ∂ξ1

∂θi
=

∂ηKT
∂θi

= 0, i = 1, 2. Recall that the
sample path of our SHA will consist of alternating on and off-treatment periods.

Since z1(t) = 0 when q(t) = qOFF , we can rewrite (12) as

L (θ, x(0), z(0), T ) =
W
T

KT
k=1

 ηk

ξk


x1(θ, t) + x2(θ, t)

PSAinit


dt +

(1 − W )

T


MT
m=1

 ηm

ξm

z1(t)
T

dt +

 T

ξMT +1

z1(t)
T

dt


. (44)

Note that our sample path can either (a) end with an incomplete on-treatment period, or (b) end with an incomplete off-
treatment period. In (44), we assume that (a) holds, since (b) is a special case of (a) for which

 T
0

z1(t)
T dt =

MT
m=1

 ηm
ξm

z1(t)
T dt .

Observe that the end of an on-treatment period is coupled with the start of the subsequent off-treatment period, i.e.,
xi (ηk) = xi (ξk+1) , i = 1, 2, k = 1, . . . , KT − 1. Using this notation and taking the derivative of (44) yields

dL(θ)

dθi
=

W
T · PSAinit

KT−1
k=1

 ξk+1

ξk


x′

1,i(θ, t) + x′

2,i(θ, t)

dt +

W
T · PSAinit

KT−1
k=1

[x1 (ξk+1) + x2 (ξk+1)]
∂ξk+1

∂θi

−
W

T · PSAinit

KT−1
k=1

[x1 (ξk) + x2 (ξk)]
∂ξk

∂θi
+

W
T · PSAinit

 T

ξKT


x′

1,i(θ, t) + x′

2,i(θ, t)

dt

+
W

T · PSAinit
[x1(T ) + x2(T )]

∂T
∂θi

−
W

T · PSAinit


x1(ξKT ) + x2(ξKT )

 ∂ξKT

∂θi
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+
(1 − W )

T

MT
m=1

 ηm

ξm

z ′

1,i(t)dt

T
+

z1(η−
m)

T
∂ηm

∂θi
−

z1(ξ+
m )

T
∂ξm

∂θi



+
(1 − W )

T

 T

ξMT +1

z ′

1,i(t)

T
dt +

z1(T−)

T
∂T
∂θi

−
z1(ξ+

MT+1)

T
∂ξM+1

∂θi
. (45)

Observe that multiple cancellations of the second, third and sixth terms in (45) simplify to

KT−1
k=1

[x1 (ξk+1) + x2 (ξk+1)]
∂ξk+1

∂θi
−

KT−1
k=1

[x1 (ξk) + x2 (ξk)]
∂ξk

∂θi
=

x1(ξKT ) + x2(ξKT )

 ∂ξKT

∂θi
. (46)

Further note that the sixth term in (45) cancels out with the second term on the right hand side of (46). Moreover, it is
clear from (5) that z1(ξ+

MT+1) = z1(ξ+
m ) = 0 and z1(η−

m) = ηm − ξm,m = 1, . . . ,MT . Since z ′

j,i(t) = z ′

j,i(τ
+

k ), j, i = 1, 2, over
any interevent interval [τk, τk+1), and recalling that ∂T

∂θi
=

∂ξ1
∂θi

= 0, the last two terms in (45) simplify to

(1 − W )

T 2


MT
m=1

z ′

1,i(ξ
+

m ) (ηm − ξm) + (ηm − ξm)
∂ηm

∂θi


+

(1 − W )

T 2
z ′

1,i(ξ
+

MT+1)

T − ξMT+1


.

Recall that ξm is the start of the mth on-treatment period, which necessarily corresponds to the (m − 1)th occurrence of
event e2. Hence, z ′

1,i(ξ
+
m ) = −ξ

′

m,i,m = 1, . . . ,MT+1 from (39). As a result, (45) can be further simplified to

dL(θ)

dθi
=

W
T · PSAinit

KT−1
k=1

 ξk+1

ξk


x′

1,i(θ, t) + x′

2,i(θ, t)

dt +

W
T · PSAinit

 T

ξKT


x′

1,i(θ, t) + x′

2,i(θ, t)

dt

+
(1 − W )

T 2


MT
m=1

−ξ
′

m,i (ηm − ξm) + (ηm − ξm) η
′

m,i


−

(1 − W )

T 2
ξ

′

MT+1


T − ξMT+1


. (47)

The result in (47) is obtained under the assumption that our sample path ends with an incomplete on-treatment period, i.e.,
KT is odd. If this is not the case, the last term in (47) can be disregarded. It is then straightforward to verify that (47) can be
rewritten as (43).

It is clear that evaluating (43) requires knowledge of: (i) the event times ξn,m and ηn,m, and (ii) the value of the state
derivatives x′

1,i(θ, t) and x′

2,i(θ, t) over all on and off-treatment periods. The quantities in (i) are easily observed using timers
whose start and end times are observable events; eventually knowledge of the noise processes ζ1(t) and ζ2(t) evaluated at
event times only is also needed to compute (41)–(42). Information on the noise processes can be extracted from the observed
sample path, as explained in Section 4. The state derivatives in (ii) are obtained from (21) and (24) over on-treatment periods,
and from (27) and (30) over off-treatment periods. Ultimately, these expressions depend on (7) and (9), so that it is necessary
to evaluate the integral of the noise process ζ3(t), which can also be accomplished using data extracted from the observed
sample path.

As a result, it is straightforward to implement an algorithm for updating the value of dL (θ) /dθi after each observed event,
as outlined in Algorithm 1.

Algorithm 1 IPA Algorithm for Optimal IAS Therapy Design
Whenever an event occurs at time τk, k = 1, 2, . . .
Step 1 Update event time derivatives using (41)
Step 2 Update state derivatives using (34)-(35) and (40)
Step 3 Update cost derivatives using (44)
End
Repeat

We draw attention to the fact that one of the appealing features of Algorithm 1 is its event-driven simplicity: despite
the apparent complexity of the equations involved, the algorithm is simply executed whenever one of the events we
have defined occurs and the only action required is an arithmetic computation (e.g., see (40)). In practical terms, running
Algorithm 1 requires that some settings be adjusted, as discussed next. For one, the gradient step used in our simulations
was of the form ρk =

C
k3/2

, where ρk denotes the step size at the kth iteration, k = 1, 2, . . . , and C is the step constant. The
value of constant C was adjusted on a case-by-case basis, i.e., the value used in the simulation shown in Fig. 3(a)was different
than the one used in the simulations shown in Fig. 3(b)–(c) and Fig. 4. Additionally, convergence was evaluated based on the
absolute difference in values of the average cost over subsequent iterations. More specifically, we considered convergence
as having been reached when such difference was at most of the order of 10−3 over at least 3 consecutive iterations. Lastly,
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Fig. 3. Convergence plots of average cost and PSA threshold values for Patient #15: (a) initial configuration

θ init
1 , θ init

2


= [2.5, 14.0]; (b) initial

configuration

θ init
1 , θ init

2


= [7.0, 12.5]; (c) initial configuration


θ init
1 , θ init

2


= [6.5, 9.0].

the time required for our IPA algorithm to achieve convergence was in most cases at least 3 times smaller than the time
required to evaluate the response surface using a brute force approach. We end by noting that Step 1 requires knowledge of
the noise processes ζ1(t) and ζ2(t) in order to evaluate (41) whenever an event e1 takes place, and (42) whenever an event
e2 occurs. In what follows, details are given on how to include this type of information using data from the observed sample
path.

4. Results

In what follows, we detail how an IPA-driven gradient-based optimization approach can be used for personalized IAS
therapy design. The results shown here represent a first attempt at incorporating randomness into a SHA model of prostate
cancer evolution in which we consider only noise and fluctuations associated with cell population dynamics, and do not
account for noise in the patient’s androgen level. Representing randomness as Gaussian white noise, the authors in [13]
verified that variable time courses of the PSA levels were producedwithout losing the tendency of the deterministic system,
thus yielding simulation results that were comparable to the statistics of clinical data. For this reason, in this work we take
{ζi (t)} , i = 1, 2, to be Gaussian white noise with zero mean and standard deviation of 0.001, similarly to [13], although we
remind the reader that our methodology applies independently of the distribution chosen to represent {ζi (t)} , i = 1, 2.
We estimate the noise associated with cell population dynamics at event times by randomly sampling from a uniform
distribution with zero mean and standard deviation of 0.001. Simulations of the prostate cancer model as a pure DES are
thus run to generate sample path data to which the IPA estimator is applied. In all results reported here, we measure the
sample path length in between updates of the controllable parameter vector θ in terms of the number of days elapsed since
the onset of IAS therapy, which we choose to be T = 2500 days.

Two sets of simulations are reported here: one in whichwe setW = 0.5 and determine personalized treatment schemes
for two different patients, and another inwhichwe analyze the effect ofW on the design of a given patient’s optimal therapy.
For the former, we make use of the clinical models of Patient #15 and Patient #1 [12].
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Fig. 4. Convergence plots of average cost and PSA threshold values for Patient #1: (a) initial configuration

θ init
1 , θ init

2


= [5.5, 14.5]; (b) initial configuration

θ init
1 , θ init

2


= [7.0, 15.0]; (c) initial configuration


θ init
1 , θ init

2


= [4.5, 11.5].

Fig. 3 presents the convergence plots of the average cost and control parameters considering different initial configura-
tions for Patient #15.

Fig. 4 presents the convergence plots of the average cost and control parameters considering different initial configura-
tions for Patient #1.

Using a brute force approach, the response surface corresponding to our cost function was generated. In Fig. 5, the
convergence trajectories from Fig. 3 are plotted against the response surface of Patient #15, and it can be seen that all
configurations converge to the region of minimum cost.

In Fig. 6, the convergence trajectories from Fig. 4 are plotted against the response surface of Patient #1, and again it can
be seen that all configurations converge to the region of minimum cost.

In our second set of simulations, we use the clinical model of Patient #1 [12] and take W ∈ {0.1, 0.5, 0.9}. Recall that
our sample function contains two terms, each of which represents complementary measures of therapy success. We take
into account the fact that it may be desirable to design a therapy scheme that favors one of these terms over the other by
associating weight W with the first term and 1 − W with the second term, as detailed in Section 2.2. Table 1 presents the
values of optimal lower and upper PSA threshold values (θ∗

1 and θ∗

2 , respectively) and the corresponding cost of treatment
(J∗) using the clinical model of Patient #1 for different values ofW . In what follows, we adopt the notation x ≈ y to indicate
that x takes values approximately equal to y, and x & y to indicate that x takes values approximately equal or slightly greater
than y.

It can be seen from Table 1 that the ranges of optimal lower and upper PSA threshold values are equivalent for W ∈

{0.1, 0.5, 0.9}, i.e., θ∗

1 & θmin
1 and θ∗

2 & θmin
2 for all values ofW considered here. In other words, the value of J∗ changes with

the value of W , but the regions of minimum and maximum cost remain essentially unchanged. This means that a common
optimal treatment scheme exists irrespective of the chosen value ofW . Hence, it is possible to consistently achieve therapy
personalization, as detailed in what follows.
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Fig. 5. Response surface and convergence trajectories (Patient #15).

Fig. 6. Response surface and convergence trajectories (Patient #1).

Table 1
Optimization results for different values of W using the
clinical model of Patient #1.

W θ∗

1 θ∗

2 J∗

0.1 ≈2.5 ≈8.0 0.017
0.5 ≈2.5 ≈8.0 0.086
0.9 ≈2.5 ≈8.0 0.154

4.1. Achieving Therapy Personalization

Recall that solving problem (14) is equivalent to searching for the IAS treatment scheme that not only keeps PSA levels as
low as possible, but that also reduces the frequency of on and off-treatment cycles. In this context, the resulting optimal IAS
therapy is one in which both the low and high PSA thresholds take values as small as possible, i.e., θ∗

1 & θmin
1 and θ∗

2 & θmin
2 .

This tendency is verified in Figs. 5 and 6, where it can be seen that the regions of minimum cost are those immediately
surrounding


θmin
1 , θmin

2


.

Moreover, it is interesting to note that although this tendency is consistent across different patients, successful IAS
therapy schemes are only obtained when θ1 ≥ 1.5 for Patient #15 and θ1 ≥ 2.5 for Patient #1. This means that, for Patient
#15, a therapy in which the low PSA threshold takes values smaller than 1.5 will eventually lead to uncontrolled cancer cell
growth and disease relapse. The same analysis holds for Patient #1, except that in this case, there is a higher lower bound
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on the value of θ1. Clearly this variation across patients is associated with the fact that each patient responds differently to
IAS therapy; hence the underlying need for designing personalized treatment schemes.

Finally, personalizing IAS therapy based on the cost metric proposed in this work involves, among other things, assessing
the smallest value that the low PSA threshold can be allowed to reach, which varies across patients. This can be done using
clinical data from patients, when available. In cases where nomodel exists to predict a patient’s response to therapy (e.g., for
patients who have never been submitted to IAS therapy), a possible course of action would be to devise an optimal therapy
scheme using another patient’s model, which could be selected based on clinical indicators of patient similarity and/or
insights from the physician. After recording the new patient’s response to the first cycle(s) of treatment, it would be possible
to iteratively adjust his initial treatment until an improved scheme is found. Such iterative search for an optimal IAS therapy
scheme could be successfully performed using the methodology proposed in this work.

We end with a note on the relevance of experimental or clinical supporting data for validation of our methodology. Such
validation would ideally rely on randomized clinical trials where, for example, a cohort of patients would be submitted to
current treatment protocols for prostate cancer, while another group of patients would undergo personalized treatment as
determined by our approach. Data obtained by monitoring all patients throughout the study would allow us to assess the
relative advantages of optimal (personalized) therapies over existing therapy schemes. As already mentioned, the purpose
of this paper is to demonstrate the applicability of IPA techniques for personalized therapy design by means of a case study
of advanced prostate cancer. While performing clinical validation of our methodology lies outside the scope of this work,
we stress that the simulation results shown here support our claim and lay the foundation for such future validation.

5. Conclusion

This work sets the stage for the use of basic IPA techniques for optimal personalized cancer therapy design. We propose
amethodology applicable to stochastic models of cancer progression and illustrate our analysis with a case study of optimal
IAS therapy design for advanced prostate cancer. We develop a threshold-based policy for optimal IAS therapy design that
is parameterized by lower and upper PSA threshold values and is associated with a cost metric that combines clinically
relevant measures of therapy success. We use a Stochastic Hybrid Automaton (SHA) model of prostate cancer evolution
under IAS and perform Infinitesimal Perturbation Analysis (IPA) to adaptively adjust PSA threshold values so as to improve
therapy outcomes.

Results obtained by applying our methodology to clinical data from real prostate cancer patients suggest that optimal
IAS treatment schemes are those in which both the low and high PSA thresholds take values as small as possible. In spite
of the fact that this tendency is consistent across different patients, lower bounds on PSA threshold values vary from one
patient to the next. This variation across patients is associated with the fact that each patient responds differently to IAS
therapy; hence the underlying need for designing personalized treatment schemes.

It is possible to extend the framework presented here to analyze different potentially interesting controllable parameters,
such as different drugs and/or dosages. In this sense, our method would yield information on the effect of, e.g., mixing
different medication components or timing therapy periods, on the overall effectiveness of the treatment. Our ongoing
work includes performing sensitivity analysis on relevant model parameters other than the PSA threshold values. Lastly, we
note that our methodology is general and thus easily applicable not only to other types of cancer, but also to other diseases
that are known to progress in stages (e.g., tuberculosis).
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