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THREE FUNDAMENTAL COMPLEXITY LIMITS

NP-HARD
LIMIT

INFO.
SPACE

one order increc¢ ‘

Tradeoff between GENERALITY and EFFICIENCY | ‘
of an algorithm
[Wolpert and Macready, 1997]
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CENTRAL THEME OF THIS TALK...

Rather than tackling hopelessly complex
problems by brute force...

e Seek “surrogate” simpler problems whose
solution is the same or “good enough”

SMALL PRICE: NEAR OPTIMALITY?

e Exploit problem structure whenever possible

SMALL PRICE: SUFFICIENT GENERALITY?
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OUTLINE

The classic complex optimization problem

“SURROGATE PROBLEM” METHODS:
Solutions to hard problems can be recovered from those of simpler problems

CONCURRENT ESTIMATION:
Answering N “what if” questions may not need N trials

:
:
:

DECOMPOSITION:
Solutions to hard problems can be recovered from those of simpler problems

- Resource Allocation

( PPLICATIONS TO SOME COMPLEX SYSTEMS:

- Hybrid Systems

NN N N
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TYPICAL OPTIMIZATION OF
COMPLEX SYSTEMS: REPEATED TRIAL AND ERROR

SIMULATE SYSTEM

ESTIMATE
PERFORMANCE

CHOOSE NEW POINT

SIMULATE SYSTEM

ESTIMATE
PERFORMANCE

CHOOSE NEW POINT
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RESOURCE ALLOCATION PROBLEMS

N
USERS ® O © ® O

K \

RESOURCES

e USERS request RESOURCES at random points in time
e USERS hold RESOURCES for random periods of time

EXAMPLES:
e Buffers allocated to links in network switches

e Time slots allocated to tasks in computer systems

 Vehicles allocated to missions in transportation systems
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PROBLEM FORMULATION

ALLOCATION VECTOR: AL ) B =R (N2

Determine r” such that

J,(r')=minJy(r)

COST FUNCTION

CONSTRAINT SET

EXAMPLE: FAEe {r ; Capacity Constraint
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WHY ARE THESE PROBLEMS HARD?

Y
1. Combinatorial complexity: |s|:M

KI(N —1)!

1 > NP-HARD LIMIT

2. Stochastic complexity:

J4(r) = E[L4(r)] I1s unknown and can only be
obtained through simulation or direct
observation of actual system sample paths

Iy = /T2 LIMIT
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RESOURCE ALLOCATION EXAMPLE

For N=6, K=24 — Possible allocations =

Christos G. Cassandras

Allocate K buffer slots
(RESOURCES)

over N servers
(USERS)

SO as to minimize
BLOCKING
PROBABILITY

N
subjectto Y =K
i—1

118,755 S




“SURROGATE” PROBLEM APPROACH

PROBLEM:

CONTINUOUS SET
CONTAINING A,
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'SURROGATE” PROBEEIFS s [ef e e T

SURROGATE
DISCRETE SET A
| CONTINUOUS SET A,

2. Observe/Simulate and
estimate gradient

H(r,,®,)

r = f(pn) 3. Update

1. Transform \

* '

Christos G. Cassandras



IS r*=f(p") 2?7

ANSWER: YES...

Theorem: Let p minimize L.(p). Then, there exists a discrete
feasible neighbor r*eNy(o") which minimizes L (r) and satisfies

Ld(r*) = Lc(p* )

[Gokbayrak and Cassandras, JOTA, 2001]
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'SURROGATE” PROE Ci=lietiiuis i s BTl

SOLUTION: lterative algorithm, n =0,1,..., with two steps:
1. Update p,:  pPpig = 7Tn+1[,0n /s (rn W )]

PROJECTION INTO
FEASIBLE SET A, SENSITIVITYNGSTIMATE

FROM SIMULATNON
AT DISCRETE ALLQCAS=

STEP SIZE
(LEARNING RATE)

2. Transform surrogate allocation p,,, Into
ACTUAL feasible allocation:

i1 = fn+1(pn+1)’ iAo > Ay

SEVERAL POSSIBLE MAPPINGS

Christos G. Cassandras



LEARNING BY TRIAL AND ERROR

Design
Parameters
Performance
|_) Measures

Operating Policies,
Control Parameters

CONVENTIONAL TRIAL-AND-ERROR ANALYSIS
(e.g., simulation)

e Repeatedly change parameters/operating policies
e Test different conditions
e Answer multiple WHAT IF questions
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LEARNING THROUGH PERTURBATION ANALYSIS

Design

Parameters
Performance
Measures
Operating Policies, |
Control Parameters

PERTURBATION

I
. 1 .

WHAT IF.. $ |
» Parameter p, = a were replaced by p, = b « - wrmance
« Parameter p, = ¢ were replaced by p, = d I erallWH

' ANSWERS TO MULTIPLE “WHAT IF” QU.=STIL]
AUTOMATICALLY PROVIDED
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PERTURBATION ANALYSIS

Part
Arrivals

»

BUFFER

MACHINE

Part
Departures

Observed
sample path:

—
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Perturbed
sample path:




PERTURBATION ANALYSIS CONTINUED

PERTURBATION DYNAMICS OBTAINED
FROM OBSERVED NOMINAL SAMPLE PATH ONLY!

AX(t+6;0,A6) = f[AX(t; 6,A6), X(t;6); 6, Af]

Why does this work?
Because structural knowledge of nominal system dynamics is also used

= Constructability Theory: Conditions under which this is possible
and methods for constructing perturbed sample paths

eV =SSTInENI M AJ(t+5:. 6,A0) = f[AI(t;0A0), X(t;6); 6, Ad]

= Perturbation Analysis: Obta!jrhing unbiased, consistent estimators

for 40
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CONCURRENT ESTIMATION

CE
cARCH SPP OBSERVE SYSTEM
S\ CONCURRENT

ESTIMATION

P.
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RESOURCE ALLOCATION EXAMPLE

For N=6, K=24 — Possible allocations =
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Allocate K buffer slots
(RESOURCES)

over N servers
(USERS)

SO as to minimize
BLOCKING
PROBABILITY

N
subjectto Y =K
i—1

118,755 S




“SURROGATE METHOD"™ RESULTS

>
=
=
©
d9)
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(9]
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|

Performance

Convergence in ~10
iterations vs. 118,755
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OUTLINE

* The classic complex optimization problem

= “SURROGATE PROBLEM” METHODS:
Solutions to hard problems can be recovered from those of simpler problems

* CONCURRENT ESTIMATION:
Answering N “what if” questions may not need N trials

= DECOMPOSITION:
Solutions to hard problems can be recovered from those of simpler problems

= APPLICATIONS TO SOME COMPLEX SYSTEMS:

- Resource Allocation
- Hybrid Systems
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HIERARCHICAL DECOMPOSITION OF
COMPLEX SYSTEMS

Weeks - Months

Minutes - Weeks

msec - Hours
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22727277

DISCRETE-EVENT

PROCESSES

|

PHYSICAL
PROCESSES

e VIODEL

Diff. EQ’s, LP

Automata, Simulation,
Queueing

Diff. EQ’s,
Detailed Simulation




EXAMPLES

e POWER SYSTEMS:

* MANUFACTURING:

e HYDRODYNAMICS:

Christos G. Cassandras

Unit Dynamics
— Operating Condition Changes
— Power Flows

Physical Part Processing
— Start/Stop Control
— Strategic Planning

Particle Dynamics
— Navier-Stokes Equations




HYBRID SYSTEMS

What exactly
DISCRETE-EVENT |, d0€s that mean?

PROCESS

i

PHYSICAL
(TIME-DRIVEN)

PROCESS
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HYBRID SYSTEM FRAMEWORK
2y = gp(25,Up, 1)

Xl = fl(XO’ Zl,ul,t) X2 = fz(xl, Zz,uZ,t)
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HYBRID SYSTEM FRAMEWORK CONTINUED

TIME DRIVEN :
Zi = 0i(z;,u;,1)

e ——

STATE STATE STATE STATE

WWINAS

o o \
-

/X/

X

EVENT - DRIVEN :
X = (X, 2, U, 1)

[Antsaklis (Ed.), Proc. of IEEE, 2000]
[Branicky et al., IEEE Trans. on AC, 1998]
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U )
RID [ /\ .'

Physical State, z

Zi = 0i(z;,u; 1)
X. i 4
SWITCHING TIMES
Switching Times _ \
g X1 = Fi(XU D) HAVE THEIR OWN

DYNAMICS!




OPTIMAL CONTROL PROBLEMS

Get to a desired final physical state z,, in minimum time X,
subject to N-1 switching events

Minimize deviations from N desired physical states: (z; - g;)°
and
deviations from target desired times: (X; - 77)?

In general:

Zi = 0;(z,4;,1)

min zN: j L (z;(t), x., u. (t))dt

Physical state
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TIME-DRIVEN AND EVENT-DRIVEN DYNAMICS

Time-Driven Dynamics (STATE = z):

or: Qs gk(zk’uk)

Event-Driven Dynamics (STATE = Event Times X, ;):

Event counterk = 1.2...

Event index ie E ={1,...,n}

Christos G. Cassandras



HYBRID SYSTEMS IN MANUFACTURING

Key questions facing manufacturing
system integrators:

* How to integrate ‘process C(\J\ y;ol’ with ‘operations control’ ?

OPERATIONS CONTROL

» Physicists A D Industrial Englnee F’

Christos G. Cassandras



HYBRID SYSTEMS IN MANUFACTURING  onTinuED

Throughout a manuf. process, each part is characterized by

e APHYSICAL state (e.g., size, temperature, strain)

« A TEMPORAL state (e.g., total time in system, total time to due-date)

PHYSICAL Time-driven NEW

Dynamics PHYSICAL
STATE y L

Zi = 0;(z,4;,1)

5 — ENS — -

X, . =MNMaXyX, . +a, .U, .
TEMPORAL kL e { ) Tk k’J} NEW

STATE : TEMPORAL
Event-driven STATE

Dynamics
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HYBRID SYSTEMS IN MANUFACTURING  onTinUED

EVENT-DRIVEN
COMPONENT

Part
Arrivals =

Departures

TIME-DRIVEN
COMPONENT
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EXAMPLE

PROCESS TIME
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HIERARCHICAL DECOMPOSITION

Zi = ¢;(z;,u;,1)

S.t. |

\

Time spent at ith operating
region (mode)

Consider objective functions:

mlnz 6.(z,,u,,8,) +w,(X,s.)]

Physical process Switching time process
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HIERARCHICAL DECOMPOSITION CONTINUED

Z; = 0i(z;, U, 1)

rmn§:¢(2¢m.)+WKK,J]

:rﬂGHER
| LEVEL
:PROBLEM:

|
[
1 LEVEL
|
|
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LOWER LEVEL PROBLEM
LO PROBLEM:

m_in¢i(zi’u' 5;) = %h(zfi - Zdi)2 T J? % ruiz(t)dt

ANl 7. = az, +bu;, z(0)=g

Penalize final state deviation

STANDARD LQ SOLUTION METHOD:

4 (s) = 30(z; — 24)7 + [ Srul (t)al

Christos G. Cassandras



HIGHER LEVEL PROBLEM

Given arrival
sequence (INPUT)
process control over Processing time
interval [0, s} (CONTOLLABLE]
Cost related (o
event timing

EXAMPLE: y (x)= (X —1)°

Cost of optimal

Christos G. Cassandras



HYBRID CONTROLLER STRUCTURE

Event timing

Hybrid controller steps: 1=1,...,N

System identification

L ower-level solution Higher-level Controller

EEEEENERN S*

Higher-level solution  """F"""""

L_ower-level solution

Operation...

| ower-level Controller ==

Physical processes

Christos G. Cassandras




HOW DO WE SOLVE THE HIGHER LEVEL PROBLEM?

msini[¢i*(si)+wi(xi)] A x. = max {x, ,,a, }+ s (u;)

causes nondifferentiabilities!

Even If these are convex;,
problem [s still NOT convex ins/

1. Even though problem is
NONDIFFERENTIABLE and NONCONVEX,
optimal solution shown to be unique.

[Cassandras et al., IEEE Trans. on AC, 2001]
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SOLVING THE HIGHER LEVEL PROBLEM  ~onTiNnUED

2. Optimal state trajectory can be decomposed into “blocks”
a,a, a, a, as dg a; ag ac

Xg

Each “block” corresponds to a
Constrained Convex Optimization problem

over 2N-1 possible Constrained Convex Optimization problems

gorithms that only need N Constrained Convex Optimization
problems have been developed = SCALEABILITY

Christos G. Cassandras



EXAMPLES: INTERACTIVE JAVA APPLETS

S ee h tt 7} Hybrid System - Microzoft Internet Explorer : mEE

J File Edit “iew Favortes Toolz Help

J G Back - = - () ot | “Ch Search S Favoites &4 History ||%v = =5 - L3

’3 Hybrid a Hybrid System - Mi

J File EJ Fle Edit ‘iew J.&ddres&l@ http: /#vita. bu. edudcgeHybrid/

| wBack| +Back » = - (]
J.-’-‘«ddress H J Address I@ hitp: / fvita. —

J=713.954

This demo allows 3
WOuL 0w job ariv

M[<=15]
Alfa; 1
Beta: 2

eta E

Gamma; 3
. Drata report
Input fallowing seq
" Same g for eac Job Index 1 2 i g
Job index Optimal Controlz

& Different q for & Arrivalz 0.0 1.0

Arivals Departures 1.0 1.369

I *ou specity car Walingtime 0.0 0.0

¥ Lse optimal co Cantrals 1.0 1.082

Chaose which resy Final States 1.0 04 1. . . . . . . . . 310
% Show result of Cost 713.954

" Showesultof | 4 | |

d |_|_|a Irtermet
smta,q'g ZtltIIJgj Al sm|| sgdes > g oafe) $| 82 E] SS9 EAGEOEAE DR nm

e e | P = [ = | = | I R =T = T R Tl =
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SOME OPEN PROBLEMS, RESEARCH AREAS

Ordinal Optimization

Generality of “Surrogate” approaches

Dynamic Optimization of Complex Systems
(beyond Dynamic Programming...)

Hybrid Systems: Modeling, Verification,

Stochastic Optimization, Computation Methods

Robustness vs. Optimality in Complex Systems

What is the right resolution level for modeling
Complex Systems?

Christos G. Cassandras
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