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Abstract— We propose a “smart parking” system for an
urban environment based on a dynamic resource allocation
approach. The system assigns and reserves an optimal resource
(parking space) for a user (driver) based on the user’s objective
function that combines proximity to destination with parking
cost, while also ensuring that the overall parking capacity is
efficiently utilized. Our approach solves a Mixed Integer Linear
Program (MILP) problem at each decision point in a time-
driven sequence. The solution of each MILP is an optimal
allocation based on current state information and subject to
random events such as new user requests or parking spaces
becoming available. The allocation is updated at the next
decision point ensuring that there is no resource reservation
conflict, that no user is ever assigned a resource with higher
than the current cost function value, and that a set of fairness
constraints is satisfied. We add an event-driven mechanism to
compensate for users with no assignment that are close to their
destinations. Simulation results show that using this “smart
parking” approach can achieve near-optimal resource utiliza-
tion and significant improvement over uncontrolled parking
processes or state-of-the-art guidance-based systems.

Index Terms— Smart Parking, Resource Allocation, MILP

I. INTRODUCTION

The motivation for this paper is provided by the need
to reduce traffic in urban settings. On a daily basis, it is
estimated that 30% of vehicles on the road in the downtown
area of major cities are cruising for a parking spot and it
takes an average of 7.8 minutes to find one [4]. This causes
not only a waste of time and fuel for drivers looking for
parking, but it also contributes to additional waste of time
and fuel for other drivers as a result of traffic congestion.
For example, it has been reported [16] that over one year
in a small Los Angeles business district, cars cruising for
parking created the equivalent of 38 trips around the world,
burning 47, 000 gallons of gasoline and producing 730 tons
of carbon dioxide.

During the past two decades, traffic authorities in many
cites have started to inform and guide drivers to parking
facilities with real-time information such as the number of
available parking spaces; this information may be displayed
on variable-message sign (VMS) at major roads, streets, and
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intersections, or it may be disseminated through the Internet
[17]. This parking guidance information (PGI) system is
based on the development of autonomous vehicle detection
and parking spot monitoring, typically through the use of
sensors placed in the vicinity of parking spaces for vehicle
detection and surveillance [13]. Using a PGI system, e-
parking is a platform which allows drivers to obtain parking
information before or during a trip, and reserve a parking
spot via phone or Internet [10], [14].

Although current parking guidance systems increase the
probability of finding vacant parking spots, they have several
shortcomings. First, drivers may not actually find vacant
parking spots by merely following the guidance. In essence,
such systems change driver behavior from searching to com-
peting for parking. Second, even if a driver is successfully
guided to a parking spot, such a system encourages increas-
ing the probability of finding any parking spot at the expense
of missing the opportunity for a better spot. Third, parking
space utilization becomes imbalanced: parking spaces for
which information is provided are highly utilized and cause
higher traffic congestion nearby, while other parking spaces
may be routinely left vacant. In general, guidance systems
do not solve the basic parking problem. In fact, system-
wide reductions in travel time and vehicle benefits may be
relatively small [18]. Even worse, they may cause new traffic
congestion in areas where parking spaces are monitored.

In this paper, we propose a new concept for a “smart
parking” system. The basic idea is described as follows.
Drivers who are looking for parking spots send requests
to an allocation center. A request is accompanied by two
requirements: a constraint (upper bound) on parking cost and
a constraint (upper bound) on the walking distance between
a parking spot and the driver’s actual destination. The center
collects all driver requests over a certain time window and
makes an overall allocation at decision points in time seeking
to optimize a combination of driver-specific and system-wide
objectives. If a driver is satisfied with the assignment, he has
the choice to reserve that spot. Once a reservation is made,
the driver still has an opportunity to obtain a better parking
spot before the current assigned spot is reached. If a driver is
not satisfied with the assignment, he has to wait until the next
decision point. Observe that this system explicitly allocates
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and reserves a parking spot to a driver, as opposed to simply
guiding him to a space that may not be available by the time
it is reached.

The realization of such a “smart parking” system mainly
relies on the implementation of a reservation that guarantees
a specific parking spot to a driver. This is achievable through
wireless technology interfacing a vehicle with hardware that
makes a spot accessible only to the driver who has reserved
it. Examples include gates, “folding barriers,” and obstacles
that emerge from and retract to the ground under a parking
spot; these are wirelessly activated by devices on-board
vehicles, similar to mechanisms for electronic toll systems.
A “softer” scheme is to use a red/green light system placed
at each parking spot, where red indicates that the spot is
reserved and only the vehicle assigned to it may switch it
back to green (a vehicle parked when the light is red is fined).
In what follows, we will concentrate on the methodology that
enables us to make optimal parking space allocations.

In our problem, a key feature is that each driver has
specific requirements and only a subset of resources (parking
spots) satisfy them. This is similar to the Skills-Based
Routing (SBR) problem encountered in telephone call centers
where calls are routed based on the skills required for a
server to respond to the call [1], [6]. Related research has
focused on various forms of approximations to bypass the
high dimensionality involved in determining optimal routing
policies via dynamic programming, e.g., using Approximate
Dynamic Programming (ADP) [11] and limiting problems
to a heavy traffic regime [5], [7], [8], [9]. However, all such
methods assign a single user to one server/resource at a time
and aim to minimize a user delay cost metric. In our problem,
we allocate multiple users to multiple resources and a key
objective is the average minimum user cost.

We view the “smart parking” process as a sequence of
Mixed Integer Linear Programming (MILP) problems solved
over time at specific decision points subject to suitably
designed fairness constraints. We will discuss the choice of
decision points comparing a time-driven approach (where
they are made periodically) to an event-driven scheme where
a new allocation is made with every event occurrence.

The rest of the paper is organized as follows. In Section
II, we describe the dynamic resource allocation model and
formulate the MILP problem solved at every decision point.
In Section III, we address the issues of allocation feasibility
and fairness. Simulation results are given in Section IV where
we provide empirical evidence of the significant benefits, in
terms of several performance metrics, of “smart parking”
over uncontrolled settings or guidance-based systems. We
conclude and discuss future work in Section V.

II. DYNAMIC RESOURCE ALLOCATION MODEL

For the sake of generality, we will employ the term “user”
when referring to drivers or vehicles and the term “resource”
when referring to parking spots. We adopt a queueing model
for the problem as shown in Fig. 1, where there are N
resources and every user arrives randomly and independently
to join an infinite-capacity queue (labeled WAIT) and waits

to be assigned a resource if possible. At the kth decision
point, the system makes allocations for all users in both the
waiting queue and the queue (labeled RESERVE) of users
who have already been assigned and have reserved a resource
from a prior decision point. If a user in WAIT is successfully
assigned a resource, he joins the RESERVE queue, otherwise
he remains in WAIT. A user in RESERVE may be assigned
a different resource after a decision point and returns to
the same queue until he can physically reach the resource
and occupy it. A user leaves the system after occupying a
resource for some amount of time at which point the resource
becomes free again.

Fig. 1. Queueing Model for Dynamic Resource Allocation

At the kth decision point we define the state of the
allocation system, X(k), and the state of the ith user, Si(k)
as explained next. Note that a user is designated by a unique
positive integer i = 1, 2, . . . First, we define

X(k) = {W (k), R(k), P (k)} (1)

where W (k) = {i : user i is in the WAIT queue},
R(k) = {i : user i is in the RESERVE queue}, and
P (k) = {p1(k), ..., pN (k)} is a set describing the state of
the jth resource, j = 1, . . . , N , defined as follows:

pj(k) =

 −1 if resource j is occupied
0 if resource j is free
i if resource j is reserved by user i

(2)

We assume that each resource has a known location asso-
ciated to it denoted by yj ∈ Z ⊂ R2 in a two-dimensional
Euclidean space. We also define

Si(k) = {zi(k), ri(k), qi(k),Ωi(k)} (3)

where zi(k) ∈ Z ⊂ R2 is the location of user i, ri(k) ∈
R+ is the total time that user i has spent in the RESERVE
queue up to the kth decision point (ri(k) = 0 if i ∈W (k)),
and qi(k) is the reservation status of user i:

qi(k) =
{

0 if i ∈W (k)
j if i ∈ R(k), pj(k) = i

(4)

Clearly, if pj(k) = i we must have qi(k) = j and vice
versa. Finally, Ωi(k) is a feasible resource set for user i, i.e.,
Ωi(k) ⊆ {1, . . . , N} depending on the requirements set forth
by this user regarding the resource it requests. In general,
Ωi(k) may be a set specified by each user upon arrival at
the system; however, for the specific parking problem we
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are interested in, we will define Ωi(k) in terms of attributes
associated with user i and defined as follows.

We associate two attributes to user i. The first, denoted by
Di, is an upper bound on the distance between the resource
that the user is assigned and his actual destination di ∈ Z ⊂
R2. If the user is assigned a resource j located at yj , let
Dij = ‖di − yj‖ where ‖·‖ is a suitable distance metric.
Then, the constraint

Dij ≤ Di (5)

defines a requirement that contributes to the determination of
Ωi(k) by limiting the set of feasible resources to those that
satisfy (5). If the requirement is expressed in terms of a time
Di, then the constraint is simply rewritten as ‖di − yj‖ /V ≤
Di, where V is a given speed parameter (e.g., an average
walking speed).

The second attribute for user i, denoted by Mi, is an
upper bound on the cost this user is willing to tolerate for
the benefit of reserving and subsequently using a resource.
The actual cost depends on the specific pricing scheme
adopted by the allocation system and may include a flat
fee for reserving a resource, a fee dependent on the total
reservation time, and subsequently a fee for occupying the
resource. Our approach does not depend on the specific
pricing scheme used, but we will assume that each user
cost is a monotonically nondecreasing function of the total
reservation time ri(k), as well as a function of the traveling
time from the user location at the kth decision time, zi(k),
to a resource location yj . Let sij(k) = ‖zi(k)− yj‖ be this
distance, and define the traveling time tij(k) = f(sij(k), ω),
where ω denotes all random traffic conditions. We use
Mij(ri(k), tij(k)) to denote the total expected cost for using
resource j, evaluated at the kth decision time. Comparing
Mij(ri(k), tij(k)) to Mi, leads to the constraint

Mij(ri(k), tij(k)) ≤Mi (6)

This defines a second requirement that contributes to the de-
termination of Ωi(k) by limiting the set of feasible resources
to those that satisfy (6). In order to fully specify Ωi(k), we
further define

Γ(k) = {j : pj(k) 6= −1, j = 1, . . . , N}

to be the set of free and reserved resources at the kth decision
time and set

Ωi(k) = {j : Mij(k) ≤Mi, Dij ≤ Di, j ∈ Γ(k)} (7)

where, for simplicity, we have written Mij(k) instead of
Mij(ri(k), tij(k)). Note that this set allows the system to
allocate to user i any resource j ∈ Ωi(k) which satisfies
the user’s requirements even if it is currently reserved by
another user (i.e., if pj(k) = m 6= i). Thus, a resource j
may be dynamically re-allocated to different users at each
decision point until pj(k) = −1, signaling that it has become
physically occupied by a user.

We can now concentrate on defining an objective function
which we will seek to minimize at each decision point by
allocating resources to users. We use a weighted sum to

define user i’s cost function, Jij(k) if he is assigned to
resource j, as follows:

Jij(k) = λi
Mij(k)
Mi

+ (1− λi)
Dij

Di
(8)

where λi ∈ [0, 1] is a weight that reflects the relative
importance assigned by the user between cost and resource
quality. In the case of parking, resource quality is measured
as the walking distance between the parking spot the user is
assigned and his actual destination.

To capture the essence of “smart parking,” the objective
of the system is to make allocations for as many users as
possible and, at the same time, to achieve minimum user
cost as measured by Jij(k). Define binary control variables
xij :

xij =
{

0 if user i is not assigned to resource j
1 if user i is assigned to resource j (9)

We can now define the allocation problem (P1) at the kth
decision point as follows:

min
∑

i∈W (k)∪R(k)

∑
j∈Ωi(k)

xij · Jij(k) (10)

s.t. ∑
j∈Ωi(k)

xij = 1, ∀i ∈W (k) ∪R(k) (11)

∑
i∈W (k)∪R(k)

xij ≤ 1, ∀j ∈ Γ(k) (12)

∑
j∈Ωi(k)

xij · Jij(k) ≤ Jiqi(k−1)(k), ∀i ∈ R(k) (13)

xij ∈ {0, 1}, ∀i ∈W (k) ∪R(k), j ∈ Γ(k) (14)

In this problem, the objective function focuses on user
satisfaction. One can formulate alternative versions that
incorporate system-centric objectives such as maximizing
resource utilization or total revenue without affecting the
essence of our approach which is primarily dependent on
the three constraints (11), (12), and (13). In particular, the
“request satisfaction” constraints (11) require that every user
is allocated to a resource, unless of course Ωi(k) = ∅.
The capacity constraints (12) ensure that every resource is
occupied by no more than one user. The constraints (13) add
a unique feature to our problem by guaranteeing that every
user in the RESERVE queue is assigned a resource which is
no worse than the one most recently reserved, i.e., qi(k−1).

Problem (P1) is a Mixed-Integer Linear Programming
(MILP) problem that can be solved using any of several com-
mercially available software packages (we use ILOG CPLEX
in this paper). However, the problem is often infeasible and
fails to provide an allocation. Infeasibility arises when the
number of available resources is smaller than the number of
users who are competing for them, thus violating some of
the constraints in (11). If that happens, an auxiliary problem
may be defined whereby we seek to pick the maximum
number of users which guarantees that the problem becomes
feasible and results in minimal cost. In other words, since
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only constraints in (11) are violated, we should first find
maximal Feasible Subsets (MAX FS) of (11) and choose
one such subset which generates a minimal cost. However
the problem of finding MAX FS is proved to be an NP-hard
problem [2], [3], [15]. When the user set is large, determining
the MAX FS requires an enormous computational effort and
solution time which is not suited to the real-time nature of
such a DRA problem. However, we proceed in a different
way, as described next, which avoids this complication.

III. RESOURCE ALLOCATION STRATEGIES

Observe that the constraints in (11) apply to users in the
set W (k) ∪R(k), thus requiring the system to immediately
assign a resource to a new user i ∈ W (k). This is unnec-
essarily restrictive given the inherent delay between a user
request and actually occupying a resource. Thus, we follow
a different direction by replacing the constraints (11) with
the following: ∑

j∈Ωi(k)

xij ≤ 1, ∀i ∈W (k) (15)

∑
j∈Ωi(k)

xij = 1, ∀i ∈ R(k) (16)

and, at the same time, we add a penalty cost
∑
i∈W (k)(1−∑

j∈Ωi(k) xij) to the objective function in (10):

min
∑

i∈W (k)∪R(k)

∑
j∈Ωi(k)

xij ·Jij(k)+
∑

i∈W (k)

(1−
∑

j∈Ωi(k)

xij)

(17)
Note that, unlike (11), in (15) and (16) constraints are now
separately imposed over W (k) and R(k). The constraints
(15) indicate that any user in the WAIT queue may be
assigned at most one resource but may also fail to get an
assignment. On the other hand, (16) still guarantees that
each user in the RESERVE queue maintains a resource
assignment. If the system fails to allocate a resource to some
user i, i.e.,

∑
j∈Ωi(k) xij = 0, a cost of 1 is added to the

objective function. Therefore, the added term
∑
i∈W (k)(1−∑

j∈Ωi(k) xij) in (17) is the total cost contributed by the
number of “unsatisfied” users. Since by its definition in (8)
Jij(k) ≤ 1, the added cost of value 1 is sufficiently large to
ensure that a user is assigned to a resource if there are free
qualified resources left.

In this formulation, we can easily prove that the problem is
always feasible. Indeed, letting the matrix X ≡ [xij ] denote
a solution of (17), then the set

{X :
∑

j∈Ωi(k)

xij = 0, xmqm(k) = 1, i ∈W (k), m ∈ R(k)}

is always a feasible solution, since it implies that all users in
W (k) are not allocated and all users in R(k) simply maintain
their previous reservation (assuming that R(k) 6= ∅).

Fairness. As we can see from (15) and (16), this strategy
gives a higher assignment priority to users in the RESERVE
queue, which is reasonable because they are already incur-
ring a positive cost. On the other hand, (15) involves no
distinctions among the waiting users, regardless of how long

they have resided in the WAIT queue or where they are
located. This introduces unfairness among waiting users. For
example, a waiting user may be located right in front of
an available resource which, however, is assigned to another
waiting user at a considerably larger distance from it. In order
to remove such unfairness, we add the following constraints: ∑
n∈Ωi(k)

xin

−xmj ≥ 0, ∀i, j,m s.t.
j ∈ Γ(k), j ∈ Ωi(k),
m ∈W (k),
tmj > tij

(18)
These constraints are explained as follows. Consider a re-
source j which is available for assignment (j ∈ Γ(k)) and
qualified for user i (j ∈ Ωi(k)). If i fails to be allocated
any resource, we have

∑
n∈Ωi(k) xin = 0 and (18) requires

that xmj = 0, i.e., any other waiting user m located farther
away from j than user i (tmj > tij) is forbidden from being
assigned to j.

Decision points. At this point, the modified problem,
which we shall refer to as (P2), uses the objective function
(17) and the constraints (12), (13), (14) from the original
formulation, along with (15), (16), and (18). Moreover, the
existence of a solution is now guaranteed. An important
remaining issue concerns the choice of decision points over
time or, equivalently, defining appropriate “decision inter-
vals” τ(k), k = 1, 2, . . . The simplest idea is to adopt an
event-driven approach, i.e., to solve (P2) whenever an event
is observed in the system. The advantage of this approach is
that it provides quick response to users; however, it obviously
also entails significant computational burden to the system
since the frequency of solving (P2) may become high. We
adopt a time-driven strategy for decision making. After the
(k− 1)th decision point, the system waits for some duration
τ(k) and then makes a new allocation over all users that
arrived during τ(k) and all previous users residing in either
the WAIT or RESERVE queue. Clearly there is a tradeoff:
a large τ(k) may eventually yield a lower cost for all users
involved, but it also forces a large number of users to remain
in the WAIT queue with no assignment, until it is either too
late because a user has reached his destination or has lost
patience and searches for resources by himself. In the next
section, we shall empirically explore the effect of varying
τ(k) on the performance of the system.

Performance metrics. In solving problem (P2) we aim to
minimize user costs as defined by (8) at each decision point.
In order to assess the overall system performance over some
time interval [0, T ], we define several appropriate metrics
evaluated over a total number of users NT served over this
interval (simulation run length).

From the system’s point of view, we consider resource
utilization as a performance metric and break it down into
two parts: ur(T ) is the utilization of resources by reservation
(i.e., the fraction of resources that are reserved) and up(T )
is the utilization by occupancy (i.e., the fraction of resources
that are physically occupied by a user).

From the users’ point of view, we first define an average
satisfaction metric J̄(T ) for those users that actually occupy
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a resource, as defined in (8). Another metric we will use is
the abandonment ratio a(T ) defined as follows. Let

AW (k) = {i : i ∈W (k), ‖zi(k)− di‖ < ε}

be the set of users who reach their destination but are still
in the WAIT queue at the kth decision point, where ε > 0
is a small real number used to indicate that a user is in the
immediate vicinity of his destination di. Letting kT denote
the last decision point within the time interval of length
T , we then define a(T ) = |AW (kT )|

NT
. Finally, we consider

the average time-to-park tp(T ), which is the time from the
instant a user “arrives” to the instant he physically occupies
a parking resource.

IV. SIMULATION RESULTS

In this section, we describe a simulation testing environ-
ment to explore the behavior of the proposed “smart parking”
system. A small business district map is shown in Fig. 2. In
this scenario, there are 4 malls (indicated by red triangles)
which are the users’ destinations, and 30 parking resources
denoted by green squares. The lines that define the map
grid are roads, and blue circles represent users. A dotted
line connecting a user to a resource represents a reservation.
In all simulations, user arrival times are Poisson distributed
with rate λ, and uniformly located in the map. The user
cost parameter Mi is uniformly distributed in the interval
[Mmin,Mmax], and the walking-distance parameter Di is
also uniformly distributed in [Dmin, Dmax]. The resource
occupancy time is exponentially distributed with rate µ.

Fig. 2. Simulation Environment

We adopt a pricing scheme based on which the expected
cost incurred by user i when assigned resource j at the kth
decision point is

Mij(k) = eα(ri(k)+tij(k)) + CTi (19)

where α is a positive constant, ri(k) is the time already spent
at the RESERVE queue, tij(k) is an estimate of the driving
time for i to reach j, and Ti is the expected parking time
of user i. We do not consider random traffic events in the
simulation, so that tij(k) is simply estimated by

tij(k) = ‖zi(k)− yj‖M /vi

where ‖·‖M denotes the Manhattan distance [12], and vi is
user i’s average speed estimate.

TABLE I
“SMART PARKING” PERFORMANCE WITH NO USER REQUIREMENTS

τ 10 15 20 25 30 E
up(T ) 0.73 0.75 0.76 0.75 0.73 0.70
up(T )-IA 0.80 0.85 0.83 0.79 0.80 0.70
ur(T ) 0.09 0.09 0.08 0.08 0.08 0.10
ur(T )-IA 0.09 0.07 0.09 0.08 0.08 0.10
a(T ) 0.09 0.12 0.15 0.18 0.20 0.04
a(T )-IA 0.03 0.05 0.06 0.05 0.07 0.04
tp(T ) 43 47 51 54 62 40
tp(T )-IA 42 43 48 46 50 40

The walking-distance cost is defined as Dij = βwjdi

where β is a positive constant and wjdi measures the walking
distance from resource j to user i’s destination di.

In all simulations, we use a constant decision interval
τ(k) = τ, k = 1, 2, . . . We will also study the effect of τ
on our performance metrics. We expect that as τ increases,
a(T ) should increase. This is because the length of the WAIT
queue increases with τ and the number of waiting users that
reach their destination before having an opportunity to join
the RESERVE queue, i.e., |AW (kT )|, also increases. To deal
with this effect, we adopt the following Immediate Allocation
(IA) policy: Whenever user i is in the WAIT queue and
reaches a location zi such that ‖zi − di‖ ≤ viτ , he is placed
in an “immediate allocation” queue. If this queue is not
empty, then as soon as a user departure makes a resource
available the system immediately prioritizes user i over other
users in W (k) and assigns him this resource if it is feasible.
This “immediate allocation” problem is easy to solve. We
define an “urgent” user set

I(k) = {i : i ∈W (k), ‖zi − di‖ ≤ viτ}

and, as soon as a resource j becomes free, we allocate it
to user i such that Jij = minn∈I(k),j∈Ωn(k)Jnj , if such i
exists.

Table I shows results obtained with 1/λ = 10 (time units),
1/µ = 220, Mmin = Mmax = ∞, Dmin = Dmax = ∞
(in practice, Mmax and Dmax are selected as large positive
numbers), so that in this case there are no constraints im-
posed by user requirements. Results are shown over different
values of τ , as well as the event-driven decision policy
(last column, labeled E). Every result is generated by the
average of 5 simulations, with each lasting for T = 18000.
In each case, we also include results when the IA policy is
adopted. Since requirements are set to infinity, an event-based
allocation is very similar to the M/M/n queueing system for
which the average utilization is given by ū = λ/(Nµ) ≈
0.73 which is close to up(T ) over different τ values and
generally insensitive to τ . Note, however, that up(T )+ur(T )
exceeds 0.80; the ur(T ) utilization component represents
added benefit to the system in terms of revenue, while at
the same time providing a reservation guarantee for users.
As expected, the abandonment ratio a(T ) decreases with τ
and, for sufficiently low values, it is comparable to the event-
driven decision policy. The same is true for the average time-
to-park tp(T ) metric.
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TABLE III
PERFORMANCE METRICS UNDER DIFFERENT TRAFFIC INTENSITY

1/λ 7 9 10 12 15
SP-E G NG SP-E G NG SP-E G NG SP-E G NG SP-E G NG

u(T ) 0.96 0.92 0.91 0.86 0.82 0.80 0.79 0.75 0.72 0.64 0.60 0.57 0.51 0.48 0.47
a(T ) 0.62 0.67 0.92 0.38 0.47 0.73 0.25 0.35 0.55 0.11 0.19 0.63 0.08 0.11 0.51
J̄(T ) 0.531 0.536 0.590 0.514 0.539 0.586 0.504 0.534 0.592 0.482 0.523 0.603 0.497 0.536 0.587
tp(T ) 282 387 454 61 101 154 48 108 180 38 38 70 38 42 68

TABLE II
“SMART PARKING”, G AND NG PERFORMANCE WITH USER

REQUIREMENTS

τ 10 20 30 E G NG
up(T ) 0.73 0.75 0.72 0.70
up(T )-IA 0.76 0.84 0.75 0.70 0.75 0.72
ur(T ) 0.08 0.08 0.07 0.09
ur(T )-IA 0.09 0.08 0.07 0.09
a(T ) 0.23 0.29 0.33 0.25
a(T )-IA 0.19 0.23 0.19 0.25 0.35 0.55
J̄(T ) 0.499 0.493 0.475 0.504
J̄(T )-IA 0.500 0.496 0.498 0.504 0.534 0.592
tp(T ) 58 62 78 48
tp(T )-IA 54 61 74 48 108 180

Table II shows results when there are user requirements
and we set Mmin = 0, Dmin = 0, Mmax = 100, Dmax =
100, α = 0.025, β = 1, C = 1. Comparing with Table
I, we find that resource utilizations are minimally affected,
but a(T ) considerably increases as the presence of user
requirements limits their feasible options. The average user
cost J̄(T ) decreases as τ increases since the system gathers
more user information and is able to make better overall
decisions. This also explains why J̄(T ) increases when the
IA policy is used, though still outperforming the event-driven
decision policy.

We also seek to quantify the improvement of the “smart
parking” (SP) approach over an uncontrolled setting where
users park without any guidance (NG) and the case of
parking with guidance to free parking spaces (G). In both
cases, we assume users start to look for parking when they
reach regions defined by their walking distance. If there is
guidance, users know exactly the location of free resources;
otherwise, they search for free resources by themselves. The
four performance metrics are shown and we note that SP
provides significant benefits over the G approach. From the
system point of view, total resource utilization increases by
as much as 20% (from 0.75 to 0.92). From a user’s point
of view, we see decreases in both a(T ) and J̄(T ), while
average time-to-park is reduced by as much as half (from
108 to 54).

In Table III we examine the effect of traffic intensity as we
change the value of the interarrival interval 1/λ. Since there
is no obvious optimal value for τ , we chose to compare the
event-driven decision policy (SP-E) to the G and NG cases.
Here u(T ) = up(T ) + ur(T ) is the total utilization. We
find that the benefit of the SP-E strategy over the G case is
substantial under heavier traffic, as expected.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a “smart parking” system that exploits
technologies for parking space availability detection and
for driver localization and which allocates parking spots to
drivers instead of only supplying guidance to them. Simula-
tion results show significant performance improvements over
existing parking behavior, including the use of guidance-
based systems. Ongoing research focuses on selecting (pos-
sibly state-dependent) decision intervals and on the use of
pricing control to adjust parking space prices for different
classes of users or other bidding-type mechanisms that can
enhance fairness.
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